模糊层次分析法案例
- 格式:pptx
- 大小:13.79 MB
- 文档页数:50
基于层次分析法的模糊综合评价研究和应用共3篇基于层次分析法的模糊综合评价研究和应用1基于层次分析法的模糊综合评价研究和应用层次分析法(Analytic Hierarchy Process,简称AHP)是一种重要的多指标决策方法,其独特的定量分析模式使其被广泛应用于各种决策场景中。
然而,在实际应用过程中,AHP所依赖的判断矩阵等参数很难满足严格的一致性要求,这就使得AHP方法的有效性存在一定的争议。
针对这一问题,模糊综合评价方法应运而生,它将AHP和模糊理论相结合,充分考虑了决策者的不确定性和模糊性,从而提高了决策效果。
本文将通过研究和应用实例,探究基于层次分析法的模糊综合评价方法的优点和不足,以及如何选取决策指标和构建评价体系。
1. 模糊综合评价方法概述模糊综合评价方法是一种基于模糊数学的决策方法,可以较好地处理决策过程中存在的不确定性和模糊性。
它的基本思想是,将决策问题转化为一个多层次、多指标的评价体系,在每个层次上进行相对重要性的判断和权重赋值,最终得出总体评价结果。
模糊综合评价方法中的模糊数常常用梯形和三角形模糊数表示,如图1所示。
图1 模糊数表示法其中,如(a)所示的梯形模糊数由四个参数a、b、c、d唯一确定,表示变量值在[a,b]和[c,d]之间的可能性;如(b)所示的三角形模糊数由三个参数a、b、c唯一确定,表示变量值在[a,c]之间的可能性。
2. 决策指标的选取和构建评价体系在使用模糊综合评价方法进行决策时,决策指标的选取和评价体系的构建是很关键的。
具体来说,决策指标应具备以下特点:(1) 目标明确:决策指标应当明确对应的决策目标,且目标应该是具有明确定义的。
(2) 可度量性强:决策指标应当具有可度量性和数量化的特点,以便进行量化分析。
(3) 影响因素少:决策指标应当尽量减少具有交叉影响的因素,以避免多重计数和重复计算。
(4) 数据可获取性高:决策指标的数据应当便于获取,能够反映决策现实,以便进行实际应用。
承诺书我们仔细阅读了中国大学生数学建模竞赛的竞赛规则.我们完全明白,在竞赛开始后参赛队员不能以任何方式(包括电话、电子邮件、网上咨询等)与队外的任何人(包括指导教师)研究、讨论与赛题有关的问题。
我们知道,抄袭别人的成果是违反竞赛规则的, 如果引用别人的成果或其他公开的资料(包括网上查到的资料),必须按照规定的参考文献的表述方式在正文引用处和参考文献中明确列出。
我们郑重承诺,严格遵守竞赛规则,以保证竞赛的公正、公平性。
如有违反竞赛规则的行为,我们将受到严肃处理。
我们参赛选择的题号是(从A/B/C/D中选择一项填写):我们的参赛报名号为(如果赛区设置报名号的话):所属学校(请填写完整的全名):广东金融学院参赛队员(打印并签名) :1. 曾彬2. 曾庆达3. 陈佳玲指导教师或指导教师组负责人(打印并签名):日期: 2013 年8 月 22日赛区评阅编号(由赛区组委会评阅前进行编号):编号专用页赛区评阅编号(由赛区组委会评阅前进行编号):全国评阅编号(由全国组委会评阅前进行编号):高校学生评教系统改进的研究摘要本文是研究关于高等学校学生评价教师的评价系统问题,用层次分析法确定了十项指标的权值,并给出了一个新的评教分数的计分模型-模糊综合评价模型。
本文亮点在于采用基于层次分析法的模糊数学模型。
首先,建立层次分析模型,充分考虑每个指标对综合评价的贡献,并把贡献按权值进行分配;通过层次分析法中的归一化处理,得到两两指标间的相对重要性的定量描述,从而解决不同指标间的差异。
其次建立模糊综合评教模型,输入一组专家(同学)的模糊评价,通过最大隶属度原则把模糊评价输出为综合评价。
最后本文在难易程度不同的课程下(在专业必修课,专业选修课,公共选修课下进行评价),得出同一教师的综合评价,发现其在不同课程下的综合评价均相同。
于是得出结论,该模型的确能解决不同课程难易程度带来的对总体评教的影响。
因为一个教师的综合教学质量并不应该在不同的课程下得到变化较大的评教。
模糊综合评价法要建立一个备择集,是专家利用自己的经验和知识对项目因素对象可能做出的各种总的评判结果所组成的集合,即{}m V V V V ,,,21 =,其中),,2,1(m i V i =为各种可能的总评价结果。
选定项目风险的评价因素,将因素集{}n k U U U U U ,,,,,21 =按其属性分成n 个子集,n 表示U 中所包含的一级指标数目。
每个k U 由若干个二级指标集组成,即{}k kn k k k u u u U ,,,21 =,k n 表示k U 所包含的二级指标的数目。
建立U 到V 的模糊关系R ,采取专家评审打分的方法建立模糊关系矩阵)(ij r R 。
对各因素ij r 进行评价可通过Delphi 法或随机调查方式来获取隶属于第i (i=1,2,…,n )个评语i V 的程度ij r ,则可得到模糊评估矩阵:()ij R r m n F U V ⎡⎤=⨯∈⨯⎣⎦。
通过对各个因素),,2,1(m i u i =赋予一定相应的权数),,2,1(m i a i =,权重集即{}m a a a A ,,,21 =。
采用),(⊗∙M 算子确定评估项目风险的向量元素集:{}R K b b b B m ∙==,,,21 ,其中{}n K K K K ,,,21 =为对应每个k U 的权重向量。
模糊层次分析模型模型原理:模糊层次分析法采用0.1~0.9标度法(见附录1), 能够准确地描述任意两个因素之间关于某准则的相对重要程度。
且由优先判断矩阵改造成的模糊一致矩阵满足加性一致性条件即21+-=jk ik ij r r r ,就是R 的任意两行的对应元素之差为常数。
无须再做一致性检验,另外模糊层次分析法还解决了解的收敛速度及精度问题,具体步骤如下: (1).建立优先关系矩阵。
优先关系矩阵是每一层次中的因素针对于上层因素的相对重要性两两比较建立的矩阵,也称为模糊互补矩阵,即:1111R ()n ij n nn nn r r r r r ⨯⎛⎫ ⎪== ⎪ ⎪⎝⎭ 其中ij r 表示下层第i 个元素相对于第j 个元素的模糊关系。