3.4导数(微分)基本公式、3.5高阶导数[7页]
- 格式:doc
- 大小:240.00 KB
- 文档页数:7
高等数学微积分公式大全一、基本导数公式⑴()0c '= ⑵1x xμμμ-= ⑶()sin cos x x '=⑷()cos sin x x '=- ⑸()2tan sec x x '= ⑹()2cot csc x x '=- ⑺()sec sec tan x x x '=⋅ ⑻()csc csc cot x x x '=-⋅⑼()xxee'= ⑽()ln xxaaa '= ⑾()1ln x x'=⑿()1log ln xax a'= ⒀()arcsin x '= ⒁()arccos x '=⒂()21arctan 1x x '=+ ⒃()21arccot 1x x '=-+⒄()1x '=⒅'=二、导数的四则运算法则()u v u v '''±=± ()uv u v uv '''=+ 2u u v uv v v '''-⎛⎫= ⎪⎝⎭三、高阶导数的运算法则 (1)()()()()()()()n n n u x v x u x v x ±=±⎡⎤⎣⎦ (2)()()()()n n cu x cu x =⎡⎤⎣⎦(3)()()()()n n nu ax b a uax b +=+⎡⎤⎣⎦(4)()()()()()()()0nn n k k k n k u x v x c u x v x -=⋅=⎡⎤⎣⎦∑ 四、基本初等函数的n 阶导数公式 (1)()()!n nxn = (2)()()n ax b n ax b e a e ++=⋅ (3)()()ln n x x n a a a =(4)()()sin sin 2n n ax b a ax b n π⎛⎫+=++⋅⎡⎤ ⎪⎣⎦⎝⎭ (5) ()()cos cos 2n nax b a ax b n π⎛⎫+=++⋅⎡⎤ ⎪⎣⎦⎝⎭(6)()()()11!1n n nn a n ax b ax b +⋅⎛⎫=- ⎪+⎝⎭+ (7) ()()()()()11!ln 1n n n na n axb ax b -⋅-+=-⎡⎤⎣⎦+五、微分公式与微分运算法则 ⑴()0d c = ⑵()1d xxdx μμμ-= ⑶()sin cos d x xdx =⑷()cos sin d x xdx =- ⑸()2tan sec d x xdx = ⑹()2cot csc d x xdx =- ⑺()sec sec tan d x x xdx =⋅ ⑻()csc csc cot d x x xdx =-⋅ ⑼()xx d ee dx = ⑽()ln x x d a a adx = ⑾()1ln d x dx x=⑿()1logln xad dx x a =⒀()arcsin d x =⒁()arccos d x = ⒂()21arctan 1d x dx x =+ ⒃()21arccot 1d x dx x=-+ 六、微分运算法则⑴()d u v du dv ±=± ⑵()d cu cdu = ⑶()d uv vdu udv =+ ⑷2u vdu udvd v v -⎛⎫= ⎪⎝⎭七、基本积分公式⑴kdx kx c =+⎰ ⑵11x x dx c μμμ+=++⎰ ⑶ln dxx c x=+⎰ ⑷ln xxa a dx c a=+⎰ ⑸x x e dx e c =+⎰ ⑹cos sin xdx x c =+⎰ ⑺sin cos xdx x c =-+⎰⑻221sec tan cos dx xdx x c x ==+⎰⎰ ⑼221csc cot sin xdx x c x ==-+⎰⎰⑽21arctan 1dx x c x =++⎰ ⑾arcsin x c =+八、补充积分公式tan ln cos xdx x c =-+⎰ cot ln sin xdx x c =+⎰ sec ln sec tan xdx x x c =++⎰ csc ln csc cot xdx x x c =-+⎰2211arctan xdx c a x a a=++⎰ 2211ln 2x adx c x a a x a-=+-+⎰arcsinxc a=+ ln x c =+十、分部积分法公式⑴形如n ax x e dx ⎰,令nu x =,axdv e dx =形如sin n x xdx ⎰令nu x =,sin dv xdx =形如cos n x xdx ⎰令nu x =,cos dv xdx =⑵形如arctan nx xdx ⎰,令arctan u x =,ndv x dx =形如ln nx xdx ⎰,令ln u x =,ndv x dx =⑶形如sin axe xdx ⎰,cos ax e xdx ⎰令,sin ,cos axu e x x =均可。
