数学建模题目及答案-数学建模100题
- 格式:doc
- 大小:360.00 KB
- 文档页数:7
小学数学建模试题及答案一、问题描述某小学举行了一场数学建模比赛,共有100个参赛小组。
每个小组有3名成员,他们需要在规定的时间内解决一系列数学问题。
本文将给出其中的两道试题,并提供详细的解答。
二、试题一题目:某超市打折促销,其中甲品牌的商品原价为10元/件,乙品牌的商品原价为15元/件。
超市制定了以下几个商品组合的促销折扣方式:- 甲品牌购买3件,总价格打8折- 乙品牌购买2件,总价格打9折- 同时购买甲品牌和乙品牌的商品,总价格打7.5折现在小明带着100元去购买这两个品牌的商品,请问他能够购买到几件商品?解答:设小明购买的甲品牌商品件数为x,乙品牌商品件数为y。
根据题目所给的折扣方式,可以列出以下方程组:1. 10x + 15y = 100 (总价格不超过100元)2. 0.8 * 10x + 15y >= 100 (甲品牌打折)3. 10x + 0.9 * 15y >= 100 (乙品牌打折)4. 0.75 * (10x + 15y) >= 100 (甲品牌和乙品牌同时打折)通过解这个方程组,可以求得x和y的值。
计算结果为x = 4,y = 4。
因此,小明能够购买到4件甲品牌商品和4件乙品牌商品。
三、试题二题目:小明和小红在校外进行了一次跑步比赛。
比赛开始后,小红以每分钟200米的速度匀速前进,小明则分段加速前进。
具体规则如下:- 第1分钟小明跑出50米- 从第2分钟开始,小明每分钟的速度都比前一分钟提高10米/分钟问:在多少分钟之后,小明能够超过小红?解答:设小明在第n分钟时超过小红,则可以列出以下方程:50 + 10 + 20 + ... + 10(n-1) > 200n通过对1到n的整数求和,可以化简为:50 + 10 * (1 + 2 + ... + (n-1)) > 200n50 + 10 * ((n-1) * n / 2) > 200n25n^2 - 225n + 100 > 0根据一元二次方程的求解方法,可以得到n > 9 或 n < 4,因此小明在第10分钟之后或第3分钟之前就能够超过小红。
数学建模试卷及参考答案一、选择题1. 已知函数 $y = 2x^3 - 5x^2 + 3x - 7$,求导数函数 $y'$ 的值。
A) $6x^2 - 10x + 3$\B) $6x - 10x^2 + 3$\C) $6x - 10x + 3$\D) $6x^2 - 10x^2 + 3$答案:A2. 设矩形的长为 $x$,宽为 $y$,满足 $x^2 + y^2 = 25$。
当矩形的面积最大时,求矩形的长和宽。
A) 长为 4,宽为 3\B) 长为 5,宽为 3\C) 长为 4,宽为 2.5\D) 长为 5,宽为 2.5答案:A3. 一条直线过点 $A(1,2)$ 和点 $B(3,-1)$,与另一条直线 $2x + y - 4 = 0$ 平行。
求该直线的方程。
A) $2x - y + 3 = 0$\B) $2x - y - 3 = 0$\C) $-2x + y - 3 = 0$\D) $2x - y - 5 = 0$答案:B4. 已知函数 $y = e^x$,求 $y$ 的微分值。
A) $e^x$\B) $e^x + C$\C) $e^x - C$\D) $C \cdot e^x$答案:A5. 一辆汽车以每小时 60 公里的速度行驶,途中经过两座相距 60 公里的城市。
假设两座城市间有一辆以每小时90 公里的速度行驶的列车,两车同时出发。
求两辆车首次相遇的时间。
A) 0.5 小时\B) 1 小时\C) 1.5 小时\D) 2 小时答案:A二、填空题6. 已知函数 $f(x) = \sin(x)$,求函数 $g(x) = f^{\prime}(x)$。
答案:$g(x) = \cos(x)$7. 若直线 $3x + ky = 2$ 与直线 $2x - y = 3$ 相垂直,则 $k$ 的值为\_\_\_。
答案:$k = 6$8. 设抛物线 $y = ax^2 - 3x + 2$ 的顶点为 $(2,1)$,则 $a$ 的值为\_\_\_。
高中数学建模竞赛试题竞赛时间共120分钟,总分150分高20 级 班 姓名一、选择题(每题只有一个选项正确,将正确的选择项填入题后的括号内8×7):1、三个框中,一个装有苹果,另一个装有柑子,第三个框装有苹果和柑子,装好分别标上“苹果”“ 柑子”“混装”三个标签。
