Colloid Chemistry and Surface Chemistry(胶体化学和表面化学)专业英语.
- 格式:ppt
- 大小:530.50 KB
- 文档页数:12
前沿讲座 Seminar专业英语 Professional English现代分析化学 Modern analytical che mistry生物分析技术 Bioanalytical techniques高分子进展 Advances in polymers功能高分子进展 Advances in function al polymers有机硅高分子研究进展 Progresses in organosilicon polymers高分子科学实验方法 Scientific experimental methods of polymers 高分子设计与合成 The design and sy nthesis of polymers反应性高分子专论 Instructions to re active polymers网络化学与化工信息检索 Internet Se arching for Chemistry & Chemical E ngineeringinformation有序分子组合体概论 Introduction to Organized Molecular Assembilies两亲分子聚集体化学 Chemistry of am phiphilic aggregates表面活性剂体系研究新方法 New Meth od for studying Surfactant System 微纳米材料化学 Chemistry of Micro-NanoMaterials分散体系研究新方法 New Method for studying dispersion分散体系相行为 The Phase Behavior of Aqueous Dispersions 溶液-凝胶材料 Sol-Gel Materials高等量子化学 Advanced Quantum Chemistry分子反应动力学 Molecular Reaction Dynamic计算量子化学 Computational QuantumChemistry群论 Group Theory分子模拟理论及软件应用 Theory andSoftware of Molecular Modelling &Application价键理论方法 Valence Bond Theory量子化学软件及其应用Software of Quantum Chemistry & its Application分子光谱学 Molecular Spectrum算法语言 Computational Languange高分子化学 Polymer Chemistry高分子物理 Polymer Physics药物化学 Medicinal Chemistry统计热力学 Statistic Thermodynamics液-液体系专论 Discussion on Liquid-Liquid System配位化学进展 Progress in Coordination Chemistry无机材料及物理性质 Inorganic Materials and Their Physical Properties物理无机化学 Physical Inorganic Chemistry相平衡 Phase Equilibrium现代无机化学 Today's Inorganic Chemistry无机化学前沿领域导论 Introduction to Forward Field in Inorganic Chemistry量子化学 Quantum Chemistry分子材料 Molecular Material固体酸碱理论 Solid Acid-Base Theory萃取过程物理化学 Physical Chemistryin Extraction表面电化学 Surface Electrochemistry电化学进展 Advances on Electrochemistry现代电化学实验技术 Modern Experimental Techniques of Electrochemistry金属-碳多重键化合物及其应用 Compounds with Metal-Carbon multiple bonds and Their Applications叶立德化学:理论和应用 Ylides Chemistry: Theory and Application立体化学与手性合成 Stereochemistryand Chiral Synthesis杂环化学 Heterocyclic Chemistry有机硅化学 Organosilicon Chemistry药物设计及合成 Pharmaceutical Design and Synthesis超分子化学 Supramolecular Chemistry分子设计与组合化学 Molecular Designand Combinatorial Chemistry纳米材料化学前沿领域导论 Introduction to Nano-materials Chemistry纳米材料控制合成与自组装 Controlled-synthesis and Self-assembly of Nan o-materials前沿讲座 Leading Front Forum专业英语 Professional English超分子化学基础 Basics of Supramolec ular Chemistry液晶材料基础 Basics of Liquid Crysta l Materials现代实验技术 Modern analytical testi ng techniques色谱及联用技术 Chromatography and Technology of tandem发光分析及其研究法 Luminescence an alysis and Research methods胶束酶学 Micellar Enzymology分析化学中的配位化合物 Complex in Analytical Chemistry电分析化学 Electroanalytical chemist ry生物分析化学 Bioanalytical chemistry分析化学 Analytical chemistry仪器分析 Instrument analysis高分子合成化学 Polymers synthetic c hemistry高聚物结构与性能 Structures and pr operties of polymers有机硅化学 Organosilicon chemistry 功能高分子Functional polymers有机硅高分子 Organosilicon polymers 高分子现代实验技术 Advanced experimental technology of polymers高分子合成新方法 New synthetic methods of polymers液晶与液晶高分子 Liquid crystals andliquid crystal polymers大分子反应 Macromolecules reaction水溶性高分子 Water-soluble polymers聚合物加工基础 The basic process ofpolymers聚合物复合材料 Composite materials高等化工与热力学 Advanced ChemicalEngineering and Thermodynamics高等反应工程学 Advanced Reaction Engineering高等有机化学 Advanced Organic Chemistry高等有机合成 Advanced Organic synthesis有机化学中光谱分析 Spectrum Analysis in Organic Chemistry催化作用原理 Principle of Catalysis染料化学 Dye Chemistry中间体化学与工艺学 Intermediate Chemistry and Technology化学动力学 Chemical Kinetics表面活性剂合成与工艺 Synthesis andTechnology of Surfactants环境化学 Environmental Chemistry化工企业清洁生产 Chemical Enterprise Clean Production化工污染及防治 Chemical Pollution and Control动量热量质量传递 Momentum, Heat and Mass Transmission化工分离工程专题 Separation Engineering耐蚀材料 Corrosion Resisting Material网络化学与化工信息检索 Internet Searching for Chemistry & Chemical Engineering information新型功能材料的模板组装 Templated Assembly of Novel Advanced Materials胶体与界面 Colloid and Interface纳米材料的胶体化学制备方法 Colloid Chemical Methods for Preparing Nano-materials脂质体化学 Chemistry of liposome表面活性剂物理化学 Physico-chemistry of surfactants高分子溶液与微乳液 Polymer Solutions and Microemulsions两亲分子的溶液化学 Chemistry of Amphiphilic Molecules in solution介孔材料化学 Mesoporous Chemistry超细颗粒化学 Chemistry of ultrafinepowder分散体系流变学 The Rheolgy of Aqueous Dispersions量子化学 Quantum Chemistry统计热力学 Statistic Thermodynamics群论 Group Theory分子模拟 Molecular Modelling高等量子化学 Advanced Quantum Ch emistry价键理论方法 Valence Bond Theory 量子化学软件及其应用Software of Q uantum Chemistry & its Application计算量子化学 Computational Quantum Chemistry分子模拟软件及其应用Software of M olecular Modelling & its Application分子反应动力学 Molecular Reaction D ynamic分子光谱学 Molecular Spectrum算法语言 Computational Languange 高分子化学 Polymer Chemistry高分子物理 Polymer Physics腐蚀电化学 Corrosion Electrochemist ry物理化学 Physical Chemistry结构化学 structural Chemistry现代分析与测试技术(试验为主) Moder n Analysis and Testing Technology(e xperimetally)高等无机化学 Advanced Inorganic Ch emistry近代无机物研究方法 Modern Research Methods for Inorganic Compounds 萃取化学研究方法 Research Methods for Extraction Chemistry单晶培养 Crystal Culture 固态化学 Chemistry of Solid Substance液-液体系专论 Discussion on Liquid-Liquid System配位化学进展 Progress in Coordination Chemistry卟啉酞箐化学 Chemistry of Porphyrine and Phthalocyanine无机材料及物理性质 Inorganic Materials and Their Physical Properties物理无机化学 Physical Inorganic Chemistry相平衡 Phase Equilibrium生物化学的应用 Application of Biologic Chemistry生物无机化学 Bio-Inorganic Chemistry绿色化学 Green Chemistry金属有机化合物在均相催化中的应用 Applied Homogeneous Catalysis with Organometallic Compounds功能性食品化学 Functionalized FoodChemistry无机药物化学 Inorganic Pharmaceutical Chemistry电极过程动力学 Kinetics on ElectrodeProcess电化学研究方法 Electrochemical Research Methods生物物理化学 Biological Physical Chemistry波谱与现代检测技术 Spectroscopy and Modern Testing Technology理论有机化学 theoretical Organic Chemistry合成化学 Synthesis Chemistry有机合成新方法 New Methods for Organic Synthesis生物有机化学 Bio-organic Chemistry药物化学 Pharmaceutical Chemistry金属有机化学 Organometallic Chemistry金属-碳多重键化合物及其应用 Compounds with Metal-Carbon multiple bonds and Their Applications分子构效与模拟 Molecular Structure-Activity and Simulation过程装置数值计算 Data Calculation ofProcess Devices石油化工典型设备 Common Equipmentof Petrochemical Industry化工流态化工程 Fluidization in Chemical Industry化工装置模拟与优化 Analogue and Optimization of Chemical Devices化工分离工程 Separation Engineering化工系统与优化 Chemical System andOptimization高等化工热力学 Advanced Chemical Engineering and Thermodynamics超临界流体技术及应用 Super CraticalLiguid Technegues and Applications膜分离技术 Membrane Separation T echnegues溶剂萃取原理和应用 Theory and Appli cation of Solvent Extraction树脂吸附理论 Theory of Resin Adso rption中药材化学 Chemistry of Chinese Me dicine生物资源有效成分分析与鉴定 Analysis and Detection of Bio-materials相平衡理论与应用 Theory and Applic ation of Phase Equilibrium计算机在化学工程中的应用 Application of Computer in Chemical Engineerin g微乳液和高分子溶液 Micro-emulsion a nd High Molecular Solution传递过程 Transmision Process反应工程分析 Reaction Engineering A nalysis腐蚀电化学原理与应用 Principle and A pplication of Corrosion Electrochem istry腐蚀电化学测试方法与应用 Measureme nt Method and Application of Corro sion Electrochemistry耐蚀表面工程 Surface Techniques of Anti-corrosion缓蚀剂技术 Inhabitor Techniques 腐蚀失效分析 Analysis of Corrosion Destroy材料表面研究方法 Method of Studyin g Material Surfacc分离与纯化技术 Separation and Purification Technology现代精细有机合成 Modern Fine Organic Synthesis化学工艺与设备 Chemical Technologyand Apparatuas功能材料概论 Functional Materials Conspectus油田化学 Oilfield Chemistry精细化学品研究 Study of Fine Chemicals催化剂合成与应用 Synthesis and Application of Catalyzer低维材料制备 Preparation of Low-Dimension Materials手性药物化学 Symmetrical Pharmaceutical Chemistry光敏高分子材料化学 Photosensitive Polymer Materials Chemistry纳米材料制备与表征 Preparation andCharacterization of Nanostructuredmaterials溶胶凝胶化学 Sol-gel Chemistry纳米材料化学进展 Proceeding of Nano-materials Chemistry●化学常用词汇汉英对照表1●氨ammonia氨基酸amino acid铵盐ammonium salt饱和链烃saturated aliphatichydrocarbon苯benzene变性denaturation不饱和烃unsaturatedhydrocarbon超导材料superconductivematerial臭氧ozone醇alcohol次氯酸钾potassiumhypochlorite醋酸钠sodium acetate蛋白质protein氮族元素nitrogen groupelement碘化钾potassium iodide碘化钠sodium iodide电化学腐蚀electrochemicalcorrosion电解质electrolyte电离平衡ionizationequilibrium电子云electron cloud淀粉starch淀粉碘化钾试纸starchpotassium iodide paper二氧化氮nitrogen dioxide二氧化硅silicon dioxide二氧化硫sulphur dioxide二氧化锰manganese dioxide芳香烃arene放热反应exothermic reaction非极性分子non-polar molecule非极性键non-polar bond肥皂soap分馏fractional distillation酚phenol复合材料composite干电池dry cell干馏dry distillation甘油glycerol高分子化合物polymer共价键covalent bond官能团functional group光化学烟雾photochemical fog过氧化氢hydrogen peroxide合成材料synthetic material合成纤维synthetic fiber合成橡胶synthetic rubber核电荷数nuclear charge number核素nuclide化学电源chemical powersource化学反应速率chemical reactionrate化学键chemical bond化学平衡chemical equilibrium 还原剂reducing agent磺化反应sulfonation reaction 霍尔槽 Hull Cell极性分子polar molecule极性键polar bond加成反应addition reaction加聚反应addition polymerization甲烷methane碱金属alkali metal碱石灰soda lime结构式structural formula聚合反应po1ymerization可逆反应reversible reaction空气污染指数air pollution index勒夏特列原理Le Chatelier's principle离子反应ionic reaction离子方程式ionic equation离子键ionic bond锂电池lithium cell两性氢氧化物amphoteric hydroxide两性氧化物amphoteric oxide裂化cracking裂解pyrolysis硫氰化钾potassium thiocyanate硫酸钠sodium sulphide氯化铵ammonium chloride氯化钡barium chloride氯化钾potassium chloride氯化铝aluminium chloride氯化镁magnesium chloride氯化氢hydrogen chloride氯化铁iron (III) chloride氯水chlorine water麦芽糖maltose煤coal酶enzyme摩尔mole摩尔质量molar mass品红magenta或fuchsine葡萄糖glucose气体摩尔体积molar volume of gas铅蓄电池lead storage battery强电解质strong electrolyte氢氟酸hydrogen chloride氢氧化铝aluminium hydroxide取代反应substitutionreaction醛aldehyde炔烃alkyne燃料电池fuel cell弱电解质weak electrolyte石油Petroleum水解反应hydrolysis reaction四氯化碳carbontetrachloride塑料plastic塑料的降解plasticdegradation塑料的老化plastic ageing酸碱中和滴定acid-baseneutralization titration酸雨acid rain羧酸carboxylic acid碳酸钠 sodium carbonate碳酸氢铵 ammonium bicarbonate碳酸氢钠 sodium bicarbonate糖类 carbohydrate烃 hydrocarbon烃的衍生物 derivative ofhydrocarbon烃基 hydrocarbonyl同分异构体 isomer同素异形体 allotrope同位素 isotope同系物 homo1og涂料 coating烷烃 alkane物质的量amount of substance物质的量浓度 amount-of-substanceconcentration of B烯烃 alkene洗涤剂 detergent纤维素 cellulose相对分子质量 relative molecularmass相对原子质量relative atomic mass消去反应 elimination reaction硝化反应 nitratlon reaction硝酸钡 barium nitrate硝酸银silver nitrate溴的四氯化碳溶液 solution ofbromine in carbon tetrachloride溴化钠 sodium bromide溴水bromine water溴水 bromine water盐类的水解hydrolysis of salts盐析salting-out焰色反应 flame test氧化剂oxidizing agent氧化铝 aluminium oxide氧化铁iron (III) oxide乙醇ethanol乙醛 ethana1乙炔 ethyne乙酸ethanoic acid乙酸乙酯 ethyl acetate乙烯ethene银镜反应silver mirror reaction硬脂酸stearic acid油脂oils and fats有机化合物 organic compound元素周期表 periodic table ofelements元素周期律 periodic law ofelements原电池 primary battery原子序数 atomic number皂化反应 saponification粘合剂 adhesive蔗糖 sucrose指示剂 Indicator酯 ester酯化反应 esterification周期period族group(主族:main group)Bunsen burner 本生灯product 化学反应产物flask 烧瓶apparatus 设备PH indicator PH值指示剂,氢离子(浓度的)负指数指示剂matrass 卵形瓶litmus 石蕊litmus paper 石蕊试纸graduate, graduated flask 量筒,量杯reagent 试剂test tube 试管burette 滴定管retort 曲颈甑still 蒸馏釜cupel 烤钵crucible pot, melting pot 坩埚pipette 吸液管filter 滤管stirring rod 搅拌棒element 元素body 物体compound 化合物atom 原子gram atom 克原子atomic weight 原子量atomic number 原子数atomic mass 原子质量molecule 分子electrolyte 电解质ion 离子anion 阴离子cation 阳离子electron 电子isotope 同位素isomer 同分异物现象polymer 聚合物symbol 复合radical 基structural formula 分子式valence, valency 价monovalent 单价bivalent 二价halogen 成盐元素bond 原子的聚合mixture 混合combination 合成作用compound 合成物alloy 合金organic chemistry 有机化学inorganic chemistry 无机化学derivative 衍生物series 系列acid 酸hydrochloric acid 盐酸sulphuric acid 硫酸nitric acid 硝酸aqua fortis 王水fatty acid 脂肪酸organic acid 有机酸 hydrosulphuric acid 氢硫酸hydrogen sulfide 氢化硫alkali 碱,强碱ammonia 氨base 碱hydrate 水合物hydroxide 氢氧化物,羟化物hydracid 氢酸hydrocarbon 碳氢化合物,羟anhydride 酐alkaloid 生物碱aldehyde 醛oxide 氧化物phosphate 磷酸盐acetate 醋酸盐methane 甲烷,沼气butane 丁烷salt 盐potassium carbonate 碳酸钾soda 苏打sodium carbonate 碳酸钠caustic potash 苛性钾caustic soda 苛性钠ester 酯gel 凝胶体analysis 分解fractionation 分馏endothermic reaction 吸热反应exothermic reaction 放热反应precipitation 沉淀to precipitate 沉淀to distil, to distill 蒸馏distillation 蒸馏to calcine 煅烧to oxidize 氧化alkalinization 碱化to oxygenate, to oxidize 脱氧,氧化to neutralize 中和to hydrogenate 氢化to hydrate 水合,水化to dehydrate 脱水fermentation 发酵solution 溶解combustion 燃烧fusion, melting 熔解alkalinity 碱性isomerism, isomery 同分异物现象hydrolysis 水解electrolysis 电解electrode 电极anode 阳极,正极cathode 阴极,负极catalyst 催化剂catalysis 催化作用oxidization, oxidation 氧化reducer 还原剂dissolution 分解synthesis 合成reversible 可逆的1. The Ideal-Gas Equation 理想气体状态方程2. Partial Pressures 分压3. Real Gases: Deviation from IdealBehavior 真实气体:对理想气体行为的偏离4. The van der Waals Equation 范德华方程5. System and Surroundings 系统与环境6. State and State Functions 状态与状态函数7. Process 过程8. Phase 相9. The First Law of Thermodynamics热力学第一定律10. Heat and Work 热与功11. Endothermic and ExothermicProcesses 吸热与发热过程12. Enthalpies of Reactions 反应热13. Hess’s Law 盖斯定律14. Enthalpies of Formation 生成焓15. Reaction Rates 反应速率16. Reaction Order 反应级数17. Rate Constants 速率常数18. Activation Energy 活化能19. The Arrhenius Equation 阿累尼乌斯方程20. Reaction Mechanisms 反应机理21. Homogeneous Catalysis 均相催化剂22. Heterogeneous Catalysis 非均相催化剂23. Enzymes 酶24. The Equilibrium Constant 平衡常数25. the Direction of Reaction 反应方向26. Le Chatelier’s Principle 列·沙特列原理27. Effects of Volume, Pressure, Temperature Changes and Catalysts i. 体积,压力,温度变化以及催化剂的影响28. Spontaneous Processes 自发过程29. Entropy (Standard Entropy) 熵(标准熵)30. The Second Law of Thermodynamics 热力学第二定律31. Entropy Changes 熵变32. Standard Free-Energy Changes 标准自由能变33. Acid-Bases 酸碱34. The Dissociation of Water 水离解35. The Proton in Water 水合质子36. The pH Scales pH值37. Bronsted-Lowry Acids and Bases Bronsted-Lowry 酸和碱38. Proton-Transfer Reactions 质子转移反应39. Conjugate Acid-Base Pairs 共轭酸碱对40. Relative Strength of Acids and Bases 酸碱的相对强度41. Lewis Acids and Bases 路易斯酸碱42. Hydrolysis of Metal Ions 金属离子的水解43. Buffer Solutions 缓冲溶液44. The Common-Ion Effects 同离子效应45. Buffer Capacity 缓冲容量46. Formation of Complex Ions 配离子的形成47. Solubility 溶解度48. The Solubility-Product ConstantKsp 溶度积常数49. Precipitation and separation ofIons 离子的沉淀与分离50. Selective Precipitation of Ions 离子的选择沉淀51. Oxidation-Reduction Reactions 氧化还原反应52. Oxidation Number 氧化数53. Balancing Oxidation-ReductionEquations 氧化还原反应方程的配平54. Half-Reaction 半反应55. Galvani Cell 原电池56. Voltaic Cell 伏特电池57. Cell EMF 电池电动势58. Standard Electrode Potentials 标准电极电势59. Oxidizing and Reducing Agents 氧化剂和还原剂60. The Nernst Equation 能斯特方程61. Electrolysis 电解62. The Wave Behavior of Electrons电子的波动性63. Bohr’s Model of The HydrogenAtom 氢原子的波尔模型64. Line Spectra 线光谱65. Quantum Numbers 量子数66. Electron Spin 电子自旋67. Atomic Orbital 原子轨道68. The s (p, d, f) Orbital s(p,d,f)轨道69. Many-Electron Atoms 多电子原子70. Energies of Orbital 轨道能量71. The Pauli Exclusion Principle 泡林不相容原理72. Electron Configurations 电子构型73. The Periodic Table 周期表74. Row 行75. Group 族76. Isotopes, Atomic Numbers, andMass Numbers 同位素,原子数,质量数77. Periodic Properties of theElements 元素的周期律78. Radius of Atoms 原子半径79. Ionization Energy 电离能80. Electronegativity 电负性81. Effective Nuclear Charge 有效核电荷82. Electron Affinities 亲电性83. Metals 金属84. Nonmetals 非金属85. Valence Bond Theory 价键理论86. Covalence Bond 共价键87. Orbital Overlap 轨道重叠88. Multiple Bonds 重键89. Hybrid Orbital 杂化轨道90. The VSEPR Model 价层电子对互斥理论91. Molecular Geometries 分子空间构型92. Molecular Orbital 分子轨道93. Diatomic Molecules 双原子分子94. Bond Length 键长95. Bond Order 键级96. Bond Angles 键角97. Bond Enthalpies 键能98. Bond Polarity 键矩99. Dipole Moments 偶极矩100. Polarity Molecules 极性分子101. Polyatomic Molecules 多原子分子102. Crystal Structure 晶体结构103. Non-Crystal 非晶体104. Close Packing of Spheres 球密堆积105. Metallic Solids 金属晶体106. Metallic Bond 金属键107. Alloys 合金108. Ionic Solids 离子晶体109. Ion-Dipole Forces 离子偶极力110. Molecular Forces 分子间力111. Intermolecular Forces 分子间作用力112. Hydrogen Bonding 氢键113. Covalent-Network Solids 原子晶体114. Compounds 化合物115. The Nomenclature, Composition and Structure of Complexes 配合物的命名,组成和结构116. Charges, Coordination Numbers,and Geometries 电荷数、配位数、及几何构型117. Chelates 螯合物118. Isomerism 异构现象119. Structural Isomerism 结构异构120. Stereoisomerism 立体异构121. Magnetism 磁性122. Electron Configurations inOctahedral Complexes 八面体构型配合物的电子分布123. Tetrahedral and Square-planarComplexes 四面体和平面四边形配合物124. General Characteristics 共性125. s-Block Elements s区元素126. Alkali Metals 碱金属127. Alkaline Earth Metals 碱土金属128. Hydrides 氢化物129. Oxides 氧化物130. Peroxides and Superoxides 过氧化物和超氧化物131. Hydroxides 氢氧化物132. Salts 盐133. p-Block Elements p区元素134. Boron Group (Boron, Aluminium,Gallium, Indium, Thallium) 硼族(硼,铝,镓,铟,铊)135. Borane 硼烷136. Carbon Group (Carbon, Silicon,Germanium, Tin, Lead) 碳族(碳,硅,锗,锡,铅)137. Graphite, Carbon Monoxide,Carbon Dioxide 石墨,一氧化碳,二氧化碳138. Carbonic Acid, Carbonates andCarbides 碳酸,碳酸盐,碳化物139. Occurrence and Preparation ofSilicon 硅的存在和制备140. Silicic Acid,Silicates 硅酸,硅酸盐141. Nitrogen Group (Phosphorus,Arsenic, Antimony, and Bismuth) 氮族(磷,砷,锑,铋)142. Ammonia, Nitric Acid, PhosphoricAcid 氨,硝酸,磷酸143. Phosphorates, phosphorusHalides 磷酸盐,卤化磷144. Oxygen Group (Oxygen, Sulfur,Selenium, and Tellurium) 氧族元素(氧,硫,硒,碲)145. Ozone, Hydrogen Peroxide 臭氧,过氧化氢146. Sulfides 硫化物147. Halogens (Fluorine, Chlorine,Bromine, Iodine) 卤素(氟,氯,溴,碘)148. Halides, Chloride 卤化物,氯化物149. The Noble Gases 稀有气体150. Noble-Gas Compounds 稀有气体化合物151. d-Block elements d区元素152. Transition Metals 过渡金属153. Potassium Dichromate 重铬酸钾154. Potassium Permanganate 高锰酸钾155. Iron Copper Zinc Mercury 铁,铜,锌,汞156. f-Block Elements f区元素157. Lanthanides 镧系元素158. Radioactivity 放射性159. Nuclear Chemistry 核化学160. Nuclear Fission 核裂变161. Nuclear Fusion 核聚变162. analytical chemistry 分析化学163. qualitative analysis 定性分析164. quantitative analysis 定量分析165. chemical analysis 化学分析166. instrumental analysis 仪器分析167. titrimetry 滴定分析168. gravimetric analysis 重量分析法169. regent 试剂170. chromatographic analysis 色谱分析171. product 产物172. electrochemical analysis 电化学分析173. on-line analysis 在线分析174. macro analysis 常量分析175. characteristic 表征176. micro analysis 微量分析177. deformation analysis 形态分析178. semimicro analysis 半微量分析179. systematical error 系统误差180. routine analysis 常规分析181. random error 偶然误差182. arbitration analysis 仲裁分析183. gross error 过失误差184. normal distribution 正态分布185. accuracy 准确度186. deviation 偏差187. precision精密度188. relative standard deviation相对标准偏差(RSD)189. coefficient variation变异系数(CV)190. confidence level置信水平191. confidence interval置信区间192. significant test显著性检验193. significant figure有效数字194. standard solution标准溶液195. titration滴定196. stoichiometric point化学计量点197. end point滴定终点198. titration error滴定误差199. primary standard基准物质200. amount of substance物质的量201. standardization标定202. chemical reaction化学反应203. concentration浓度204. chemical equilibrium化学平衡205. titer滴定度206. general equation for a chemicalreaction化学反应的通式207. proton theory of acid-base酸碱质子理论208. acid-base titration酸碱滴定法209. dissociation constant解离常数210. conjugate acid-base pair共轭酸碱对211. acetic acid乙酸212. hydronium ion水合氢离子213. electrolyte电解质214. ion-product constant of water水的离子积215. ionization电离216. proton condition质子平衡217. zero level零水准218. buffer solution缓冲溶液219. methyl orange甲基橙220. acid-base indicator酸碱指示剂221. phenolphthalein酚酞222. coordination compound配位化合物223. center ion中心离子224. cumulative stability constant累积稳定常数225. alpha coefficient酸效应系数226. overall stability constant总稳定常数227. ligand配位体228. ethylenediamine tetraacetic acid 乙二胺四乙酸229. side reaction coefficient副反应系数230. coordination atom配位原子231. coordination number配位数232. lone pair electron孤对电子233. chelate compound螯合物234. metal indicator金属指示剂235. chelating agent螯合剂236. masking 掩蔽237. demasking解蔽238. electron电子239. catalysis催化240. oxidation氧化241. catalyst催化剂242. reduction还原243. catalytic reaction催化反应244. reaction rate反应速率245. electrode potential电极电势246. activation energy 反应的活化能247. redox couple 氧化还原电对248. potassium permanganate 高锰酸钾249. iodimetry碘量法250. potassium dichromate 重铬酸钾251. cerimetry 铈量法252. redox indicator 氧化还原指示253. oxygen consuming 耗氧量(OC)254. chemical oxygen demanded 化学需氧量(COD)255. dissolved oxygen 溶解氧(DO)256. precipitation 沉淀反应257. argentimetry 银量法258. heterogeneous equilibrium of ions多相离子平衡259. aging 陈化260. postprecipitation 继沉淀261. coprecipitation 共沉淀262. ignition 灼烧263. fitration 过滤264. decantation 倾泻法265. chemical factor 化学因数266. spectrophotometry 分光光度法267. colorimetry 比色分析268. transmittance 透光率269. absorptivity 吸光率270. calibration curve 校正曲线271. standard curve 标准曲线272. monochromator 单色器273. source 光源274. wavelength dispersion 色散275. absorption cell吸收池276. detector 检测系统277. bathochromic shift 红移278. Molar absorptivity 摩尔吸光系数279. hypochromic shift 紫移280. acetylene 乙炔281. ethylene 乙烯282. acetylating agent 乙酰化剂283. acetic acid 乙酸284. adiethyl ether 乙醚285. ethyl alcohol 乙醇286. acetaldehtde 乙醛287. β-dicarbontl compound β–二羰基化合物288. bimolecular elimination 双分子消除反应289. bimolecular nucleophilic substitution 双分子亲核取代反应290. open chain compound 开链族化合物291. molecular orbital theory 分子轨道理论292. chiral molecule 手性分子293. tautomerism 互变异构现象294. reaction mechanism 反应历程295. chemical shift 化学位移296. Walden inversio 瓦尔登反转n 297. Enantiomorph 对映体298. addition rea ction 加成反应299. dextro- 右旋300. levo- 左旋301. stereochemistry 立体化学302. stereo isomer 立体异构体303. Lucas reagent 卢卡斯试剂304. covalent bond 共价键305. conjugated diene 共轭二烯烃306. conjugated double bond 共轭双键307. conjugated system 共轭体系308. conjugated effect 共轭效应309. isomer 同分异构体310. isomerism 同分异构现象311. organic chemistry 有机化学312. hybridization 杂化313. hybrid orbital 杂化轨道314. heterocyclic compound 杂环化合物315. peroxide effect 过氧化物效应t316. valence bond theory 价键理论317. sequence rule 次序规则318. electron-attracting grou p 吸电子基319. Huckel rule 休克尔规则320. Hinsberg test 兴斯堡试验321. infrared spectrum 红外光谱322. Michael reacton 麦克尔反应323. halogenated hydrocarbon 卤代烃324. haloform reaction 卤仿反应325. systematic nomenclatur 系统命名法e326. Newman projection 纽曼投影式327. aromatic compound 芳香族化合物328. aromatic character 芳香性r329. Claisen condensation reaction克莱森酯缩合反应330. Claisen rearrangement 克莱森重排331. Diels-Alder reation 狄尔斯-阿尔得反应332. Clemmensen reduction 克莱门森还原333. Cannizzaro reaction 坎尼扎罗反应334. positional isomers 位置异构体335. unimolecular elimination reaction单分子消除反应336. unimolecular nucleophilicsubstitution 单分子亲核取代反应337. benzene 苯338. functional grou 官能团p339. configuration 构型340. conformation 构象341. confomational isome 构象异构体342. electrophilic addition 亲电加成343. electrophilic reagent 亲电试剂344. nucleophilic addition 亲核加成345. nucleophilic reagent 亲核试剂346. nucleophilic substitution reaction亲核取代反应347. active intermediate 活性中间体348. Saytzeff rule 查依采夫规则349. cis-trans isomerism 顺反异构350. inductive effect 诱导效应 t351. Fehling’s reagent 费林试剂352. phase transfer catalysis 相转移催化作用353. aliphatic compound 脂肪族化合物354. elimination reaction 消除反应355. Grignard reagent 格利雅试剂 356. nuclear magnetic resonance 核磁共振357. alkene 烯烃358. allyl cation 烯丙基正离子359. leaving group 离去基团360. optical activity 旋光性361. boat confomation 船型构象 362. silver mirror reaction 银镜反应363. Fischer projection 菲舍尔投影式 364. Kekule structure 凯库勒结构式365. Friedel-Crafts reaction 傅列德尔-克拉夫茨反应366. Ketone 酮367. carboxylic acid 羧酸368. carboxylic acid derivative 羧酸衍生物369. hydroboration 硼氢化反应 370. bond oength 键长371. bond energy 键能372. bond angle 键角373. carbohydrate 碳水化合物374. carbocation 碳正离子375. carbanion 碳负离子376. alcohol 醇377. Gofmann rule 霍夫曼规则 378. Aldehyde 醛379. Ether 醚380. Polymer 聚合物ace- 乙(酰基)acet- 醋;醋酸;乙酸acetamido- 乙酰胺基acetenyl- 乙炔基acetoxy- 醋酸基;乙酰氧基acetyl- 乙酰(基)aetio- 初allo- 别allyl- 烯丙(基);CH2=CH-CH2-amido- 酰胺(基)amino- 氨基amyl- ①淀粉②戊(基)amylo- 淀粉andr- 雄andro- 雄anilino- 苯胺基anisoyl- 茴香酰;甲氧苯酰anti- 抗apo- 阿朴;去水aryl- 芳(香)基aspartyl- 门冬氨酰auri- 金(基);(三价)金基aza- 氮(杂)azido- 叠氮azo- 偶氮basi- 碱baso- 碱benxoyl- 苯酰;苯甲酰benzyl- 苄(基);苯甲酰bi- 二;双;重biphenyl- 联苯基biphenylyl- 联苯基bis- 双;二bor- 硼boro- 硼bromo- 溴butenyl- 丁烯基(有1、2、3位三种)butoxyl- 丁氧基butyl- 丁基butyryl- 丁酰caprinoyl- 癸酰caproyl- 己酰calc- 钙calci- 钙calco- 钙capryl- 癸酰capryloyl- 辛酰caprylyl- 辛酰cef- 头孢(头孢菌素族抗生素词首)chlor- ①氯②绿chloro- ①氯②绿ciclo- 环cis- 顺clo- 氯crypto- 隐cycl- 环cyclo- 环de- 去;脱dec- 十;癸deca- 十;癸dehydro- 去氢;去水demethoxy- 去甲氧(基)demethyl- 去甲(基)deoxy- 去氧des- 去;脱desmethyl- 去甲(基)desoxy- 去氧dex- 右旋dextro- 右旋di- 二diamino- 二氨基diazo- 重氮dihydro- 二氢;双氢endo- 桥epi- 表;差向epoxy- 环氧erythro- 红;赤estr- 雌ethinyl- 乙炔(基)ethoxyl- 乙氧(基)ethyl- 乙基etio- 初eu- 优fluor- ①氟②荧光fluoro- ①氟②荧光formyl- 甲酰(基)guanyl- 脒基hepta- 七;庚hetero- 杂hexa- 六;己homo- 高(比原化合物多一个-CH2-)hypo- 次io- 碘indo- 碘iso- 异keto- 酮laevo- 左旋leuco- 白levo- 左旋。