基本导数公式→ 基本微分公式本文档旨在介绍基本导数公式和基本微分公式的概念和应用。
这些公式是微积分中的基本概念,对于理解和解决各种数学和科学问题具有重要意义。
基本导数公式导数是函数概念的一部分,它描述了函数在某一点的变化率。
基本导数公式是常见函数的导数表达式,包括以下几个常见函数类型:1.常数导数公式:如果函数 f(x) 等于常数 c,则其导数 f'(x) 等于零。
f(x) = c,则 f'(x) = 0.2.幂函数导数公式:对于幂函数 f(x) = x^n,其中 n 是任意实数,其导数 f'(x) 等于 n * x^(n-1)。
f(x) = x^n,则 f'(x) = n * x^(n-1).3.指数函数导数公式:指数函数 f(x) = e^x 的导数 f'(x) 等于 e^x。
f(x) = e^x,则 f'(x) = e^x.4.对数函数导数公式:对数函数 f(x) = log(a。
x) 的导数 f'(x) 等于 1 / (x * ln(a)),其中 a 是对数的底数。
f(x) = log(a。
x),则 f'(x) = 1 / (x * ln(a)).5.三角函数导数公式:三角函数包括正弦函数、余弦函数和正切函数。
它们的导数公式如下:正弦函数:f(x) = sin(x) 的导数 f'(x) = cos(x).余弦函数:f(x) = cos(x) 的导数 f'(x) = -sin(x).正切函数:f(x) = tan(x) 的导数 f'(x) = sec^2(x)。
以上是常见函数的基本导数公式,它们可以帮助我们计算各种函数的导数。
基本微分公式微分是导数概念的一部分,它描述了函数在某一点的局部线性逼近。
基本微分公式是微分运算中常用的表达式,对于求解微分方程和优化问题非常重要。
常见的基本微分公式包括以下几个:1.常数微分公式:如果函数 f(x) 等于常数 c,则其微分 df(x) 等于零。
16个微积分公式微积分是一门研究函数的变化率与积分的数学学科。
在学习微积分时,我们会使用一些重要的公式来计算和推导出函数的性质。
下面是16个常用的微积分公式:1.导数的定义:设函数f(x)在x点有定义,则f(x)在x点可导,当且仅当下式极限存在:f'(x) = lim(h->0) (f(x+h) - f(x)) / h其中f'(x)表示f(x)的导数。
2.基本导数公式:a.(k)'=0,其中k是常数。
b. (x^n)' = nx^(n-1),其中n是实数。
c. (sin x)' = cos x。
d. (cos x)' = -sin x。
e.(e^x)'=e^x。
f. (ln x)' = 1/x。
3.导数的四则运算法则:如果f(x)和g(x)都是可导函数,则有:a.(f(x)+g(x))'=f'(x)+g'(x)。
b.(f(x)-g(x))'=f'(x)-g'(x)。
c.(k*f(x))'=k*f'(x),其中k是常数。
d.(f(x)*g(x))'=f'(x)*g(x)+f(x)*g'(x)。
e.(f(x)/g(x))'=(f'(x)*g(x)-f(x)*g'(x))/g^2(x),其中g(x)≠0。
4.链式法则:如果有复合函数F(g(x)),其中F(u)和g(x)都是可导函数,则有:(F(g(x)))'=F'(g(x))*g'(x)。
5.反函数的导数:如果函数f(x)和g(x)满足f(g(x))=x,并且g(x)在一些点可导且不为0,则有:(f^-1(x))'=1/g'(f^-1(x))。
6.高阶导数:函数f(x)的n阶导数,记作f^(n)(x),可通过对其一阶导数进行n次求导得到。
高等数学微积分公式大全一、基本导数公式⑴()0c '= ⑵1x xμμμ-= ⑶()sin cos x x '=⑷()cos sin x x '=- ⑸()2tan sec x x '= ⑹()2cot csc x x '=- ⑺()sec sec tan x x x '=⋅ ⑻()csc csc cot x x x '=-⋅⑼()xxee'= ⑽()ln xxaaa '= ⑾()1ln x x'=⑿()1log ln xax a'= ⒀()arcsin x '= ⒁()arccos x '=⒂()21arctan 1x x '=+ ⒃()21arccot 1x x '=-+⒄()1x '=⒅'=二、导数的四则运算法则()u v u v '''±=± ()uv u v uv '''=+ 2u u v uv v v '''-⎛⎫= ⎪⎝⎭三、高阶导数的运算法则 (1)()()()()()()()n n n u x v x u x v x ±=±⎡⎤⎣⎦ (2)()()()()n n cu x cu x =⎡⎤⎣⎦(3)()()()()n n nu ax b a uax b +=+⎡⎤⎣⎦(4)()()()()()()()0nn