后查全都装错了,现在只能打开一个框来纠正三个标签,应该打开哪个框?( D )A 、“苹果”标签B 、“ 柑子”标签C 、“混装”标签D 、都可以2、一批旅游者决定分乘几辆大汽车旅游,每车乘22人时有一人坐不上车;若开走一辆空车,所有的旅游车刚好平均分配到余下的车;而每车最多载32人。
则旅游者的人数和汽车的辆数各为( B )A 、441,20B 、529,24C 、331,15D 、414,193、某县所建水库最大容量为:1.28×510立方米,据监测,在山洪暴发中注入的水量n S 与天数n 的关系式为:n S =5000)24(+n n 。
水库原有水量为8×410立方米,泄水闸每天泄水量4×310立方米,那么多少天后堤坝有危险(水容量超过最大容量为危险)( B )A 、15天B 、9天C 、6天D 、12天4、下列哪个事件不能构成数学建模的案例?( C )A 、学生的作业完成情况。
B 、城市饮用水消费情况。
C 、学生养成中的违纪案例。
D 、老师讲解测量实践案例。
5、一商品进价为80元,销售价为100元;为增加销量,采用每卖出一个商品就赠送一个价值1元的小商品的方法,结果销量增加10%;在实践中,若礼品的价值为n+1元比礼品为n 元时销量增加10%。
请设计礼品价值为多少元时,利润最大。
( D )A 、8元B 、9元C 、10元D 、9或10元6、机器人每前进一步就向左转030,则下列哪一次机器人会回到起点?( B )A 、10次B 、36次C 、42次D 、55次7、有一个摊主用4个白子和4个黑子作赌,其摸彩规定:从袋子里8个子中摸4个,要交1元“手续费”,中奖情况为: 摸出4个子中4个白棋 3个白棋 2个白棋 其它 中彩 20元 2元 0.5元纪念品 同乐一次(无奖) 那么参与者参加一次反而增加1元钱的概率为( A )A 、358B 、701C 、83D 、43 8、从宣汉到达州的公路两旁有许多的景点,但总是投入不赚钱,你认为应该从下列哪个方向投入为最佳方案( B )A 、追加景点B 、打造亮点C 、政府命令D 、广告投入二、填空(把每题的最后答案填入后面的横线上2×7)1、老王向银行贷款3万元发展产业,并按银行贷款月利为0.01,且为复利。
数学建模习题1.木材采购问题一个木材贮运公司,有很大的仓库,用于贮运出售木材。
由于木材季度价格的变化,该公司于每季度初购进木材,一部分于本季度内出售,一部分贮存起来以后出售。
已知:该公司仓库的最大贮藏量为20万立方米,贮藏费用为(a+bu)元/万立方米,其中:a=70,b=100,u为贮存时间(季度数)。
已知每季度的买进、卖出价及预计的销售量为:2.飞机投放炸弹问题某战略轰炸机群奉命摧毁敌人军事目标。
已知该目标有四个要害部位,只要摧毁其中之一即可达到目的。
为完成此项任务的汽油耗量限制为48000公升,重型炸弹48枚、轻型炸弹32枚。
飞机携带重型炸弹时每公升汽油可飞行2 公里,带轻型炸弹时每公汽油可飞行3公里。
又知每架飞机一次只能装载一枚炸弹,每出发轰炸一次除来回路程汽油消耗(空载时每公升汽油飞行4公里)外。
起飞和降落每次各消耗100公升。
有关数据如下表所示:为了使摧毁敌方军事目标的可能性最大,应如何确定飞机轰炸的方案。
3.三级火箭发射问题建立一个模型说明要用三级火箭发射人造卫星的道理。
(1)设卫星绕地球作匀速圆周运动,证明其速度为v= R^gr;, R为地球半径,r为卫星与地心距离,g为地球表面重力加速度。
要把卫星送上离地面600km 的轨道,火箭末速v应为多少。
(2)设火箭飞行中速度为v(t),质量为m(t),初速为零,初始质量m,火箭喷出的气体相对于火箭的速度为u,忽视重力和阻力对火箭的影响。
用动量守恒原理证明v(t)= u in j。
由此你认为要提高火箭的末速度应采取什么措m(t)施。
(3)火箭质量包括3部分:有效载荷(卫星)m;燃料m;结构(外壳、燃料仓等)m,其中m 在m + m中的比例记作九P一般九不小于10%。
证明若m p =0(即火箭不带卫星),则燃料用完时火箭达到的最大速度为v =-u in九. 已知,目前的u=3km/s,取九=10%,求v。
这个结果说明什么。
(4)假设火箭燃料燃烧的同时,不断丢弃无用的结构部分,即结构质量与燃料质量以和1-的比例同时减少,用动量守恒原理证明v(t)=(1-九)u in %。
专科数学建模竞赛试题及答案试题:某工厂生产一种产品,该产品由三个不同的生产阶段组成,每个阶段的生产效率和成本不同。
第一阶段的生产效率为每小时生产10个单位,成本为每个单位5元;第二阶段的生产效率为每小时生产8个单位,成本为每个单位6元;第三阶段的生产效率为每小时生产6个单位,成本为每个单位7元。
假设工厂每天工作8小时,并且每个阶段的生产能力是独立的。