Colloids and Surfaces A:Physicochem.Eng.Aspects 330(2008)72–79Contents lists available at ScienceDirectColloids and Surfaces A:Physicochemical andEngineeringAspectsj o u r n a l h o m e p a g e :w w w.e l s e v i e r.c o m /l o c a t e /c o l s u r faCoagulation of silica microspheres with hydrolyzed Al(III)—Significance of Al 13and Al 13aggregatesXiaohong Wu,Dongsheng Wang ∗,Xiaopeng Ge,Hongxiao TangState Key Laboratory of Environmental Aquatic Chemistry,RCEES,Chinese Academy of Sciences,P.O.B.2871,Beijing 100085,Chinaa r t i c l e i n f o Article history:Received 19February 2008Received in revised form 1July 2008Accepted 19July 2008Available online 30July 2008Keywords:Al 13[Al 13]n aggregatesSpecies transformation Coagulationa b s t r a c tCoagulation of silica microspheres by Al coagulants with high basicities was investigated at the constant pH 6.5.Aluminum coagulants were consisted of Al 13and [Al 13]n aggregates,with OH/Al ratios of 2.46,2.6and 2.8,respectively.The species distribution and transformation of the coagulants upon aging were studied by using ferron assay and 27Al NMR.In addition,size distribution and morphology of coagulants were also examined by PCS and SEM.The results showed that the tridecamer Al 13and outer sphere aggregated [Al 13]n were the dominant species for coagulants aged weekly,while sol–gels or precipitates were formed upon further aging.Accordingly,charge neutralization,electro-patch coagulation and bridge aggregation were proceeding for particle aggregation at lower aluminum concentration.Besides other three mechanisms,sweep flocculation was also involved at higher dosages.Hence,chemical interaction between particles and coagulants evolved from adsorption to surface precipitation for aluminum polycations by virtue of species transformation.©2008Elsevier B.V.All rights reserved.1.IntroductionHydrolyzing metal salts such as alum are widely used as coagu-lants in the water treatment for years.Recently,inorganic polymer flocculants (IPFs),e.g.polyaluminum chlorides (PACl),are already commercially available around the world.Chemical aspects of coag-ulation have been studied extensively and interpreted in terms of coordination requirements of the metal ions [1],and sur-face precipitation coupled with charge neutralization [2,3].With nuclear magnetic resonance (NMR)and small angle X-ray scat-tering (SAXS),aluminum polycation Al 13(O)4(OH)247+is thought to be the most effective species of PACl owing to its high pos-itive charge and Keggin structure [4–10].Although a model has tried to interpret the coagulation mechanism of PACl quantita-tively [11],additional improvements are needed to understand the coagulation process comprehensively through the coagulant speciation.Many studies have shown that the formation and decomposi-tion of Al 13depend critically on the pH,mineral ions and organic matter [12–18].It is generally accepted that the Al 13remains stable at the optimal pH (∼5)and relative low concentration (<10−3M)in the absence of organic substances and minerals.The aggrega-∗Corresponding author.Tel.:+861062849138;fax:+861062923543.E-mail address:wgds@ (D.Wang).tion and precipitation of Al 13complex occurs when pH >6[18].Below pH 6,the positive charge of 7+maintains and aggregation is avoided [16].Investigations suggested that the local range order of Al 13would not be significantly modified upon dilution and pH shock [10],while structural changes were observed in presence of humic material at different pH values [8].However,a few stud-ies have reported that a major rearrangement of Al 13must take place when hydrolysis advanced to OH/Al ratio of 3.0[19–21].The tridecamer was suggested to transform from the gel with open fractal structure to the bayerite hydroxide upon base hydroly-sis and aging [19,20].Exact definition of such transformation is still desired for the full application of the aluminum salt.As PACl exhibits coagulation efficiency over a wider temperature and pH range [4,6–8],it is important to unveil the coagulation mechanisms induced by its active species,i.e.Al 13.For this reason,hydrolysis aluminum species need to be separated and investigated during coagulation.The aim of this paper is to describe the nature of the transformed aluminum polycations,i.e.the Al 13and Al 13aggregates with high basicities (OH/Al =2.6,2.8),and their interactions with silica micro-spheres during coagulation.Particle aggregation induced by various species were investigated as a function of aluminum concentration at pH 6.5.Consequently,coagulation mechanisms are discussed by virtue of species distribution combined with jar test results in this study.Better understanding is extended on the effects of species transformation accordingly.0927-7757/$–see front matter ©2008Elsevier B.V.All rights reserved.doi:10.1016/j.colsurfa.2008.07.034X.Wu et al./Colloids and Surfaces A:Physicochem.Eng.Aspects330(2008)72–7973Fig.1.Size distribution of silica microshperes measured by Mastersize2000. 2.Materials and methods2.1.Silica microspheres and coagulantsAll the chemicals were analytical grade and experiments were conducted at room temperature(22±3◦C).The micro-sized silica spheres were used as model particles to prepare the working suspension because of their strong nega-tive charge and simple morphology as our previous study reported [22].Furthermore,a narrow size distribution of silica suspension was also indicated by static light scattering techniques(Malvern, Mastersizer2000,UK)as Fig.1shows.The mean diameter of silica particle was3.0m.The Al13was prepared by SO42−/Ba2+displacement method from the stock PACl solution as shown in[23].The concentration and OH/Al ratio(B values)of PACl solution werefixed to0.1mol/L and2.3,respectively.A batch of Al13was stocked to prepare Al13 aggregates with a slow base titration method.According to the tar-get B values(2.6and2.8),certain amount of NaOH(0.1M)was titrated slowly(0.1ml/min)to Al13solution under rapid stirring. Thefinal aluminum concentration of all the prepared coagulants wasfixed to0.05mol/L.2.2.Size distribution and morphology of coagulantsThe photon correlation spectroscopy(PCS)or dynamic light scattering was used to characterize the size of coagulant,by BI-200SM(Brookhaven,USA)instrument equipped with a BI-9000AT digital correlator.The instrument was operated at a532nm wave-length with vertical polarization.Before measurement,all the samples werefiltered twice using0.45m membrane(Millipore, USA).The instrument alignment and size determination were car-ried out as Wang et al.described[24].Scanning electron microscopy(SEM)was used to examine the morphology of aggregated coagulants by a HITACHI S-570.The sam-ples were prepared on the copper tab of aluminum pin stub.A drop of coagulant solution was placed on and air-dried at room tem-perature.In addition,the prepared substrate was sputter coated with gold in case of charging.The working distance and acceleration voltage are8.0mm and5.0keV,respectively.2.3.Speciation and zeta-potential analysisAll the coagulants were examined with ferron assay and solu-tion27Al NMR spectroscopy at different ages.Species distribution was characterized with ferron assay divided as Al a,Al b and Al c [25].The Al13was analyzed by a500MHz27Al NMR spectroscopy (Brookhaven,USA).The sequences,recording method,and Al13 content calculation were described earlier[22],and will not be repeated.The electrical property of coagulant was investigated by Zeta-sizer2000(Malvern,UK).It should be noted that difficulties still exist to directly measure the zeta-potential of coagulants,though sol–gels formed for aluminum solutions with high basicities.In this regard,the same method as measuring the zeta-potential of coated silica particle was followed[22],and100mg/L of sil-ica suspension was used as the carrier and excess coagulants of 2×10−4mol Al/L were added to ensure completely coverage of par-ticles.2.4.Jar testCoagulation test was performed by a JTY laboratory stirrer (Daiyuan Company,Beijing).The working suspension was pre-pared by adding silica microspheres into deionzed water with 0.001M NaHCO3and0.01M NaNO3,providing the alkalinity and ionic strength buffer,respectively.Jar test was taken in a500ml suspension and followed the procedure as:2min rapid mixing (200rpm),10min slow mixing(40rpm)and15min sedimentation. The zeta-potential was measured after rapid mixing,and the resid-ual turbidity was measured separately with HACH2100N turbid meter after sedimentation.Suspension’s pH was adjusted with HCl (0.05M)or NaOH(0.05M)before coagulant injection,and was not readjusted as pH drop resulting from hydrolysis can be neglected. Thefloc size distribution was measured in situ by small angle light scattering(Mastersizer2000,Malvern,UK).The instrument deter-mined the scattered intensity at measuring angles ranging from0◦to46◦with a He–Ne laser light of632.8nm.An integration time of 40s per curve was chosen to compromise measuring speed and data quality.The size information of aggregated particles was monitored during coagulation using standard1L glass beaker,and performed the same procedure as jar test.3.Results3.1.Coagulant size distribution and morphologySize determination of coagulant remains to be uncertain due to the polydispersityfluctuations,hydrodynamic interactions and sample contamination,though some pioneer work had been reported[24].However,the speciation transformation of coagu-lant can also be reflected through the size information.For the IPFs such as PACl,colloidal aluminum species formed with increas-ing basicity and could be detected by PCS.Fig.2shows the size distribution of coagulants analyzed by NNLS after1week aging. Two sectional distributions can be seen clearly for three coagu-lants,indicating size aggregation and structure rearrangement of Al13with further alkalinification.With increasing B values,particle size increases from about10to several decade nm and the large size section becomes broader.It is well known that the size of Keggin Al13is∼2nm and its freshly formed aggregates can be hundreds nm[10].As can be seen from Fig.2a,the small section is of size about2nm and the large one is of size between10and20nm,the analyzed results agrees well with the previous reports.However, owing to the requirement of instrument measurement,the hun-dreds nm aggregates may befiltrated and could not detected by PCS.In this regard,the SEM was employed to study the morphol-ogy transformation and also the size growth of Al13aggregates.74X.Wu et al./Colloids and Surfaces A:Physicochem.Eng.Aspects330(2008)72–79Fig.2.Size distribution of weekly-aged coagulants measured by PCS.Fig.3.SEM images of the Al13aggregates at different ages.Table1The Al species distribution of coagulants at different agesB(OH/Al)Al T(mol/L)Ferron assay(%)27Al NMR(%)pH a pH bAl a a Al b a Al c a Al a b Al b b Al c b Al13a Al13b2.460.05 5.095.003.290.3 6.599.099.0 5.234.97 2.60.05 1.981.117 2.352.145.681.047.7 5.60 4.95 2.80.050.778.121.20.215.284.637.10 5.87 5.82a Coagulants aged for a week.b Coagulants aged for6months.X.Wu et al./Colloids and Surfaces A:Physicochem.Eng.Aspects330(2008)72–7975In Fig.3,the distinct structures of coagulants are presented at different transformation stages,and correspond well with former studies[10,19].The independently formed particles stick together for weekly aged B2.6,and a more compact structure appears upon aging and alkalinification.Furthermore,the sizes of aggregates increase to hundreds micrometers in Fig.3for B2.8and B2.6(6-month aged).Although species transformation occurring during air-drying process may lead to size enlargement for all the coag-ulants,the relatively large scales can be clearly observed by SEM.A precise determination of Al species in the aggregates were carried out by ferron assay and NMR,showing the existence of Keggin Al13 in the weekly aged aggregates(next part).With further aging(6-month),larger polymer species may be formed and are not possible to be precisely detected with our data.However,it can be hypoth-esized that the Al13aggregates were formed by individual Al13unit via out-sphere bridging,and these structures maintain the identical tetrahedral environment under certain condition[17].Conse-quently,[Al13]n is referred as such fractal species,and their cor-responding coagulation behaviors are compared with Al13later on.3.2.Speciation of coagulants at different agesAlthough large amount of studies have addressed on the chemi-cal speciation of hydrolyzed aluminum,disagreements still exist on the species transformation[7,17,26].With aging time,the species distributions change greatly for Al13aggregates(B2.6,B2.8)and remain stable for pure Al13(B2.46),as Table1and paring the species analysis,it can be seen that the Al b almost equals to Al13for B2.46and2.6,while Al13decrease greatly for B2.8when Al b proportion was high.Apparently,larger poly-meric species,even sol–gels,had formed and led to the unclear solution of B2.8.It can be suggested herein that structure rearrange-ment occurred during further alkalinification for Al13to form larger polymers like[Al13]n.When contacting with ferron colorimetric solution,this kind of[Al13]n can be decomposed upon dilution and pH shock and hence exhibited higher activity within2h.On the other side,these[Al13]n aggregates may transfer to be the colloidal Al species or precipitates upon aging.These colloidal Al species can-not be disassembled and are inert to the ferron solution,which is demonstrated in Table1as Al b percentages decrease greatly(6-month-aged B2.6and B2.8).It was not clear whether this kind of Al13aggregates could be assigned to Al30or not,since no alu-minum monomer was presented in the pure Al13solution(Fig.4a) and the aging temperature was set at room temperature[27].Fur-thermore,the formed precipitates may differ from the aluminum hydroxide with gibbsite structure,which will be shown by the fol-lowing coagulation test,although clear definition is needed in the future study.3.3.Zeta-potential of coagulantsThe measured zeta-potentials of silica particles coated with weekly-aged coagulants are presented in Fig.5,and values of the original particles are also indicated[22].It can be seen that positive zeta values maintain stable in the pH range of4–7for coated silica pared with pure Al13,the zeta values of Al13aggre-gates are higher in the acidic range,which can be possibly caused by the release of Al13unit under pH shock.Therefore,the suggested structure of[Al13]n can be indirectly proved,while direct infor-mation is required and under further investigation in our group. The zeta-potential of half-year aged Al13aggregates were not mea-sured in this study,since the electrical properties of coagulants are controlled by the proportions of polycations.Although the Al b per-centage decreased greatly for the half-year aged B2.8(Table1), the jar test results also indicated high zeta-potential whenalu-Fig.4.27Al NMR spectra of the cogulants.(a)Coagulants aged for a week;(b)coag-ulants aged for6months.minum concentration reached10−4mol/L(Fig.6b).This could be attributed by the some released Al13and some undetected larger polymers by NMR[27],yet precise determination has not been reported.76X.Wu et al./Colloids and Surfaces A:Physicochem.Eng.Aspects330(2008)72–79Fig.5.Zeta-potential curves of silica microspheres with or without coating of coagulants as a function of pH.Silica concentration:100mg/L;total aluminum con-centration[Al]T:2×10−4mol/L;(*)measure by Wu et al.[22].3.4.Coagulation results3.4.1.Particle removal and zeta-potentialAll the jar tests were performed at constant pH value(6.5) under room temperature.As pure Al13(B2.46)remained stable in almost a year(data is not shown),only6-month-aged Al13 was selected to compare the coagulation performances between the Al13aggregates.The zeta-potential and residual turbidities are presented in Fig.6as a function of coagulant dosage.It can be seen that the suspension injected with pure Al13reaches the C.C.C (critical coagulation concentration)at the lower dosage around 1×10−6mol/L,when particles are still negatively charged.More-over,re-stabilization occurs right after charge reversal,which is similar to the former report about high Al13-content PACl[22].For B2.6and B2.8of different ages,the distinct coagulation behaviors exhibit clearly in the Fig.6a and b.With increasing dosages,suspen-sion destabilization and re-stabilization occur for the weekly-aged coagulants,whereas re-stabilization zone disappears for the6-month-aged B2.8.Obviously,different coagulation mechanisms are involved,resulting from the species transformation in situ and pre-formed alkalinification.For the B2.6and B2.8aged for a week (Fig.6a),part of the larger polymer or colloidal[Al13]n(higher Al b)may decompose into Al13units upon injection,and result in higher zeta-potential and re-stabilization at higher dosages.The charge variation of silica suspension is consistent with the elec-trical properties of Al13and Al13aggregates presented in Fig.5. Furthermore,as mentioned earlier,the particle size Al13aggre-gates are larger than pure Al13,which decade nm particles appear. With that respect,Al13aggregates can interact and bridge more particles than Al13unit does.Therefore,a rather gentle increas-ing slope of residual turbidity is observed for B2.6,although the corresponding zeta-potential is higher than B2.46.Moreover,the stabilization zone is much wider for B2.8at that condition.Accord-ingly,strong charge neutralization and electro-patch coagulation are performed between negative silica microspheres and positive polycations(Al13and[Al13]n),combining with a weak bridge aggre-gation.For the6-month aged Al13aggregates,significantly lower turbidities are observed at the higher dosages([Al]>10−5mol/L), while similar trends of coagulation behavior can be observed for B2.46and B2.6,yet re-stabilization zone disappears for B2.8 (Fig.6b).It can be understood that other mechanisms dominate the coagulation process besides charge neutralization for these6-month-aged coagulants,as part of the[Al13]n transformed into sol–gels or precipitates upon aging(lower Al b).No matter original or destabilized particles can be both linked together or wrapped by this kind of sol–gels or precipitates,and led to relative lower turbidities after charge reversal(zeta>10mV).3.4.2.Floc size distributionBased on the coagulation behaviors shown in Fig.6,it is evi-dent that the optimum coagulation concentration occurs at higher dosage for B2.8than that for B2.46and B2.6,i.e.10−5mol/L and10−6mol/L,respectively.Figs.7and8show the comparison between the size distributions for them.For both weekly-aged B2.6and B2.8,largeflocs of∼500m are formed as well as pure Al13(B2.46)does at lower dosage(10−6mol/L).Moreover,thepro-Fig.6.Coagulation results as a function of aluminum concentration using different coagulants.(a)Weekly-aged coagulants;(b)6months aged coagulants;(silica suspension concentration:0.5g/L; :−45±5mV;pH6.5).X.Wu et al./Colloids and Surfaces A:Physicochem.Eng.Aspects330(2008)72–7977Fig.7.Volume based size distribution offlocs at the end of slow mixing for all the coagulants.At the optimum concentration for B2.46and B2.6.