模糊层次分析法_讲得很好
- 格式:ppt
- 大小:2.58 MB
- 文档页数:37
模糊层次分析法理论基础FAHP及计算过程层次分析法(AHP)是20世纪70年代美国运筹学家T.L. Saaty教授提出的一种定性与定量相结合的系统分析方法,该方法对于量化评价指标,选择最优方案提供了依据,并得到了广泛的应用。
然而, AHP存在如下方面的缺陷:检验判断矩阵是否一致非常困难,且检验判断矩阵是否具有一致性的标准CR < 0. 1缺乏科学依据;判断矩阵的一致性与人类思维的一致性有显著差异。
为此,本文结合模糊数学理论,首先介绍了模糊层次分析法(Fuzzy - AHP) FAHP ,然后用FAHP对公共场所安全性指标权重进行了处理。
1. 1 模糊一致矩阵及有关概念[4 ,5 ]1. 1. 1 定义1. 1设矩阵R = ( rij) n×n ,若满足: 0 ≤( rij) ≤ 1 , ( i = 1 ,2 , ……n , j = 1 ,2 , ……n),则称R 为模糊矩阵1. 1. 2 定义1. 2若模糊矩阵R = ( rij) n×n ,若满足: Πi , j , k 有rij= rik - rij + 0. 5 ,则称模糊矩阵R 为模糊一致矩阵。
1. 1. 3 定理1. 1设模糊矩阵R = ( rij) n×n是模糊一致矩阵,则有(1) Πi ( i = 1 ,2 , …n) ,则rij = 0. 5 ;(2) Πi , j ( i = 1 ,2 , …n , j = 1 ,2 , …n) ,有rij + rji= 1 ;(3) R 的第i 行和第i 列元素之和为n ;(4)从R 中划掉任一行及其对应列所得的矩阵仍然是模糊一致矩阵;(5) R 满足中分传递性,即当λ≥0. 5 时,若rij≥λ, rjk ≥λ,则rij ≥λ;当λ≤0. 5 时,若rij ≤λ, rjk ≤λ,则rij ≤λ。
(证明见文献1) 。
1. 1. 4 定理1. 2模糊矩阵R = ( rij) n×n是模糊一致矩阵的充要条件是任意指定行和其余各行对应元素之差是一个常数。
模糊综合评价法要建立一个备择集,是专家利用自己的经验和知识对项目因素对象可能做出的各种总的评判结果所组成的集合,即{}m V V V V ,,,21 =,其中),,2,1(m i V i =为各种可能的总评价结果。
选定项目风险的评价因素,将因素集{}n k U U U U U ,,,,,21 =按其属性分成n 个子集,n 表示U 中所包含的一级指标数目。
每个k U 由若干个二级指标集组成,即{}k kn k k k u u u U ,,,21 =,k n 表示k U 所包含的二级指标的数目。
建立U 到V 的模糊关系R ,采取专家评审打分的方法建立模糊关系矩阵)(ij r R 。
对各因素ij r 进行评价可通过Delphi 法或随机调查方式来获取隶属于第i (i=1,2,…,n )个评语i V 的程度ij r ,则可得到模糊评估矩阵:()ij R r m n F U V ⎡⎤=⨯∈⨯⎣⎦。
通过对各个因素),,2,1(m i u i =赋予一定相应的权数),,2,1(m i a i =,权重集即{}m a a a A ,,,21 =。
采用),(⊗∙M 算子确定评估项目风险的向量元素集:{}R K b b b B m ∙==,,,21 ,其中{}n K K K K ,,,21 =为对应每个k U 的权重向量。
模糊层次分析模型模型原理:模糊层次分析法采用0.1~0.9标度法(见附录1), 能够准确地描述任意两个因素之间关于某准则的相对重要程度。
且由优先判断矩阵改造成的模糊一致矩阵满足加性一致性条件即21+-=jk ik ij r r r ,就是R 的任意两行的对应元素之差为常数。
无须再做一致性检验,另外模糊层次分析法还解决了解的收敛速度及精度问题,具体步骤如下: (1).建立优先关系矩阵。
优先关系矩阵是每一层次中的因素针对于上层因素的相对重要性两两比较建立的矩阵,也称为模糊互补矩阵,即:1111R ()n ij n nn nn r r r r r ⨯⎛⎫ ⎪== ⎪ ⎪⎝⎭ 其中ij r 表示下层第i 个元素相对于第j 个元素的模糊关系。