问题一:如果工厂希望每天生产至少100个单位的产品,那么每个阶段每天至少需要生产多少单位?问题二:在满足问题一的条件下,工厂每天的生产成本是多少?问题三:如果工厂希望降低生产成本,但每天至少需要生产100个单位的产品,那么每个阶段的生产效率需要提高多少?答案:问题一解答:为了满足每天至少生产100个单位的产品,我们可以设第一阶段每天生产x个单位,第二阶段生产y个单位,第三阶段生产z个单位。
根据题目条件,我们有以下方程组:\[ x + y + z \geq 100 \]\[ \frac{x}{10} + \frac{y}{8} + \frac{z}{6} \leq 8 \]解这个方程组,我们可以得到第一阶段至少需要生产40个单位(因为40是10的倍数且满足总生产量至少100的条件),第二阶段至少需要生产24个单位(因为24是8的倍数且满足总生产量至少100的条件),第三阶段至少需要生产33个单位(因为33是6的倍数且满足总生产量至少100的条件)。
问题二解答:在问题一的基础上,我们可以计算每天的生产成本。
第一阶段的成本为40单位 * 5元/单位 = 200元,第二阶段的成本为24单位 * 6元/单位 = 144元,第三阶段的成本为33单位 * 7元/单位 = 231元。
因此,每天的总生产成本为200元 + 144元 + 231元 = 575元。
问题三解答:为了降低生产成本,我们需要提高每个阶段的生产效率。
假设第一阶段的生产效率提高到每小时生产a个单位,第二阶段提高到每小时生产b个单位,第三阶段提高到每小时生产c个单位。
数学建模学习题及答案问题一某公司生产两种产品,产品A和产品B。
每单位产品A需要2个小时的生产时间,销售价格为100元;每单位产品B需要3个小时的生产时间,销售价格为150元。
公司有8个小时的生产时间。
由于市场需求限制,公司至少需要生产2个单位的产品A和3个单位的产品B。
试问公司应该如何安排生产,以最大化销售收入?答案:设公司生产产品A的数量为x,产品B的数量为y。
根据题意,可以得到以下条件:- 2x + 3y ≤ 8 (生产时间限制)- x ≥ 2 (至少生产两个单位的产品A)- y ≥ 3 (至少生产三个单位的产品B)我们的目标是最大化销售收入,即最大化100x + 150y。
这是一个线性规划问题,我们可以用图像法求解。
将不等式转化为等式得到以下三条线性方程:- 2x + 3y = 8- x = 2- y = 3通过绘制图形,我们发现可行解为以下三个点:(2, 2),(2, 3),(4, 2)。
计算销售收入可得:- (2, 2):100 * 2 + 150 * 2 = 500- (2, 3):100 * 2 + 150 * 3 = 650- (4, 2):100 * 4 + 150 * 2 = 800所以,公司应该生产2个单位的产品A和3个单位的产品B,以达到最大化销售收入800元。
问题二某体育品牌公司要推出一个全新的运动鞋产品。
公司决定在市场上投放三种不同系列的运动鞋,分别为A系列、B系列和C系列。
经过市场调查,公司预计每年销售的鞋子数量分别为A系列1000双,B系列1500双和C系列2000双。
公司希望能够合理分配资源,以便最大程度地满足市场需求。
请问,应该如何分配每种系列的鞋子生产数量?答案:设A系列的鞋子生产数量为x,B系列的鞋子生产数量为y,C 系列的鞋子生产数量为z。
根据题意,我们有以下限制条件:- x ≥ 1000 (A系列鞋子需求)- y ≥ 1500 (B系列鞋子需求)- z ≥ 2000 (C系列鞋子需求)要最大程度地满足市场需求,我们的目标是最大化x + y + z。
数学建模期末试题及答案1. 题目描述这是一份数学建模期末试题,包含多个问题,旨在考察学生对数学建模的理解和应用能力。
以下是试题的具体描述及答案解析。
2. 问题一某城市的交通流量与时间呈周期性变化,根据历史数据,可以得到一个交通流量函数,如下所示:\[f(t) = 100 + 50\sin(\frac{2\pi}{24}t)\]其中,t表示时间(小时),f(t)表示交通流量。
请回答以下问题:a) 请解释一下该函数的含义。
b) 根据该函数,该城市的最大交通流量是多少?c) 在哪个时间段,该城市的交通流量较低?【解析】a) 该函数表示交通流量f(t)随时间t的变化规律。
通过观察函数,可以发现交通流量与时间的关系是周期性变化,每24小时一个周期。
函数中的sin函数表示交通流量在周期内的变化,振幅为50,即交通流量的最大值与最小值之差为50。
基准流量为100,表示在交通最不繁忙的时刻,流量为100辆。
b) 最大交通流量为基准流量100辆与振幅50辆之和,即150辆。
