模糊层次分析法
- 格式:doc
- 大小:81.00 KB
- 文档页数:3
模糊层次分析法和层次分析法的区别
模糊层次分析法(FuzzyAnalyticHierarchyProcess,FAHP)与层
次分析法(AnalyticHierarchyProcess,AHP)由ThomasL.Saaty发展
的重要决策分析方法,它们既有共同之处也有不同之处,本文以模糊层次分析法和层次分析法的区别为研究主题,试图分析清楚这两种方法在理论、结构以及应用方面的不同。
首先,在理论基础方面,AHP是建立在层次模型理论上的,它相信把复杂问题层层分解能够使得问题更加清晰。
而FAHP基于模糊集理论,它的理论根据认为,在复杂的决策环境中,很多人的判断都是模糊的,只有建立起一个模糊的结构,才能够反映出决策者的真实意见。
其次,在结构上,AHP使用简单的一对多的层次结构,在这种结构中,每个节点有不止一个子节点,而FAHP则使用模糊的层次结构,它可以分解复杂问题,并使用模糊数据来评价各个节点之间的关系。
最后,决策应用方面,AHP和FAHP都可以用来设计出一个优化的决策方案,但是AHP的步骤比较复杂,它需要用精确的数据来评价每个节点,因此应用起来比较困难,而FAHP则更加灵活,它可以使用模糊数据来评价节点之间的关系,因此更容易应用于复杂的决策问题。
综上所述,AHP与FAHP作为重要的决策分析方法,它们既有共同之处也有不同之处。
从理论、结构以及应用方面来看,模糊层次分析法能比层次分析法更好地解决复杂的决策问题,因此得到越来越多
的应用。
未来,有望有更多的研究和应用于模糊层次分析法,使它能更好地发挥作用,改善决策效果。
模糊层次分析法模糊层次分析法是一种多变量决策分析方法,旨在帮助决策者在复杂的决策问题中做出合理的选择。
与传统的层次分析法相比,模糊层次分析法能够处理不确定性、模糊性和主观性的问题,因此在实际应用中具有很高的灵活性和适应性。
模糊层次分析法的核心思想是将问题拆解为不同的层次结构,分别从不同角度对问题的因素进行评价和排序。
具体来说,模糊层次分析法包括以下几个步骤:定义目标层、准则层和方案层,建立层次结构模型;构建模糊层次判断矩阵,利用专家经验和模糊数学的方法对层次结构中的评价指标进行两两比较,得到判断矩阵;计算模糊一致性指标,判断判断矩阵的一致性程度;通过模糊层次权重计算方法将判断矩阵转化为权重向量,评估和排序方案。
首先,模糊层次分析法要明确问题的目标。
目标层是决策问题的最高层,是整个层次结构的根节点。
目标层定义了决策问题的目标和愿景,可以是一个具体的指标,也可以是一项重要的战略目标。
例如,对于一个公司来说,提高市场份额、提升产品质量和降低成本可能是目标层的几个重要目标。
其次,确定准则层。
准则层是指对于实现目标所需要的关键因素或评价标准。
准则层的每个因素都与目标层直接相关,通过对准则的评估和排序可以帮助决策者识别出最为关键的因素。
在确定准则层时,应该考虑因素之间的相互关联性和重要性。
最后,定义方案层。
方案层是指为实现目标而采取的具体措施或方案。
一般情况下,方案层是决策问题的最低层。
在定义方案层时,应该考虑到各个方案之间的可行性、资源需求和可能的风险。
在模糊层次分析法中,决策者需要对准则层和方案层中的因素进行两两比较,构建模糊判断矩阵。
模糊判断矩阵是用来描述不确定和模糊的评价值的,可以通过专家判断、模糊数学方法和模糊逻辑推理进行计算和推断。
模糊判断矩阵的元素通常采用模糊数表示,模糊数由隶属函数和隶属度组合而成。
在模糊层次分析法中,为了判断判断矩阵的一致性程度,需要计算模糊一致性指标。
模糊一致性指标能够量化判断矩阵的一致性程度,判断决策者所提供的判断是否存在矛盾和不一致的情况。
模糊层次分析法模糊层次分析法(Fuzzy Analytic Hierarchy Process,简称FAHP)是一种用于多标准决策的数学方法。
它结合了模糊逻辑和层次分析法(Analytic Hierarchy Process,简称AHP)的思想,能够处理模糊性和不确定性的问题。
FAHP在工程管理、经济决策、环境评估等领域具有广泛的应用。
FAHP的核心思想是将问题分解为多个层次,并对每个层次的因素进行比较和权重分配。
在FAHP中,通过模糊数来表示专家的判断和评价,并利用模糊数之间的运算进行计算。
模糊数是由一个值和一个隶属度函数组成的,可以用来表示各种可能性和不确定性。