([Al]T=10−6mol/L).portions of larger sizefloc for aggregates are greater than that of pure Al13,owing to their larger size and branched structure (Figs.2and3).However,without enough positive polycations to destabilize negative silica particles,particle aggregation induced by B2.8is retarded,resulting in a lower turbidity removal at dosage of10−6mol/L(Fig.6).On the other side,floc size decreases and pri-mary silica particles dominate for the B2.46at dosage of10−5mol/L, contrary to the great proportions of largerflocs for Al13aggregates, especially the B2.8(Fig.8).Obviously,this can be attributed to their different speciation associated with charge properties,size distribution,etc.For B2.46,high content Al13(99%)induced strong repulsion between coated particles(zeta=31.2mV)and prevented particle aggregation subsequently.For B2.6and B2.8,portions of larger polymers like[Al13]n(part of Al b and Al c)catalyzed particle aggregation in terms of bridge aggregation or sweepfloccula-tion forming largerflocs.With sol–gel or precipitates formed for 6-month-aged B2.8(no Al13and higher Alc),voluminousflocs (D50>1000m)turn to be the predominant and lower turbidity maintains at higher dosages as Fig.6b shows.4.DiscussionsThe performance of inorganic polymerflocculants(IPFs),such as PACl,has shown to be efficient in water treatment[6,7,28].On addition to water,such inorganic coagulant may undergo hydrolysis reactions and alter the original speciation,yet the species formation has not been well understood due to the difficult determination in the condition of water treatment.However,Keggin-Al13is generally thought to be stable,though the aggregation of Al13occurs in nat-ural and artificial environment.For the aluminum solutions with high basicities of2.46,2.6and2.8,Keggin-Al13and Al13aggregates are the predominant species for weekly-aged coagulants.Conse-quently,Al13and[Al13]n are assumed to be the active species, and their coagulation behaviors are distinct correspondingly.Com-Fig.8.Volume based size distribution offlocs at the end of slow mixing for all the coagulants.At the optimum concentration for B2.8([Al]T=10−5mol/L).78X.Wu et al./Colloids and Surfaces A:Physicochem.Eng.Aspects330(2008)72–79Fig.9.Schematic representation of species transformation of aluminum polycations and the performed corresponding main coagulation mechanisms.pared with Al13aggregates,highly positive Al137+adsorbed on the negative particles rapidly and covered the surfaces as scattered patches.The particle destabilization and aggregation were carried out simultaneously through charge neutralization and electro-patch coagulation.Moreover,[Al13]n can be formed in situ after the addition of Al13and bridge aggregation may also involved at higher dosage.However,for Al13aggregates,more particles were destabi-lized and agglomerated with bigger units and longer chain structure of[Al13]n(Figs.2and3),including preformed and in situ formed. Upon aging,part of[Al13]n may transform into amorphous hydrox-ides,as shown by Ferron assay(higher Al c for6-month-aged B2.8, Table1).In addition,the particle size measurement by dynamic light scattering indicated strong intensity for monthly-aged B2.8 and hundred nm colloidal Al species were observed.Therefore, bridge aggregation and sweepflocculation dominated the parti-cle and cluster interactions along the coagulation course.It should be noted that charge neutralization is the pre-requisite for efficient particle removal.As Fig.6b shows,relatively higher residual turbid-ity is observed for B2.8at lower dosages([Al]T<10−5mol/L)despite larger sizeflocs formed then(Fig.7),owing to the negative zeta-potential values( ∼−30mV).Without sufficient destabilization, the residual less aggregated particles would be lower down the coagulation efficiency consequently.Previous studies indicated that pre-hydrolyzed coagulants are often more effective than traditional coagulants due to their sub-stantial component of tridecamer Al13[6,14,28].Because of their various specie distributions,coagulants with different ages and basicities interact with particles through various pathways.With high content Al13,B2.46exhibited strong adsorption ability and formed relatively small and compactflocs(Figs.7and8).For the Al coagulants with high basicities,particle–coagulants interac-tions evolved from adsorption to co-precipitation,corresponding to the coagulation mechanisms as charge neutralization,electro-patch coagulation and sweepflocculation.Although precipitate was involved during the process for these coagulants,its nature and performance was distinct from that of the traditional alum which had already been demonstrated by Van Benschoten and Edzwald[29].This kind of precipitate or sol–gel remains active and can be disassembled or decomposed upon stirring and proton-promotion.In fact,it is the[Al13]n that plays a major role in the coagulation process,and its transformation pathways based on the experimental conditions will determine the coagulation behavior ultimately.Fig.9shows the possible transformation pathways of Al13accompanied with corresponding coagulation mechanisms. For each coagulant containing various portions of Al13,[Al13]n and Al(OH)3(am)(based on Table1),different coagulation mechanisms predominate the particle interactions thereby and result in distinct coagulation behaviors(Fig.6).5.ConclusionsAluminum solutions with high basicities experienced species transformation upon aging,and thefinal phases formed depend on the exact conditions of hydrolysis(e.g.solution pH).Character-ization of such aluminum solutions showed that tridecamer Al13 and aggregated[Al13]n were the dominant species,and distinct structures were observed corresponding with the formed species. The species transformation was demonstrated with coagulation behaviors of different aluminum polycations,and different coag-ulation mechanisms were assigned accordingly.Although these experimental results do not exactly define the species transforma-tion,enough evidence is provided for speculation.With increasing use of PACl,further work is needed to investigate the nature of the formed aluminum polycations such as Al13during coagula-tion.Consequently,better understanding can be obtained on the improved performance of these coagulants.AcknowledgementThe authors would like to thank the National Natural Sci-ence Foundation of China(NSFC)in support of this project(No. 20537020,No.50678167and No.20677073).References[1]W.Stumm,J.J.Morgan,Chemical aspects of coagulation,J.Am.Water WorksAssoc.54(1962)971–994.[2]S.K.Dentel,Application of the precipitation-charge neutralization model ofcoagulation,Environ.Sci.Technol.22(1988)825–832.[3]R.D.Letterman,D.R.Iyer,Modeling the effects of hydrolyzed aluminum andsolution chemistry onflocculation kinetics,Environ.Sci.Technol.19(1985) 673–681.[4]D.S.Wang,H.Liu,C.Li,H.X.Tang,Removal of humic acid by coagulation withnano-Al13,J.Water Supply6(2006)59–67.[5]rtiges,J.Y.Bottero,L.S.Derrendinger,B.Humbert,P.Tekely,H.Suty,Floc-culation of colloidal silica with hydrolyzed aluminum:an27Al solid state NMR investigation,Langmuir13(1997)147–152.[6]S.Sinha,Y.Yoon,G.Amy,J.Yoon,Determining the effectiveness of conven-tional and alternative coagulants through effective characterization schemes, Chemosphere57(2004)1115–1122.[7]H.X.Tang,Theory of Inorganic Polymer Flocculation and Flocculants,ChinaArchitecture press,Beijing,2006.[8]V.Kazpard,rtiges,C.Frochot,J.B.D.de la Caillerie,M.L.Viriot,J.M.Portal,T.Gorner,J.L.Bersillon,Fate of coagulant species and conformational effects during the aggregation of a model of a humic substance with Al13polycations, Water Res.40(2006)1965–1974.[9]A.Masion,A.Vilge-Ritter,J.Rose,W.E.E.Stone,B.J.Teppen,D.Rybacki,J.Y.Bottero,Coagulation-flocculation of natural organic matter with Al salts: speciation and structure of the aggregates,Environ.Sci.Technol.34(2000) 3242–3246.[10]J.Y.Bottero,D.Tchoubar,M.A.V.Axelos,P.Quienne,F.Fiessinger,Flocculationof silica colloids with hydroxy aluminum polycations.Relation betweenfloc structure and aggregation mechanisms,Langmuir6(1990)596–602.[11]D.S.Wang,H.X.Tang,Quantitative model of coagulation with inorganic poly-merflocculant PACI:application of the PCNM,J.Envir.Eng.-ASCE132(2006) 434–441.[12]A.Amirbahman,M.Gfeller,G.Furrer,Kinetics and mechanism of ligand-promoted decomposition of the Keggin Al-13polymer,Geochim.Cosmochim.Ac.64(2000)911–919.[13]E.Molis,F.Thomas,J.Y.Bottero,O.Barres,A.Masion,Chemical and structuraltransformation of aggregated Al13polycations,promoted by salicylate ligand, Langmuir12(1996)3195–3200.[14]P.Y.Zhang,H.H.Hahn,E.Hoffmann,G.M.Zeng,Influence of some additivesto aluminium species distribution in aluminium coagulants,Chemosphere57 (2004)1489–1494.[15]W.H.Casey,B.L.Phillips,M.Karlsson,S.Nordin,J.P.Nordin,D.J.Sullivan,S.N.Crawford,Rates and mechanisms of oxygen exchanges between sites in the。
An Analysis B e au ty of S c i e nc e on the C ove r of L e ad i n g Journal of C h e m i s t r y前沿化学期刊封面上的科学之美探析王国燕 程 曦 杜 进(中国科学技术大学,合肥 230026)Wang Guo y anCheng Xi Du Jin(University of Science and Technology of China ,Hefei 230026)Abstract :Science communication should make contribution for scientific research. Each discipline has a special way whenthey show their own achievements , forming different characteristics. Chemistry , as the basic discipline in the naturalscience , h as been acc ept ed a great attract ion f rom the society. The topic of article aims to find scientific visualization of chemistry characteristics and common ground and show the beauty of chemistry by analyzing the chemical properties of this article and of high impact factor journals of chemistry cover image features. Keyw ords :journa l of chemistry ;cover story ;beauty of scienceCLC Num bers: N4Document Code: AArticle ID: 1673-8357 (2014) 04-0059-07一图胜千言,DNA 的双螺旋结构、原子 的行星模型、薛定谔之猫等视觉形象带动了 人们对科学知识的有效理解和认知。
The Chemistry of Colloids andInterfaces介绍:Colloid和界面化学的基本概念Colloid是一种物质形态,指的是以微米甚至纳米级别的颗粒或胶体为载体的混合物。
而Interface,即“界面”,指的是两个不同物质相互接触时,两侧发生化学、物理性质改变的层面。
这两种概念之间存在着紧密的联系,构成了一个重要的学科领域:Colloids and Interfaces Chemistry。
本文将从微观角度介绍Colloid和Interface 的化学特性。
一、Colloid的性质和制备方法Colloid具有独特的特性,例如,会因增加颗粒质量浓度而发生凝胶化。
但是由于其颗粒级别的大小,传统化学方法无法合成,因此需要特殊制备方法。
制备Colloid的方法很多,可以通过化学方法、物理方法或化学物理方法来实现。
常见制备方法:1. 离子溶胶法。
2. 凝胶化法。
3. 电沉积法。
二、Colloid的稳定性和破坏机制Colloid粒子的稳定性是指其长期存在而不发生凝聚。
Colloid的稳定性机制有很多种,其中最常见的两种分别是静电排斥相互作用和物种排斥作用。
静电排斥相互作用,是指由于Colloid粒子表面带有静电荷,导致表面间相互排斥,从而保持相对稳定。
物种排斥作用,是指由于溶液中含有形成Colloid粒子的物质,但由于互相之间不相容,而形成的稳定状态。
尽管Colloid粒子可以保持稳定,但在某些条件下,它们可能会出现破坏,例如加盐、加热和pH有所变化等。
三、Interface化学Interface是物质相互接触的地方,是物体之间或物质之间的“交界处”。
Interface 化学是无法避免的,因为它在我们生活和生产当中无处不在。
例如,油和水之间的界面化学过程,以及洗涤剂在衣物和水之间的作用。
一般来说,界面化学关注以下几个方面:表面张力、分散系统、润湿性和胶体和晶体之间的界面反应等。
化学顶级期刊发表排名化学是一门关于物质的组成、结构、性质和变化规律的科学,是自然科学中的一门重要学科。
化学研究的成果需要通过发表在期刊上来与同行分享和交流,而在众多的化学期刊中,顶级期刊的发表排名一直备受关注。
本文将介绍一些化学领域的顶级期刊发表排名,希望能对化学研究人员有所帮助。
1. Journal of the American Chemical Society (JACS)。
《美国化学学会期刊》(JACS)是美国化学学会出版的权威期刊,创刊于1879年,是全球化学领域最具影响力的期刊之一。
JACS发表的文章涵盖了化学的各个领域,包括有机化学、无机化学、物理化学、材料化学等。
JACS期刊以其高质量的研究论文和严格的审稿标准而闻名,因此成为了众多化学研究人员梦寐以求的发表平台。
2. Angewandte Chemie International Edition。
《应用化学国际版》是一份以英文发表的国际性化学期刊,由德国化学学会出版。
该期刊创刊于1962年,以发表化学领域的原创性研究论文和综述而闻名。
《应用化学国际版》的影响因子一直居于化学期刊排名的前列,成为化学研究人员交流最新研究成果的重要平台。
3. Nature Chemistry。
《自然化学》是一份由国际知名科学期刊《自然》出版的专业化学期刊。
该期刊创刊于2009年,以发表化学领域的重要研究成果和新颖观点而著称。
《自然化学》的发表要求极为严格,但一经发表,便能获得全球化学研究人员的高度关注和认可。
4. Chemical Reviews。
《化学评论》是美国化学学会出版的一份综述性化学期刊,创刊于1924年。
该期刊以发表化学领域的综合性综述和前沿性研究成果而著称,被誉为化学领域的“百科全书”。
《化学评论》的影响因子一直居于化学期刊排名的前列,是化学研究人员获取最新研究进展的重要来源。
5. Journal of Organic Chemistry。
Colloids and Surfaces B:Biointerfaces21(2001)149–162Behaviour of formula emulsions containing hydrolysed wheyprotein and various lecithinsSusanne Tirok,Inta Scherze*,Gerald MuschiolikDepartment of Food Technology,Institute of Nutrition,Friedrich-Schiller-Uni6ersity,Dornburger Str.29,D-07743Jena,GermanyAbstractFormula emulsion systems are used as enteral,sports and health products.In some formulas addition of hydrolysed protein is necessary to guarantee ease of digestion and hypoallergenicity.In the low fat emulsion model an increase in the content of lecithin(phospholipid mixture)was required,in consideration of the advice of the Food and Nutrition Board(USA)for choline supplementation.The individual and interactive effects of whey protein isolate (WPI)or hydrolysate(WPH)(3.7and4.9%w/w),unmodified deoiled or hydrolysed lecithin(0.48or0.7%w/w)and carbohydrate in the form of maltodextrin with dextrose equivalent(DE)18.5or glucose syrup with DE34(11%w/w) on the properties of formula emulsions with4%v/w sunflower oil,were investigated using a full factorial design.The emulsions were characterised by particle size distribution,coalescence stability,creaming rate,and also surface protein and lecithin concentration.WPI-containing emulsions proved to be stable against coalescence and showed only little creaming after1and7days standing.There was a significant increase in the mean droplet size and a significant deterioration of coalescence and creaming stability when WPH instead of WPI was used as the protein source,due to the lower number of large peptides and lower surface activity of the WPH.Increasing the WPH concentration led to an increase in oil droplet size and further deterioration of the stability of the emulsions.The starch hydrolysate and lecithin also significantly influenced the emulsion properties.Their influence was less strong when the emulsion contained WPI.Under the conditions used WPH-based emulsions were more stable,in terms of creaming and coalescence,when a low level of protein was used in conjunction with hydrolysed lecithin and glucose syrup.Oil droplets in emulsions containing unmodified lecithin in either the continuous or disperse phase and WPH in the continuous phase were very sensitive to coalescence.The addition of starch hydrolysates(DE18.5)induced intensive flocculation and phase separation in these emulsions.©2001Elsevier Science B.V.All rights reserved. Keywords:Whey protein hydrolysate;Hydrolysed lecithin;Formula emulsion;Starch hydrolysatewww.elsevier.nl/locate/colsurfb1.IntroductionFormula emulsion systems based on protein, fat and carbohydrate are used as dietetic foods (enteral,sports and health products).In most of these formulas,protein constitutes12–18%of total energy,carbohydrates40–60%and fats 30–40%[1].The concentrations of these macronutrients have been chosen so that a daily intake of2000g of emulsion would meet 8400kJ.*Corresponding author.E-mail address:scherze@mampf.ieu.uni-jena.de(I.Scherze).0927-7765/01/$-see front matter©2001Elsevier Science B.V.All rights reserved. PII:S0927-7765(01)00168-0S.Tirok et al./Colloids and Surfaces B:Biointerfaces21(2001)149–162 150The carbohydrates are usually glucose polymers in the form of starch or its hydrolysates[1]. Starch hydrolysates are ideal,since they lead to no or only a small increase in viscosity,so that the emulsion stays drinkable or may be provided by feeding tubes.In this study,a commercial maltodextrin(DE=18.5)and dried glucose syrup (DE=34)were used to determine the influence of the degree of starch hydrolysis on the emulsion behaviour.It is sometimes desirable or even necessary to use proteins in a hydrolysed form to guarantee ease of digestion and hypoallergenicity.A degree of hydrolysis of23–29%,as in the chosen protein, represents a product mainly composed of di-and tripeptides.Peptides of this size have very low antigenicity[2]and therefore might be used for persons with milk protein allergy or to prevent development of milk allergy,especially in young children[2,3].Furthermore,extensively hy-drolysed protein is more easily digested because the constituent di-and tripeptides can be ab-sorbed without further enzymatic hydrolysis[4]. It is generally accepted that mild hydrolysis is beneficial and that extensive hydrolysis,due to production of many short peptides,is detrimental to emulsifying and stabilising properties[5].The use of an extensively hydrolysed protein as N-source in a formula emulsion is,therefore,not sufficient for stabilisation.Hence,a second sur-face active molecule has to be added to support emulsion formation.Lecithins(mixtures of phospholipids)are emulsifiers of natural origin that are widely used in pharmaceutical and food emulsion systems. Their high phosphatidylcholine content means that they represent a good source of choline. Choline is thought to be a vitamin-like substance which,according to recent research,may be essen-tial under certain circumstances[6,7].A lack of choline may lead to fat accumulation in the liver, necrosis of liver cells and even liver cancer[8–10]. When the formulation is the only nutrient source, an increase in the phospholipid content is re-quired in order to meet the requirements of the Food and Nutrition Board[11]for an adequate intake of choline.The choline content of the lecithin in the investigated formula emulsions is adequate to give about500mg choline in2000g of emulsion.Many studies have been carried out on the interaction and competition between lecithin and intact protein[12–14].Little is known though about systems containing extensively hydrolysed protein and modified lecithin(enriched with lyso-phospholipids).Recently,Agboola et al.[15]reported that the stability of emulsions formed using highly hy-drolysed whey proteins can be improved by addi-tion of hydroxylated lecithin.The aim of this work was to investigate the influence of unmodified and lyso-phospholipid-en-riched lecithin on the behaviour of dietetic for-mula emulsions in the presence of hydrolysed whey protein,taking into account the balance of macronutrient and an increased cholin content.2.Materials and methods2.1.Materials2.1.1.ProteinWhey protein isolate(WPI)was supplied by NZMP(Germany)GmbH and whey protein hy-drolysate(WPH)was obtained from Arla Foods Ingredients amba(Denmark)(see Table1for specification).2.1.2.Soy bean lecithinThe deoiled soybean lecithin(PL)and the hy-drolysed soybean lecithin(hPL—deoiled lecithin enriched with lyso-phospholipids)were con-tributed by Lucas Meyer GmbH(Germany).The composition is summarised in Table2.2.1.3.Starch hydrolysis productsThe two starch hydrolysates were provided by Cerestar Deutschland GmbH(Germany). Maltodextrin(dextrose equivalent DE18.5)con-tained84%higher saccharides,9%maltotriose, 6%maltose and1%dextrose.Glucose syrup(DE 34)consisted of52%higher saccharides,22% maltotriose,25%maltose and1%dextrose.Sunflower oil,containing4.8%polar lipids,was donated by W.Rau Lebensmittelwerke GmbH (Germany).S.Tirok et al./Colloids and Surfaces B:Biointerfaces21(2001)149–162151Table1Composition and molecular characteristics of the whey protein samples aCharacteristics WPHWPIProtein(%)Min.7693.4Carbohydrate(%)Max.7.5B1.0Max.0.2B1.0Fat(%)Max.4.7 Ash(%) 1.6Max.6.04.0Moisture(%)23–29 Degree of hydrolysis(%)––910Mean molecular weight(based onweight at214nm,Da)–Mean molecular weight(based on545 number at214nm,Da)Peptide distribution(based onnumber)1–3residues(%)49–32–4–6residues(%)–7–10residues(%)134–11–20residues(%)–\20residues(%)1a All data from technical bulletin.2.3.Analysis of the emulsions2.3.1.Measurement of particle sizesDroplet sizes d32(surface weighted average di-ameter)and d43(volume weighted average diame-ter)were measured in the freshly prepared emulsion,then after1and again after7days,by means of a laser diffraction particle analyser Coul-ter LS100(Micro Volume Module Cell,Coulter Electronics,USA).The measurement was repeated using a dissociating medium(0.2%w/v SDS, Merck-Schuchardt,Germany)which dispersed the aggregates formed during emulsification.It was verified that the use of SDS on unflocculated emulsions did not significantly affect the droplet size.Consequently,SDS only acted as a dissociat-ing agent of aggregates.This procedure was used to obtain the so-called apparent(measurement in water)and real(measurement in SDS-solution) mean droplet diameters[16].2.3.2.Coalescence stability of the oil droplets The coalescence was expressed as the ratio of oil droplet surface area calculated from d32measured in SDS-solution after1day and the oil droplet surface area of the freshly made emulsion,also measured in SDS-solution.2.3.3.Determination of creaming beha6iourA10-ml sample of each emulsion was poured into graduated tubes.The volume of the separated cream layer in each tube was recorded after24h storage at20°C,then after centrifugation(1000×g for10min)and also after heating(90°C for10 min).A second tube for each emulsion was stored at7°C for7days,after which time the volume of the separated cream layer was determined.2.2.Preparation of emulsionProtein,lecithin and the starch hydrolysate weredispersed together in water for least1h.To thisdispersion,0.02%w/w sodium azide(FlukaChemie AG,Switzerland)was added,in order toenhance storage stability.Oil-in-water emulsionscontaining4%v/w sunflower oil were prepared bypremixing all the ingredients with a shear mixerCAT X620(T17,8000rev.min−1,1min,M.Zipperer GmbH,Germany),followed by emulsifi-cation using a high pressure homogeniser(Emulsi-Flex C5,Avestin,Canada)at70MPa.Allemulsion experiments were performed in duplicate.Table2Composition(%)of the lecithin samplesLyso-lecithin b Sample Moisture aAcetone insolubles a Oil a PC b PI b PE b PA bMax.1.5Min.97 3.54 Deoiled lecithin 4.8116.513.221.8Max.1.514.33.3812.813.416.9Max.3Min.95Max.2Deoiled hydrolysed lecithina Data from technical bulletin.b Manufacturer’s data(NMR analysis,lyso-lecithin comprises LPC,LPI,LPE and LPA,data in weight%).S.Tirok et al./Colloids and Surfaces B:Biointerfaces21(2001)149–162152Table3Factors analysed in the experimental designLevel1(−)Level2(+)FactorHydrolysateX1IsolateWhey proteinX2Protein concentration a 3.7g/100g 4.9g/100gHydrolysedX3UnmodifiedLecithin0.48g/100gLecithin concentration a0.70g/100gX4Maltodextrin(DE18.5)X5Dried glucose syrup(DE34) Starch hydrolysatea Concentration per emulsion.2.3.4.Determination of surface protein concentrationAfter separation of cream from emulsions by centrifugation,the serum portion was carefully discarded and the cream layer was washed by resuspending in an imidazole buffer(20mM,pH 7.00)according to Sharma and Dalgleish[17].The resuspended cream was recentrifuged under the same conditions.The protein load,expressed as mg protein per m2fat surface area,was calculated from the amount of protein present in the washed cream layers after centrifugation of the emulsion, and the fat surface area.The fat surface area was calculated from d32measured using a Coulter LS 100with the Micro Volume Module Cell.Protein content was determined by the method of Lowry et al.