c) 交通流量较低的时间段为振幅为负值的时刻,即最小值出现的时间段。
3. 问题二某学校的图书馆借书规则如下:- 学生每次最多可以借5本书,每本书的借阅期限为30天。
- 学生可以在借阅期限结束后进行续借,每次续借可以延长借阅期限30天。
请回答以下问题:a) 一个学生在10天内连续借了3次书,分别是2本、3本和4本,请写出该学生在每次借书后的总借书数。
b) 如果一个学生借了5本书,每本都是在借阅期限后进行续借,借了10年,最后一次续借后,该学生一共续借了几次书?【解析】a) 总的借书数为每次借书的累加和。
学生第一次借2本,总共借书数为2本;第二次借3本,总共借书数为2 + 3 = 5本;第三次借4本,总共借书数为5 + 4 = 9本。
b) 学生每本书借阅期限为30天,10年为3650天,每次借书续借可以延长借阅期限30天。
因此,学生续借次数为10年÷30天= 121次。
考试内容分布:1、线性规划2题,有1题需编程;2、非线性规划2题,有1题需编程;3、微分方程1题,需编程;4、差分方程2题,纯计算,不需编程;5、插值2题,拟合1题,纯计算,不需编程;;6、综合1题(4分),纯计算,不需编程。
一、列出下面线性规划问题的求解模型,并给出matlab计算环境下的程序1.某车间有甲、已两台机床,可用于加工三种工件,假定这两台车床的可用台时数分别为800和900,三种工件的数量分别为400,600和500,且已知用两种不同车床加工单位数量不同工件所需的台时数和加工费用如下表。
问怎样分配车床的加工任务,才能即满足加工工件的要求,又使加工费用最低。
(答案见课本P35, 例1)2.有两个煤厂A,B,每月进煤分别不少于60t、100t,它们负责供应三个居民区的用煤任务,这三个居民区每月需用煤分别为45t, 75t, 40t。
A厂离这三个居民区分别为10km, 5km, 6km,B厂离这三个居民区分别为4km, 8km, 15km,问这两煤厂如何分配供煤,才能使总运输量最小?(1)问题分析设A煤场向这三个居民区供煤分别为x1,x2,x3;B煤场向这三个居民区供煤分别为x4,x5,x6,则min f=10*x1+5*x2+6*x3+4*x4+8*x5+15*x6,再根据题目约束条件来进行解题。
(2) 模型的求解>> f=[10 5 6 4 8 15];>> A=[-1 -1 -1 0 0 00 0 0 -1 -1 -1-1 0 0 -1 0 00 -1 0 0 -1 00 0 -1 0 0 -1];>> b=[-60;-100;-45;-75;-40];>> Aeq=[];>> beq=[];>> vlb=zeros(6,1);>> vub=[];>> [x,fval]=linprog(f,A,b,Aeq,beq,vlb,vub)Optimization terminated.(3) 结果分析x =0.0000 20.0000 40.0000 45.0000 55.0000 0.0000 fval = 960.0000即A 煤场分别向三个居民区供煤0t,20t,40t ;B 煤场分别向三个居民区供煤45t,55t,0t 可在满足条件下使得总运输量最小。
数学建模习题景德镇陶瓷学院信息工程学院习题一1.在1.3节“椅子能在不平的地面上放稳吗”的假设条件中,将四脚的连线呈正方形改为呈长方形,其余不变。
试构造模型并求解。
2.模仿1.4节商过河问题中的状态转移模型,作下面这个众所周知的智力游戏:人带着猫、鸡、米过河,船除需要人划之外,至多能载猫、鸡、米三者之一,而当人不在场时猫要吃鸡、鸡要吃米。
试设计一个安全过河方案,并使渡河次数尽量地少。
3.利用1.5节表1和表3给出的1790-2000年的美国实际人口资料建立下列模型:(1)分段的指数增长模型。
将时间分为若干段,分别确定增长率r 。
(2)阻滞增长模型。
换一种方法确定固有增长率r 和最大容量m x 。
4.说明1.5节中Logistic 模型(9)可以表为)(01)(t t r m ex t x --+=,其中0t 是人口增长出现拐点的时刻,并说明0t 与r, m x 的关系.5.假定人口的增长服从这样的规律:时刻t 的人口为)(t x ,t 到t+∆t 时间内人口的增长与m x -)(t x 成正比例(其中m x 为最大容量).试建立模型并求解.作出解的图形并与指数增长模型、阻滞增长模型的结果进行比较。
6.某甲早8:00从山下旅店出发,沿一条路径上山,下午5:00到达山顶并留宿。
次日早8:00沿同一条路径下山,下午5:00回旅店。
某乙说,甲必在二天中的同一时刻经过路径中的同一地点。