模糊层次法模糊层次法是一种常用的组织和分析决策问题的方法。
它是一种定量分析技术,可以帮助决策者在不完整和含糊的情况下进行决策。
这种方法能够将复杂的多层决策问题分解成易于处理的子问题,然后通过逐层比较,确定各层因素有权重和优先级次序,最终得到决策方案。
本文将对模糊层次法的定义、应用、流程、优缺点和开发前景进行阐述。
一、定义模糊层次法是一种多轮逐步分析的决策方法,它可以解决由于客观条件的不确定性、主客观因素的互动和数据缺失等因素导致的决策问题。
该方法将一个大的主题分解成若干个层次,每个层次包含若干个指标,这些指标之间存在一定的关系。
通过定量化的描述和模糊量化的处理,最终得到决策结果。
二、应用模糊层次法在实际运用中有着广泛的应用,例如市场调查、战略规划、工程项目管理、投资分析和环境评估等领域。
这种方法可以帮助决策者做出科学、综合和客观的决策,提高组织和个人的竞争力。
三、流程模糊层次法的流程主要包括确定目标、构建层次结构、两两比较、计算权重和确认排序等步骤。
具体流程如下:1. 确定目标决策者首先需要明确整个决策的目标,以及与之相关的指标和因素。
在确定目标时,应充分考虑决策的适用性、实施性和可行性。
2. 构建层次结构将目标转化成各个层次子目标,构建出具有层次结构的模型,包括目标层、准则层、子准则层和方案层等。
3. 两两比较通过两两比较法,对各层次指标进行比较和排序,得到各层次指标的权重。
4. 计算权重通过模糊定量化法,将两两比较所得到的相对权重转化为数值权重,然后计算出各层次因素的综合权重,形成层次结构模型的权重向量。
5. 确认排序将各层次因素的综合权重进行排序,得到最终的决策结果。
在实现时,可以根据需要选择不同的排序方法,例如加权平均法、熵值法和TOPSIS法。
四、优缺点模糊层次法具有如下优点:1. 能够有效地处理决策问题的不确定性和对立性。
2. 可以通过分解和分析,将大的决策问题转化为易于处理的子问题。
5.结论由以上计算过程可以看出,模糊层次分析法同普通层次分析法相比具有以下优点:(1)检验一次性更方便。
根据定理2.1或定理2.2可直接检验模糊矩阵是否具有一致性。
(2)调整过程更简洁。
通过调整模糊矩阵的元素可很快使模糊矩阵具有模糊一致性。
(3)判断依据更合理。
根据定理2.1或定理2.2作为检验一致性的标准更科学简便。
参考文献[1]张吉军.模糊层次分析法.模糊系统与数学,2000,14(2):80-88[2]吕跃进.基于模糊一致矩阵的模糊层次分析法的排序.模糊系统与数学,2002,16(2):79-85[3]JohnMGleason.Fuzzysetcomputationalprocessesinriskanalysis.IEEETransactionsonEngineeringManagement,1991,38(2):177-1784.3.2层次总排序同理,可求得其他矩阵对应元素的权重,并得到C层次总排序如下:4.3.5结论球面网壳动力稳定临界力简化计算王节1黄显民2(1.黑龙江省林业设计研究院2.哈尔滨工业大学建筑设计研究院150008)摘要:球面网壳动力稳定临界力简化估算公式是针对跨度30m ̄60m,矢跨比1/10 ̄1/6的单层球面网壳,对于其它类型的网壳结构要具体分析。
关键词:单层球面网壳动力稳定动力稳定临界力中图分类号:TB122文献标识码:A网壳结构是杆件沿曲面有规律布置而组成的空间杆系结构。
具有刚度大、自重轻、受力均匀、在水平、竖向及多维地震作用下的动内力分布均匀且较小,结构抗震性能良好。
结构在罕遇地震作用下的动力失稳临界峰值较高,随着矢跨比增加,结构刚度增大,地震作用稳定性提高。
而且造型丰富美观、综合技术指标好等特点,是大跨度、大空间结构的主要结构形式之一。
目前世界上跨度最大的网壳结构是美国新奥尔良体育馆的超级穹顶,跨度213米。