FAHP的步骤包括:问题的层次划分、建立模糊判断矩阵、确定权重、计算总权重和一致性检验。
首先,将问题按照层次结构进行划分。
层次结构是由一系列目标、准则和方案组成的,目标是最终要达到的结果,准则是用于评价和选择方案的标准,方案是可供选择的备选方案。
然后,根据专家判断和评价,建立模糊判断矩阵。
模糊判断矩阵是由模糊数填充的矩阵,用于表示各个层次之间的相对重要性。
模糊判断矩阵的元素可以通过专家评价或统计数据得出。
接下来,确定权重。
根据模糊判断矩阵,可以计算得出每个层次因素的权重。
权重的计算可以利用模糊综合评判法,将模糊数进行聚合。
然后,计算总权重。
将各个层次因素的权重进行组合,得出各个方案的总权重。
最后,进行一致性检验。
通过计算一致性指标来判断判断矩阵的一致性。
一致性指标的计算可以利用随机一致性指标进行。
FAHP的优点是能够处理模糊性和不确定性,对专家判断和评价有较好的灵活性。
它还能够结合多个层次因素进行权衡,提高决策的科学性和准确性。
总之,FAHP是一种多标准决策方法,能够应对复杂的决策问题。
它的核心思想是将问题分解为多个层次,通过模糊数的运算进行计算和评估。
FAHP在实际应用中具有广泛的应用前景,可以帮助决策者做出科学、准确的决策。
模糊层次分析法模糊层次分析法(Fuzzy Analytic Hierarchy Process,FAHP)是一种多准则决策方法,用于处理模糊和不确定性问题。
它是将层次分析法(Analytic Hierarchy Process,AHP)与模糊集合理论相结合的一种扩展方法。
本文将介绍模糊层次分析法的原理、应用领域以及具体案例,以帮助读者更好地了解和使用该方法。
首先,让我们来了解模糊集合理论。
模糊集合是一种介于完全隶属和完全不隶属之间的集合,其中元素的隶属度是一个介于0和1之间的实数。
模糊集合可以用来表示模糊和不确定性信息,对于处理多准则决策问题非常有用。
模糊层次分析法是在AHP的基础上引入了模糊集合的概念来处理问题中的模糊和不确定性信息。
与AHP类似,FAHP也是通过构建层次结构来描述决策问题,并进行两两比较来确定各层级的权重。
但是,与AHP不同的是,FAHP将判断矩阵中的元素从精确值转换为模糊值,以考虑到问题中的不确定性。
在使用FAHP进行决策时,首先需要确定层次结构,并确定每个层级的准则或因素。
然后,利用专家判断或实证数据来进行两两比较,得到判断矩阵。
接下来,需要将判断矩阵的元素从精确值转换为模糊值,以反映不确定性。
这可以通过专家的模糊众数判断或基于实证数据的模糊众数估计来实现。
一旦得到模糊判断矩阵,就可以计算各层级的权重。
这可以通过求解带模糊判断矩阵的特征向量来实现。
在计算权重时,需要考虑到模糊判断矩阵的不确定性,通常使用最大-最小模糊集合运算来求解特征向量。
模糊层次分析法在很多领域都有广泛的应用。
例如,在工程项目选择中,可以使用FAHP来确定各个候选项目的权重,以便选择最合适的项目。
在供应链管理中,可以使用FAHP来评估供应商的绩效,并确定最佳供应商。
在环境评价中,可以使用FAHP来评估不同因素对环境影响的程度,并确定最佳的环境保护措施。
以一个简单的案例来说明FAHP的应用。
假设一个公司需要选择最佳的广告渠道,以促进产品销售。
5.结论由以上计算过程可以看出,模糊层次分析法同普通层次分析法相比具有以下优点:(1)检验一次性更方便。
根据定理2.1或定理2.2可直接检验模糊矩阵是否具有一致性。
(2)调整过程更简洁。
通过调整模糊矩阵的元素可很快使模糊矩阵具有模糊一致性。
(3)判断依据更合理。
根据定理2.1或定理2.2作为检验一致性的标准更科学简便。
参考文献[1]张吉军.模糊层次分析法.模糊系统与数学,2000,14(2):80-88[2]吕跃进.基于模糊一致矩阵的模糊层次分析法的排序.模糊系统与数学,2002,16(2):79-85[3]JohnMGleason.Fuzzysetcomputationalprocessesinriskanalysis.IEEETransactionsonEngineeringManagement,1991,38(2):177-1784.3.2层次总排序同理,可求得其他矩阵对应元素的权重,并得到C层次总排序如下:4.3.5结论球面网壳动力稳定临界力简化计算王节1黄显民2(1.黑龙江省林业设计研究院2.哈尔滨工业大学建筑设计研究院150008)摘要:球面网壳动力稳定临界力简化估算公式是针对跨度30m ̄60m,矢跨比1/10 ̄1/6的单层球面网壳,对于其它类型的网壳结构要具体分析。