为什么?7.37支球队进行冠军争夺赛,每轮比赛中出场的每两支球队中的胜者及轮空者进入下一轮,直至比赛结束。
问共需进行多少场比赛,共需进行多少轮比赛。
如果是n支球队比赛呢?8.甲乙两站之间有电车相通,每隔10分钟甲乙两站相互发一趟车,但发车时刻不一定相同。
甲乙之间有一中间站丙,某人每天在随机的时刻到达丙站,并搭乘最先经过丙站的那趟车,结果发现100天中约有90天到达甲站,约有10天到达乙站。
问开往甲乙两站的电车经过丙站的时刻表是如何安排的。
(七)、某海岛上有12个主要的居民点,每个居民点的位置(用平面坐标x,y表示,距离单位:km)和居住的人数(R)如下表所示。
现在准备在海岛上建一个服务中心为居民提供
(八)、(转运问题)设有两个工厂A、B,产量分别为9,8个单位;四个顾客分别为1,2,3,4,需求量分别为3,5,4,5;三个仓库x,y,z.其中工厂到仓库、仓库到顾客的运费单价见下表所示。
试求总运费最少的运输方案以及总运费。
(九)、某农户拥有100亩土地和25000元可供投资,每年冬季(9月份中旬至来年5月中旬),该家庭的成员可以贡献 3500h的劳动时间,而夏季为4000h。
如果这些劳动时间有赋予,该家庭中的年轻成员将去附近的农场打工,冬季每小时6.8元,夏季每小时7.0元。
现金收入来源于三种农作物(大豆、玉米和燕麦)以及两种家禽(奶牛和母鸡)。
农作物不需要付出投资,但每头奶牛需要400元的初始投资,每只母鸡需要3元的初始投资,每头奶牛需要使用1.5亩土地,并且冬季需要付出100h劳动时间,夏季付出50h劳动时间,该家庭每年产生的净现金收入为450元;每只母鸡的对应数字为:不占用土地,冬季0.6h,夏季0.3h,年净现金收入3.5元。
养鸡厂房最多只能容纳3000只母鸡,栅栏的大小限制了最多能饲养32偷奶牛。
根据估计,三种农作物每种植一亩所需要的劳动时间和收入如下表所示。
建立数学模型,帮助确定每种农作物应该种植多少亩,以及奶牛和母鸡应该各蓄养多少,使年净现金收入最大。
初中数学建模题目一、代数方程建模1. 小明每天早上7点上学,他以每分钟70米的速度走到学校,需要30分钟。
请问小明家离学校的距离是多少?2. 一个化肥厂生产化肥,每生产一吨需要耗电40度。
如果电费每度为0.6元,那么生产100吨化肥需要多少电费?二、几何图形建模1. 一个矩形花园的长是15米,宽是8米。
要在花园四周种上花边,花边的总长度是多少?2. 一个三角形ABC的三边长分别为3、4、5厘米,求三角形的面积?三、概率统计建模1. 一盒子里有红球和白球共10个,其中红球有6个。
如果随机从盒子里摸出一个球,那么摸到红球的概率是多少?2. 小华在数学考试中得了85分,全班平均分是90分。
求小华的分数高于全班平均分的概率?四、函数关系建模1. 小明从家里出发去公园,走了1小时后,他走了3公里。
如果他的速度保持不变,请问他还需要多少时间才能到达公园?2. 一个水库的水位高度与降雨量有关,当降雨量为50毫米时,水位会上升5米。
求水库的水位高度与降雨量的函数关系。
五、三角函数建模1. 一个摩天轮的高度为40米,直径为50米。
当摩天轮转过一圈时,求最顶端点到地面的高度?2. 一个登山队要从山脚爬到山顶,已知山的斜度为60度,登山队爬了300米后,他们还有多远才能到达山顶?六、数列建模1. 一个自然数列的前两项分别为1和2,以后各项都是其前面各项的和。
求这个数列的第10项是多少?2. 一个商场销售某商品,每件商品的进价为8元,售价为10元。
每天售出50件,求一个月(30天)后,商场能赚多少钱?七、线性规划建模1. 某地计划建设一个生态公园,需要种上一些树木。
已知种一棵树需要花费100元,而生态公园的总预算是5000元。
问在满足预算限制的条件下,最多能种多少棵树?2. 某公司生产两种产品:产品A的单价为20元,利润率为20%;产品B的单价为15元,利润率为15%。
公司现有资金20万元,问应如何安排两种产品的生产量,才能使公司获得最大利润?。
考试内容分布:1、线性规划2题,有1题需编程;2、非线性规划2题,有1题需编程;3、微分方程1题,需编程;4、差分方程2题,纯计算,不需编程;5、插值2题,拟合1题,纯计算,不需编程;;6、综合1题(4分),纯计算,不需编程。
一、列出下面线性规划问题的求解模型,并给出matlab计算环境下的程序1.某车间有甲、已两台机床,可用于加工三种工件,假定这两台车床的可用台时数分别为800和900,三种工件的数量分别为400,600和500,且已知用两种不同车床加工单位数量不同工件所需的台时数和加工费用如下表。
问怎样分配车床的加工任务,才能即满足加工工件的要求,又使加工费用最低。