[18]using bovine serum albumin as standard.2.3.5.Determination of surface phospholipid concentrationThe phospholipid content of the cream layer was determined by measuring the phosphorus content in the lipid extract[19].The fat was extracted from the cream layer with a2:1(by volume)chloroform/methanol solution.After evaporation and drying,5M sulphuric acid solu-tion was added to the fat.The whole mixture was then digested using an oven(4–6h,160°C).After treatment with hydrogen peroxide,the total phos-phorus oxidised to phosphate in the digest was measured at830nm using the colorimetric phos-phomolybdate reaction[20].This gave the phos-phorus content,from which the phospholipid content was calculated by multiplying the phos-phorus content by a factor of31.7,as recom-mended for soy lecithin[21].2.4.Experimental design and statistical analysisA full factorial design withfive factors at two levels(Table3)was used to investigate the influ-ence of different whey proteins,lecithins and starch products on the properties of the formula emulsion system.The data were analysed with commercial software(Trial Run1.0,SPSS).The regression procedure of the statistical program was used to generate regression coefficients,anal-ysis of variance and correlation coefficients for the model.The level of significance was defined at P50.05.3.Results3.1.Influence of the protein usedThe type of protein(X1—WPI or WPH) significantly influenced the properties of the emul-sions containing lecithin and carbohydrate(Ta-bles4and5).The use of WPI led to small oil droplets,which gave nearly normal distribution, with their maximum at1m m.The distribution did not change after storage,indicating coalescence stability of the oil droplets.Emulsions made with WPI showed very low cream layers( 1ml/100ml)after24h standing time,independent of the lecithin or carbohydrate used(Table6).Hence no coalescence was ob-served,the cream layers only slightly increasing after7days standing time.Emulsions made with WPI(3.7or 4.9%w/w)and maltodextrin,but without any lecithin,showed no significant differ-ence in oil droplet size,but displayed somewhat larger cream layers(data not shown).S .Tirok et al ./Colloids and Surfaces B :Biointerfaces 21(2001)149–162153Table 4Analysis of variance for responses of the mean oil droplet diameter (d 43),coalescence factor and creaming after 24h adfMean droplet diameter d 43Coalescence FactorCreaming after 24h Type I sum of squaresF -ratio P -value Type I sum of squares F -ratio P -value Type I sum of squares F -ratio P -value 1 1.8213.670.003X 10.3334.560.000 1.0182.780.00010.040.270.614X 20.1010.350.0070.1411.740.00510.030.200.6620.05X 3 4.920.047B 0.010.010.819X 410.20 1.490.2460.01 1.120.3100.000.00 1.000X 51 2.9522.140.0010.03 3.200.0990.07 5.940.0311 1.4010.490.0070.12X 1×X 212.400.0040.1915.650.0021 1.198.960.0110.1212.08X 1×X 30.0050.010.860.37310.070.520.4860.01X 1×X 4 1.060.3240.000.00 1.000X 1×X 51 1.168.740.0120.1211.960.0050.1613.420.003X 2×X 310.050.380.549B 0.010.070.8020.010.880.36810.16 1.180.300B 0.01X 2×X 40.260.6390.010.120.73810.16 1.230.2890.06 5.690.034X 2×X 50.07 5.940.0311 1.108.300.014B 0.01X 3×X 40.180.6760.000.00 1.000X 3×X 510.60 4.530.055B 0.010.020.9010.000.00 1.0001X 4×X 50.030.260.623B 0.010.100.7530.010.510.4870.8730.891r 20.920aStatistical analysis of the full factorial design with Trial Run 1.0(SPSS).All signi ficant effects (individual and interaction)are highlighted.The level of signi ficance was de fined at P 50.05.X 1,type of protein;X 2,protein concentration;X 3,type of lecithin;X 4,lecithin concentration;X 5,type of starch hydrolysate.S .Tirok et al ./Colloids and Surfaces B :Biointerfaces 21(2001)149–162154Emulsions made with 3.7or 4.9%w /w WPI formed a gel-like structure during heating at 90°C for 10min because of protein denaturation which was independent of the lecithin and carbohydrate used.In most cases,emulsions containing WPH showed signi ficantly larger oil droplets (d 32:1.5–2.5m m and d 43:2–4m m)than those with WPI (Fig.1).The use of WPH in emulsions resulted in increased cream layers after 24h standing time,compared to those with WPI (Table 6),and showed oiling-off,which was caused by the low coalescence stability (coalescence factor B 1,Fig.2).The statistical analysis showed that the protein load is signi ficantly reduced when using WPH in place of WPI.Fig.3demonstrates that there are only two exceptions.On the other hand,the lecithin load was signi ficantly higher in emulsions containing WPH compared to those made with WPI.3.2.In fluence of the protein concentrationThe concentration of the protein (X 2—3.7or 4.9%w /w)was found to have an important in flu-ence on the properties of the formula emulsions (Tables 4and 5).Increasing the WPI concentration from 3.7to 4.9%w /w signi ficantly reduced the mean oil droplet diameter (d 43)(Fig.1a,b)of emulsions containing the unmodi fied lecithin and led to higher protein load values in these emulsions (Fig.3a,b),but had no effect on the stability (creaming rate)(Table 6).Emulsions made with the low WPH concentra-tion gave rise to smaller cream layers (Table 6)and signi ficantly higher coalescence stability (Fig.2),in comparison to emulsions made with the high WPH concentration.Increasing the WPH concentration led to higher protein load values independent of the lecithin and carbohydrate used (Fig.3c,d).Table 5Analysis of variance for responses of the protein and lecithin load at the interface adfProtein load at the interface Lecithin load at the interfaceP -value F -ratio Type I sum of squares P -value F -ratio Type I sum of squares131.8532.14X 10.000237.5778.000.00010.96010.9211.020.006B 0.01X 2B 0.0130.430.0001X 30.960.970.34492.70 5.060.0441X 40.660.670.43115.410.1672.176.600.135X 52.572.5510.730.4101X 1×X 2 1.22 1.230.288 2.2217.187.24X 1×X 30.020139.9345.940.0000.0099.7329.650.943X 1×X 4B 0.01B 0.0111 5.08 5.13X 1×X 50.0430.720.240.6350.020.8821X 2×X 3 1.51 1.530.2400.071B 0.010.01X 2×X 40.913 1.610.530.481X 2×X 510.690.700.4190.170.050.8200.1402.502.481X 3×X 40.0118.9827.361 2.20X 3×X 50.7092.230.150.450.162X 4×X 510.540.4780.533.081.000.3360.938r 20.851aStatistical analysis of the full factorial design with Trial Run 1.0(SPSS).All signi ficant effects (individual and interaction)are highlighted.The level of signi ficance was de fined at P 50.05.X 1,type of protein;X 2,protein concentration;X 3,type of lecithin;X 4,lecithin concentration;X 5,type of starch hydrolysate.S.Tirok et al./Colloids and Surfaces B:Biointerfaces21(2001)149–162155 Table6Influence of the various whey proteins,lecithins and starch hydrolysis products on the creaming behaviour of the emulsions after 24h aProtein Creaming(ml/100ml emulsion)Starch hydrolysateType Concentration Unmodified lecithin(PL)Hydrolysed lecithin(hPL)0.48%w/w0.70%w/w0.48%w/w0.70%w/w WPI 3.7%w/w md111B1gs11114.9%w/w md B1B111gs1111md–bWPH–b3.7%w/w24gs4c2c3d2dmd–b–b4.9%w/w1010gs6c5c4d3da md,maltodextrin(DE18.5);gs,dried glucose syrup(DE34).b Breaking straight after preparation.c Breaking after2days.d Oiling-off.3.3.Influence of the lecithinThe type of lecithin(X3—deoiled unmodified or deoiled hydrolysed lecithin)was very important in determining the properties of the formula emul-sion studied.The lecithin concentration(X4—0.48%w/w and0.7%w/w)however was not an important influential factor on the emulsion be-haviour(Tables4and5).The significant influence of the interactive effect (X1×X3)indicates that the effect of factor X3 depends on the level of factor X1(type of protein). The type of lecithin had less effect on the WPI-stabilised emulsions.The use of an unmodified deoiled,rather than a hydrolysed,lecithin in WPI-stabilised emulsions only led to a slight increase in oil droplet size,especially at the lower protein concentration(3.7%w/w).Emulsions made with WPH were considerably less stable,with respect to coalescence and cream-ing,when unmodified rather than hydrolysed lecithin was added to the aqueous phase(Table 6).The use of unmodified lecithin under the con-ditions used,induced the breaking of emulsions containing WPH straight after preparation,when maltodextrin was the carbohydrate,or after2 days storage,when glucose syrup was used.Sup-plementary experiments showed that the stability could not be improved when the unmodified de-oiled lecithin was dispersed in the oil phase and the emulsification was performed at60°C(data not shown).3.4.Influence of the starch hydrolysateThe starch hydrolysates(X5—maltodextrin with DE18.5or glucose syrup with DE34)also strongly influenced the properties of the formula emulsions(Tables4and5).The significant influ-ence of the interactive effect(X1×X5)indicates that the effect of factor X5depends on the level of factor X1(type of protein).Under the conditions used,the type of starch hydrolysate had no significant effect on the parti-cle size(Fig.1a,b)and creaming behaviour(Table 6)of emulsions containing WPI with either lecithin.The protein load of emulsions made with WPI and unmodified lecithin(PL)was increased when maltodextrin was used instead of glucose syrup(Fig.3a,b).In contrast,WPH-containing emulsions were highly influenced,in terms of oil droplet size(Fig. 1c,d)and emulsion stability(i.e.creaming and oiling-off)(Table6)by the type of starch hy-S.Tirok et al./Colloids and Surfaces B:Biointerfaces21(2001)149–162 156drolysate pared to emulsions without polysaccharide,these emulsions showed increased oil droplets(Fig.4)and hence very strong cream-ing.Rapid phase separation by creaming,oiling-off andflocculation(interaction of components in the bulk aqueous phase,no dropletflocculation), due to the carbohydrate,was especially prevalent when unmodified lecithin was added.Flocculation was not observed when WPI was used in the emulsion.Fig.1.Mean oil droplet diameter(d43)in emulsions prepared with4%v/w sunflower oil and4.9%w/w( )or3.7%w/w( ) protein.(A)Emulsions containing WPI,dried glucose syrup(gs)and hydrolysed(hPL)or unmodified(PL)lecithin;(B)emulsions containing WPI,maltodextrin(md)and hydrolysed(hPL)or unmodified(PL)lecithin;(C)emulsions containing WPH,dried glucose syrup(gs)and hydrolysed(hPL)or unmodified(PL)lecithin;(D)emulsions containing WPH,maltodextrin(md)and hydrolysed (hPL)or unmodified(PL)lecithin.See Table3for lecithin and starch hydrolysate concentration.S.Tirok et al./Colloids and Surfaces B:Biointerfaces21(2001)149–162157 Fig.2.Coalescence factor of emulsions containing4%v/w sunflower oil,11%w/w starch hydrolysate(md,maltodextrin;gs,glucose syrup),whey protein hydrolysate(4.9%w/w WPH+,3.7%w/w WPH−)and lecithin.Hatchedfill pattern,0.48%w/w deoiled unmodified lecithin;nofill pattern,0.70%w/w deoiled unmodified lecithin;dottedfill;0.48%w/w hydrolysed lecithin;solidfill, 0.70%w/w hydrolysed lecithin.4.DiscussionThe results show that the properties of the investigated dietetic emulsions are highly depen-dent on the type of protein used and that WPH-containing emulsions are also influenced by the type of lecithin and carbohydrate used.Oil droplets in emulsions made with WPI proved to be stable against coalescence,indepen-dent of the lecithins and carbohydrates used. Since the model WPI emulsion had a small amount of oil droplets larger than1m m and a rather low viscosity,slight creaming was induced. The high percentage of protein in the emulsions with WPI led to a high protein load,indicating that multiple layers around the oil droplets were formed.The higher interface viscosity and elastic-ity,as has been described for b-lactoglobulin[22], a major component of WPI,enhanced the inter-face stability and prevented coalescence.Positive interactions between the WPI and the lecithin (plexation)at the interface can further increase the stabilising effect[23].In the case of emulsions containing WPH,the addition of lecithin was expected to compensate for the poor emulsifying capacity of this protein. Compared to emulsions prepared only with lecithin,however,the combination of unmodified or hydrolysed lecithin with WPH led to a deterio-ration of emulsion stability,giving emulsions with separated oil and increased cream layer.Due to its high degree of hydrolysis,the WPH mainly consists of short peptides,free amino acids and only a limited concentration of surface-active large peptides.The reasons behind the low emulsi-fying capacity of such a WPH are either due to the peptides having a high hydrophilicity,and so adsorb weakly or not at all at the interface,or due to such peptides not forming a sufficiently strong interfacialfilm[24].Although small peptides dif-fuse rapidly,they are less efficient in reducing the interfacial tension,because they cannot unfold and re-orientate at the interface[25].Similarity in molecular size means that lecithin and the pep-tides may reach the interface at the same time, thus suggesting that there is competitive adsorp-tion between these components at the oil droplet surface,so preventing an even lecithinfilm forma-tion.As the measurement of the protein and lecithin adsorption from emulsions containingS.Tirok et al./Colloids and Surfaces B:Biointerfaces21(2001)149–162 158WPH and unmodified or hydrolysed lecithin has shown,both the protein and lecithin were present at the surface of fat pared to WPI-stabilised emulsions,the lecithin load at the inter-face was significantly higher for WPH emulsions, whilst the protein load was much lower.The preferential adsorption of lecithin over WPH pep-tides may produce a reduction in electrostatic and steric repulsion,so promoting coalescence[15]. Adsorption and desorption processes possibly lead to a non-continuousfilm at the interface, which promotes re-coalescence of the oil droplets. In the presence of the starch hydrolysates, emulsions made with WPH and hydrolysed lecithin were slightly more stable than those with WPH and unmodified lecithin.Other studies us-Fig.3.Protein load at the interface of oil droplets in emulsions prepared with4%v/w sunflower oil and4.9%w/w( )or3.7%w/w ( )protein.See Fig.1for further composition.Fig.4.Influence of different carbohydrates on the oil droplet size distribution in emulsions containing4%v/w sunflower oil,3.7% w/w WPH and0.70%w/w hydrolysed lecithin:( )without starch hydrolysate;( )with11%w/w dried glucose syrup;( )with 11%w/w maltodextrin.ing WPH and lecithins also achieved better emul-sion stability with a more hydrophilic lecithin(in that case hydroxylated)[15,26].In contrast to our study,they did notfind any phospholipid at the interface when using the more hydrophilic lecithin.Increasing the WPH concentration in emulsions with added lecithin and carbohydrate,resulted in more unstable emulsions,although the protein surface load significantly increased because of the higher total number of surface-active substances. This contradicts other studies made with a com-parable extensively hydrolysed WPH[15,27],that found better coalescence stability with increasing WPH concentration,although it has to be taken into consideration that their emulsions did not contain lecithin and carbohydrate.In addition to the peptide chain length,the hydrophobicity of the resulting peptides,which is determined by the protease specificity,is an important factor that influences their emulsifying properties[28].Nega-tive interactions between the peptides and lecithin may also increase with higher WPH concentra-tions,thus hindering lecithin adsorbance at the interface.As reported recently,the mechanical stability of adsorbed layers,formed from such a whey protein hydrolysate with a high degree of hydrolysis,is weak,and cannot be stabilised by lyso-PC[29]. An excess of lyso-PC leads to a slight improve-ment,but only to reach the mechanical stability of layers for lyso-PC,which by itself is very small compared to b-lactoglobulin[29].When using a high concentration of small molecular surfactants as the emulsifier,the forma-tion of multilayers of a lamellar liquid crystalline phase may enhance stability[30].Although the lecithin concentration in the studied WPH emul-sions was high(12or17.5%w/v with regard to the oil phase),the WPH components adsorbed at the interface probably produced‘holes’in the lecithin layer,which therefore could not form an ordered structure.Adding the WPH after emul-sification could not prevent such instabilities,so suggesting that a lamellar layer of lecithin is either not formed,or is not strong enough to impede the penetration of the surface-active WPH components.The addition of maltodextrin(DE18.5)or glu-cose syrup(DE34)caused an increase in oil droplet size and strong creaming.This was partic-ularly noted where maltodextrin was the starch hydrolysate,where it is known that protein–maltodextrin interactions cause a lowering in the。
刊名简称刊名全称CHEM REV=L CHEMICAL REVIEWS 化学评论 美国ACCOUNTS CHEM RES ac ACCOUNTS OF CHEMICAL RESEARCH 化学研究述评 美国PROG POLYM SCI pr PROGRESS IN POLYMER SCIENCECHEM SOC REV ch CHEMICAL SOCIETY REVIEWS 化学会评论 英国ALDRICHIM ACTA al ALDRICHIMICA ACTAANNU REV PHYS CHEM an ANNUAL REVIEW OF PHYSICAL CHEMISTRYSURF SCI REP su SURFACE SCIENCE REPORTSSURF SCI REP su SURFACE SCIENCE REPORTSANGEW CHEM INT EDIT an ANGEWANDTE CHEMIE-INTERNATIONAL EDITION 德国应用化学COORDIN CHEM REV co COORDINATION CHEMISTRY REVIEWSNAT PROD REP na NATURAL PRODUCT REPORTSNAT PROD REP na NATURAL PRODUCT REPORTSNAT PROD REP na NATURAL PRODUCT REPORTSADV CATAL ad ADVANCES IN CATALYSISJ AM CHEM SOC jo JOURNAL OF THE AMERICAN CHEMICAL SOCIETY 美国化学会志CATAL REV ca CATALYSIS REVIEWS-SCIENCE AND ENGINEERINGINT REV PHYS CHEM in INTERNATIONAL REVIEWS IN PHYSICAL CHEMISTRYJ PHOTOCH PHOTOBIO C jo JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY C-PHOTOCHEM ADV POLYM SCI ad ADVANCES IN POLYMER SCIENCEANAL CHEM an ANALYTICAL CHEMISTRYTOP CURR CHEM to TOPICS IN CURRENT CHEMISTRYTRAC-TREND ANAL CHEM tr TRAC-TRENDS IN ANALYTICAL CHEMISTRYCHEM-EUR J ch CHEMISTRY-A EUROPEAN JOURNAL 化学 德国ADV SYNTH CATAL ad ADVANCED SYNTHESIS & CATALYSISADV SYNTH CATAL ad ADVANCED SYNTHESIS & CATALYSISCHEM COMMUN ch CHEMICAL COMMUNICATIONS 化学通讯 英国ADV ORGANOMET CHEM ad ADVANCES IN ORGANOMETALLIC CHEMISTRYADV ORGANOMET CHEM ad ADVANCES IN ORGANOMETALLIC CHEMISTRY 有机金属化学进展 ORG LETT or ORGANIC LETTERSCURR OPIN COLLOID IN cu CURRENT OPINION IN COLLOID & INTERFACE SCIENCE FARADAY DISCUSS fa FARADAY DISCUSSIONSGREEN CHEM gr GREEN CHEMISTRYSTRUCT BOND st STRUCTURE AND BONDINGSTRUCT BOND st STRUCTURE AND BONDINGADV INORG CHEM ad ADVANCES IN INORGANIC CHEMISTRYCRYST GROWTH DES cr CRYSTAL GROWTH & DESIGNCRYST GROWTH DES cr CRYSTAL GROWTH & DESIGNCRYST GROWTH DES cr CRYSTAL GROWTH & DESIGNCHEM-ASIAN J ch Chemistry-An Asian JournalJ COMPUT CHEM jo JOURNAL OF COMPUTATIONAL CHEMISTRYJ PHYS CHEM B jo JOURNAL OF PHYSICAL CHEMISTRY BJ CHEM THEORY COMPUT jo Journal of Chemical Theory and ComputationADV COLLOID INTERFAC ad ADVANCES IN COLLOID AND INTERFACE SCIENCEINORG CHEM in INORGANIC CHEMISTRYLANGMUIR la LANGMUIR 兰格缪尔 美国BIOMACROMOLECULES bi BIOMACROMOLECULESBIOMACROMOLECULES bi BIOMACROMOLECULESBIOMACROMOLECULES bi BIOMACROMOLECULESJ ORG CHEM jo JOURNAL OF ORGANIC CHEMISTRY 有机化学杂志 美国ORGANOMETALLICS or ORGANOMETALLICSORGANOMETALLICS or ORGANOMETALLICSJ CHROMATOGR A jo JOURNAL OF CHROMATOGRAPHY AJ CHROMATOGR A jo JOURNAL OF CHROMATOGRAPHY AJ ANAL ATOM SPECTROM jo JOURNAL OF ANALYTICAL ATOMIC SPECTROMETRYJ ANAL ATOM SPECTROM jo JOURNAL OF ANALYTICAL ATOMIC SPECTROMETRYJ POLYM SCI POL CHEM jo JOURNAL OF POLYMER SCIENCE PART A-POLYMER CHEMISTRY CRYSTENGCOMM cr CRYSTENGCOMMCRYSTENGCOMM cr CRYSTENGCOMMCHEMPHYSCHEM ch CHEMPHYSCHEMCHEMPHYSCHEM ch CHEMPHYSCHEMANALYST an ANALYSTCURR ORG CHEM cu CURRENT ORGANIC CHEMISTRYPHYS CHEM CHEM PHYS ph PHYSICAL CHEMISTRY CHEMICAL PHYSICSPHYS CHEM CHEM PHYS ph PHYSICAL CHEMISTRY CHEMICAL PHYSICSJ BIOL INORG CHEM jo JOURNAL OF BIOLOGICAL INORGANIC CHEMISTRYJ BIOL INORG CHEM jo JOURNAL OF BIOLOGICAL INORGANIC CHEMISTRYJ PHYS CHEM C jo Journal of Physical Chemistry CJ PHYS CHEM C jo Journal of Physical Chemistry CJ PHYS CHEM C jo Journal of Physical Chemistry CJ AM SOC MASS SPECTR jo JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY J AM SOC MASS SPECTR jo JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY J AM SOC MASS SPECTR jo JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY J CHEM INF MODEL jo Journal of Chemical Information and ModelingJ CHEM INF MODEL jo Journal of Chemical Information and ModelingJ CHEM INF MODEL jo Journal of Chemical Information and Modeling DALTON T da DALTON TRANSACTIONSCHEM REC ch CHEMICAL RECORDORG BIOMOL CHEM or ORGANIC & BIOMOLECULAR CHEMISTRYTALANTA ta TALANTAJ COMB CHEM jo JOURNAL OF COMBINATORIAL CHEMISTRYJ COMB CHEM jo JOURNAL OF COMBINATORIAL CHEMISTRYJ COMB CHEM jo JOURNAL OF COMBINATORIAL CHEMISTRYANAL CHIM ACTA an ANALYTICA CHIMICA ACTAPOLYMER po POLYMERAPPL CATAL A-GEN ap APPLIED CATALYSIS A-GENERALAPPL CATAL A-GEN ap APPLIED CATALYSIS A-GENERALJ MASS SPECTROM jo JOURNAL OF MASS SPECTROMETRYJ MASS SPECTROM jo JOURNAL OF MASS SPECTROMETRYJ MASS SPECTROM jo JOURNAL OF MASS SPECTROMETRYJ PHYS CHEM REF DATA jo JOURNAL OF PHYSICAL AND CHEMICAL REFERENCE DATAJ PHYS CHEM REF DATA jo JOURNAL OF PHYSICAL AND CHEMICAL REFERENCE DATAJ PHYS CHEM REF DATA jo JOURNAL OF PHYSICAL AND CHEMICAL REFERENCE DATAJ PHYS CHEM A jo JOURNAL OF PHYSICAL CHEMISTRY AJ PHYS CHEM A jo JOURNAL OF PHYSICAL CHEMISTRY AANAL BIOANAL CHEM an ANALYTICAL AND BIOANALYTICAL CHEMISTRYANAL BIOANAL CHEM an ANALYTICAL AND BIOANALYTICAL CHEMISTRYMAR CHEM ma MARINE CHEMISTRYMAR CHEM ma MARINE CHEMISTRYEUR J ORG CHEM eu EUROPEAN JOURNAL OF ORGANIC CHEMISTRYTETRAHEDRON te TETRAHEDRONCURR ORG SYNTH cu CURRENT ORGANIC SYNTHESISRAPID COMMUN MASS SP ra RAPID COMMUNICATIONS IN MASS SPECTROMETRYRAPID COMMUN MASS SP ra RAPID COMMUNICATIONS IN MASS SPECTROMETRY ELECTROANAL el ELECTROANALYSISELECTROANAL el ELECTROANALYSISSYNLETT sy SYNLETTNEW J CHEM ne NEW JOURNAL OF CHEMISTRYCRIT REV ANAL CHEM cr CRITICAL REVIEWS IN ANALYTICAL CHEMISTRYCOMMENT INORG CHEM co COMMENTS ON INORGANIC CHEMISTRYMATCH-COMMUN MATH CO ma MATCH-COMMUNICATIONS IN MATHEMATICAL AND IN COMPUTER C MATCH-COMMUN MATH CO ma MATCH-COMMUNICATIONS IN MATHEMATICAL AND IN COMPUTER C MATCH-COMMUN MATH CO ma MATCH-COMMUNICATIONS IN MATHEMATICAL AND IN COMPUTER C J MOL CATAL A-CHEM jo JOURNAL OF MOLECULAR CATALYSIS A-CHEMICALEUR J INORG CHEM eu EUROPEAN JOURNAL OF INORGANIC CHEMISTRYCATAL TODAY ca CATALYSIS TODAYCATAL TODAY ca CATALYSIS TODAYCATAL TODAY ca CATALYSIS TODAYJ SEP SCI jo JOURNAL OF SEPARATION SCIENCETETRAHEDRON-ASYMMETR te TETRAHEDRON-ASYMMETRYTETRAHEDRON-ASYMMETR te TETRAHEDRON-ASYMMETRYTETRAHEDRON-ASYMMETR te TETRAHEDRON-ASYMMETRY 四面体 英国TETRAHEDRON LETT te TETRAHEDRON LETTERS 四面体通讯 英国MICROPOR MESOPOR MAT mi MICROPOROUS AND MESOPOROUS MATERIALSMICROPOR MESOPOR MAT mi MICROPOROUS AND MESOPOROUS MATERIALSMICROPOR MESOPOR MAT mi MICROPOROUS AND MESOPOROUS MATERIALSMICROPOR MESOPOR MAT mi MICROPOROUS AND MESOPOROUS MATERIALSADV PHYS ORG CHEM ad ADVANCES IN PHYSICAL ORGANIC CHEMISTRYADV PHYS ORG CHEM ad ADVANCES IN PHYSICAL ORGANIC CHEMISTRYJ ELECTROANAL CHEM jo JOURNAL OF ELECTROANALYTICAL CHEMISTRYEUR J MED CHEM eu EUROPEAN JOURNAL OF