关键词:单层球面网壳动力稳定动力稳定临界力中图分类号:TB122文献标识码:A网壳结构是杆件沿曲面有规律布置而组成的空间杆系结构。
具有刚度大、自重轻、受力均匀、在水平、竖向及多维地震作用下的动内力分布均匀且较小,结构抗震性能良好。
结构在罕遇地震作用下的动力失稳临界峰值较高,随着矢跨比增加,结构刚度增大,地震作用稳定性提高。
而且造型丰富美观、综合技术指标好等特点,是大跨度、大空间结构的主要结构形式之一。
目前世界上跨度最大的网壳结构是美国新奥尔良体育馆的超级穹顶,跨度213米。
近年来,网壳结构在我国获得了迅速的发展,哈尔滨速滑馆,由筒壳及两个半球壳组成的组合网壳,网壳平面投影86.2m×191.2m,是已建成最大的网壳结构。
模糊层次分析法2篇第一篇:模糊层次分析法一、引言模糊层次分析法,简称FAHP,是层次分析法在模糊环境下的扩充和发展。
模糊理论很好地解决了现实生活中存在的不确定、模糊、复杂等问题,并且得到了广泛应用。
FAHP是以模糊理论为基础,在层次分析法基础上综合利用模糊数学、线性规划、模糊决策等方法,用来处理多指标决策问题。
二、基本思想FAHP主要目标是解决评价问题的模糊度、不确定性和复杂性。
FAHP使用模糊数学中的模糊语言来描述问题,并将决策变成了一个模糊多指标决策问题,以此来解决问题的不确定性和复杂性。
FAHP包含四个基本步骤:构造判断矩阵、计算权重向量、计算最终权重向量以及评价。
三、具体操作步骤1. 构造判断矩阵构造判断矩阵是FAHP的第一步,也是最基础的一步。
判断矩阵的元素是模糊数,反映了专家对各个因素之间的模糊关系。
专家可以根据自己的经验和知识,对问题相关因素之间的模糊关系进行描述。
判断矩阵中的每一个元素都是一个形如(a, b, c, d)的模糊数,其中a、b、c、d分别表示模糊数的四个参数,分别代表“相对绝对不比”的程度、“相对不比”程度、“相对比较”程度和“相对绝对比”程度。
2. 计算权重向量在FAHP中,权重向量是指评价因素对最终权重的贡献程度,也是评价因素重要性的量化指标。
计算权重向量的方法主要有双曲线法、中心平均法、最小方差法等。
在具体运用中,可以根据问题的实际情况选择相应的计算方法。
3. 计算最终权重向量FAHP的核心就是通过计算最终权重向量,来确定各因素在决策中的重要性和优先级。
计算最终权重向量的方法主要有直接转换法和线性规划法。
这两种方法都需要转化成标准正态分布,然后通过一系列计算步骤得到最终权重向量。
最终权重向量表示各因素在决策中所占的权重,权重越大表示该因素对决策的贡献越大。
4. 评价评价是FAHP的最后一步,通过计算所得到的最终权重向量,可以得出结论,并对结论进行评价。
当权重越大的因素被采用时,决策的效果会更好。
模糊层次分析法理论基础
FAHP及计算过程层次分析法(AHP)是20世纪70年代美国运筹学家T.L. Saaty教授提出的一种定性与定量相结合的系统分析方法,该方法对于量化评价指标,选择最优方案提供了依据,并得到了广泛的应用。
然而, AHP存在如下方面的缺陷:检验判断矩阵是否一致非常困难,且检验判断矩阵是否具有一致性的标准CR < 0. 1缺乏科学依据;判断矩阵的一致性与人类思维的一致性有显著差异。
为此,本文结合模糊数学理论,首先介绍了模糊层次分析法(Fuzzy - AHP) FAHP ,然后用FAHP对公共场所安全性指标权重进行了处理。
1. 1 模糊一致矩阵及有关概念[4 ,5 ]
1. 1. 1 定义1. 1
设矩阵R = ( rij) n×n ,若满足: 0 ≤( rij) ≤ 1 , ( i = 1 ,2 , ……n , j = 1 ,2 , ……n),则称R 为模糊矩阵
1. 1. 2 定义1. 2
若模糊矩阵R = ( rij) n×n ,若满足: Πi , j , k 有rij= rik - rij + 0. 5 ,则称模糊矩阵R 为模糊一致矩阵。
1. 1. 3 定理1. 1
设模糊矩阵R = ( rij) n×n是模糊一致矩阵,则有
(1) Πi ( i = 1 ,2 , …n) ,则rij = 0. 5 ;
(2) Πi , j ( i = 1 ,2 , …n , j = 1 ,2 , …n) ,有rij + rji= 1 ;