n k k k n k u x v x c u x v x -=⋅=⎡⎤⎣⎦∑ 四、基本初等函数的n 阶导数公式 (1)()()!n nxn = (2)()()n ax b n ax b e a e ++=⋅ (3)()()ln n x x n a a a =(4)()()sin sin 2n n ax b a ax b n π⎛⎫+=++⋅⎡⎤ ⎪⎣⎦⎝⎭ (5) ()()cos cos 2n nax b a ax b n π⎛⎫+=++⋅⎡⎤ ⎪⎣⎦⎝⎭ (6)()()()11!1n n nn a n ax b ax b +⋅⎛⎫=- ⎪+⎝⎭+ (7) ()()()()()11!ln 1n n n na n axb ax b -⋅-+=-⎡⎤⎣⎦+五、微分公式与微分运算法则 ⑴()0d c = ⑵()1d xxdx μμμ-= ⑶()sin cos d x xdx =⑷()cos sin d x xdx =- ⑸()2tan sec d x xdx = ⑹()2cot csc d x xdx =- ⑺()sec sec tan d x x xdx =⋅ ⑻()csc csc cot d x x xdx =-⋅ ⑼()xxd ee dx = ⑽()ln xxd a aadx = ⑾()1ln d x dx x=⑿()1logln xad dx x a =⒀()arcsin d x =⒁()arccos d x = ⒂()21arctan 1d x dx x =+ ⒃()21arccot 1d x dx x=-+ 六、微分运算法则⑴()d u v du dv ±=± ⑵()d cu cdu = ⑶()d uv vdu udv =+ ⑷2u vdu udvd v v -⎛⎫= ⎪⎝⎭七、基本积分公式⑴kdx kx c =+⎰⑸x x e dx e c =+⎰ ⑹cos sin xdx x c =+⎰ ⑺sin cos xdx x c =-+⎰⑻221sec tan cos dx xdx x c x ==+⎰⎰ ⑼221csc cot sin xdx x c x ==-+⎰⎰⑽21arctan 1dx x c x =++⎰ ⑾arcsin x c =+八、补充积分公式2211arctan xdx c a x a a=++⎰ 2211ln 2x adx c x a a x a-=+-+⎰arcsinxc a=+ ln x c =+十、分部积分法公式⑴形如n ax x e dx ⎰,令nu x =,axdv e dx =形如sin n x xdx ⎰令nu x =,sin dv xdx =形如cos n x xdx ⎰令nu x =,cos dv xdx = ⑵形如arctan n x xdx ⎰,令arctan u x =,ndv x dx =形如ln n x xdx ⎰,令ln u x =,ndv x dx =⑶形如sin ax e xdx ⎰,cos ax e xdx ⎰令,sin ,cos axu e x x =均可。
16个微积分公式微积分是数学的一个重要分支,主要研究函数的变化规律及其应用。
在微积分中,有许多重要的公式被广泛应用于各种问题的解决中。
本文将介绍16个微积分公式,并分别阐述其含义和应用。
一、导数的定义公式导数是微积分中最基础的概念之一,它描述了函数在某一点的变化率。
导数的定义公式为:f'(x) = lim(h->0) [f(x+h) - f(x)] / h在这个公式中,f'(x)表示函数f(x)在点x处的导数。
该公式的含义是通过计算函数在极限情况下的变化率来求得导数。
导数的应用非常广泛,包括求函数的极值、判断函数的增减性等。
二、导数的四则运算法则导数的四则运算法则是求导过程中常用的规则,它将导数与函数的四则运算相结合。
具体公式如下:(1) (cf(x))' = cf'(x)(2) (f(x) ± g(x))' = f'(x) ± g'(x)(3) (f(x)g(x))' = f'(x)g(x) + f(x)g'(x)(4) (f(x)/g(x))' = (f'(x)g(x) - f(x)g'(x)) / (g(x))^2这些公式可以通过对函数中的每一项进行求导,并按照四则运算法则进行组合计算。
它们对于求解复杂函数的导数提供了便利。
三、常用导数公式在微积分中,有一些常用的导数公式被广泛应用于各种问题的求解中。
这些公式包括:(1) (x^n)' = nx^(n-1)(2) (e^x)' = e^x(3) (lnx)' = 1/x(4) (sinx)' = cosx(5) (cosx)' = -sinx(6) (tanx)' = sec^2x这些公式可以帮助我们快速求取一些特定函数的导数,从而简化求解过程。
四、高阶导数公式除了一阶导数外,函数的高阶导数也是微积分中的重要概念。