MEDICINAL CHEMISTRYTHEOR CHEM ACC th THEORETICAL CHEMISTRY ACCOUNTSPROG SOLID STATE CH pr PROGRESS IN SOLID STATE CHEMISTRYULTRASON SONOCHEM ul ULTRASONICS SONOCHEMISTRYULTRASON SONOCHEM ul ULTRASONICS SONOCHEMISTRYCATAL COMMUN ca CATALYSIS COMMUNICATIONSSYNTHESIS-STUTTGART sy SYNTHESIS-STUTTGARTJ COLLOID INTERF SCI jo JOURNAL OF COLLOID AND INTERFACE SCIENCETOP CATAL to TOPICS IN CATALYSISTOP CATAL to TOPICS IN CATALYSISCHEM PHYS LETT ch CHEMICAL PHYSICS LETTERSCHEM PHYS LETT ch CHEMICAL PHYSICS LETTERSADV CHROMATOGR ad ADVANCES IN CHROMATOGRAPHYAUST J CHEM au AUSTRALIAN JOURNAL OF CHEMISTRYCOMB CHEM HIGH T SCR co COMBINATORIAL CHEMISTRY & HIGH THROUGHPUT SCREENING COMB CHEM HIGH T SCR co COMBINATORIAL CHEMISTRY & HIGH THROUGHPUT SCREENING COMB CHEM HIGH T SCR co COMBINATORIAL CHEMISTRY & HIGH THROUGHPUT SCREENINGJ FLUORESC jo JOURNAL OF FLUORESCENCEJ FLUORESC jo JOURNAL OF FLUORESCENCEPOLYM DEGRAD STABIL po POLYMER DEGRADATION AND STABILITYEUR POLYM J eu EUROPEAN POLYMER JOURNALPURE APPL CHEM pu PURE AND APPLIED CHEMISTRY 理论化学与应用化学 美国J PHOTOCH PHOTOBIO A jo JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY A-CHEMISTRY J ORGANOMET CHEM jo JOURNAL OF ORGANOMETALLIC CHEMISTRYJ ORGANOMET CHEM jo JOURNAL OF ORGANOMETALLIC CHEMISTRYMACROMOL CHEM PHYS ma MACROMOLECULAR CHEMISTRY AND PHYSICSCARBOHYD POLYM ca CARBOHYDRATE POLYMERSCARBOHYD POLYM ca CARBOHYDRATE POLYMERSCARBOHYD POLYM ca CARBOHYDRATE POLYMERSJ SOLID STATE CHEM jo JOURNAL OF SOLID STATE CHEMISTRYJ SOLID STATE CHEM jo JOURNAL OF SOLID STATE CHEMISTRYADV HETEROCYCL CHEM ad ADVANCES IN HETEROCYCLIC CHEMISTRYMICROCHEM J mi MICROCHEMICAL JOURNALCHEM PHYS ch CHEMICAL PHYSICSCHEM PHYS ch CHEMICAL PHYSICSORG PROCESS RES DEV or ORGANIC PROCESS RESEARCH & DEVELOPMENTORG PROCESS RES DEV or ORGANIC PROCESS RESEARCH & DEVELOPMENTCATAL LETT ca CATALYSIS LETTERSINORG CHEM COMMUN in INORGANIC CHEMISTRY COMMUNICATIONSVIB SPECTROSC vi VIBRATIONAL SPECTROSCOPYVIB SPECTROSC vi VIBRATIONAL SPECTROSCOPYVIB SPECTROSC vi VIBRATIONAL SPECTROSCOPYSURF SCI su SURFACE SCIENCESURF SCI su SURFACE SCIENCEJ ANAL APPL PYROL jo JOURNAL OF ANALYTICAL AND APPLIED PYROLYSISJ ANAL APPL PYROL jo JOURNAL OF ANALYTICAL AND APPLIED PYROLYSISUSP KHIM+us USPEKHI KHIMIIPOLYHEDRON po POLYHEDRONPOLYHEDRON po POLYHEDRONCARBOHYD RES ca CARBOHYDRATE RESEARCHCARBOHYD RES ca CARBOHYDRATE RESEARCHCARBOHYD RES ca CARBOHYDRATE RESEARCHSUPRAMOL CHEM su SUPRAMOLECULAR CHEMISTRYINORG CHIM ACTA in INORGANICA CHIMICA ACTAMINI-REV ORG CHEM mi MINI-REVIEWS IN ORGANIC CHEMISTRYSOLID STATE SCI so SOLID STATE SCIENCESSOLID STATE SCI so SOLID STATE SCIENCESSOLID STATE SCI so SOLID STATE SCIENCESCOLLOID SURFACE A co COLLOIDS AND SURFACES A-PHYSICOCHEMICAL AND ENGINEERIN MICROCHIM ACTA mi MICROCHIMICA ACTAADV QUANTUM CHEM ad ADVANCES IN QUANTUM CHEMISTRYJ MOL MODEL jo JOURNAL OF MOLECULAR MODELINGJ MOL MODEL jo JOURNAL OF MOLECULAR MODELINGJ MOL MODEL jo JOURNAL OF MOLECULAR MODELINGJ MOL MODEL jo JOURNAL OF MOLECULAR MODELINGPOLYM INT po POLYMER INTERNATIONALCURR ANAL CHEM cu Current Analytical ChemistryANAL SCI an ANALYTICAL SCIENCESCHEM LETT ch CHEMISTRY LETTERSSEP PURIF REV se SEPARATION AND PURIFICATION REVIEWSSEP PURIF REV se SEPARATION AND PURIFICATION REVIEWSSEP PURIF REV se SEPARATION AND PURIFICATION REVIEWSTHERMOCHIM ACTA th THERMOCHIMICA ACTATHERMOCHIM ACTA th THERMOCHIMICA ACTAJ FLUORINE CHEM jo JOURNAL OF FLUORINE CHEMISTRYJ FLUORINE CHEM jo JOURNAL OF FLUORINE CHEMISTRYCOLLOID POLYM SCI co COLLOID AND POLYMER SCIENCECOLLOID POLYM SCI co COLLOID AND POLYMER SCIENCEJ PHYS ORG CHEM jo JOURNAL OF PHYSICAL ORGANIC CHEMISTRYJ PHYS ORG CHEM jo JOURNAL OF PHYSICAL ORGANIC CHEMISTRYB CHEM SOC JPN bu BULLETIN OF THE CHEMICAL SOCIETY OF JAPAN 日本化学会通J MOL STRUCT jo JOURNAL OF MOLECULAR STRUCTUREJ THERM ANAL CALORIM jo JOURNAL OF THERMAL ANALYSIS AND CALORIMETRYJ THERM ANAL CALORIM jo JOURNAL OF THERMAL ANALYSIS AND CALORIMETRYMAGN RESON CHEM ma MAGNETIC RESONANCE IN CHEMISTRYMAGN RESON CHEM ma MAGNETIC RESONANCE IN CHEMISTRYMAGN RESON CHEM ma MAGNETIC RESONANCE IN CHEMISTRYHELV CHIM ACTA he HELVETICA CHIMICA ACTACALPHAD ca CALPHAD-COMPUTER COUPLING OF PHASE DIAGRAMS AND THERMO CALPHAD ca CALPHAD-COMPUTER COUPLING OF PHASE DIAGRAMS AND THERMO J INORG ORGANOMET P jo JOURNAL OF INORGANIC AND ORGANOMETALLIC POLYMERSJ IRAN CHEM SOC jo Journal of the Iranian Chemical SocietyJ CHEMOMETR jo JOURNAL OF CHEMOMETRICSJ CHEMOMETR jo JOURNAL OF CHEMOMETRICSJ CHEMOMETR jo JOURNAL OF CHEMOMETRICSJ CHEMOMETR jo JOURNAL OF CHEMOMETRICSJ CHEMOMETR jo JOURNAL OF CHEMOMETRICSJ CHEMOMETR jo JOURNAL OF CHEMOMETRICSPOLYM J po POLYMER JOURNALCR CHIM co COMPTES RENDUS CHIMIEJ BRAZIL CHEM SOC jo JOURNAL OF THE BRAZILIAN CHEMICAL SOCIETYINT J QUANTUM CHEM in INTERNATIONAL JOURNAL OF QUANTUM CHEMISTRYINT J QUANTUM CHEM in INTERNATIONAL JOURNAL OF QUANTUM CHEMISTRYINT J QUANTUM CHEM in INTERNATIONAL JOURNAL OF QUANTUM CHEMISTRYSTRUCT CHEM st STRUCTURAL CHEMISTRYSTRUCT CHEM st STRUCTURAL CHEMISTRYSTRUCT CHEM st STRUCTURAL CHEMISTRYSURF INTERFACE ANAL su SURFACE AND INTERFACE ANALYSISAPPL ORGANOMET CHEM ap APPLIED ORGANOMETALLIC CHEMISTRYAPPL ORGANOMET CHEM ap APPLIED ORGANOMETALLIC CHEMISTRYSOLVENT EXTR ION EXC so SOLVENT EXTRACTION AND ION EXCHANGEANAL LETT an ANALYTICAL LETTERSCHROMATOGRAPHIA ch CHROMATOGRAPHIACHROMATOGRAPHIA ch CHROMATOGRAPHIAZ ANORG ALLG CHEM ze ZEITSCHRIFT FUR ANORGANISCHE UND ALLGEMEINE CHEMIE CAN J CHEM ca CANADIAN JOURNAL OF CHEMISTRY-REVUE CANADIENNE DE CHIM CATAL SURV ASIA ca CATALYSIS SURVEYS FROM ASIAMOL SIMULAT mo MOLECULAR SIMULATIONMOL SIMULAT mo MOLECULAR SIMULATIONJ INCL PHENOM MACRO jo JOURNAL OF INCLUSION PHENOMENA AND MACROCYCLIC CHEMIST J INCL PHENOM MACRO jo JOURNAL OF INCLUSION PHENOMENA AND MACROCYCLIC CHEMIST J APPL POLYM SCI jo JOURNAL OF APPLIED POLYMER SCIENCEINT J CHEM KINET in INTERNATIONAL JOURNAL OF CHEMICAL KINETICSJ MATH CHEM jo JOURNAL OF MATHEMATICAL CHEMISTRYJ MATH CHEM jo JOURNAL OF MATHEMATICAL CHEMISTRYARKIVOC ar ARKIVOCJ SOLUTION CHEM jo JOURNAL OF SOLUTION CHEMISTRYB KOR CHEM SOC bu BULLETIN OF THE KOREAN CHEMICAL SOCIETYRADIOCHIM ACTA ra RADIOCHIMICA ACTARADIOCHIM ACTA ra RADIOCHIMICA ACTAJ PORPHYR PHTHALOCYA jo JOURNAL OF PORPHYRINS AND PHTHALOCYANINESMONATSH CHEM mo MONATSHEFTE FUR CHEMIEJ MOL STRUC-THEOCHEM jo JOURNAL OF MOLECULAR STRUCTURE-THEOCHEMJ MOL LIQ jo JOURNAL OF MOLECULAR LIQUIDSJ MOL LIQ jo JOURNAL OF MOLECULAR LIQUIDSJ COAT TECHNOL RES jo Journal of Coatings Technology and ResearchJ PHOTOPOLYM SCI TEC jo JOURNAL OF PHOTOPOLYMER SCIENCE AND TECHNOLOGY HETEROCYCLES he HETEROCYCLESPOLYM BULL po POLYMER BULLETINMOLECULES mo MOLECULESBIOINORG CHEM APPL bi BIOINORGANIC CHEMISTRY AND APPLICATIONSBIOINORG CHEM APPL bi BIOINORGANIC CHEMISTRY AND APPLICATIONSBIOINORG CHEM APPL bi BIOINORGANIC CHEMISTRY AND APPLICATIONS HETEROATOM CHEM he HETEROATOM CHEMISTRYSYNTHETIC COMMUN sy SYNTHETIC COMMUNICATIONSLETT ORG CHEM le LETTERS IN ORGANIC CHEMISTRYJ CHEM SCI jo JOURNAL OF CHEMICAL SCIENCESJ CHROMATOGR SCI jo JOURNAL OF CHROMATOGRAPHIC SCIENCEJ CHROMATOGR SCI jo JOURNAL OF CHROMATOGRAPHIC SCIENCEJ CLUST SCI jo JOURNAL OF CLUSTER SCIENCEJ LIQ CHROMATOGR R T jo JOURNAL OF LIQUID CHROMATOGRAPHY & RELATED TECHNOLOGIE J LIQ CHROMATOGR R T jo JOURNAL OF LIQUID CHROMATOGRAPHY & RELATED TECHNOLOGIECHIMIA ch CHIMIAJPC-J PLANAR CHROMAT jp JPC-JOURNAL OF PLANAR CHROMATOGRAPHY-MODERN TLC TRANSIT METAL CHEM tr TRANSITION METAL CHEMISTRYACTA CHIM SLOV ac ACTA CHIMICA SLOVENICARADIAT PHYS CHEM ra RADIATION PHYSICS AND CHEMISTRYRADIAT PHYS CHEM ra RADIATION PHYSICS AND CHEMISTRYRADIAT PHYS CHEM ra RADIATION PHYSICS AND CHEMISTRYJ CARBOHYD CHEM jo JOURNAL OF CARBOHYDRATE CHEMISTRYJ CARBOHYD CHEM jo JOURNAL OF CARBOHYDRATE CHEMISTRYJ COORD CHEM jo JOURNAL OF COORDINATION CHEMISTRYJ THEOR COMPUT CHEM jo JOURNAL OF THEORETICAL & COMPUTATIONAL CHEMISTRY COLLECT CZECH CHEM C co COLLECTION OF CZECHOSLOVAK CHEMICAL COMMUNICATIONS QUIM NOVA qu QUIMICA NOVAE-POLYMERS e-E-POLYMERSJ POLYM RES jo JOURNAL OF POLYMER RESEARCHJ HETEROCYCLIC CHEM jo JOURNAL OF HETEROCYCLIC CHEMISTRYJ DISPER SCI TECHNOL jo JOURNAL OF DISPERSION SCIENCE AND TECHNOLOGYACTA CHROMATOGR ac ACTA CHROMATOGRAPHICAZ NATURFORSCH B ze ZEITSCHRIFT FUR NATURFORSCHUNG SECTION B-A JOURNAL OF Z NATURFORSCH B ze ZEITSCHRIFT FUR NATURFORSCHUNG SECTION B-A JOURNAL OF INT J MOL SCI in INTERNATIONAL JOURNAL OF MOLECULAR SCIENCESCHINESE J CHEM ch CHINESE JOURNAL OF CHEMISTRYACTA CHIM SINICA ac ACTA CHIMICA SINICAJ MACROMOL SCI A jo JOURNAL OF MACROMOLECULAR SCIENCE-PURE AND APPLIED CHE NAT PROD RES na NATURAL PRODUCT RESEARCHNAT PROD RES na NATURAL PRODUCT RESEARCHHIGH PERFORM POLYM hi HIGH PERFORMANCE POLYMERSPHYS CHEM LIQ ph PHYSICS AND CHEMISTRY OF LIQUIDSPHYS CHEM LIQ ph PHYSICS AND CHEMISTRY OF LIQUIDSORG PREP PROCED INT or ORGANIC PREPARATIONS AND PROCEDURES INTERNATIONAL CROAT CHEM ACTA cr CROATICA CHEMICA ACTACHINESE J ORG CHEM ch CHINESE JOURNAL OF ORGANIC CHEMISTRYPOLYCYCL AROMAT COMP po POLYCYCLIC AROMATIC COMPOUNDSDES MONOMERS POLYM de DESIGNED MONOMERS AND POLYMERSCHINESE J STRUC CHEM ch CHINESE JOURNAL OF STRUCTURAL CHEMISTRYCHINESE J STRUC CHEM ch CHINESE JOURNAL OF STRUCTURAL CHEMISTRYJ ADV OXID TECHNOL jo JOURNAL OF ADVANCED OXIDATION TECHNOLOGIESCENT EUR J CHEM ce CENTRAL EUROPEAN JOURNAL OF CHEMISTRYMENDELEEV COMMUN me MENDELEEV COMMUNICATIONSJ SYN ORG CHEM JPN jo JOURNAL OF SYNTHETIC ORGANIC CHEMISTRY JAPANIRAN POLYM J ir IRANIAN POLYMER JOURNALTURK J CHEM tu TURKISH JOURNAL OF CHEMISTRYTURK J CHEM tu TURKISH JOURNAL OF CHEMISTRYISR J CHEM is ISRAEL JOURNAL OF CHEMISTRYCHEM J CHINESE U ch CHEMICAL JOURNAL OF CHINESE UNIVERSITIES-CHINESEJ CHIN CHEM SOC-TAIP jo JOURNAL OF THE CHINESE CHEMICAL SOCIETYBEILSTEIN J ORG CHEM be Beilstein Journal of Organic ChemistryCHINESE J POLYM SCI ch CHINESE JOURNAL OF POLYMER SCIENCECOLLOID J+co COLLOID JOURNALINDIAN J CHEM A in INDIAN JOURNAL OF CHEMISTRY SECTION A-INORGANIC BIO-IN PHOSPHORUS SULFUR ph PHOSPHORUS SULFUR AND SILICON AND THE RELATED ELEMENTS KINET CATAL+ki KINETICS AND CATALYSISREV ANAL CHEM re REVIEWS IN ANALYTICAL CHEMISTRYACTA PHYS-CHIM SIN ac ACTA PHYSICO-CHIMICA SINICAJ CHEM CRYSTALLOGR jo JOURNAL OF CHEMICAL CRYSTALLOGRAPHYJ CHEM CRYSTALLOGR jo JOURNAL OF CHEMICAL CRYSTALLOGRAPHYANN CHIM-ROME an ANNALI DI CHIMICAANN CHIM-ROME an ANNALI DI CHIMICAINORG REACT MECH in INORGANIC REACTION MECHANISMSINT J POLYM ANAL CH in INTERNATIONAL JOURNAL OF POLYMER ANALYSIS AND CHARACTE SCI CHINA SER B sc SCIENCE IN CHINA SERIES B-CHEMISTRYRES CHEM INTERMEDIAT re RESEARCH ON CHEMICAL INTERMEDIATESJ ANAL CHEM+jo JOURNAL OF ANALYTICAL CHEMISTRYREACT KINET CATAL L re REACTION KINETICS AND CATALYSIS LETTERSCHEM LISTY ch CHEMICKE LISTYCHINESE J INORG CHEM ch CHINESE JOURNAL OF INORGANIC CHEMISTRYJ RADIOANAL NUCL CH jo JOURNAL OF RADIOANALYTICAL AND NUCLEAR CHEMISTRYJ RADIOANAL NUCL CH jo JOURNAL OF RADIOANALYTICAL AND NUCLEAR CHEMISTRYJ RADIOANAL NUCL CH jo JOURNAL OF RADIOANALYTICAL AND NUCLEAR CHEMISTRY CHEM ANAL-WARSAW ch CHEMIA ANALITYCZNAJ CHIL CHEM SOC jo JOURNAL OF THE CHILEAN CHEMICAL SOCIETYPOLYM SCI SER A+po POLYMER SCIENCE SERIES AACTA POLYM SIN ac ACTA POLYMERICA SINICAJ SERB CHEM SOC jo JOURNAL OF THE SERBIAN CHEMICAL SOCIETYIONICS io IONICSIONICS io IONICSIONICS io IONICSRUSS J ORG CHEM+ru RUSSIAN JOURNAL OF ORGANIC CHEMISTRYPROG CHEM pr PROGRESS IN CHEMISTRYHIGH ENERG CHEM+hi HIGH ENERGY CHEMISTRYJ CHEM EDUC jo JOURNAL OF CHEMICAL EDUCATIONJ CHEM EDUC jo JOURNAL OF CHEMICAL EDUCATIONRUSS CHEM B+ru RUSSIAN CHEMICAL BULLETINCHINESE J ANAL CHEM ch CHINESE JOURNAL OF ANALYTICAL CHEMISTRYPOL J CHEM po POLISH JOURNAL OF CHEMISTRYRUSS J COORD CHEM+ru RUSSIAN JOURNAL OF COORDINATION CHEMISTRYCHEM PAP ch CHEMICAL PAPERS-CHEMICKE ZVESTICAN J ANAL SCI SPECT ca CANADIAN JOURNAL OF ANALYTICAL SCIENCES AND SPECTROSCO CAN J ANAL SCI SPECT ca CANADIAN JOURNAL OF ANALYTICAL SCIENCES AND SPECTROSCO STUD CONSERV st STUDIES IN CONSERVATIONSTUD CONSERV st STUDIES IN CONSERVATIONSTUD CONSERV st STUDIES IN CONSERVATIONHETEROCYCL COMMUN he HETEROCYCLIC COMMUNICATIONSREV INORG CHEM re REVIEWS IN INORGANIC CHEMISTRYJ STRUCT CHEM+jo JOURNAL OF STRUCTURAL CHEMISTRYJ STRUCT CHEM+jo JOURNAL OF STRUCTURAL CHEMISTRYLC GC EUR lc LC GC EUROPEPOLYM-KOREA po POLYMER-KOREADOKL PHYS CHEM do DOKLADY PHYSICAL CHEMISTRYCHEM WORLD-UK ch CHEMISTRY WORLDINDIAN J CHEM B in INDIAN JOURNAL OF CHEMISTRY SECTION B-ORGANIC CHEMISTR RUSS J GEN CHEM+ru RUSSIAN JOURNAL OF GENERAL CHEMISTRYCHEM NAT COMPD+ch CHEMISTRY OF NATURAL COMPOUNDSJ RARE EARTH jo JOURNAL OF RARE EARTHSS AFR J CHEM-S-AFR T so SOUTH AFRICAN JOURNAL OF CHEMISTRY-SUID-AFRIKAANSE TYD CHIM OGGI ch CHIMICA OGGI-CHEMISTRY TODAYCHIM OGGI ch CHIMICA OGGI-CHEMISTRY TODAYRUSS J PHYS CHEM A+ru RUSSIAN JOURNAL OF PHYSICAL Chemistry AJ MED PLANTS RES jo Journal of Medicinal Plants ResearchRUSS J INORG CHEM+ru RUSSIAN JOURNAL OF INORGANIC CHEMISTRYCHEM RES CHINESE U ch CHEMICAL RESEARCH IN CHINESE UNIVERSITIESCHINESE CHEM LETT ch CHINESE CHEMICAL LETTERSDOKL CHEM do DOKLADY CHEMISTRYMAIN GROUP MET CHEM ma MAIN GROUP METAL CHEMISTRYMAIN GROUP MET CHEM ma MAIN GROUP METAL CHEMISTRYCHEM UNSERER ZEIT ch CHEMIE IN UNSERER ZEITPROG REACT KINET MEC pr PROGRESS IN REACTION KINETICS AND MECHANISMJ INDIAN CHEM SOC jo JOURNAL OF THE INDIAN CHEMICAL SOCIETYLC GC N AM lc LC GC NORTH AMERICABUNSEKI KAGAKU bu BUNSEKI KAGAKUREV CHIM-BUCHAREST re REVISTA DE CHIMIEREV CHIM-BUCHAREST re REVISTA DE CHIMIEPOLYM SCI SER B+po POLYMER SCIENCE SERIES BINDIAN J HETEROCY CH in INDIAN JOURNAL OF HETEROCYCLIC CHEMISTRYCHEM IND-LONDON ch CHEMISTRY & INDUSTRYOXID COMMUN ox OXIDATION COMMUNICATIONSREV ROUM CHIM re REVUE ROUMAINE DE CHIMIERUSS J APPL CHEM+ru RUSSIAN JOURNAL OF APPLIED CHEMISTRYASIAN J CHEM as ASIAN JOURNAL OF CHEMISTRYB CHEM SOC ETHIOPIA bu BULLETIN OF THE CHEMICAL SOCIETY OF ETHIOPIA AFINIDAD af AFINIDADJ AUTOM METHOD MANAG jo JOURNAL OF AUTOMATED METHODS & MANAGEMENT IN CHEMISTRY J AUTOM METHOD MANAG jo JOURNAL OF AUTOMATED METHODS & MANAGEMENT IN CHEMISTRY KOBUNSHI RONBUNSHU ko KOBUNSHI RONBUNSHUJ CHEM SOC PAKISTAN jo JOURNAL OF THE CHEMICAL SOCIETY OF PAKISTANJ CHEM RES-S jo JOURNAL OF CHEMICAL RESEARCH-SACTUAL CHIMIQUE ac ACTUALITE CHIMIQUERUSS J PHYS CHEM B+ru Russian Journal of Physical Chemistry BCHEM PHYS CARBON ch CHEMISTRY AND PHYSICS OF CARBONCHEM PHYS CARBON ch CHEMISTRY AND PHYSICS OF CARBONCHEM PHYS CARBON ch CHEMISTRY AND PHYSICS OF CARBONJ APPL CRYSTALLOGR jo JOURNAL OF APPLIED CRYSTALLOGRAPHYACTA CRYSTALLOGR B ac ACTA CRYSTALLOGRAPHICA SECTION B-STRUCTURAL SCIENCE ACTA CRYSTALLOGR A ac ACTA CRYSTALLOGRAPHICA SECTION AJ CRYST GROWTH jo JOURNAL OF CRYSTAL GROWTHLIQ CRYST li LIQUID CRYSTALSCRYST RES TECHNOL cr CRYSTAL RESEARCH AND TECHNOLOGYACTA CRYSTALLOGR C ac ACTA CRYSTALLOGRAPHICA SECTION C-CRYSTAL STRUCTURE COM MOL CRYST LIQ CRYST mo MOLECULAR CRYSTALS AND LIQUID CRYSTALSACTA CRYSTALLOGR E ac ACTA CRYSTALLOGRAPHICA SECTION E-STRUCTURE REPORTS ONL CRYSTALLOGR REP+cr CRYSTALLOGRAPHY REPORTSZ KRIST-NEW CRYST ST ze ZEITSCHRIFT FUR KRISTALLOGRAPHIE-NEW CRYSTAL STRUCTURE小类名称(英文)小类分区大类名称大类分区2008年影响因ISSN小类名称(中文0009-2665化学综合CHEMISTRY, MULTIDISCIPLINA1化学123.592 0001-4842化学综合CHEMISTRY, MULTIDISCIPLINA1化学112.176 0079-6700高分子科学POLYMER SCIENCE1化学116.819 0306-0012化学综合CHEMISTRY, MULTIDISCIPLINA1化学117.419 0002-5100有机化学CHEMISTRY, ORGANIC1化学116.733 0066-426X物理化学CHEMISTRY, PHYSICAL1化学114.688 0167-5729物理化学CHEMISTRY, PHYSICAL1化学112.808 0167-5729物理:凝聚态物PHYSICS, CONDENSED MATTER1化学112.808 1433-7851化学综合CHEMISTRY, MULTIDISCIPLINA1化学110.879CHEMISTRY, INORGANIC & NUC1化学110.566 0010-8545无机化学与核化0265-0568医药化学CHEMISTRY, MEDICINAL1化学17.45 0265-0568有机化学CHEMISTRY, ORGANIC1化学17.45 0265-0568生化与分子生物BIOCHEMISTRY & MOLECULAR B2化学17.45 0360-0564物理化学CHEMISTRY, PHYSICAL1化学1 4.812 0002-7863化学综合CHEMISTRY, MULTIDISCIPLINA2化学18.091 0161-4940物理化学CHEMISTRY, PHYSICAL1化学1 5.625 0144-235X物理化学CHEMISTRY, PHYSICAL2化学1 6.892 1389-5567物理化学CHEMISTRY, PHYSICAL2化学1 5.36 0065-3195高分子科学POLYMER SCIENCE1化学2 6.802 0003-2700分析化学CHEMISTRY, ANALYTICAL1化学2 5.712 0340-1022化学综合CHEMISTRY, MULTIDISCIPLINA2化学2 5.27 0165-9936分析化学CHEMISTRY, ANALYTICAL1化学2 5.485 0947-6539化学综合CHEMISTRY, MULTIDISCIPLINA2化学2 5.454 1615-4150应用化学CHEMISTRY, APPLIED1化学2 5.619 1615-4150有机化学CHEMISTRY, ORGANIC1化学2 5.619 1359-7345化学综合CHEMISTRY, MULTIDISCIPLINA2化学2 5.34 0065-3055无机化学与核化CHEMISTRY, INORGANIC & NUC1化学2 3.571 0065-3055有机化学CHEMISTRY, ORGANIC2化学2 3.571 1523-7060有机化学CHEMISTRY, ORGANIC2化学2 5.128 1359-0294物理化学CHEMISTRY, PHYSICAL2化学2 5.493 1364-5498物理化学CHEMISTRY, PHYSICAL2化学2 4.604 1463-9262化学综合CHEMISTRY, MULTIDISCIPLINA2化学2 4.542 0081-5993物理化学CHEMISTRY, PHYSICAL2化学2 6.511 0081-5993无机化学与核化CHEMISTRY, INORGANIC & NUC2化学2 6.511CHEMISTRY, INORGANIC & NUC2化学2 4.214 0898-8838无机化学与核化1528-7483晶体学CRYSTALLOGRAPHY1化学2 4.215MATERIALS SCIENCE, MULTIDI2化学2 4.215 1528-7483材料科学:综合1528-7483化学综合CHEMISTRY, MULTIDISCIPLINA2化学2 4.215 1861-4728化学综合CHEMISTRY, MULTIDISCIPLINA2化学2 4.197 0192-8651化学综合CHEMISTRY, MULTIDISCIPLINA3化学2 3.39 1520-6106物理化学CHEMISTRY, PHYSICAL2化学2 4.189 1549-9618化学综合CHEMISTRY, MULTIDISCIPLINA3化学2 4.274 0001-8686物理化学CHEMISTRY, PHYSICAL3化学2 5.333CHEMISTRY, INORGANIC & NUC2化学2 4.147 0020-1669无机化学与核化0743-7463物理化学CHEMISTRY, PHYSICAL3化学2 4.097 1525-7797高分子科学POLYMER SCIENCE2化学2 4.1461525-7797有机化学CHEMISTRY, ORGANIC2化学2 4.146BIOCHEMISTRY & MOLECULAR B3化学2 4.146 1525-7797生化与分子生物0022-3263有机化学CHEMISTRY, ORGANIC2化学2 3.952CHEMISTRY, INORGANIC & NUC2化学2 3.815 0276-7333无机化学与核化0276-7333有机化学CHEMISTRY, ORGANIC2化学2 3.815 0021-9673分析化学CHEMISTRY, ANALYTICAL2化学2 3.756 0021-9673生化研究方法BIOCHEMICAL RESEARCH METHO2化学2 3.756 0267-9477分析化学CHEMISTRY, ANALYTICAL2化学2 4.028 0267-9477光谱学SPECTROSCOPY2化学2 4.028 0887-624X高分子科学POLYMER SCIENCE2化学2 3.821 1466-8033晶体学CRYSTALLOGRAPHY2化学2 3.535 1466-8033化学综合CHEMISTRY, MULTIDISCIPLINA3化学2 3.535PHYSICS, ATOMIC, MOLECULAR1化学2 3.636 1439-4235物理:原子、分1439-4235物理化学CHEMISTRY, PHYSICAL3化学2 3.636 0003-2654分析化学CHEMISTRY, ANALYTICAL2化学2 3.761 1385-2728有机化学CHEMISTRY, ORGANIC2化学2 3.184PHYSICS, ATOMIC, MOLECULAR2化学2 4.064 1463-9076物理:原子、分1463-9076物理化学CHEMISTRY, PHYSICAL3化学2 4.064CHEMISTRY, INORGANIC & NUC2化学2 3.6 0949-8257无机化学与核化BIOCHEMISTRY & MOLECULAR B3化学2 3.6 0949-8257生化与分子生物MATERIALS SCIENCE, MULTIDI2化学2 3.396 1932-7447材料科学:综合1932-7447物理化学CHEMISTRY, PHYSICAL3化学2 3.396 1932-7447纳米科技NANOSCIENCE & NANOTECHNOLO3化学2 3.396 1044-0305分析化学CHEMISTRY, ANALYTICAL2化学2 3.181 1044-0305光谱学SPECTROSCOPY2化学2 3.181 1044-0305物理化学CHEMISTRY, PHYSICAL3化学2 3.181 1549-9596计算机:信息系COMPUTER SCIENCE, INFORMAT1化学2 3.643COMPUTER SCIENCE, INTERDIS2化学2 3.643 1549-9596计算机:跨学科1549-9596化学综合CHEMISTRY, MULTIDISCIPLINA3化学2 3.643CHEMISTRY, INORGANIC & NUC2化学2 3.58 1477-9226无机化学与核化1527-8999化学综合CHEMISTRY, MULTIDISCIPLINA3化学3 3.477 1477-0520有机化学CHEMISTRY, ORGANIC2化学3 3.55 0039-9140分析化学CHEMISTRY, ANALYTICAL2化学3 3.206 1520-4766应用化学CHEMISTRY, APPLIED1化学3 3.011 1520-4766化学综合CHEMISTRY, MULTIDISCIPLINA3化学3 3.011 1520-4766医药化学CHEMISTRY, MEDICINAL3化学3 3.011 0003-2670分析化学CHEMISTRY, ANALYTICAL2化学3 3.146 0032-3861高分子科学POLYMER SCIENCE2化学3 3.331 0926-860X环境科学ENVIRONMENTAL SCIENCES2化学3 3.19 0926-860X物理化学CHEMISTRY, PHYSICAL3化学3 3.19 1076-5174光谱学SPECTROSCOPY2化学3 2.94 1076-5174生物物理BIOPHYSICS3化学3 2.94 1076-5174有机化学CHEMISTRY, ORGANIC3化学3 2.94 0047-2689物理化学CHEMISTRY, PHYSICAL3化学3 2.424 0047-2689化学综合CHEMISTRY, MULTIDISCIPLINA3化学3 2.424 0047-2689物理:综合PHYSICS, MULTIDISCIPLINARY3化学3 2.424PHYSICS, ATOMIC, MOLECULAR2化学3 2.871 1089-5639物理:原子、分1089-5639物理化学CHEMISTRY, PHYSICAL3化学3 2.871 1618-2642分析化学CHEMISTRY, ANALYTICAL2化学3 3.328 1618-2642生化研究方法BIOCHEMICAL RESEARCH METHO3化学3 3.328 0304-4203海洋学OCEANOGRAPHY2化学3 2.977 0304-4203化学综合CHEMISTRY, MULTIDISCIPLINA3化学3 2.977 1434-193X有机化学CHEMISTRY, ORGANIC3化学3 3.016 0040-4020有机化学CHEMISTRY, ORGANIC3化学3 2.897 1570-1794有机化学CHEMISTRY, ORGANIC3化学3 2.61 0951-4198分析化学CHEMISTRY, ANALYTICAL2化学3 2.772 0951-4198光谱学SPECTROSCOPY3化学3 2.772 1040-0397分析化学CHEMISTRY, ANALYTICAL2化学3 2.901 1040-0397电化学ELECTROCHEMISTRY3化学3 2.901 0936-5214有机化学CHEMISTRY, ORGANIC3化学3 2.659 1144-0546化学综合CHEMISTRY, MULTIDISCIPLINA3化学3 2.942 1040-8347分析化学CHEMISTRY, ANALYTICAL3化学3 3.5CHEMISTRY, INORGANIC & NUC3化学32 0260-3594无机化学与核化MATHEMATICS, INTERDISCIPLI1化学3 3.5 0340-6253数学跨学科应用COMPUTER SCIENCE, INTERDIS2化学3 3.5 0340-6253计算机:跨学科0340-6253化学综合CHEMISTRY, MULTIDISCIPLINA3化学3 3.5 1381-1169物理化学CHEMISTRY, PHYSICAL3化学3 2.814CHEMISTRY, INORGANIC & NUC3化学3 2.694 1434-1948无机化学与核化0920-5861工程:化工ENGINEERING, CHEMICAL1化学3 3.004 0920-5861应用化学CHEMISTRY, APPLIED2化学3 3.004 0920-5861物理化学CHEMISTRY, PHYSICAL3化学3 3.004 1615-9306分析化学CHEMISTRY, ANALYTICAL3化学3 2.746 0957-4166物理化学CHEMISTRY, PHYSICAL3化学3 2.796 0957-4166无机化学与核化CHEMISTRY, INORGANIC & NUC3化学3 2.796 0957-4166有机化学CHEMISTRY, ORGANIC3化学3 2.796 0040-4039有机化学CHEMISTRY, ORGANIC3化学3 2.538MATERIALS SCIENCE, MULTIDI2化学3 2.555 1387-1811材料科学:综合1387-1811应用化学CHEMISTRY, APPLIED2化学3 2.555 1387-1811物理化学CHEMISTRY, PHYSICAL3化学3 2.555 1387-1811纳米科技NANOSCIENCE & NANOTECHNOLO3化学3 2.555 0065-3160物理化学CHEMISTRY, PHYSICAL3化学3 1.833 0065-3160有机化学CHEMISTRY, ORGANIC3化学3 1.833 1572-6657分析化学CHEMISTRY, ANALYTICAL3化学3 2.484 0223-5234医药化学CHEMISTRY, MEDICINAL3化学3 2.882 1432-881X物理化学CHEMISTRY, PHYSICAL3化学3 2.37 0079-6786无机化学与核化CHEMISTRY, INORGANIC & NUC3化学3 2.938 1350-4177声学ACOUSTICS2化学3 2.796 1350-4177化学综合CHEMISTRY, MULTIDISCIPLINA3化学3 2.796 1566-7367物理化学CHEMISTRY, PHYSICAL3化学3 2.791 0039-7881有机化学CHEMISTRY, ORGANIC3化学3 2.47 0021-9797物理化学CHEMISTRY, PHYSICAL3化学3 2.443 1022-5528应用化学CHEMISTRY, APPLIED2化学3 2.212 1022-5528物理化学CHEMISTRY, PHYSICAL3化学3 2.212 0009-2614物理化学CHEMISTRY, PHYSICAL3化学3 2.169。
化学原版英文书籍
在化学领域,有许多经典的原版英文书籍可以作为参考。
以下是一些常见的化学原版英文书籍:
1. "Principles of Modern Chemistry" by Oxtoby, Gillis, and Campion: 这本书是一本综合性的化学教材,涵盖了化学的基本原理和概念,适合初学者阅读。
2. "Organic Chemistry" by Clayden, Greeves, Warren, and Wothers: 这是一本有关有机化学的经典教材,详细介绍了有机化学的理论和实践。
3. "Physical Chemistry: A Molecular Approach" by McQuarrie and Simon: 这本书涵盖了物理化学的各个方面,包括量子力学、热力学和动力学等内容。
4. "Inorganic Chemistry" by Gary L. Miessler, Paul J. Fischer, and Donald A. Tarr: 这是一本关于无机化学的权威教材,详细介绍了无机化学的基本原理和应用。
5. "Analytical Chemistry: Principles and Techniques" by James Keeler and Peter Wothers: 这本书着重介绍了分析化学的原理和技术,包括分离、定量和仪器分析等方面。
这些书籍都是经典的化学教材,可以帮助你深入理解化学的各个领域。
当然,还有许多其他的原版英文化学书籍可供选择,可以根据自己的需求和兴趣进一步探索。