(3) R 的第i 行和第i 列元素之和为n ;
(4)从R 中划掉任一行及其对应列所得的矩阵仍然是模糊一致矩阵;
(5) R 满足中分传递性,即当λ≥0. 5 时,若rij≥λ, rjk ≥λ,则rij ≥λ;当λ≤0. 5 时,若rij ≤λ, rjk ≤λ,则rij ≤λ。
(证明见文献1) 。
1. 1. 4 定理1. 2
模糊矩阵R = ( rij) n×n是模糊一致矩阵的充要条件是任意指定行和其余各行对应元素之差是一个常数。
1. 1. 5 定理1. 3
如果对模糊互补矩阵 F = ( f ij) n×n按行求和,记为ri = 6nk = 1f ik ( i = 1 ,2 , …, n) ,并施之如下数学变换:rij =ri - rj2 m + 0. 5 (1),则由此建立的矩阵是模糊一致的。
1. 2 模糊一致判断矩阵的建立
模糊一致判断矩阵的建立R 表是针对上一层某元素,本层次与之有关元素之间相对重要性的比较,假定上一层次元素T 同下一层次元素a1 , a2 ,…, an 有关系,则模糊一致判断矩阵可表示为:
rij的实际意义是:元素ai 和元素aj 相对于元素T 进行比较时, ai 和aj 具有模糊关系“…比…重要得多”的隶属度,表1采用0. 1~0. 9 数量标度来说明其模糊关系。
有了上述数字标度之后,元素a1 , a2 ……an相对于上一层元素进行比较,从而得到如下的模糊一致矩阵:
R具有如下性质:
(1) Πi ( i = 1 ,2 , …n) ,则rij = 0. 5 ;
(2) Πi , j ( i = 1 ,2 , …n , j = 1 ,2 , …n) ,有rij + rji= 1 ;
因此,R为模糊一致矩阵,模糊判断矩阵R的一致性反映了人们思维判断的一致性,在构造模糊判断矩阵时非常重要,但在实际的决策分析中,由于研究问题的复杂性和人们认识上可能产生的片面性,构造出的模糊矩阵往往不具有一致性,可由模糊一致矩阵的充要条件来进行调整。
将模糊不一致矩阵调整为模糊一致矩阵的方法
1确定一个同其余元素的重要性相比较得出的判断有把握的元素,不失一般性,设决策者认为对判断r11、r12、……r1n有把握。
2用R的第一行元素减去对应的第二行元素,若得到的n为常数,则不需要调整第二行的元素,否则对其调整。
由R的性质rij + rji= 1,可得r11+r22=r12+r21=1;
R11-r21=r22-r12=a(a为常数);
R23=r13-a,r24=r14-a,…,r2n=r1n-a.
3同理,用r的第一行元素减去对应的第三行元素,若得到的n差为常数,则不需要调整第三行的元素,否则对其调整。
由R的性质rij + rji= 1,可得r11+r33=r13+r31=1;
R11-r31=r33-r13=b(b为常数);
R32=r13-b,r34=r14-b,…,r3n=r1n-b.
4同理,用r的第一行元素减去对应的第k行元素,若得到的n差为常数,则不需要调整第k行的元素,否则对其调整。
由R的性质rij + rji= 1,可得r11+rkk=r1k+rk1=1;
R11-rk1=rkk-r1k=c(c为常数);
Rk2=r1k-c,rk4=r1k-c,…,rkj=r1k-c(j=2,3, …,n;k=/j).
1. 3 由模糊一致矩阵求元素的权重
设元素 a1 , a2 ……an 进行两两重要性比较后得到模糊一致矩阵 R = ( rij) n×m ,其权重值ω1 ,ω2 , …ωn 有如下关系成立: rij = 0. 5 + a (ωi - ωj) ( i , j = 1 ,2 , …, n) (2)其中0 < a < = 0. 5 ,且 a 是人们所感知对象的差异程度的一种度量,同评价对象个数和差异程度有关,当评价的个数或差异程度较大时, a 可以取较大值;另外,决策者还可以通过调整 a 的大小,求出若干个不同的权向量,在从中选择一个比较满意的权向量。
1. 4 几点说明[4 ]
(1)定理1. 1中第4条的意义在于:当设计好模糊一致矩阵后 ,如果又要删除某一个元素 ,则不必重新设计模糊一致矩阵 ,说明模糊一致矩阵具有良好的鲁棒性;
(2)定理1. 1 中第 5 条的中分传递性符合人们决策思维的心理特性;
(3)在实际决策分析中 ,由于所研究问题的复杂性和人们认识上可能产生的片面性 ,使构造出的判断矩阵不具有一致性 ,可以按定理 1. 2 或 1. 3 进行调整。