轴承—转子系统动力学
- 格式:ppt
- 大小:4.21 MB
- 文档页数:10
转子-轴承系统动力学特性研究的开题报告一、选题背景和意义转子-轴承系统是旋转机械的重要组成部分,其动力学特性对机械的性能和寿命具有重要影响。
因此,对转子-轴承系统的动力学特性进行研究具有重要的理论和应用价值,可以为旋转机械的设计、制造、维护等工作提供科学依据。
二、研究目的和内容本文旨在研究转子-轴承系统的动力学特性,主要包括以下目标和内容:(一)研究转子-轴承系统的运动学和动力学特性,包括旋转、振动、摩擦等方面的特性;(二)通过建立合适的数学模型,对转子-轴承系统的动力学特性进行模拟和仿真,验证模型的准确性并探讨其应用价值;(三)研究转子-轴承系统的稳定性和自振特性,包括转子的临界转速和共振等问题;(四)探讨转子-轴承系统的优化设计方法,包括轴承参数、转子质量分布、减振措施等方面的优化。
三、研究方法本文将采用理论分析、数值模拟、实验测试等方法,综合研究转子-轴承系统的动力学特性。
具体方法包括:(一)建立转子-轴承系统的数学模型,包括运动学模型、动力学模型、摩擦模型等;(二)通过数值计算、仿真和实验测试等方法,验证模型的准确性并探讨其应用价值;(三)利用数学工具和分析方法,分析转子-轴承系统的稳定性和自振特性,包括临界转速、共振等问题;(四)通过对转子-轴承系统参数的优化设计,提高系统的稳定性和性能。
四、研究计划和进度安排本文的研究计划和进度安排如下:阶段一:文献调研和理论分析(1-2个月)主要任务为收集文献资料,了解转子-轴承系统的研究现状和前沿,掌握系统的基本理论和分析方法。
阶段二:数学模型的建立和仿真分析(3-4个月)主要任务为建立转子-轴承系统的数学模型,并通过数值计算和仿真等方法,对系统的动力学特性进行分析和研究。
阶段三:实验测试及数据处理(2-3个月)主要任务为进行实验测试,获得实验数据,通过数据处理和分析,验证数学模型的准确性。
阶段四:优化设计和方案提出(2-3个月)主要任务为根据研究结果,提出转子-轴承系统的优化设计方案,提高系统的稳定性和性能。
滚动轴承-偏置转子系统涡摆耦合动力学特性研究梁明轩;袁惠群;蔡颖颖【摘要】建立了滚动轴承-偏置转子系统涡摆耦合动力学模型,模型中考虑了转子偏置量及圆盘摆振,滚动轴承模型中考虑了轴承游隙、非线性赫兹接触力及变刚度VC(Varying Compliance)振动等因素.采用数值方法对不同偏置量下,有无考虑圆盘摆振时系统动力学响应进行了计算与比较;分析了轴承游隙变化对不同偏置量的转子动力学性能的影响.结果表明:考虑圆盘摆振时偏置转子的非线性动力响应特征明显增强;相同转速下,不同偏置量的转子系统中频率成分亦不相同;转子偏置程度越大,系统临界转速对轴承游隙变化的敏感度越高.【期刊名称】《振动与冲击》【年(卷),期】2014(033)012【总页数】7页(P35-41)【关键词】滚动轴承;偏置转子;涡摆耦合;非线性;轴承游隙【作者】梁明轩;袁惠群;蔡颖颖【作者单位】东北大学机械工程与自动化学院,沈阳110819;东北大学机械工程与自动化学院,沈阳110819;东北大学理学院,沈阳110819;东北大学理学院,沈阳110819【正文语种】中文【中图分类】TH113.33旋转机械的广泛应用使得滚动轴承-转子系统动力学研究和振动分析显得越来越重要,为了满足滚动轴承-转子系统高转速与高精度设计要求,转子偏置位置、圆盘摆振以及轴承游隙变化逐渐成为不可忽视的影响因素。
滚动轴承-转子系统动力学建模过程中最基础的一步在于对轴承非线性分析模型的建立。
Yamamoto等[1-2]研究了滚动轴承VC振动,将对称刚性转子简化为受旋转载荷作用的滚动轴承,对轴承径向游隙引起非线性振动进行了研究;Harris[3]完善并发展了滚动轴承的拟动力学分析理论,成为目前绝大多数滚动轴承非线性分析模型的首选;Jedrzejewski等[4]亦在Harris的基础上,着重分析了离心力和陀螺效应对角接触球轴承刚度及变形的影响规律。
张耀强等[5]利用滚动轴承-Jeffcott刚性转子模型研究了转子系统的非线性响应;陈果[6-7]重点研究了含多故障的滚动轴承-转子系统动力学特性;邓四二等[8]建立了航空发动机双转子-滚动轴承耦合动力学模型,考虑了低压转子与高压转子之间的中介轴承游隙以及支承轴承参数,运用Newmark有限元法求解了系统响应。
固体力学的分支。
本文主要研究转子轴承系统在旋转状态下的振动,平衡和稳定性,特别是在接近或超过临界速度的运行状态下转子的横向振动。
转子是旋转机械(例如涡轮机和电动机)中的主要旋转部件。
工程和科学界一直关注转子振动已有200多年的历史了。