刊名简称刊名全称COMB CHEM HIGH T SCR co COMBINATORIAL CHEMISTRY & HIGH THROUGHPUT SCREENING COMB CHEM HIGH T SCR co COMBINATORIAL CHEMISTRY & HIGH THROUGHPUT SCREENINGJ FLUORESC jo JOURNAL OF FLUORESCENCEJ ORGANOMET CHEM jo JOURNAL OF ORGANOMETALLIC CHEMISTRYCARBOHYD POLYM ca CARBOHYDRATE POLYMERSJ SOLID STATE CHEM jo JOURNAL OF SOLID STATE CHEMISTRYADV HETEROCYCL CHEM ad ADVANCES IN HETEROCYCLIC CHEMISTRYCHEM PHYS ch CHEMICAL PHYSICSORG PROCESS RES DEV or ORGANIC PROCESS RESEARCH & DEVELOPMENTCATAL LETT ca CATALYSIS LETTERSVIB SPECTROSC vi VIBRATIONAL SPECTROSCOPYSURF SCI su SURFACE SCIENCEPOLYHEDRON po POLYHEDRONCARBOHYD RES ca CARBOHYDRATE RESEARCHCARBOHYD RES ca CARBOHYDRATE RESEARCHINORG CHIM ACTA in INORGANICA CHIMICA ACTAMINI-REV ORG CHEM mi MINI-REVIEWS IN ORGANIC CHEMISTRYSOLID STATE SCI so SOLID STATE SCIENCESSOLID STATE SCI so SOLID STATE SCIENCESCOLLOID SURFACE A co COLLOIDS AND SURFACES A-PHYSICOCHEMICAL AND ENGINEERIN ADV QUANTUM CHEM ad ADVANCES IN QUANTUM CHEMISTRYJ MOL MODEL jo JOURNAL OF MOLECULAR MODELINGJ MOL MODEL jo JOURNAL OF MOLECULAR MODELINGCURR ANAL CHEM cu Current Analytical ChemistryANAL SCI an ANALYTICAL SCIENCESCHEM LETT ch CHEMISTRY LETTERSSEP PURIF REV se SEPARATION AND PURIFICATION REVIEWSTHERMOCHIM ACTA th THERMOCHIMICA ACTATHERMOCHIM ACTA th THERMOCHIMICA ACTAJ FLUORINE CHEM jo JOURNAL OF FLUORINE CHEMISTRYJ FLUORINE CHEM jo JOURNAL OF FLUORINE CHEMISTRYCOLLOID POLYM SCI co COLLOID AND POLYMER SCIENCEJ PHYS ORG CHEM jo JOURNAL OF PHYSICAL ORGANIC CHEMISTRYJ PHYS ORG CHEM jo JOURNAL OF PHYSICAL ORGANIC CHEMISTRYB CHEM SOC JPN bu BULLETIN OF THE CHEMICAL SOCIETY OF JAPAN 日本化学会通J MOL STRUCT jo JOURNAL OF MOLECULAR STRUCTUREJ THERM ANAL CALORIM jo JOURNAL OF THERMAL ANALYSIS AND CALORIMETRYJ THERM ANAL CALORIM jo JOURNAL OF THERMAL ANALYSIS AND CALORIMETRYMAGN RESON CHEM ma MAGNETIC RESONANCE IN CHEMISTRYMAGN RESON CHEM ma MAGNETIC RESONANCE IN CHEMISTRYMAGN RESON CHEM ma MAGNETIC RESONANCE IN CHEMISTRYHELV CHIM ACTA he HELVETICA CHIMICA ACTACALPHAD ca CALPHAD-COMPUTER COUPLING OF PHASE DIAGRAMS AND THERMO J IRAN CHEM SOC jo Journal of the Iranian Chemical SocietyJ CHEMOMETR jo JOURNAL OF CHEMOMETRICSPOLYM J po POLYMER JOURNALCR CHIM co COMPTES RENDUS CHIMIEJ BRAZIL CHEM SOC jo JOURNAL OF THE BRAZILIAN CHEMICAL SOCIETYINT J QUANTUM CHEM in INTERNATIONAL JOURNAL OF QUANTUM CHEMISTRYINT J QUANTUM CHEM in INTERNATIONAL JOURNAL OF QUANTUM CHEMISTRYSTRUCT CHEM st STRUCTURAL CHEMISTRYSTRUCT CHEM st STRUCTURAL CHEMISTRYSTRUCT CHEM st STRUCTURAL CHEMISTRYSURF INTERFACE ANAL su SURFACE AND INTERFACE ANALYSISAPPL ORGANOMET CHEM ap APPLIED ORGANOMETALLIC CHEMISTRYSOLVENT EXTR ION EXC so SOLVENT EXTRACTION AND ION EXCHANGEANAL LETT an ANALYTICAL LETTERSCHROMATOGRAPHIA ch CHROMATOGRAPHIACHROMATOGRAPHIA ch CHROMATOGRAPHIAZ ANORG ALLG CHEM ze ZEITSCHRIFT FUR ANORGANISCHE UND ALLGEMEINE CHEMIE CAN J CHEM ca CANADIAN JOURNAL OF CHEMISTRY-REVUE CANADIENNE DE CHIM CATAL SURV ASIA ca CATALYSIS SURVEYS FROM ASIAMOL SIMULAT mo MOLECULAR SIMULATIONMOL SIMULAT mo MOLECULAR SIMULATIONJ INCL PHENOM MACRO jo JOURNAL OF INCLUSION PHENOMENA AND MACROCYCLIC CHEMIST J INCL PHENOM MACRO jo JOURNAL OF INCLUSION PHENOMENA AND MACROCYCLIC CHEMIST J APPL POLYM SCI jo JOURNAL OF APPLIED POLYMER SCIENCEINT J CHEM KINET in INTERNATIONAL JOURNAL OF CHEMICAL KINETICSJ MATH CHEM jo JOURNAL OF MATHEMATICAL CHEMISTRYARKIVOC ar ARKIVOCJ SOLUTION CHEM jo JOURNAL OF SOLUTION CHEMISTRYB KOR CHEM SOC bu BULLETIN OF THE KOREAN CHEMICAL SOCIETYRADIOCHIM ACTA ra RADIOCHIMICA ACTAJ PORPHYR PHTHALOCYA jo JOURNAL OF PORPHYRINS AND PHTHALOCYANINESMONATSH CHEM mo MONATSHEFTE FUR CHEMIEJ MOL STRUC-THEOCHEM jo JOURNAL OF MOLECULAR STRUCTURE-THEOCHEMJ MOL LIQ jo JOURNAL OF MOLECULAR LIQUIDSJ MOL LIQ jo JOURNAL OF MOLECULAR LIQUIDSJ COAT TECHNOL RES jo Journal of Coatings Technology and ResearchJ PHOTOPOLYM SCI TEC jo JOURNAL OF PHOTOPOLYMER SCIENCE AND TECHNOLOGY HETEROCYCLES he HETEROCYCLESPOLYM BULL po POLYMER BULLETINMOLECULES mo MOLECULESBIOINORG CHEM APPL bi BIOINORGANIC CHEMISTRY AND APPLICATIONSBIOINORG CHEM APPL bi BIOINORGANIC CHEMISTRY AND APPLICATIONSBIOINORG CHEM APPL bi BIOINORGANIC CHEMISTRY AND APPLICATIONS HETEROATOM CHEM he HETEROATOM CHEMISTRYSYNTHETIC COMMUN sy SYNTHETIC COMMUNICATIONSLETT ORG CHEM le LETTERS IN ORGANIC CHEMISTRYJ CHEM SCI jo JOURNAL OF CHEMICAL SCIENCESJ CHROMATOGR SCI jo JOURNAL OF CHROMATOGRAPHIC SCIENCEJ CHROMATOGR SCI jo JOURNAL OF CHROMATOGRAPHIC SCIENCEJ CLUST SCI jo JOURNAL OF CLUSTER SCIENCEJ LIQ CHROMATOGR R T jo JOURNAL OF LIQUID CHROMATOGRAPHY & RELATED TECHNOLOGIE J LIQ CHROMATOGR R T jo JOURNAL OF LIQUID CHROMATOGRAPHY & RELATED TECHNOLOGIE CHIMIA ch CHIMIAJPC-J PLANAR CHROMAT jp JPC-JOURNAL OF PLANAR CHROMATOGRAPHY-MODERN TLC TRANSIT METAL CHEM tr TRANSITION METAL CHEMISTRYACTA CHIM SLOV ac ACTA CHIMICA SLOVENICARADIAT PHYS CHEM ra RADIATION PHYSICS AND CHEMISTRYRADIAT PHYS CHEM ra RADIATION PHYSICS AND CHEMISTRYJ CARBOHYD CHEM jo JOURNAL OF CARBOHYDRATE CHEMISTRYJ CARBOHYD CHEM jo JOURNAL OF CARBOHYDRATE CHEMISTRYJ COORD CHEM jo JOURNAL OF COORDINATION CHEMISTRYJ THEOR COMPUT CHEM jo JOURNAL OF THEORETICAL & COMPUTATIONAL CHEMISTRY COLLECT CZECH CHEM C co COLLECTION OF CZECHOSLOVAK CHEMICAL COMMUNICATIONS QUIM NOVA qu QUIMICA NOVAE-POLYMERS e-E-POLYMERSJ POLYM RES jo JOURNAL OF POLYMER RESEARCHJ HETEROCYCLIC CHEM jo JOURNAL OF HETEROCYCLIC CHEMISTRYJ DISPER SCI TECHNOL jo JOURNAL OF DISPERSION SCIENCE AND TECHNOLOGYACTA CHROMATOGR ac ACTA CHROMATOGRAPHICAZ NATURFORSCH B ze ZEITSCHRIFT FUR NATURFORSCHUNG SECTION B-A JOURNAL OF Z NATURFORSCH B ze ZEITSCHRIFT FUR NATURFORSCHUNG SECTION B-A JOURNAL OF INT J MOL SCI in INTERNATIONAL JOURNAL OF MOLECULAR SCIENCESCHINESE J CHEM ch CHINESE JOURNAL OF CHEMISTRYACTA CHIM SINICA ac ACTA CHIMICA SINICAJ MACROMOL SCI A jo JOURNAL OF MACROMOLECULAR SCIENCE-PURE AND APPLIED CHE NAT PROD RES na NATURAL PRODUCT RESEARCHNAT PROD RES na NATURAL PRODUCT RESEARCHHIGH PERFORM POLYM hi HIGH PERFORMANCE POLYMERSPHYS CHEM LIQ ph PHYSICS AND CHEMISTRY OF LIQUIDSPHYS CHEM LIQ ph PHYSICS AND CHEMISTRY OF LIQUIDSORG PREP PROCED INT or ORGANIC PREPARATIONS AND PROCEDURES INTERNATIONAL CROAT CHEM ACTA cr CROATICA CHEMICA ACTACHINESE J ORG CHEM ch CHINESE JOURNAL OF ORGANIC CHEMISTRYPOLYCYCL AROMAT COMP po POLYCYCLIC AROMATIC COMPOUNDSDES MONOMERS POLYM de DESIGNED MONOMERS AND POLYMERSCHINESE J STRUC CHEM ch CHINESE JOURNAL OF STRUCTURAL CHEMISTRYCHINESE J STRUC CHEM ch CHINESE JOURNAL OF STRUCTURAL CHEMISTRYJ ADV OXID TECHNOL jo JOURNAL OF ADVANCED OXIDATION TECHNOLOGIESCENT EUR J CHEM ce CENTRAL EUROPEAN JOURNAL OF CHEMISTRYMENDELEEV COMMUN me MENDELEEV COMMUNICATIONSJ SYN ORG CHEM JPN jo JOURNAL OF SYNTHETIC ORGANIC CHEMISTRY JAPANIRAN POLYM J ir IRANIAN POLYMER JOURNALTURK J CHEM tu TURKISH JOURNAL OF CHEMISTRYTURK J CHEM tu TURKISH JOURNAL OF CHEMISTRYISR J CHEM is ISRAEL JOURNAL OF CHEMISTRYCHEM J CHINESE U ch CHEMICAL JOURNAL OF CHINESE UNIVERSITIES-CHINESEJ CHIN CHEM SOC-TAIP jo JOURNAL OF THE CHINESE CHEMICAL SOCIETYBEILSTEIN J ORG CHEM be Beilstein Journal of Organic ChemistryCHINESE J POLYM SCI ch CHINESE JOURNAL OF POLYMER SCIENCECOLLOID J+co COLLOID JOURNALINDIAN J CHEM A in INDIAN JOURNAL OF CHEMISTRY SECTION A-INORGANIC BIO-IN PHOSPHORUS SULFUR ph PHOSPHORUS SULFUR AND SILICON AND THE RELATED ELEMENTS KINET CATAL+ki KINETICS AND CATALYSISREV ANAL CHEM re REVIEWS IN ANALYTICAL CHEMISTRYACTA PHYS-CHIM SIN ac ACTA PHYSICO-CHIMICA SINICAJ CHEM CRYSTALLOGR jo JOURNAL OF CHEMICAL CRYSTALLOGRAPHYJ CHEM CRYSTALLOGR jo JOURNAL OF CHEMICAL CRYSTALLOGRAPHYANN CHIM-ROME an ANNALI DI CHIMICAANN CHIM-ROME an ANNALI DI CHIMICAINORG REACT MECH in INORGANIC REACTION MECHANISMSINT J POLYM ANAL CH in INTERNATIONAL JOURNAL OF POLYMER ANALYSIS AND CHARACTE SCI CHINA SER B sc SCIENCE IN CHINA SERIES B-CHEMISTRYRES CHEM INTERMEDIAT re RESEARCH ON CHEMICAL INTERMEDIATESJ ANAL CHEM+jo JOURNAL OF ANALYTICAL CHEMISTRYREACT KINET CATAL L re REACTION KINETICS AND CATALYSIS LETTERSCHEM LISTY ch CHEMICKE LISTYCHINESE J INORG CHEM ch CHINESE JOURNAL OF INORGANIC CHEMISTRYJ RADIOANAL NUCL CH jo JOURNAL OF RADIOANALYTICAL AND NUCLEAR CHEMISTRYJ RADIOANAL NUCL CH jo JOURNAL OF RADIOANALYTICAL AND NUCLEAR CHEMISTRYJ RADIOANAL NUCL CH jo JOURNAL OF RADIOANALYTICAL AND NUCLEAR CHEMISTRY CHEM ANAL-WARSAW ch CHEMIA ANALITYCZNAJ CHIL CHEM SOC jo JOURNAL OF THE CHILEAN CHEMICAL SOCIETYPOLYM SCI SER A+po POLYMER SCIENCE SERIES AACTA POLYM SIN ac ACTA POLYMERICA SINICAJ SERB CHEM SOC jo JOURNAL OF THE SERBIAN CHEMICAL SOCIETYIONICS io IONICSIONICS io IONICSIONICS io IONICSRUSS J ORG CHEM+ru RUSSIAN JOURNAL OF ORGANIC CHEMISTRYPROG CHEM pr PROGRESS IN CHEMISTRYHIGH ENERG CHEM+hi HIGH ENERGY CHEMISTRYJ CHEM EDUC jo JOURNAL OF CHEMICAL EDUCATIONJ CHEM EDUC jo JOURNAL OF CHEMICAL EDUCATIONRUSS CHEM B+ru RUSSIAN CHEMICAL BULLETINCHINESE J ANAL CHEM ch CHINESE JOURNAL OF ANALYTICAL CHEMISTRYPOL J CHEM po POLISH JOURNAL OF CHEMISTRYRUSS J COORD CHEM+ru RUSSIAN JOURNAL OF COORDINATION CHEMISTRYCHEM PAP ch CHEMICAL PAPERS-CHEMICKE ZVESTICAN J ANAL SCI SPECT ca CANADIAN JOURNAL OF ANALYTICAL SCIENCES AND SPECTROSCO CAN J ANAL SCI SPECT ca CANADIAN JOURNAL OF ANALYTICAL SCIENCES AND SPECTROSCO STUD CONSERV st STUDIES IN CONSERVATIONSTUD CONSERV st STUDIES IN CONSERVATIONSTUD CONSERV st STUDIES IN CONSERVATIONHETEROCYCL COMMUN he HETEROCYCLIC COMMUNICATIONSREV INORG CHEM re REVIEWS IN INORGANIC CHEMISTRYJ STRUCT CHEM+jo JOURNAL OF STRUCTURAL CHEMISTRYJ STRUCT CHEM+jo JOURNAL OF STRUCTURAL CHEMISTRYLC GC EUR lc LC GC EUROPEPOLYM-KOREA po POLYMER-KOREADOKL PHYS CHEM do DOKLADY PHYSICAL CHEMISTRYCHEM WORLD-UK ch CHEMISTRY WORLDINDIAN J CHEM B in INDIAN JOURNAL OF CHEMISTRY SECTION B-ORGANIC CHEMISTR RUSS J GEN CHEM+ru RUSSIAN JOURNAL OF GENERAL CHEMISTRYCHEM NAT COMPD+ch CHEMISTRY OF NATURAL COMPOUNDSJ RARE EARTH jo JOURNAL OF RARE EARTHSS AFR J CHEM-S-AFR T so SOUTH AFRICAN JOURNAL OF CHEMISTRY-SUID-AFRIKAANSE TYD CHIM OGGI ch CHIMICA OGGI-CHEMISTRY TODAYCHIM OGGI ch CHIMICA OGGI-CHEMISTRY TODAYRUSS J PHYS CHEM A+ru RUSSIAN JOURNAL OF PHYSICAL Chemistry AJ MED PLANTS RES jo Journal of Medicinal Plants ResearchRUSS J INORG CHEM+ru RUSSIAN JOURNAL OF INORGANIC CHEMISTRYCHEM RES CHINESE U ch CHEMICAL RESEARCH IN CHINESE UNIVERSITIESCHINESE CHEM LETT ch CHINESE CHEMICAL LETTERSDOKL CHEM do DOKLADY CHEMISTRYMAIN GROUP MET CHEM ma MAIN GROUP METAL CHEMISTRYMAIN GROUP MET CHEM ma MAIN GROUP METAL CHEMISTRYCHEM UNSERER ZEIT ch CHEMIE IN UNSERER ZEITPROG REACT KINET MEC pr PROGRESS IN REACTION KINETICS AND MECHANISMJ INDIAN CHEM SOC jo JOURNAL OF THE INDIAN CHEMICAL SOCIETYLC GC N AM lc LC GC NORTH AMERICABUNSEKI KAGAKU bu BUNSEKI KAGAKUREV CHIM-BUCHAREST re REVISTA DE CHIMIEREV CHIM-BUCHAREST re REVISTA DE CHIMIEPOLYM SCI SER B+po POLYMER SCIENCE SERIES BINDIAN J HETEROCY CH in INDIAN JOURNAL OF HETEROCYCLIC CHEMISTRYCHEM IND-LONDON ch CHEMISTRY & INDUSTRYOXID COMMUN ox OXIDATION COMMUNICATIONSREV ROUM CHIM re REVUE ROUMAINE DE CHIMIERUSS J APPL CHEM+ru RUSSIAN JOURNAL OF APPLIED CHEMISTRYASIAN J CHEM as ASIAN JOURNAL OF CHEMISTRYB CHEM SOC ETHIOPIA bu BULLETIN OF THE CHEMICAL SOCIETY OF ETHIOPIA AFINIDAD af AFINIDADJ AUTOM METHOD MANAG jo JOURNAL OF AUTOMATED METHODS & MANAGEMENT IN CHEMISTRY J AUTOM METHOD MANAG jo JOURNAL OF AUTOMATED METHODS & MANAGEMENT IN CHEMISTRY KOBUNSHI RONBUNSHU ko KOBUNSHI RONBUNSHUJ CHEM SOC PAKISTAN jo JOURNAL OF THE CHEMICAL SOCIETY OF PAKISTANJ CHEM RES-S jo JOURNAL OF CHEMICAL RESEARCH-SACTUAL CHIMIQUE ac ACTUALITE CHIMIQUERUSS J PHYS CHEM B+ru Russian Journal of Physical Chemistry BCHEM PHYS CARBON ch CHEMISTRY AND PHYSICS OF CARBONCHEM PHYS CARBON ch CHEMISTRY AND PHYSICS OF CARBONCHEM PHYS CARBON ch CHEMISTRY AND PHYSICS OF CARBONLIQ CRYST li LIQUID CRYSTALSCRYST RES TECHNOL cr CRYSTAL RESEARCH AND TECHNOLOGYACTA CRYSTALLOGR C ac ACTA CRYSTALLOGRAPHICA SECTION C-CRYSTAL STRUCTURE COM MOL CRYST LIQ CRYST mo MOLECULAR CRYSTALS AND LIQUID CRYSTALSACTA CRYSTALLOGR E ac ACTA CRYSTALLOGRAPHICA SECTION E-STRUCTURE REPORTS ONL CRYSTALLOGR REP+cr CRYSTALLOGRAPHY REPORTSZ KRIST-NEW CRYST ST ze ZEITSCHRIFT FUR KRISTALLOGRAPHIE-NEW CRYSTAL STRUCTURE小类名称(英文)小类分区大类名称大类分区2008年影响因ISSN小类名称(中文1386-2073生化研究方法BIOCHEMICAL RESEARCH METHO4化学3 1.747 1386-2073药学PHARMACOLOGY & PHARMACY4化学3 1.747 1053-0509生化研究方法BIOCHEMICAL RESEARCH METHO4化学3 1.88 0022-328X有机化学CHEMISTRY, ORGANIC4化学3 1.866 0144-8617有机化学CHEMISTRY, ORGANIC4化学3 2.644 0022-4596物理化学CHEMISTRY, PHYSICAL4化学3 1.91 0065-2725有机化学CHEMISTRY, ORGANIC4化学3 1.35 0301-0104物理化学CHEMISTRY, PHYSICAL4化学3 1.961 1083-6160有机化学CHEMISTRY, ORGANIC4化学3 1.905 1011-372X物理化学CHEMISTRY, PHYSICAL4化学3 1.867 0924-2031物理化学CHEMISTRY, PHYSICAL4化学3 1.81 0039-6028物理化学CHEMISTRY, PHYSICAL4化学3 1.731CHEMISTRY, INORGANIC & NUC4化学4 1.801 0277-5387无机化学与核化BIOCHEMISTRY & MOLECULAR B4化学4 1.96 0008-6215生化与分子生物0008-6215有机化学CHEMISTRY, ORGANIC4化学4 1.96CHEMISTRY, INORGANIC & NUC4化学4 1.94 0020-1693无机化学与核化1570-193X有机化学CHEMISTRY, ORGANIC4化学4 1.449 1293-2558物理化学CHEMISTRY, PHYSICAL4化学4 1.742CHEMISTRY, INORGANIC & NUC4化学4 1.742 1293-2558无机化学与核化0927-7757物理化学CHEMISTRY, PHYSICAL4化学4 1.926 0065-3276物理化学CHEMISTRY, PHYSICAL4化学43BIOCHEMISTRY & MOLECULAR B4化学4 2.018 1610-2940生化与分子生物1610-2940生物物理BIOPHYSICS4化学4 2.018 1573-4110分析化学CHEMISTRY, ANALYTICAL4化学4 1.633 0910-6340分析化学CHEMISTRY, ANALYTICAL4化学4 1.735 0366-7022化学综合CHEMISTRY, MULTIDISCIPLINA4化学4 1.478 1542-2119分析化学CHEMISTRY, ANALYTICAL4化学4 1.529 0040-6031分析化学CHEMISTRY, ANALYTICAL4化学4 1.659 0040-6031物理化学CHEMISTRY, PHYSICAL4化学4 1.659CHEMISTRY, INORGANIC & NUC4化学4 1.593 0022-1139无机化学与核化0022-1139有机化学CHEMISTRY, ORGANIC4化学4 1.593 0303-402X物理化学CHEMISTRY, PHYSICAL4化学4 1.736 0894-3230物理化学CHEMISTRY, PHYSICAL4化学4 1.415 0894-3230有机化学CHEMISTRY, ORGANIC4化学4 1.415 0009-2673化学综合CHEMISTRY, MULTIDISCIPLINA4化学4 1.677 0022-2860物理化学CHEMISTRY, PHYSICAL4化学4 1.594 1388-6150分析化学CHEMISTRY, ANALYTICAL4化学4 1.63 1388-6150物理化学CHEMISTRY, PHYSICAL4化学4 1.63 0749-1581光谱学SPECTROSCOPY4化学4 1.443 0749-1581物理化学CHEMISTRY, PHYSICAL4化学4 1.443 0749-1581化学综合CHEMISTRY, MULTIDISCIPLINA4化学4 1.443 0018-019X化学综合CHEMISTRY, MULTIDISCIPLINA4化学4 1.396 0364-5916物理化学CHEMISTRY, PHYSICAL4化学4 1.53 1735-207X化学综合CHEMISTRY, MULTIDISCIPLINA4化学4 2.215 0886-9383分析化学CHEMISTRY, ANALYTICAL4化学4 1.415 0032-3896高分子科学POLYMER SCIENCE4化学4 1.4561631-0748化学综合CHEMISTRY, MULTIDISCIPLINA4化学4 1.529 0103-5053化学综合CHEMISTRY, MULTIDISCIPLINA4化学4 1.43 0020-7608物理化学CHEMISTRY, PHYSICAL4化学4 1.317 0020-7608物理:原子、分PHYSICS, ATOMIC, MOLECULAR4化学4 1.317 1040-0400物理化学CHEMISTRY, PHYSICAL4化学4 1.433 1040-0400化学综合CHEMISTRY, MULTIDISCIPLINA4化学4 1.433 1040-0400晶体学CRYSTALLOGRAPHY4化学4 1.433 0142-2421物理化学CHEMISTRY, PHYSICAL4化学4 1.272CHEMISTRY, INORGANIC & NUC4化学4 1.27 0268-2605无机化学与核化0736-6299化学综合CHEMISTRY, MULTIDISCIPLINA4化学4 1.295 0003-2719分析化学CHEMISTRY, ANALYTICAL4化学4 1.281 0009-5893分析化学CHEMISTRY, ANALYTICAL4化学4 1.312 0009-5893生化研究方法BIOCHEMICAL RESEARCH METHO4化学4 1.312CHEMISTRY, INORGANIC & NUC4化学4 1.102 0044-2313无机化学与核化0008-4042化学综合CHEMISTRY, MULTIDISCIPLINA4化学4 1.205 1571-1013物理化学CHEMISTRY, PHYSICAL4化学4 1.31 0892-7022物理化学CHEMISTRY, PHYSICAL4化学4 1.325PHYSICS, ATOMIC, MOLECULAR4化学4 1.325 0892-7022物理:原子、分0923-0750化学综合CHEMISTRY, MULTIDISCIPLINA4化学4 1.126 0923-0750晶体学CRYSTALLOGRAPHY4化学4 1.126 0021-8995高分子科学POLYMER SCIENCE4化学4 1.187 0538-8066物理化学CHEMISTRY, PHYSICAL4化学4 1.37 0259-9791化学综合CHEMISTRY, MULTIDISCIPLINA4化学4 1.435 1424-6376有机化学CHEMISTRY, ORGANIC4化学4 1.377 0095-9782物理化学CHEMISTRY, PHYSICAL4化学4 1.241 0253-2964化学综合CHEMISTRY, MULTIDISCIPLINA4化学4 1.257CHEMISTRY, INORGANIC & NUC4化学4 1.084 0033-8230无机化学与核化1088-4246化学综合CHEMISTRY, MULTIDISCIPLINA4化学4 1.189 0026-9247化学综合CHEMISTRY, MULTIDISCIPLINA4化学4 1.426 0166-1280物理化学CHEMISTRY, PHYSICAL4化学4 1.167 0167-7322物理化学CHEMISTRY, PHYSICAL4化学4 1.188PHYSICS, ATOMIC, MOLECULAR4化学4 1.188 0167-7322物理:原子、分1547-0091应用化学CHEMISTRY, APPLIED4化学4 1.059 0914-9244高分子科学POLYMER SCIENCE4化学4 1.14 0385-5414有机化学CHEMISTRY, ORGANIC4化学40.98 0170-0839高分子科学POLYMER SCIENCE4化学4 1.127 1420-3049有机化学CHEMISTRY, ORGANIC4化学4 1.252BIOCHEMISTRY & MOLECULAR B4化学4 1.265 1565-3633生化与分子生物CHEMISTRY, INORGANIC & NUC4化学4 1.265 1565-3633无机化学与核化1565-3633有机化学CHEMISTRY, ORGANIC4化学4 1.265 1042-7163化学综合CHEMISTRY, MULTIDISCIPLINA4化学4 1.155 0039-7911有机化学CHEMISTRY, ORGANIC4化学40.981 1570-1786有机化学CHEMISTRY, ORGANIC4化学40.915 0253-4134化学综合CHEMISTRY, MULTIDISCIPLINA4化学40.745 0021-9665分析化学CHEMISTRY, ANALYTICAL4化学4 1.135 0021-9665生化研究方法BIOCHEMICAL RESEARCH METHO4化学4 1.135CHEMISTRY, INORGANIC & NUC4化学40.946 1040-7278无机化学与核化1082-6076分析化学CHEMISTRY, ANALYTICAL4化学4 1.026 1082-6076生化研究方法BIOCHEMICAL RESEARCH METHO4化学4 1.026 0009-4293化学综合CHEMISTRY, MULTIDISCIPLINA4化学4 1.283 0933-4173分析化学CHEMISTRY, ANALYTICAL4化学40.982CHEMISTRY, INORGANIC & NUC4化学40.997 0340-4285无机化学与核化1318-0207化学综合CHEMISTRY, MULTIDISCIPLINA4化学40.909 0969-806X物理化学CHEMISTRY, PHYSICAL4化学40.882PHYSICS, ATOMIC, MOLECULAR4化学40.882 0969-806X物理:原子、分BIOCHEMISTRY & MOLECULAR B4化学4 1.114 0732-8303生化与分子生物0732-8303有机化学CHEMISTRY, ORGANIC4化学4 1.114CHEMISTRY, INORGANIC & NUC4化学40.732 0095-8972无机化学与核化0219-6336化学综合CHEMISTRY, MULTIDISCIPLINA4化学40.633 0010-0765化学综合CHEMISTRY, MULTIDISCIPLINA4化学40.784 0100-4042化学综合CHEMISTRY, MULTIDISCIPLINA4化学40.891 1618-7229高分子科学POLYMER SCIENCE4化学40.661 1022-9760高分子科学POLYMER SCIENCE4化学4 1.032 0022-152X有机化学CHEMISTRY, ORGANIC4化学40.899 0193-2691物理化学CHEMISTRY, PHYSICAL4化学40.65 1233-2356分析化学CHEMISTRY, ANALYTICAL4化学40.621 0932-0776无机化学与核化CHEMISTRY, INORGANIC & NUC4化学40.852 0932-0776有机化学CHEMISTRY, ORGANIC4化学40.852 1422-0067化学综合CHEMISTRY, MULTIDISCIPLINA4化学40.978 1001-604X化学综合CHEMISTRY, MULTIDISCIPLINA4化学40.945 0567-7351化学综合CHEMISTRY, MULTIDISCIPLINA4化学40.682 1060-1325高分子科学POLYMER SCIENCE4化学40.72 1478-6419医药化学CHEMISTRY, MEDICINAL4化学40.782 1478-6419应用化学CHEMISTRY, APPLIED4化学40.782 0954-0083高分子科学POLYMER SCIENCE4化学40.86 0031-9104物理化学CHEMISTRY, PHYSICAL4化学40.621PHYSICS, CONDENSED MATTER4化学40.621 0031-9104物理:凝聚态物0030-4948有机化学CHEMISTRY, ORGANIC4化学40.618 0011-1643化学综合CHEMISTRY, MULTIDISCIPLINA4化学40.831 0253-2786有机化学CHEMISTRY, ORGANIC4化学40.662 1040-6638有机化学CHEMISTRY, ORGANIC4化学40.741 1385-772X高分子科学POLYMER SCIENCE4化学40.517 0254-5861晶体学CRYSTALLOGRAPHY4化学40.643CHEMISTRY, INORGANIC & NUC4化学40.643 0254-5861无机化学与核化1203-8407物理化学CHEMISTRY, PHYSICAL4化学40.495 1895-1066化学综合CHEMISTRY, MULTIDISCIPLINA4化学40.741 0959-9436化学综合CHEMISTRY, MULTIDISCIPLINA4化学40.609 0037-9980有机化学CHEMISTRY, ORGANIC4化学40.591 1026-1265高分子科学POLYMER SCIENCE4化学4 1.072 1300-0527工程:化工ENGINEERING, CHEMICAL4化学40.727 1300-0527化学综合CHEMISTRY, MULTIDISCIPLINA4化学40.727 0021-2148化学综合CHEMISTRY, MULTIDISCIPLINA4化学40.467 0251-0790化学综合CHEMISTRY, MULTIDISCIPLINA4化学40.592 0009-4536化学综合CHEMISTRY, MULTIDISCIPLINA4化学40.771860-5397有机化学CHEMISTRY, ORGANIC4化学40.8 0256-7679高分子科学POLYMER SCIENCE4化学40.644 1061-933X物理化学CHEMISTRY, PHYSICAL4化学40.56 0376-4710化学综合CHEMISTRY, MULTIDISCIPLINA4化学40.575CHEMISTRY, INORGANIC & NUC4化学40.692 1042-6507无机化学与核化0023-1584物理化学CHEMISTRY, PHYSICAL4化学40.681 0793-0135分析化学CHEMISTRY, ANALYTICAL4化学40.767 1000-6818物理化学CHEMISTRY, PHYSICAL4化学40.673 1074-1542光谱学SPECTROSCOPY4化学40.574 1074-1542晶体学CRYSTALLOGRAPHY4化学40.574 0003-4592分析化学CHEMISTRY, ANALYTICAL4化学40.589 0003-4592环境科学ENVIRONMENTAL SCIENCES4化学40.589CHEMISTRY, INORGANIC & NUC4化学40.385 1028-6624无机化学与核化1023-666X高分子科学POLYMER SCIENCE4化学40.824 1006-9291化学综合CHEMISTRY, MULTIDISCIPLINA4化学40.552 0922-6168化学综合CHEMISTRY, MULTIDISCIPLINA4化学40.514 1061-9348分析化学CHEMISTRY, ANALYTICAL4化学40.662 0133-1736物理化学CHEMISTRY, PHYSICAL4化学40.61 0009-2770化学综合CHEMISTRY, MULTIDISCIPLINA4化学40.593CHEMISTRY, INORGANIC & NUC4化学40.532 1001-4861无机化学与核化CHEMISTRY, INORGANIC & NUC4化学40.659 0236-5731无机化学与核化0236-5731分析化学CHEMISTRY, ANALYTICAL4化学40.659 0236-5731核科学技术NUCLEAR SCIENCE & TECHNOLO4化学40.659 0009-2223分析化学CHEMISTRY, ANALYTICAL4化学40.564 0717-9324化学综合CHEMISTRY, MULTIDISCIPLINA4化学40.562 0965-545X高分子科学POLYMER SCIENCE4化学40.543 1000-3304高分子科学POLYMER SCIENCE4化学40.565 0352-5139化学综合CHEMISTRY, MULTIDISCIPLINA4化学40.611 0947-7047电化学ELECTROCHEMISTRY4化学40.773 0947-7047物理化学CHEMISTRY, PHYSICAL4化学40.773PHYSICS, CONDENSED MATTER4化学40.773 0947-7047物理:凝聚态物1070-4280有机化学CHEMISTRY, ORGANIC4化学40.557 1005-281X化学综合CHEMISTRY, MULTIDISCIPLINA4化学40.511 0018-1439物理化学CHEMISTRY, PHYSICAL4化学40.577 0021-9584化学综合CHEMISTRY, MULTIDISCIPLINA4化学40.538 0021-9584学科教育EDUCATION, SCIENTIFIC DISC4化学40.538 1066-5285化学综合CHEMISTRY, MULTIDISCIPLINA4化学40.469 0253-3820分析化学CHEMISTRY, ANALYTICAL4化学40.633 0137-5083化学综合CHEMISTRY, MULTIDISCIPLINA4化学40.518CHEMISTRY, INORGANIC & NUC4化学40.534 1070-3284无机化学与核化0366-6352化学综合CHEMISTRY, MULTIDISCIPLINA4化学40.758 1205-6685分析化学CHEMISTRY, ANALYTICAL4化学40.56 1205-6685光谱学SPECTROSCOPY4化学40.56 0039-3630分析化学CHEMISTRY, ANALYTICAL4化学40.38 0039-3630光谱学SPECTROSCOPY4化学40.38 0039-3630应用化学CHEMISTRY, APPLIED4化学40.38 0793-0283有机化学CHEMISTRY, ORGANIC4化学40.5190193-4929分析化学CHEMISTRY, ANALYTICAL4化学40.174 0022-4766物理化学CHEMISTRY, PHYSICAL4化学40.579CHEMISTRY, INORGANIC & NUC4化学40.579 0022-4766无机化学与核化1471-6577分析化学CHEMISTRY, ANALYTICAL4化学40.424 0379-153X高分子科学POLYMER SCIENCE4化学40.61 0012-5016物理化学CHEMISTRY, PHYSICAL4化学40.565 1473-7604化学综合CHEMISTRY, MULTIDISCIPLINA4化学40.355 0376-4699有机化学CHEMISTRY, ORGANIC4化学40.466 1070-3632化学综合CHEMISTRY, MULTIDISCIPLINA4化学40.47 0009-3130有机化学CHEMISTRY, ORGANIC4化学40.468 1002-0721应用化学CHEMISTRY, APPLIED4化学40.53 0379-4350化学综合CHEMISTRY, MULTIDISCIPLINA4化学40.44BIOTECHNOLOGY & APPLIED MI4化学40.404 1973-8250生物工程与应用1973-8250化学综合CHEMISTRY, MULTIDISCIPLINA4化学40.404 0036-0244物理化学CHEMISTRY, PHYSICAL4化学40.475 1996-0875医药化学CHEMISTRY, MEDICINAL4化学40.4CHEMISTRY, INORGANIC & NUC4化学40.417 0036-0236无机化学与核化1005-9040化学综合CHEMISTRY, MULTIDISCIPLINA4化学40.408 1001-8417化学综合CHEMISTRY, MULTIDISCIPLINA4化学40.488 0012-5008化学综合CHEMISTRY, MULTIDISCIPLINA4化学40.231CHEMISTRY, INORGANIC & NUC4化学40.116 0334-7575无机化学与核化0334-7575有机化学CHEMISTRY, ORGANIC4化学40.116 0009-2851化学综合CHEMISTRY, MULTIDISCIPLINA4化学40.279 1468-6783物理化学CHEMISTRY, PHYSICAL4化学40.44 0019-4522化学综合CHEMISTRY, MULTIDISCIPLINA4化学40.384 1527-5949分析化学CHEMISTRY, ANALYTICAL4化学40.291 0525-1931分析化学CHEMISTRY, ANALYTICAL4化学40.399 0034-7752工程:化工ENGINEERING, CHEMICAL4化学40.389 0034-7752化学综合CHEMISTRY, MULTIDISCIPLINA4化学40.389 1560-0904高分子科学POLYMER SCIENCE4化学40.272 0971-1627有机化学CHEMISTRY, ORGANIC4化学40.295 0009-3068应用化学CHEMISTRY, APPLIED4化学40.22 0209-4541化学综合CHEMISTRY, MULTIDISCIPLINA4化学40.228 0035-3930化学综合CHEMISTRY, MULTIDISCIPLINA4化学40.284 1070-4272应用化学CHEMISTRY, APPLIED4化学40.291 0970-7077化学综合CHEMISTRY, MULTIDISCIPLINA4化学40.268 1011-3924化学综合CHEMISTRY, MULTIDISCIPLINA4化学40.198 0001-9704化学综合CHEMISTRY, MULTIDISCIPLINA4化学40.244 1463-9246分析化学CHEMISTRY, ANALYTICAL4化学40.37 1463-9246仪器仪表INSTRUMENTS & INSTRUMENTAT4化学40.37 0386-2186高分子科学POLYMER SCIENCE4化学40.17 0253-5106化学综合CHEMISTRY, MULTIDISCIPLINA4化学40.221 