近年来,网壳结构在我国获得了迅速的发展,哈尔滨速滑馆,由筒壳及两个半球壳组成的组合网壳,网壳平面投影86.2m×191.2m,是已建成最大的网壳结构。
模糊层次分析法2篇第一篇:模糊层次分析法一、引言模糊层次分析法,简称FAHP,是层次分析法在模糊环境下的扩充和发展。
模糊理论很好地解决了现实生活中存在的不确定、模糊、复杂等问题,并且得到了广泛应用。
FAHP是以模糊理论为基础,在层次分析法基础上综合利用模糊数学、线性规划、模糊决策等方法,用来处理多指标决策问题。
二、基本思想FAHP主要目标是解决评价问题的模糊度、不确定性和复杂性。
FAHP使用模糊数学中的模糊语言来描述问题,并将决策变成了一个模糊多指标决策问题,以此来解决问题的不确定性和复杂性。
FAHP包含四个基本步骤:构造判断矩阵、计算权重向量、计算最终权重向量以及评价。
三、具体操作步骤1. 构造判断矩阵构造判断矩阵是FAHP的第一步,也是最基础的一步。
判断矩阵的元素是模糊数,反映了专家对各个因素之间的模糊关系。
专家可以根据自己的经验和知识,对问题相关因素之间的模糊关系进行描述。
判断矩阵中的每一个元素都是一个形如(a, b, c, d)的模糊数,其中a、b、c、d分别表示模糊数的四个参数,分别代表“相对绝对不比”的程度、“相对不比”程度、“相对比较”程度和“相对绝对比”程度。
2. 计算权重向量在FAHP中,权重向量是指评价因素对最终权重的贡献程度,也是评价因素重要性的量化指标。
计算权重向量的方法主要有双曲线法、中心平均法、最小方差法等。
在具体运用中,可以根据问题的实际情况选择相应的计算方法。
3. 计算最终权重向量FAHP的核心就是通过计算最终权重向量,来确定各因素在决策中的重要性和优先级。
计算最终权重向量的方法主要有直接转换法和线性规划法。
这两种方法都需要转化成标准正态分布,然后通过一系列计算步骤得到最终权重向量。
最终权重向量表示各因素在决策中所占的权重,权重越大表示该因素对决策的贡献越大。
4. 评价评价是FAHP的最后一步,通过计算所得到的最终权重向量,可以得出结论,并对结论进行评价。
当权重越大的因素被采用时,决策的效果会更好。
模糊dematel方法近年来,随着信息技术的不断发展和应用,人们可以通过互联网海量的数据和信息,快速地获取和传递信息,但是面对着海量的信息和数据,如何挖掘有效和可信的信息,成为了人们关注的重要问题。
因此,信息处理的质量和效率成为了当前社会发展的关键因素。
信息不仅仅是在我们日常生活中所需要的,同时也是企业决策,政府决策的重要依据。
而Dematel方法就是在这个背景下产生并发展的。
Dematel方法是一种新型的决策支持技术,通过分析和解决复杂问题,对问题的因果关系进行分析和评价,为决策者提供决策支持和建议。
Dematel方法有许多的优点,可以帮助人们更容易、更快速取得有效的决策,成为一个很好的决策支持技术。
本文将详细介绍模糊Dematel方法。
一、Dematel方法的基本原理Dematel方法的全称是决策实验室模糊层次分析法,它是一种以模糊层次分析法为基础,结合专家判断的因素,来分析判断问题的权重、影响力、关联性等事项的决策支持方法。
该方法的基本原理是将所有事项按照一定的标准划分成不同因素,并通过对因素进行量化、评价、汇总等处理,得到事项的权重和关联关系,从而为决策者提供备选方案、评价标准、评判依据等决策支持信息。
模糊Dematel方法是Dematel方法的一种改进模型,即考虑到一些决策因素或对象可能存在模糊的表达和不确定性,因此,模糊Dematel方法就是将模糊理论和Dematel方法结合起来,以解决决策中的不确定性问题。
该方法主要应用于以下领域:(一)环保领域在环保领域中,模糊Dematel方法可以用于环保技术评估、污染绩效评估以及环境合规性评价等。
通过对环保问题进行因果关系分析,分析各因素之间的关联,得到最终决策。
(二)金融领域在金融领域中,模糊Dematel方法可以用于复杂金融问题的分析和决策。
该方法可以将金融风险因素进行量化和归纳,根据因素之间的关联性进行评价和排序,最终得到正确的决策方案。