(答案见课本P35, 例1)2.有两个煤厂A,B,每月进煤分别不少于60t、100t,它们负责供应三个居民区的用煤任务,这三个居民区每月需用煤分别为45t, 75t, 40t。
A厂离这三个居民区分别为10km, 5km, 6km,B厂离这三个居民区分别为4km, 8km, 15km,问这两煤厂如何分配供煤,才能使总运输量最小?(1)问题分析设A煤场向这三个居民区供煤分别为x1,x2,x3;B煤场向这三个居民区供煤分别为x4,x5,x6,则min f=10*x1+5*x2+6*x3+4*x4+8*x5+15*x6,再根据题目约束条件来进行解题。
(2) 模型的求解>> f=[10 5 6 4 8 15];>> A=[-1 -1 -1 0 0 00 0 0 -1 -1 -1-1 0 0 -1 0 00 -1 0 0 -1 00 0 -1 0 0 -1];>> b=[-60;-100;-45;-75;-40];>> Aeq=[];>> beq=[];>> vlb=zeros(6,1);>> vub=[];>> [x,fval]=linprog(f,A,b,Aeq,beq,vlb,vub)Optimization terminated.(3)结果分析x =0.0000 20.0000 40.0000 45.0000 55.0000 0.0000fval = 960.0000即A 煤场分别向三个居民区供煤0t,20t,40t ;B 煤场分别向三个居民区供煤45t,55t,0t 可在满足条件下使得总运输量最小。
简单的数学建模题目一、问题的提出假设我们有一个简单的金融问题:一家银行按照每天的存款利率给客户支付利息,这个利率是存款金额的1%。
客户每天会收到他们存款的利息,但是他们也可能会提取他们的存款。
如果一个客户决定提取他们的存款,他们将只能提取存款的本金,而不能提取利息。
假设一个客户存入1000元,并且决定在接下来的5天内每天提取100元。
我们要计算在5天后,这个客户在银行还有多少钱。
二、建立数学模型1、定义变量:假设客户最初存入的金额为 P元,每天提取的金额为 D元,经过的天数为 N天。
2、建立数学方程:根据题目,我们可以建立以下方程:P - N × D =最终余额这是因为客户每天都会提取D元的金额,并且总存款是P元。
N天后,他们将剩下P - N × D元。
3、填入已知数值:根据题目,P = 1000元,D = 100元,N = 5天。
所以方程变为:1000 - 5 × 100 =最终余额三、执行计算我们可以直接计算这个方程。
1000元减去5天的提取金额(5 × 100元)等于最终的余额。
计算结果为:最终余额 = 500元所以,5天后,客户在银行还有500元。
四、整合答案通过这个简单的数学模型,我们可以清楚地解释这个问题,并且计算出最终的余额。
这个模型还可以应用于其他类似的金融问题,例如不同的存款利率、不同的提取规则等等。
数学建模题目及答案数学建模100题数学建模是应用数学方法和计算机技术,对实际问题进行抽象和概括,建立数学模型的过程。
它是连接数学理论与实际问题的桥梁,能帮助我们更好地理解世界,解决现实问题。
以下是一百个数学建模题目及答案,供大家参考。
题目一:简单的线性回归模型给定一组一元线性回归的数据,解释数据之间的关系,并预测新的数据点的结果。
答案:我们通过最小二乘法拟合一条直线来描述数据之间的关系。
然后,我们使用这条直线来预测新的数据点。
题目二:逻辑回归模型给定一组二元分类的数据,用逻辑回归模型预测新的数据点的类别。
09级数模试题1. 把四只脚的连线呈长方形的椅子往不平的地面上一放,通常只有三只脚着地,放不稳,然后稍微挪动几次,就可以使四只脚同时着地,放稳了。
试作合理的假设并建立数学模型说明这个现象。
(15分) 解:对于此题,如果不用任何假设很难证明,结果很可能是否定的。
因此对这个问题我们假设 : (1)地面为连续曲面(2)长方形桌的四条腿长度相同(3)相对于地面的弯曲程度而言,方桌的腿是足够长的 (4)方桌的腿只要有一点接触地面就算着地。
那么,总可以让桌子的三条腿是同时接触到地面。
现在,我们来证明:如果上述假设条件成立,那么答案是肯定的。
以长方桌的中心为坐标原点作直角坐标系如图所示,方桌的四条腿分别在A 、B 、C 、D 处,A 、B,C 、D 的初始位置在与x 轴平行,再假设有一条在x 轴上的线ab,则ab 也与A 、B ,C 、D 平行。
当方桌绕中心0旋转时,对角线 ab 与x 轴的夹角记为θ。
容易看出,当四条腿尚未全部着地时,腿到地面的距离是不确定的。
为消除这一不确定性,令()f θ为A 、B 离地距离之和,()g θ为C 、D 离地距离之和,它们的值由θ唯一确定。