1869年英国W.J.M Rankin撰写的有关离心力的论文以及法国C.G.P.de Laval于1889年对挠性轴进行的测试是研究此问题的先驱者。
随着现代工业的发展,高速细长转子逐渐出现。
由于它们通常在柔性状态下工作,因此振动和稳定性问题变得越来越重要。
转子动力学的主要研究内容如下:由于制造误差,转子的每个微段的质心通常会略微偏离旋转轴。
当转子旋转时,由上述偏差引起的离心力将导致转子横向振动。
在某些转速(称为临界转速)下,这种振动非常强烈。
为了确保机器不会在工作速度范围内产生共振,临界速度应偏离工作速度超过10%。
临界速度与转子的弹性和质量分布有关。
对于具有有限集中质量的离散旋转系统,临界速度的数量等于集中质量的数量。
对于具有连续质量分布的弹性旋转系统,存在无限的临界速度。
用于计算大型转子支撑系统的临界转速的最常用数值方法是传递矩阵法。
要点如下:首先,将转子分成几个部分,每个部分左右两端的四个部分参数(挠度,挠度角,弯矩和剪切力)之间的关系可以用下式描述:本节的转移矩阵。
以此方式,可以获得系统的左端面和右端面的截面参数之间的总传递矩阵。
然后,根据边界条件和自然振动中存在非零解的条件,通过试错法求出各阶的临界速度,然后得到相应的振动模式。
由于Jeffcott转子的特殊性,唯一的轮盘位于两个刚性支撑之间,因此可以忽略陀螺力矩对临界转速的影响。
Jeffcott转子在无阻尼状态下的临界速度可以看作是其固有频率,但是对于其他类型的转子,陀螺力矩对临界速度的影响是不能忽略的,这是与结构动力学的差异之一。
和振动力学。
就转子动力学而言,在存在外部阻尼的情况下,Jeffcott转子的临界速度高于其在非阻尼状态下的固有频率,该结论也适用于其他类型的转子。
轴承转子系统动力学
轴承转子系统动力学是研究轴承和转子在运转过程中的力学行为和相互作用的学科。
它涉及到转子的旋转、振动、稳定性以及与轴承之间的力学相互作用等方面。
在轴承转子系统中,转子是通过轴承支撑并旋转的。
转子的旋转会引起离心力和惯性力的产生,同时也会受到悬挂系统和轴承的约束。
轴承则起到支撑和导向转子的作用,并承受着由转子旋转所带来的力和力矩。
在动力学分析中,需要考虑转子的质量、惯性特性、几何形状以及受力情况等因素。
常见的分析方法包括刚体动力学、弹性动力学和有限元分析等。
这些方法可以用来计算转子的振动模态、共振频率、振型等,并评估转子系统的稳定性和可靠性。
此外,轴承转子系统动力学还包括对转子系统进行故障诊断和故障预测的研究。
通过监测转子系统的振动、声音和温度等信号,可以检测到转子系统中的故障,并进行相应的维修和保养,以确保系统的正常运行。
总之,轴承转子系统动力学是对转子和轴承在运转中力学行为进行分析和研究的学科,它对于提高转子系统的性能、可靠性和安全性具有重要意义。
1。
转子—轴承系统非线性振动及分岔特性研究转子-轴承系统非线性振动及分岔特性研究摘要:转子-轴承系统是工业中非常常见且重要的机械系统之一。
在该系统中,转子通过轴承得到支撑并旋转,以实现机械设备的正常运转。
然而,由于传动链的非线性、摩擦、失衡等因素的存在,转子-轴承系统常常会出现非线性振动。
本文通过理论分析和数值模拟的方法研究了转子-轴承系统的非线性振动机理及其分岔特性。
一、引言转子-轴承系统广泛应用于工业生产中的各个领域,如船舶、飞机、机床等。
然而,由于系统自身的非线性特性,该系统常常会发生非线性振动,给机械设备的正常运行带来不利影响。
因此,研究转子-轴承系统的非线性振动特性对系统的安全运行和性能提升具有重要意义。
二、转子-轴承系统的非线性振动机理转子-轴承系统的非线性振动主要由以下因素引起:轴承的摩擦力、传动链的非线性特性、转子的失衡等。
其中,轴承的摩擦力是主要因素之一。
当转子在摩擦力的作用下旋转时,摩擦力会导致转子-轴承系统产生非线性振动。
同时,传动链的非线性特性也会对系统的振动特性产生显著影响。
另外,转子的失衡也是导致系统振动非线性的重要因素之一。
三、转子-轴承系统的数值模拟为了研究转子-轴承系统的非线性振动特性,本文利用数值模拟的方法对系统进行仿真分析。
首先,建立了转子-轴承系统的数学模型,并将其转化为一组非线性常微分方程。
然后,利用数值求解方法求解该方程组,得到系统的时间-位移响应曲线和频谱图。
通过对比不同参数条件下的模拟结果,研究了转子-轴承系统的非线性振动特性及其分岔现象。
四、转子-轴承系统的非线性振动分岔特性研究表明,转子-轴承系统在一定条件下会产生分岔现象。
分岔是指系统的振动模态在某些特定参数下发生突变的现象。
在转子-轴承系统中,通过改变参数,如失衡量、摩擦力大小等,我们发现系统的振动模态会发生突变,从而产生新的振动模态。
这一现象说明了转子-轴承系统具有丰富的非线性振动特性和动力学行为。