0308-2342化学综合CHEMISTRY, MULTIDISCIPLINA4化学40.097 0151-9093化学综合CHEMISTRY, MULTIDISCIPLINA4化学40.152PHYSICS, ATOMIC, MOLECULAR4化学40.11 1990-7931物理:原子、分0069-3138物理化学CHEMISTRY, PHYSICAL4化学40 0069-3138能源与燃料ENERGY & FUELS4化学400069-3138工程:化工ENGINEERING, CHEMICAL4化学40 0267-8292晶体学CRYSTALLOGRAPHY4化学(化学4 1.132 0232-1300晶体学CRYSTALLOGRAPHY4化学(化学40.921 0108-2701晶体学CRYSTALLOGRAPHY4化学(化学40.561 1542-1406晶体学CRYSTALLOGRAPHY4化学(化学40.537 1600-5368晶体学CRYSTALLOGRAPHY4化学(化学40.367 1063-7745晶体学CRYSTALLOGRAPHY4化学(化学40.481 1433-7266晶体学CRYSTALLOGRAPHY4化学(化学40.3022007年总被引2007年影响因2008年总被引2006年总被引频次2006-2008年2006年影响因2.344 2.55 2.213667106810189032.344 2.55 2.213667106810189032.101 2.61 2.197147711759172.168 2.332 2.1222233321861225551.782 1.7842.077471548847532.149 2.107 2.0553331472213694129242.15 2.647 2.0498208659051.805 1.984 1.9166671222511444117181.8332.004 1.9142062187417561.883 1.772 1.8406677119658459511.78 1.88 1.8233331962172414661.855 1.88 1.8222634826212251951.756 1.843 1.8114111067698281.723 1.703 1.7953331202910554108091.723 1.703 1.7953331202910554108091.713 1.674 1.7756671430213474127772 1.768 1.7392231761011.698 1.752 1.7306672528209618271.698 1.752 1.7306672528209618271.601 1.611 1.712667131051111998331.2750.83 1.7016677296656201.669 1.384 1.690333150312649571.669 1.384 1.690333150312649571.815 1.5 1.649333178124471.508 1.589 1.6106674486426438501.48 1.734 1.5641452314229138071.533 1.6 1.5548151331.562 1.417 1.5469043821474381.562 1.417 1.5469043821474381.513 1.515 1.5403333720357433271.513 1.515 1.5403333720357433271.62 1.249 1.5354374409335511.594 1.593 1.5342073197718511.594 1.593 1.5342073197718511.404 1.505 1.5286671178812007120261.486 1.495 1.52510403957089071.483 1.438 1.5176411525044881.483 1.438 1.5176411525044881.434 1.61 1.4956673199288826951.434 1.61 1.4956673199288826951.434 1.61 1.4956673199288826951.515 1.55 1.4877867819683121.352 1.432 1.4381491129011771.3890.644 1.416390159461.367 1.342 1.3746671973175815641.421 1.146 1.3412752274828081.305 1.145 1.32633314651223963 1.539 1.003 1.324215120441260 1.368 1.182 1.289687263896023 1.368 1.182 1.289687263896023 0.888 1.51 1.277865626651 0.888 1.51 1.2778656266510.888 1.51 1.2778656266511.036 1.427 1.245417837343746 1.224 1.233 1.242333243622142178 1.229 1.162 1.228667107211211091 1.3620.986 1.209667287929312496 1.145 1.171 1.209333393235423528 1.145 1.171 1.209333393235423528 1.26 1.241 1.201709471047132 1.204 1.153 1.1873337979778579941 1.245 1.185208148125 1.133 1.084 1.18066712291119935 1.133 1.084 1.18066712291119935 1.153 1.251 1.176667220417991693 1.153 1.251 1.176667220417991693 1.008 1.306 1.167333383056828916 1.220.87 1.153333246523892255 1.0570.965 1.1523331095745604 1.2530.8 1.143333206516141039 1.124 1.026 1.130333233120691997 1.1560.95 1.121386330592600 1.21 1.068 1.120667204824582054 1.023 1.115 1.1091546143611020.9720.92 1.1063061271525141.112 1.016 1.098333667963095944 0.982 1.106 1.092177116081604 0.982 1.106 1.09217711608160400 1.059123000.835 1.176 1.0503339406837071.066 1.077 1.041549457255307 1.0220.969 1.039333276424882439 0.940.841 1.01114271194827 0.9780.767 1.0033331508152 0.9780.767 1.0033331508152 0.9780.767 1.0033331508152 0.9840.8380.9923331096961865 0.977 1.0010.9863336770676565320.981 1.0040.9666676284842931.032 1.120.965667296250155 0.8690.880.961333159014711665 0.8690.880.961333159014711665 0.886 1.0140.9486675074334570.9770.8250.942667254624252406 0.9770.8250.942667254624252406 0.9190.6260.942667116611771111 0.683 1.1530.9393337275906780.8380.9180.9176672353209918931.0930.7030.901667586470307 0.9340.8680.894667380537333317 0.9340.8680.894667380537333317 0.7980.760.890667868746791 0.7980.760.890667868746791 0.8670.9780.859163814861361 0.923 1.0090.855318305261 0.8790.8810.848257026002784 0.910.720.840333191816991072 0.9170.9340.837333442396332 0.8420.6160.83452368219 0.8130.7760.829333498148444997 0.9170.9140.827939925718 0.746 1.1090.825333162122100 0.770.8250.815667340631963219 0.770.8250.815667340631963219 0.750.6790.802333422313278 0.7190.7120.792150312261177 0.8440.7830.769667233922332117 0.7590.80.759667191820441972 0.6830.7980.754333636405232 0.6830.7980.754333636405232 0.6790.6990.746522478501 0.8540.7430.739333484426410 0.8540.7430.739333484426410 0.8570.7420.739805900949 0.6060.7780.738333918909760 0.7660.7380.722126211591080 0.6550.7670.721452452409 0.7320.890.713212224190 0.6960.7290.689333935923833 0.6960.7290.689333935923833 0.7120.850.685667236228185 0.7540.5610.68533322315894 0.730.7120.683667829865763 0.6280.8320.683667551589627 0.5730.3860.677417235160 0.6540.6460.675667704626473 0.6540.6460.675667704626473 0.372 1.1740.6719919341093 0.6950.7240.670333268727652803 0.6430.5770.66333313711101982。
INVITED REVIEWA review on tough and sticky hydrogelsCharles W.Peak &Jonathan J.Wilker &Gudrun SchmidtReceived:28March 2013/Revised:5June 2013/Accepted:21June 2013/Published online:6July 2013#Springer-Verlag Berlin Heidelberg 2013Abstract In this review,we survey recent literature (2009–2013)on hydrogels that are mechanically tough and adhesive.The impact of published work and trends in the field are examined.We focus on design concepts,new materials,struc-tures related to mechanical performance and adhesion proper-ties.Besides hydrogels made of individual polymers,concepts developed to toughen hydrogels include interpenetrating and double networks,slide ring polymer gels,topological hydrogels,ionically cross-linked copolymer gels,nanocomposite polymer hydrogels,self-assembled microcomposite hydrogels,and com-binations thereof.Hydrogels that are adhesive in addition to tough are also discussed.Adhesive properties,especially wet adhesion of hydrogels,are rare but needed for a variety of general technologies.Some of the most promising industrial applications are found in the areas of sensor and actuator technology,microfluidics,drug delivery and biomedical de-vices.The most recent accomplishments and creative ap-proaches to making tough and sticky hydrogels are highlighted.This review concludes with perspectives for future directions,challenges and opportunities in a continuously changing world.Keywords Tough .Hydrogel .Adhesion .Polymer .Cross-linking .Mechanical strengthIntroductionRobust hydrogels that combine high strength with stimuli-responsiveness,swelling –deswelling,liquid –gel transitions,antimicrobial,shock-absorbing,self-healing shape-memory effects,and surface adhesion are promising for the develop-ment of several new technologies [1–4].For example,liquid microlenses can be actuated by tough hydrogels that respond to light,temperature or an electric field [5,6].Other mate-rials and devices that benefit from tough hydrogels include new sensors [7],microfluidic devices [8,9],components of batteries,electrochemical devices and ultrafiltration mem-branes [4].Hydrogels made from chemo-mechanical or other stimuli responsive polymers have been evaluated for sensors and actuators [10–12].For use in sensors and actuators,the concept is based on a large and reversible volume change of the hydrogel that is induced by physical or chemical stimuli.These stimuli are able to convert chemical energy into me-chanical work forth and back [13].The resulting materials are sometimes described as “chemical valves.”Commercial and biomedical applications include wound and surgical sealants [14,15],self-regulating drug delivery depots [16],materials for bioseparations [17]and hydrogel platforms for cell growth or tissue engineering [8,18].For example,poor mechanical stability of hydrogel encapsulated cells hampers the viability and use.Polymer hydrogels with liquid –gel transitions have great potential in tissue engineer-ing and drug delivery therapies owing to the fact that these hydrogels can be easily mixed with cells or drugs in the liquid state prior to injection and cross-linking [19].Such hydrogels work most efficiently when maintaining high strength,ideally attached to the surrounding tissue followed by degradation after cargo delivery.Most synthetic,tough hydrogels are not adhesive.Gener-ally speaking,it appears that many adhesive properties are found by serendipity.Alternatively,specific design efforts via targeted biomimetic approaches have been -pared to bulk adhesives,hydrogel adhesives offer better modulus matching to substrates and transport properties.Modulus matching between the hydrogel glue and a sub-strate can better avoid bond failure.The capability to adsorbC.W.Peak :G.Schmidt (*)Weldon School of Biomedical Engineering,Purdue University,206South Martin Jischke Drive,West Lafayette,IN 47907-2032,USA e-mail:gudrun@J.J.WilkerDepartment of Chemistry,Purdue University,560Oval Drive,West Lafayette,IN 47907-2084,USAColloid Polym Sci (2013)291:2031–2047DOI 10.1007/s00396-013-3021-yand release molecules makes hydrogel adhesives unique for sensor,drug delivery and sealant applications.Tough but flexible soft materials are required for adhering rubber to metal in motor mounts as well as bone to ligament in tissue repair[20–23].Optically clear and tough hydrogel adhesives can be used for connecting fiber optic cables and optical components[24].Hydrogels are needed for materials in microfluidic devices and microarrays including lab-on-a-chip fabrication[5].Degradation into nontoxic products becomes important when designing hydrogels for disposable applications,including sensors[7,24,25],microfluidic con-structs[8],drug delivery matrices[26–28],separations tech-nology[29],wound care materials[30],surgical sealants [31–33]and other unmet medical needs that require perma-nent or reversible tissue adhesion[34].First,we will highlight the most recent literature on tough hydrogels by focusing on design concepts,new materials chemistries,properties and applications.Afterward,we will review hydrogels that are both adhesive and tough.This combination of properties is rare and difficult to achieve within one material.Adhesive properties,especially wet adhesion,are critical for developing medical products. Intended commercial applications guide the materials design and synthesis.Thus the end product will determine property optimization efforts of researchers as well as the choice of measurement techniques,which vary significantly.Such goals mean that a hydrogel is often developed to serve a specific purpose not necessarily combine adhesive and tough properties.Strategies and concepts developed to make tough hydrogels capable of large deformation include interpen-etrating hydrogels,double networks[35],slide ring polymer gels[36],topological or tetra-PEG hydrogels[37],ionically cross-linked copolymers[38],nanocomposite polymer hydrogels[39–42],self-assembled microcomposite hydrogels and combinations thereof(Fig.1).We will focus on literature published mostly between2009and2013.Several earlier outstanding reviews are available on the concept of tough hydrogels[35–41]thus we will highlight these papers when discussing the individual concepts.For older literature,the reader is referred to previously published research and review articles that specialize on individual aspects of hydrogels [2–4].For example,Myung et al.[43]have reviewed the progress made in the development and characterization of interpenetrating polymer networks starting from the pioneering work done in the1960s to the more recently reported respon-sive and tough interpenetrating hydrogel systems[43].Besides reviewing the literature,Myung et al.present a model hydrogel system that suggests template or partial template polymeriza-tion of the second network which significantly contributes to mechanical property enhancements.Naficy et al.[2]have presented an overview of robust polymer hydrogels by focus-ing on toughening mechanisms and mechanical performance.Messing and Schmidt[3]reviewed responsive hydrogels with a focus on shape changing and actuating materials.Calvert[4] wrote a tutorial style review article on hydrogels for soft machines.From an educational perspective,Calvert’s review is ideal for introducing students to tough hydrogels and their applications.Several other reviews exist on biomedical appli-cations of hydrogels that are tough and also not so tough [44–47].Hydrogels that can mimic the extracellular matrix are important for tissue engineering[48–51].Since tough hydrogels represent a relatively new topic,experimental studies are available but more applications are yet to be found[4].With this aspect in mind,we present ongoing design concepts,potential applications and new materials engineering efforts.Tough hydrogelsOn the following pages,we will focus on design concepts, new and tough hydrogel materials,structures related to me-chanical performance and mechanical testing data when available.For deformation of a hydrogel material,in the ideal case,uniaxial compression and biaxial tension should give identical pared to tensile testing measure-ments,compression experiments are easier to perform both in terms of sample preparation and actual testing.For exam-ple,slipping between the grips and wet samples presents practical difficulties.Since hydrogels are often tested in compression,sometimes in tension and sometimes in both, the values of stress at break are not always directly compa-rable when reported as nominal rge strains applied in compression can expand the cross-section of a sample and, as a result,resistance of the material can appear exaggerated. Conversely,the cross-section of a sample may become smaller when applying nominal stress in tension.Therefore, whenever possible and where data are available,we will specify whether the mechanical testing data such as stresses at break are nominal values(i.e.,force over initial cross section,engineering values)or true values(i.e.,force over current cross section).We will also add information on the experimental geometry.Current and potential applications for these materials are found in the areas of sensor and actuator technology, microfluidics,drug delivery,biomaterials and biomedical devices.Figure2summarizes some application areas with examples.Interpenetrating and double network hydrogelsDouble network hydrogels consist of two interpenetrating and covalently cross-linked polymer networks(Fig.1a–c) [52].Gong and co-workers first succeeded in synthesizing such double network hydrogels[35,52].These materialsdisplay toughness and very high mechanical strength when compared to the individual polymer hydrogel controls[35]. The double networks are usually made by swelling a densely cross-linked network in a solution of a second monomer and then polymerizing the second monomer to form a loosely cross-linked network.The first densely cross-linked network provides the hydrogel strength and the second loosely cross-linked network allows for energy dissipation at largestrains. Fig.1Schematic representations of tough hydrogel network structuresBoth networks are sequentially polymerized but there is some cross-linking between the two networks possible, which is related to incomplete polymerization of the first network.When such hydrogels are made from poly(2-acrylamido-2-methylpropane sulfonic acid)(PAMPS)polyelectrolyte and linear polyacrylamide(PAAm)they may yield excep-tional compressive strengths of ca.20MPa and fracture energies in the hundreds of J/m2.Other hydrogel composi-tions from PAMPS and PAAm containing90%water are still capable of17MPa compressive strength(engineering definitions)[52].Several theoretical studies that complement the experi-mental work suggest that double networks are tough owing to specific local yielding and hardening mechanisms take place during deformation[53].For example,Brown[54]and then Webber et al.[55]expand on the Lake–Thomas and de Gennes theories.They report that when the first network breaks up to form many cracks,the second network can keep the overall system together,dissipate energy and cause shielding[54].Tanaka[56]developed a phenomenological model that is similar to that of Brown[54].These models account nicely for the high toughness observed in the double network hydrogels developed by Gong[35,52].The energy dissipation mechanism observed for the double network hydrogels is similar to the Mullins effect.This effect is a stress softening phenomenon observed under loading and characteristic for rubbers and other filled elastomers[55, 57].Thus a disadvantage of the tough and double network gels is that,once covalent bonds are broken,the damage is irreversible.Above a critical stress,the first network frac-tures and builds clusters that can slide and act as cross linkers to the second network[53].These clusters present within the “used”gels have some similarity to the slide ring gels that we will discuss in a separate section below[58].Here,toughen-ing comes at the expense of irreversible failure of the first network.Some other experimental and theoretical work that can be used to explain the toughness of double network hydrogels includes the neutron scattering work by Tirumala et al.[59], crack propagation studies by Baumberger et al.[60]and the soft–hard network model by Okumura[61].Tirumala et al.[59]developed a molecular mechanism to explain hydrogel toughness by using neutron scattering techniques to deter-mine periodic density fluctuations that resulted from large strains.Baumberger et al.[60]investigated crack dynamics in physical gels and the relation of solvent control and fracture to“viscoplastic chain pull-out.”Results from this work are important to optimizing hydrogel foods such as gummi candy,vitamin-containing gummis,aspic prepara-tions as well as for biomaterials developments.For example, a water swollen gummi bear(candy)can be considered a tough hydrogel.Okumura[61]described a double network to be a heterogeneous material composed of“intertwined but energetically independent”soft and a hard networks.This model is then used to propose a mechanism for fracture energy and strength enhancement[61].Since their discovery,several conceptual and material improvements have been made to double network hydrogels. For example,bacterial cellulose and gelatin were used to prepare tough double networks[35].Microspheres contain-ing double networks hydrogels and liquid crystalline double networks were both made[35].These efforts,all by Gong’s group,are summarized in recent reviews article by HaqueFig.2Application areas for tough hydrogels with specific exampleset al.[35]and Gong[53].The authors envision that these types of hydrogels will be most useful for biomaterials de-velopments,specifically for load bearing applications in-cluding cartilage repair and regeneration[35].Tough and electro-conducting hydrogels made of double networks are very attractive for developing artificial muscles, robotics,flexible electronics and soft actuators.The most desirable properties for these applications are soft and tough materials with flexibility,stretchability and electro-conductivity. Hydrogels may fulfill some of these requirements.Kishi et al.[62],reported on such hydrogels synthesized from electro-conductive poly3,4-ethylenedioxythiophene(PEDOT)that was incorporated into a double network gel matrix.This double network hydrogel consisted of poly(2-acrylamide-2-metyl-propane sulfonic acid)(PAMPS)and PAAm.The resulting “triple network”hydrogel made of PEDOT–PAMPS–PAAm was toughened by additional poly-ion complexation[62].As a result,electronic conductivity and mechanical properties were enhanced significantly.Results from tensile testing experiments showed that fracture stresses of1.4–2.1MPa(engineering values)were achieved[62].Several other research groups have used interpenetrating and double network concepts to synthesize tough hydrogels from a variety of different polymers combinations of poly-mers(Fig.1a–c).For example,tough double network gels from poly(ethylene glycol)-diacrylate(PEG-DA)and poly(acrylic acid)(PAA)can be synthesized by sequential network formation using UV-initiated free radical polymer-ization[18,43].This procedure leads to an interpenetrating network where the PEG is densely cross-linked and the PAA is loosely cross-linked,with hydrogen bonding playing an important role in strain hardening.Some of the interpen-etrating hydrogels may reach fracture stresses as high as 13MPa(true values),as reported in a paper by Myung et al.[18,43].The hydrogels are transparent and have tunable mechanical properties that are most suitable for corneal implant applications[18,43].The synthesis of highly resilient and tough hydrogels has been reported by Cui et al.[63].These hydrogels were made from thiol-norbornene used to end functionalize and then cross-link PEG and polydimethylsiloxane(PDMS).The fracture toughness of these materials was around80J/m2 and the mechanical energy storage efficiency achieved was more than97%at strains up to300%[63].The energy storage efficiency(i.e.,resilience)of these hydrogels is com-parable to that of natural materials such as resilin in dragon-fly tendon(97%)or elastin in skin(90%).The authors state that the uniform network structure and the unstructured primary chains are critical in generating resilience and unique mechanical properties.Stress–strain curves obtained from tensile testing after repeated loading were identical, suggesting that the hydrogel network was not damaged. The Mullins effect was not observed.In a follow up paper Cui et ed the V oigt and Reuss models to describe and predict the elastic moduli of the hydrogels as function of composition.The Lake–Thomas theory was used to describe the fracture toughness of PEG-PDMS hydrogels having low volume fractions of PDMS[64].For compression testing, true stresses were reported.For tensile testing,engineering values were reported[64].Double networks can also be generated by repeatedly freezing and thawing hydrogels consisting of poly(vinyl alcohol)(PV A),PEG and water[65].Zhang et al.