由假设(1),()f θ,()g θ均为θ的连续函数。
又由假设(3),三条腿总能同时着地, 故()f θ()g θ=0必成立(∀θ)。
不妨设(0)0f =,(0)0g >g (若(0)g 也为0,则初始时刻已四条腿着地,不必再旋转),于是问题归结为: 已知()f θ,()g θ均为θ的连续函数,(0)0f =,(0)0g >且对任意θ有00()()0f g θθ=,求证存在某一0θ,使00()()0f g θθ=。
证明:当θ=π时,AB 与CD 互换位置,故()0f π>,()0g π=。
作()()()h f g θθθ=-,显然,()h θ也是θ的连续函数,(0)(0)(0)0h f g =-<而()()()0h f g πππ=->,由连续函数的取零值定理,存在0θ,00θπ<<,使得0()0h θ=,即00()()f g θθ=。
又由于00()()0f g θθ=,故必有00()()0f g θθ==,证毕。
2.学校共1000名学生,235人住在A 宿舍,333人住在B 宿舍,432人住在C 宿舍。
学生 们要组织一个10人的委员会,试用合理的方法分配各宿舍的委员数。
(15分)解:按各宿舍人数占总人数的比列分配各宿舍的委员数。
设:A 宿舍的委员数为x 人,B 宿舍的委员数为y 人,C 宿舍的委员数为z 人。
计算出人数小数点后面的小数部分最大的整数进1,其余取整数部分。
则x+y+z=10; x/10=235/1000;y/10=333/1000;z/10=432/1000;0x100y10,x,y,z为正整数;0z10解得:x=3y=3z=43.一饲养场每天投入5元资金用于饲料、设备、人力,估计可使一头80公斤重的生猪每天增加2公斤。
目前生猪出售的市场价格为每公斤8元,但是预测每天会降低0.1元,问该场应该什么时候出售这样的生猪可以获得最大利润。
(15分)解:设在第t天出售这样的生猪(初始重80公斤的猪)可以获得的利润为z元。
每头猪投入:5t元产出:(8-0.1t)(80+2t)元利润:Z = 5t +(8-0.1t)(80+2t)=-0.2 t^2 + 13t +640=-0.2(t^2-65t+4225/4)+3405/4当t=32或t=33时,Zmax=851.25(元)因此,应该在第32天过后卖出这样的生猪,可以获得最大利润。
4. 一奶制品加工厂用牛奶生产A1,A2两种奶制品,1桶牛奶可以在设备甲上用12小时加工成3公斤A1,或者在设备乙上用8小时加工成4公斤A2。
根据市场需求,生产的A1,A2全部能售出,且每公斤A1获利24元,每公斤A2获利16元。
现在加工厂每天能得到50桶牛奶的供应,每天工人总的劳动时间为480小时,并且设备甲每天至多能加工100公斤A1,设备乙的加工能力没有限制。
(1)试为该厂制订一个生产计划,使每天获利最大。
(2)33元可买到1桶牛奶,买吗?(3)若买,每天最多买多少?(4)可聘用临时工人,付出的工资最多是每小时几元? (5)A1的获利增加到30元/公斤,应否改变生产计划?(15分)解:设:每天生产将x桶牛奶加工成A1,y桶牛奶加工成A2,所获得的收益为Z元。
加工每桶牛奶的信息表:(1)x+y<=5012x8y48003x100y0Z=24*3x + 16*4y=72x+64y解得,当 x=20,y=30时, Zmax=3360元则此时,生产生产计划为20桶牛奶生产A1,30桶牛奶生产A2。
(2)设:纯利润为W元。
W=Z-33*(x+y)=39x+31y=3360-33*50=1710(元)>0则,牛奶33元/桶可以买。
(3)若不限定牛奶的供应量,则其优化条件变为:12x8y48003x100y0W=39x+31y解得,当x=0,y=60时, Wmax=1860元则最多购买60桶牛奶。
(4) 若将全部的利润用来支付工人工资,设工资最高为n元。
n=Wmax/480=3.875(元)(5)若A1的获利为30元,则其优化条件不变。
Z1=90x+64y解得,当x=0,y=60时,Z1max=3840(元)因此,不必改变生产计划。
5. 在冷却过程中,物体的温度在任何时刻变化的速率大致正比于它的温度与周围介质温度之差,这一结论称为牛顿冷却定律,该定律同样用于加热过程。
一个煮硬了的鸡蛋有98℃,将它放在18℃的水池里,5分钟后,鸡蛋的温度为38℃,假定没有感到水变热,问鸡蛋达到20℃,还需多长时间?(15分)解:题意没有感到水变热,即池水中水温不变。