模糊层次分析法唐有文(青海大学基础部,青海西宁 810016)摘 要:本文用模糊集对层次分析法进行了改进,从而使这种很有用的方法变得简单易学,便于应用。
关键词:模糊集;层次分析法;向量;矩阵中图分类号:C 934 文献标识码:A 文章编号:1001-7542(2002)03-0019-051 引 言层次分析法在上世纪70年代首创于美国,这是一种定性和定量相结合的、系统化、层次化的分析方法。
由于它在处理复杂的决策问题上的实用性和有效性,很快就在世界范围内得到普遍的重视和广泛的应用。
它的应用遍及经济计划和管理、能源政策和分配、行为科学、军事指挥、运输、农业、教育、人才、医疗、环境等等领域。
这个方法在80年代引入我国,也很快为广大的应用数学工作者和有关领域的技术人员所接受,得到了成功的应用。
但它的较为高深的数学理论和较为繁复的数字计算,阻碍了更多的管理者和决策者对此方法的掌握和使用。
笔者用模糊数学的方法对层次分析法的计算部分进行了改造,使改造后的模糊层次分析法十分简单、也更准确,可使更多的非数学工作者,特别是行政工作者易于掌握、便于应用(手头有一枚计算器即可)。
为了决策者直接参考套用此方法,本文尽量避免抽象的数学形式和较深的数学理论。
而在具体算法上做了较详尽的阐述。
笔者把此文写成科普形式,是期望它直接产生一些社会效益。
2 基本方法先通过一个简单例子,来介绍模糊层次分析法的基本方法。
例 某大学毕业生面临择业,现有M 1、M 2、M 3三个工作单位可供选择。
这三个单位在各方面的条件,其优劣程度不尽一致,现考虑最主要的四种因素:¹发展前途,º工作条件,»工资待遇,¼单位地址。
用模糊层次分析法做决策的步骤如下。
第一步,列出层次分析图,选择就业单位是本例的目标,把它叫做目标层,选择单位时需要考虑的因素的集合叫做准则层。
可供选择的三个单位组成方案层。
可将这三个层次列出如下:目标层选择工作单位准则层¹发展前途 º工作条件 »工资待遇 ¼单位地址方案层单位M 1 M 2 M 3这就是层次分析图第二步,评分。
模糊层次评价法-概述说明以及解释1.引言1.1 概述模糊层次评价法是一种应用于多元决策问题的计算方法,通过将模糊数学理论、层次分析法和灰色关联分析方法相结合,对事物进行综合评价和决策。
在现代社会中,我们面临着各种各样的复杂问题,如人才选拔、投资决策、产品质量评估等,这些问题往往涉及多个指标和不确定因素,传统的评价方法已经无法完全满足我们的需求。
在模糊层次评价法中,我们把问题分解为不同层次的因素,并通过对这些因素的相对重要性进行比较,建立起一个层次结构模型。
同时,对于每个因素,我们还可以利用模糊数学理论对其进行模糊度的度量,以考虑到现实问题中的不确定性和模糊性。
最后,我们利用灰色关联分析方法对各层次的因素进行整合,得出最终的评价结果和决策方案。
模糊层次评价法的应用领域非常广泛。
在管理领域中,它可以用于企业绩效评估、投资项目评估、人员选拔等决策问题;在工程领域中,它可以用于工艺优化、产品质量控制、设备选型等问题;在环境领域中,它可以用于环境评估、生态保护、可持续发展等方面的决策。
然而,模糊层次评价法也存在一些缺点。
首先,模型的构建和参数设定对结果的影响很大,需要专业知识和经验的支持。
其次,模型计算量较大,对计算资源要求较高。
此外,模型中对模糊度的度量也存在一定的主观性,可能导致评价结果的不确定性。
总之,模糊层次评价法在多元决策问题中具有重要的应用价值,可以帮助我们分析复杂问题,并提供科学有效的决策支持。
在未来,随着数据处理技术的不断发展和相关理论的完善,模糊层次评价法在更多领域中的应用将会得到进一步推广和应用。
对于读者来说,建议在实际问题中应用该方法时,应结合实际情况和专业知识,正确处理模型的构建和参数设置,以获得更可靠的评价结果和决策方案。
1.2 文章结构本文主要探讨模糊层次评价法,并对其基本原理、应用领域、优缺点以及重要性进行分析和总结。
文章结构如下:第一部分为引言部分,旨在引入模糊层次评价法的概念和背景,为读者提供一个简要的概述。