[65] published work describing a very simple mix,freeze and thaw method to prepare tough PV A/PEG hydrogels.The freezing and thawing cycles initiate PV A crystallite forma-tion and these crystallites physically cross-link the hydrogel network.The second PEG network was also partially crys-tallized and anchored to the PV A network.Hydrogels con-taining90%water were found to sustain compressive pres-sures as high as several MPa.Selected other hydrogel com-positions were able to withstand compressive pressures around15MPa.Since these polymers are FDA approved, they are often considered for biomaterials synthesis.The hydrogels presented in this specific study are being used for sustained release drug delivery applications[65].The authors show results from both tensile and compressive testing.When star shaped poly(ethylene oxide–propylene oxide) (sPEOPO)polymer networks are cross-linked with PAAm for the second network,the resulting hydrogels are transpar-ent,mechanically strong and partially self-healing[66]. Harrass et al.[66]reported compressive strengths of 5.6MPa(engineering definitions)for samples with high water content and full recovery in loading–unloading exper-iments.The mechanical properties of these double network hydrogels were attributed to interactions between the two polymer networks and to partial healing of the first sPEOPO network after deformation.This healing capability is thought to be related to the presence of reversible hydrophobic in-teractions and to morphological characteristics.The authors envision these materials to be useful for load bearing bio-medical applications such as cartilage repair.Recovery of these hydrogels allow repeated mechanical loading without a loss of mechanical strength[66].A recent paper by Rakovsky et al.evaluated the mechan-ical properties of a interpenetrating double hydrogel system made from PEG and poly(methyl methacrylate)(PMMA) [67].PEG,isophorone diisocyanate and glycerol were used for synthesizing the first network and methyl methacrylate, di(ethylene glycol)divinyl ether and dibenzoyl peroxide (initiator)provided the second network.A systematic study screened27resulting hydrogels of various compositions for the mechanical properties required in cartilage repair. Among these systems,several hydrogels were found to closely fit cartilage properties with regard to modulus,watercontent and fatigue durability(e.g.,700kPa cartilage is also found in human knee)[67].Double network and interpenetrating hydrogels containing natural polymersScientists and engineers have been considering natural poly-mers when designing hydrogels for biomedical needs (Fig.1).Besides cross-linking,the micro-and nano-structures of hydrogels,as well as the water content,often, but not always,correlate with mechanical properties.For example,photo-cross-linkable hyaluronic acid(HA)and semi-interpenetrating collagen have been used for generating tough hydrogels[68].Compressive moduli of800kPa could be reached while the hydrogels maintained the biological properties of collagen and HA.This work was done by Brigham et al.[68],who envisioned that these materials might be used for fabricating microstructures,microchannels for soft lithographic techniques,matrices for cell encapsula-tion or tissue engineering,in general.Other interpenetrating polymer hydrogels have been prepared from gelatin and dextran that was functionalized with methacrylate and alde-hyde[69].Liu and Chan-Park[69]report compressive mod-uli in the range of50kPa and storage moduli around10kPa. These degradable hydrogel materials are seen promising for cell encapsulation and vascular tissue engineering[69].In another study,DeKosky et al.[70]evaluated a tough and interpenetrating hydrogel made from agarose and PEG-DA to be used for cell encapsulation and cartilage tissue engineering.Briefly,agarose hydrogel samples prepared in phosphate-buffered solution(PBS)were soaked in PEG-DA monomer and then photo cross-linked.The resulting mate-rials exhibited shear moduli of40kPa and compressive failure strains around74%.The experimental design was chosen based upon relevance to the target application and less on evaluating hydrogel toughness.A neo-Hookean model for ideal elastomers was used to evaluate and deter-mine stress and strain values.For making a material that can potentially replace cartilage,compression-testing experi-ments are more relevant to materials characterization than, for example,tensile testing experiments[70].Robust and semi-interpenetrating hydrogels made from poly(ethylene glycol)(PEG)and collagen consist of a pri-mary covalently cross-linked PEG network with a secondary semi-interpenetrating and physically cross-linked collagen network[71].Careful synthesis and formulation was neces-sary so as to maintain the bioactive properties of collagen while avoiding denaturation into gelatin.Non-covalent in-teractions between the two networks are expected with me-chanical properties suggesting the presence of synergistic interactions between the two polymers.Collagen did not easily“dissolve”within the PEG network,but hydrogen bonding between the PEG and collagen may have led to improved miscibility,which in return made the hydrogels translucent.Fracture stresses of27–30kPa could be achieved and elongations of ca.300%recorded(engineering values were given).This robust and model hydrogel system was designed to be an injectable matrix for viscoelastic tissue engineering[71].Among the more creative approaches,Wang et al.[72] reported on an exotic version of a double network hydrogel. This group synthesized a tough material by combining fresh jellyfish gel and PAAm or polyacrylic acid.The synthesis was done by radiation-induced polymerization of a monomer-soaked jellyfish gel.Cross-linking took place without an additional cross-linking agent.Mechanical properties suggest that interactions between the two networks are present.Tensile testing showed that the materials reached elongations over 95%without breaking(using the definitions of engineering stress and strain).Tensile stresses around40MPa were pressive testing data were equally impressive. The aim of this study was to evaluate how the original and well developed microstructure of jellyfish gel,which is already tough on its own,can be used for hydrogel synthesis.This concept and the results might generate knowledge about the influence of microstructures on tough hydrogel design[72].Ionically cross-linked hydrogels made to be toughand elastomericTough,resilient and self-healing materials can be developed by introducing covalent cross-linking to one network through reversible physical cross-linking(i.e.,non-covalent) or by simply adding physical cross-linking.These bonds are complementary to covalent bonding within the polymer network.Examples include nanocomposite hydrogels, ionically cross-linked tough hydrogels and double cross-linked hydrogel versions(Fig.1e).These hydrogels were developed to be models for testing either a basic hypothesis or to provide a proof of concept for when a specific application is in mind.Tough,ionically cross-linked and self-assembled hydrogels can be made from cross-linking polyelectrolytes such as poly(methacrylate)and poly(methacrylic acid)triblock copol-ymers with divalent ions from Zn2+,Ca2+,Ni2+,Co2+and Cu2+acetate solutions[38].Mechanical properties of such hydrogels were found to depend strongly on the cation type and concentration.For example,cross-links between the poly-mer and Zn2+ions were stronger than bonds between the polymer and Ca2+ions.Overall,these hydrogel networks can mimic the structural characteristics and toughness of dou-ble network hydrogels although they do not have two inter-penetrating networks.Instead,only one single polymer net-work is cross-linked twice.The polyelectrolyte midblock is ionically associated with other polyelectrolyte midblocks.Thetriblock copolymer backbone is physically cross-linked through self-assembly,which is similar to the loosely cross-linked portion of a double network.The resulting materials can reach fracture stresses up to1MPa using engineering definitions[38].A similar principle can be used to generate tough hydrogels by combining a covalently cross-linked PAAm network with a reversibly cross-linked alginate-Ca2+net-work(Fig.1f)[73,74].Within this type of double network, the ionic alginate-Ca2+cross-links can be“unzipped”by deformation and then heal by“re-zipping”after deformation forces are removed.Thus the energy dissipated during ma-terial deformation is recoverable.Meanwhile the covalent bonding preserved the initial state of the network before and after stretching.Mechanical testing results showed that the gel could be stretched to>20times its original length and retain high fracture energy.At rupture,the stress was 156kPa and the final stretch length was23times the original lengths[74].The concept of synthesizing nanocomposite hydrogels from polymers and charged nanoparticles pro-vides another method of producing ionically cross-linked and high strength gels[39,40,73,74].Self-healing and tough hydrogels can be synthesized by copolymerizing stearyl methacrylate(C18)or dococyl acry-late(C22)with acrylamide in a micellar solution of sodium dodecyl sulfate(SDS)[75].The monomers C18and C22are hydrophobic and the acrylamide is hydrophilic.Addition of salt(NaCl)allows for solubolization of the hydrophobic monomers within the SDS micelles,which is critical in producing tough hydrogels.The resulting materials can be dissolved in SDS solutions.The physical cross-linking ap-pears to be responsible for this toughness.Fractured mate-rials were repaired by simply bringing together the separated segments or cut joints to self-heal.After pressing the joints together,the samples could be extended to ca.3,600%, although the original length is not recoverable.With this system,Tuncaboylu et al.[75]have discovered a new hy-drogel system with unusual and intriguing properties.Elastomeric and salt-containing hydrogels can also be developed for sensor materials used in detecting large strains [76].Here,large strain sensing refers to strains up to25%. Manandhar et al.[76]reported on such a hydrogel sensor that was made from a formulation containing polyetheramine mixed with PEG-diglycidyl ether in NaCl solution.The resulting hydrogel did not show hysteresis behavior as would be expected for other soft piezoresitors that are commonly used for large strain sensing.The sensing behavior of the hydrogel was found to depend on the deformation.The Young’s modulus of the hydrogel elastomer was ca.1kPa, which is sufficient and desired for sensing applications.The hydrogels investigated by Manandhar et al.[76]can be used for making strain sensing textiles needed for rehabilitation, sports training and also for synthesizing hydrogel matrices that allow studying how stem cells respond to strains.The specific hydrogel system investigated in this paper is evalu-ated for elastic strain sensing textiles as well as for monitor-ing the joint motions of robotic arms[76].Self-healing hydrogels that are held together by only supramolecular forces,can be made mechanically strong. Wang et al.[77]reported on a supramolecular hydrogel system with elastic moduli around0.5MPa.This mouldable and thixotropic(i.e.,shear thinning)hydrogel was prepared by simply mixing charged clay nanoparticles(Laponite)with PEG-based dendrimers used for molecular binders(Fig.1-g,h).Such systems are physically cross-linked,self-healing and resist dissolution in water or other solvents.These ma-terials can immobilize enzymes to preserve biological activ-ity including that of myoglobin,thereby opening new bio-technology applications[77].A combination of an ionically cross-linked,interpen-etrating network and a nanocomposite hydrogel was reported by Lin et al.[78].This tough material was made of PAA, Ca2+alginate and silica nanoparticles which were added for reinforcement.The silica increased compressive strength of the hydrogel significantly and values of9.7MPa(engineer-ing values)could be reached for a hydrogel containing3% PAA,3%alginate and24%silica.The compressive strength was calculated by force over initial area.This hydrogel system can provide a matrix for soft tissue engineering[78].Another method for synthesizing tough polymer hydrogels is introducing charged nanoparticles to be multi-functional cross-linkers.For example,Laponite(LRD),is a synthetic silicate(Na+0.7[(Mg5.5Li0.3)Si8O20(OH)4]−0.7) shaped into nanoplatelets of~25nm diameter and~1nm thickness[79–81].This material is also referred to as“syn-thetic clay”due to the similarity to natural clay.The polymer within such a hydrogel network affords both covalent cross-linking and physical cross-linking via interactions such as hydrogen bonding and ionic bonding.Cross-linking of the polymer to the nanoparticles can be covalent,non-covalent or both.The resulting materials are usually called “nanocomposite hydrogels.”These systems are most proba-bly cross-linked by additional ionic interactions,thus they also qualify as ionically cross-linked hydrogels.Several good reviews have been published recently on this topic[2, 40,82].We will elaborate on the most common approaches below.Tough nanocomposite(NC)polymer hydrogelsTough NC polymer hydrogels(so-called“NC”gels)are made by radical polymerization of monomer solutions that contain exfoliated silicate nanoplatelets(clay).The initiator is adsorbed onto the nanoplatelet and polymerization then starts from these surfaces(Fig.1g).After polymerization the polymer ends appear grafted onto the nanoplatelets and this。
Elsevier Science收录期刊一览表化学与化工计算机、电工与电子技术物理学和力学数学工程、能源、食品与建筑科学材料科学环境科学与技术地球科学、天文学、航空和航天经济、管理、文化、教育及社会科学总论化学与化工(114种)Additives for Polymers 聚合物添加剂(英)Advanced Cement Based Materials 已并入:水泥与混凝土研究(荷)Advances in Colloid and Interface Science 胶体与界面科学进展(荷)AICHE Journal 美国化学工程师会志(美)Analytica Chimica Acta 分析化学学报(荷)Annales de Chimie Science des Matériaux 化学纪事;材料科学(法)Applied Catalysis A: General 应用催化作用A:总论(荷)Applied Catlysis B: Environmental 应用催化作用B:环境(荷)Applied Clay Science 应用粘土科学(荷)Biochemical Engineering Journal生物化学工程杂志(瑞士)Bioelectrochemistry and Bioenergetics生物电化学与生物能学(瑞士)Calphad相图计算(英)Carbohydrate Polymers碳水化合物聚合物(英)Carbohydrate Research碳水化合物研究(英)Carbon碳(英)Catalysis Today今日催化(荷)Cement and Concrete Composites水泥与混凝土复合材料(英)Cement and Concrete Research水泥与混凝土研究(英)Ceramics International工业陶瓷(英)Chemical Engineering and Processing化学工程进展(美)Chemical Engineering Journal化学工程杂志(瑞士)The Chemical Engineering Journal and the Biochemical Engineering Journa l化学工程杂志与生物化学工程杂志(瑞士)Chemical Engineering Science化学工程科学(英)Chemical Health and Safety 化学卫生与安全(美)Chemical Physics化学物理学(荷)Chemical Physics Letters化学物理快报(荷)Chemico-Biological Interactions化学与生物的相互作用(爱尔兰)Chemistry & Biology化学与生物学(英)Chemistry and Physics of Lipids类脂化学与物理学(爱尔兰)Chemometrics and Intelligent Laboratory Systems化学计量学与智能实验系统(荷)Comptes Rendus de I'Académie des Sciences-Series ⅡC-Chemistry法国科学院报告ⅡC 化学(法)Computational and Theoretical Polymer Science计算与理论聚合物科学(美)Coordination Chemistry Reviews配位化学评论(瑞士)Critical Reviews in Analytical Chemistry化学橡胶公司分析化学评论(美)Critical Reviews in Environmental Science and Technology分析化学评论(美)Desalination脱盐(荷)Diamond and Related Materials金刚石与相关材料(瑞士)Dyes and Pigments染料与颜料(英)Electrochemistry Communications电化学通讯(瑞士)Electrochimica Acat电化学学报(英)European Polymer Journal欧洲聚合物杂志(英)Filtration & Separation过滤与分离(英)Filtration Industry Analyst过滤工业分析Fluid Phase Equilibria流相平衡(荷)Food Chemistry食品化学(英)Fuel and Energy Abstracts燃料与能源文摘(英)Fuel Processing Technology燃料加工技术(荷)Gas Separation & Purification煤气的分离与净化(英)Inorganic Chemistry Communications无机化学通讯(瑞士)Inorganica Chimica Acta无机化学学报(瑞士)International Journal of Adhesion and Adhesives国际粘附与胶粘剂杂志(英)International Journal of Biological Macromolecules国际生物大分子杂志(英)International Journal of Mass Spectrometry and Ion Processes国际质谱测定法与离子过程杂志(荷)Journal of Aerosol Science气熔胶科学杂志(英)Journal of Analytical and Applied Pyrolysis分析与应用高温分解杂志(英)Journal of Chromatography A色层学杂志A(荷)Journal of Chromatography B: Biomedical Sciences and Applications色层学杂志B:生物医学应用(荷)Journal of Crystal Growth晶体生长杂志(荷)Journal of Electroanalytical Chemistry电分析化学杂志(瑞士)Journal of Fluorine Chemistry氟化学杂志(瑞士)Journal of Membrane Science膜科学杂志(荷)Journal of Molecular Catalysis A: Chemical分子催化杂志A:(荷)Journal of Molecular Catalysis B: Enzymatic分子催化杂志B:(荷)Journal of Molecular Structure分子结构杂志(荷)Journal of Molecular Structure: THEOCHEM分子结构杂志:理论化学(荷)Journal of Non-Crystalline Solids非晶体固体杂志(荷)Journal of Organometallic Chemistry有机金属化学杂志(瑞士)Journal of Photochemistry and Photobiology A: Chemistry光化学与光生物学杂志A:化学(瑞士)Journal of Photochemistry and Photobiology B: Biology光化学与光生物学杂志B:生物学(瑞士)The Journal of Supercritical Fluids超临界流体杂志(美)Journal of American Society for Mass Spectrometry美国质谱学会志(美)Laboratory Automation & Information Management实验室自动化和信息管理(荷)Membrane Technology膜技术(英)Microchemical Journal微量化学杂志(美)Microlorous and Mesolorous Materials微孔与间孔材料(美)Plastics Additives and Compounding塑料、添加剂与化合物Polyhedron多面体(英)Polymer聚合物(英)Polymer Contents聚合物出版物近期目次(英)Polymer Degradation and Stability聚合物降解与稳定性(英)Polymer Testing聚合物检测(英)Powder Technology粉末工艺学(瑞士)Process Biochemistry生化工艺(荷)Progress in Crystal Growth and Characterization of Materials晶体生长与材料性进展(英)Progress in Lipid Research脂类研究进展(英)Progress in Organic Coating有机涂料进展(瑞士)Progress in Polymer Science聚合物科学进展(英)Progress in Solid State Chemistry固体化学进展(英)Progress in surface Science表面科学进展(英)Radiation Physics and Chemistry辐射物理学与化学(英)Reactive and Functional Polymers活性和功能聚合物(荷)Reinforced Plastics增强塑料(英)Separation and Purification Technology分离与净化技术(荷)Separations Technology分离技术(美)Sealing Technology密封技术(荷)Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy光谱化学学报A:分子与生物分子光谱学(荷)Spectrochomoca Acta Part A: Molecular Spectroscopy光谱化学学报A:分子光谱学(荷)Spectrochimica Acta Part B: Atomoc Spectroscopy光谱化学学报B:原子光谱学(荷)Steroids类固醇(美)Supramolecular Science超分子科学(英)Talanta 塔兰塔(分析化学)(英)Tetrahedron四面体(英)Tetrahedron Letters四面体通讯(英)Tetrahedron: Asymmetry四面体:不对称(英)Thermochimica Acta热化学学报(荷)TrAC Trends in Analytical Chemistry分析化学趋势(荷)Vibrational Spectroscopy振动光谱学(荷)Biochemical Education生物化学教育(英)Biochimie生物化学(法)Advances in Enzyme Regulation 酶调节进展(英)European Journal of Solid State and Inorganic Chemistry欧洲固体化学与无机化学杂志(法)Plasmas & Ions等离子与离子Fuel Cells bulletin燃料单元通报、计算机、电工与电子技术(96种)Advances in Engineering Software 工程软件进展(荷)Annual review in Automatic Programming 自动程序设计年评(英)Applied Ergonomics 应用人机学(英)Applied Superconductivity应用超导性Artificial Intelligence人工智能(荷)Artificial Intelligence in Engineering工程中的人工智能(英)Automatica自动学(英)Biosensors and Bioelectronics生物传感器与生物电子学(英)Computational Statistics & Data Analysis计算统计学与数据分析(荷)Computer-Aided Design计算机辅助设计(荷)Computer Aided Geometric Design计算机辅助几何设计(荷)Computer Audit Update计算机检查快报(英)Computer Communications计算机通讯(荷)Computer Fraud & Security计算机犯罪与安全(荷)Computer Integrated Manufacturing Systems机器人学与计算机集成制造(荷)Computer Languages计算机语言(英)Computer Law & Security Report计算机法律与安全报告Computer Networks计算机网络(荷)Computer Networks and ISDN Systems计算机网络与综合服务数据网络系统(荷)Computer Physics Communications计算机物理通讯(荷)Computer Standards & Interfaces计算机标准与接口(荷)Computers & Chemical Engineering计算机与化工Computers & Chemistry计算机与化学(荷)Computers and Composition计算机与写作(美)Computers & Education计算机与教育(英)Computers & Electrical Engineering计算机与电工(英)Computers & Fluids 计算机与流体(英)Computers & Geosciences计算机与地球科学(英)Computers & Graphics计算机与图示(英)Computers & Industrial Engineering计算机与工业工程(英)Computers & Mathematics With Applications计算机与数学及其应用(英)Computers & Operations Research计算机与运筹学(英)Computers & Security计算机与安全(英)Computers & Structures计算机与结构(英)Computers, Environment and Urban Systems计算机、环境与城市系统(英)Computers in Human Behavior计算机在人类行为研究中的应用(英)Computers in Industry工业用计算机(荷)Control Engineering Practice控制工程实践(英)Data & Knowledge Engineering数据与知识工程(荷)Decision Support Systems决策支持系统(荷)Displays显示(荷)Electric Power Systems Research电力系统研究(瑞士)The Electricity Journal电杂志(美)Engineering Applications of Artificial Intelligence人工智能的工程应用(英)Environmental Software环境软件(英)Expert Systems With Applications专家系统及其应用(英)Ⅲ-Ⅴs ReviewⅢ-V族材料评论(英)Future Generation Computer Systems下代计算机系统(荷)Image and Vision Computing图像与视觉计算(英)Information & Management信息与管理(荷)Information and Software Technology信息与软件技术(英)Information Processing Letters信息处理快报(荷)Information Sciences信息科学(美)Information Security Technical Report信息安全技术报告(荷)Information Systems信息系统(英)Integration, the VLSI Journal集成;超大规模集成电路杂志(荷)Interacting With Computers与计算机相互作用(英)International Journal of Industrial Ergonomics国际工业人机工程学杂志(荷)Journal of Electronic Materials电子材料杂志(美)Journal of Process Control工艺过程控制杂志(英)The Journal of Strategic Information Systems战略信息系统杂志(荷)Journal of Systems and Software系统和软件杂志(美)Mechatronics机械电子学(英)Microelectronic Engineering微电子学工程(荷)Microelectronics Journal微电子学杂志(英)Microelectronics Reliability微电子学与可靠性(英)Microlrocessors and Microsystems微处理机与微型系统(荷)Network Security网络安全(荷)Neural Networks神经网络(荷)Neurocomputing神经计算(荷)Patallel Computing并行计算(荷)Pattern Recognition Letters模式识别快报(荷)Performance Evaluation性能评价(荷)Philips Journal of Research "菲力蒲"研究杂志(英)Progress in Quantum Electronics量子电子学进展(英)Remote Sensing of Environment环境遥感(美)Robotics and Autonomous Systems机器人学与自控系统(荷)Robotics and Computer-Integrated Manufacturing机器人学和计算机集成系统(英)Science of Computer Programming计算机程序设计科学(英)Sensors and Actuators A: Physical传感器与执行机构A:物理传感器(瑞士)Sensors and Actuators B: Chemical传感器与执行机构B:化学传感器(瑞士)Signal Processing信号处理(荷)Signal Processing Image Communication信号处理:图像通讯(荷)Simulation Practice and Theory仿真实践与理论(荷)Solid State Communications固体通讯(英)Solid-State Electronics固体电子学(荷)Systems & Control Letters系统与控制快报(荷)Telecommunications Policy电信政策(英)Telematics and Informatics远距通信与信息学(英)Theoretical Computer Science理论计算机科学(荷)Annual Reviews in Control控制年评Autonomic Neuroscience自动神经系统科学Intelligent Data Analysis智能数据分析Clinical Positron Imaging临床正电子成像物理学和力学(62种)Cold Regions Science and Technology寒冷地区科学与技术(荷)Colloids and Surfaces A: Physicochemical and Engineering Aspects胶体与表面A:物理化学问题与工程问题(荷)Applied Acoustics 应用声学(英)Applied Radiation and Isotopes 应用辐射与同位素(荷)Applied Surface Science应用表面科学(荷)Colloids and Surfaces B: Biointerfaces胶体与表面B:生物界面(荷)Comptes Rendus de I'Académie des Sciences-Series ⅡB-Mechanics-Physics-Astronomy法国科学院报告ⅡB 力学、物理学、天文学(法)Comptes Rendus ds I'Académie des Sciences-Series ⅡB-Mechanics-Physics-Chemistry-Astronomy 法国科学院报告ⅡB力学、物理学、化学天文学(法)Comptes Rendus de I'Académie des Sciences-Series ⅠV-Physics-Astrophysics法国科学院报告Ⅱ物理学、天文物理学(法)Cryogenics低温学(英)Crystal Engineering低温工程European Journal of Mechanics-A/Solids欧洲力学杂志A:固体力学(法)European Journal of Mechanics- B/Fluids欧洲力学杂志B:流体力学(法)Probabilistic Engineering Mechanics概率工程力学(英)Computer Methods in Applied Mechanics and Engineering应用力学与工程中的计算机方法(瑞士)Experimental Thermal and Fluid Science实验力学和流体科学(美)。