设:鸡蛋的温度为T,温度变化率就是 dT/dt 其中t为时间,水的温度为T1,则鸡蛋与水温差为 T-T1 由题意有:T- T1=kdT/dt (其中k为比例常数) (1)方程(1)化为: dt=kdT/(T- T1)(2)对(2)两边同时积分之后并整理一下就得到:t=k*ln(T- T1)+C则 k*ln(98-18)+ C=05=k*ln(38-18)+ck5ln20ln80t1=k*ln(20-18)+c-[k*ln(38-18)+c]=8.3(min)所以,还需8.3(min)。
6. 报童每天清晨从报社购进报纸零售,晚上将没有卖完的报纸退回。
设每份报纸的购进价为,零售价为,退回价为,应该自然地假设。
这就是说,报童售出一份报纸赚,退回一份报纸赔。
报童如果每天购进的报纸太少,不够卖的,会少赚钱;如果购进太多,卖不完,将要赔钱。
请你为报童筹划一下,他应该如何确定每天购进报纸的数量,以获得最大的收入。
(15分)解:设:报纸具有时效性每份报纸进价b元,卖出价a元,卖不完退回份报纸c元。
设每日的订购量为n,如果订购的多了,报纸剩下会造成浪费,甚至陪钱。
订的少了,报纸不够卖,又会少赚钱。
为了获得最大效益,现在要确定最优订购量n。
n的意义。
n是每天购进报纸的数量,确定n一方面可以使报童长期以内拥有一个稳定的收入,另一方面也可以让报社确定每日的印刷量,避免纸张浪费。
所以,笔者认为n的意义是双重的。
本题就是让我们根据a、b、c及r来确定每日进购数n。
基本假设1、假设报童现在要与报社签定一个长期的订购合同,所以要确定每日的订购量n。
2、假设报纸每日的需求量是r,但报童是一个初次涉足卖报行业的菜鸟,毫无经验,无法掌握需求量r的分布函数,只知道每份报纸的进价b、售价a及退回价c。
3、假设每日的定购量是n。
4、报童的目的是尽可能的多赚钱。
建立模型应该根据需求量r确定需求量n,而需求量r是随机的,所以这是一个风险决策问题。
而报童却因为自身的局限,无法掌握每日需求量的分布规律,已确定优化模型的目标函数。
但是要得到n值,我们可以从卖报纸的结果入手,结合r与n的量化关系,从实际出发最终确定n值。
由常识可以知道卖报纸只有赚钱、不赚钱不赔钱、赔钱会有三种结果。
现在用简单的数学式表示这三种结果。
1、赚钱。
赚钱又可分为两种情况:①r>n,则最终收益为(a-b)n (1)②r<n,则最终收益为(a-b)r-(b-c)(n-r)>0整理得:r/n>(b-c)/(a-c) (2)2、由(2)式容易得出不赚钱不赔钱。
r/n=(b-c)/(a-c) (3)3、赔钱。
r/n<(b-c)/(a-c) (4)模型的求解首先由(1)式可以看出n与最终的收益呈正相关。
收益越多,n的取值越大。
但同时订购量n又由需求量r约束,不可能无限的增大。
所以求n问题就转化成研究r与n的之间的约束关系。
然后分析(3)、(4)两式。
因为(3)、(4)分别代表不赚钱不赔钱及赔钱两种情况,而我们确定n值是为了获得最大收益,所以可以预见由(3)、(4)两式确立出的n值不是我们需要的结果,所以在这里可以排除,不予以讨论。
最后重点分析(2)式。
显然式中r表需求量,n表订购量,(b-c)表示退回一份儿报纸赔的钱。
因为(a-c)无法表示一个显而易见的意义,所以现在把它放入不等式中做研究。
由a>b>c,可得a-c>a-b,而(a-b)恰好是卖一份报纸赚得的钱。
然后采用放缩法,把(2)式中的(a-c)换成(a-b),得到r/n<(b-c)/(a-b) (5)不等式依然成立。
由(5)式再结合(1)式可知收益与n正相关,所以要想使订购数n的份数越多,报童每份报纸赔钱(b-c)与赚钱(a-b)的比值就应越小。
当报社与报童签订的合同使报童每份报纸赔钱与赚钱之比越小,订购数就应越多。
7. 谈谈你对数学建模的认识,你认为数学建模过程中哪些步骤是关键的。
(10分)简单地说:数学模型就是对实际问题的一种数学表述。
具体一点说:数学模型是关于部分现实世界为某种目的的一个抽象的简化的数学结构。
更确切地说:数学模型就是对于一个特定的对象为了一个特定目标,根据特有的内在规律,做出一些必要的简化假设,运用适当的数学工具,得到的一个数学结构。
数学结构可以是数学公式,算法、表格、图示等。
数学建模就是建立数学模型,建立数学模型的过程就是数学建模的过程(见数学建模过程流程图)。
数学建模是一种数学的思考方法,是运用数学的语言和方法,通过抽象、简化建立能近似刻画并"解决"实际问题的一种强有力的数学手段。
数学建模的几个过程1 模型准备:了解问题的实际背景,明确其实际意义,掌握对象的各种信息。
用数学语言来描述问题。
2 模型假设:根据实际对象的特征和建模的目的,对问题进行必要的简化,并用精确的语言提出一些恰当的假设。