中考数学 阅读材料
- 格式:doc
- 大小:794.28 KB
- 文档页数:11
专题三 阅读理解类型一 新定义1.对非负实数x ”四舍五入”到个位的值记为(x ),即当n 为非负整数时,若n -0.5≤x <n +0.5,则(x )=n .如(1.34)=1,(4.86)=5.若(0.5x -1)=6,则实数x 的取值范围是 13≤x <15 .2.阅读材料:定义:如果一个数的平方等于-1,记为i 2=-1,这个数i 叫做虚数单位,把形如a +bi (a ,b 为实数)的数叫做复数,其中a 叫这个复数的实部,b 叫这个复数的虚部.它的加、减、乘法运算与整式的加、减、乘法运算类似.例如计算:(4+i )+(6-2i )=(4+6)+(1-2)i =10-i ;(2-i )(3+i )=6-3i +2i -i 2=6-i -(-1)=7-i ;(4+i )(4-i )=16-i 2=16-(-1)=17;(2+i )2=4+4i +i 2=4+4i -1=3+4i .根据以上信息,完成下面计算:(1+2i )(2-i )+(2-i )2= 7-i .3.(2020宁波节选)定义:三角形一个内角的平分线和与另一个内角相邻的外角平分线相交所成的锐角称为该三角形第三个内角的遥望角.(1)如图1,∠E 是△ABC 中∠A 的遥望角,若∠A =α,请用含α的代数式表示∠E .(2)如图2,四边形ABCD 内接于⊙O ,AD ︵=BD ︵,四边形ABCD 的外角平分线DF 交⊙O于点F ,连接BF 并延长交CD 的延长线于点E .求证:∠BEC 是△ABC 中∠BAC 的遥望角.解:(1)∵BE 平分∠ABC ,CE 平分∠ACD ,∴∠EBO =12∠ABC ,∠ECD =12∠ACD . ∴∠E =∠ECD -∠EBD =12(∠ACD -∠ABC )=12∠A =12α. (2)如图2,延长BC 至点T .∵四边形FBCD 内接于⊙O ,∴∠FDC +∠FBC =180°.又∵∠FDE +∠FDC =180°,∴∠FDE =∠FBC .∵DF平分∠ADE,∴∠ADF=∠FDE.∵∠ADF=∠ABF,∴∠ABF=∠FBC.∴BE是∠ABC的平分线.∵AD︵=BD︵,∴∠ACD=∠BFD.∵∠BFD+∠BCD=180°,∠DCT+∠BCD=180°,∴∠DCT=∠BFD,∴∠ACD=∠DCT,∴CE是△ABC的外角平分线.∴∠BEC是△ABC中∠BAC的遥望角.类型二 新运算1.(2020十堰)对于实数m ,n ,定义运算m *n =(m +2)2-2n .若2*a =4*(-3),则a = -13 . 2.定义一种新运算ʃa b n ·x n -1dx =a n -b n ,例如ʃk n 2xdx =k 2-n 2,若ʃm 5m x -2dx =-2,则m =( B )A .-2B .-25C .2D .25 3.(2020青海)对于任意两个不相等的数a ,b ,定义一种新运算”⊕”如下:a ⊕b =a +b a -b ,如:3⊕2=3+23-2=5,那么12⊕4= 2 . 4.对于两个不相等的实数a ,b ,我们规定符号max {a ,b }表示a ,b 中的较大值,如max {-3,4}=4,按照这个规定,方程max {x ,-x }=3x +2x 的解为 x =3+172或x =-1或x =-2 .5.(2020潍坊)若定义一种新运算:a ⊗b =⎩⎪⎨⎪⎧a -b (a ≥2b ),a +b -6(a <2b ),例如:3⊗1=3-1=2;5⊗4=5+4-6=3.则函数y =(x +2)⊗(x -1)的图象大致是( A ),A) ,B),C) ,D) 6.给出一种运算:对于函数y =x n ,规定y ′=nx n -1.例如:若函数y =x 4,则有y ′=4x 3.已知函数y =x 3,求方程y ′=12的解.解:由函数y =x 3,得n =3,∴y ′=3x 2.∵y ′=12,∴3x 2=12,解得x 1=2,x 2=-2.类型三 新方法(2020扬州节选)阅读感悟:有些关于方程组的问题,欲求的结果不是每一个未知数的值,而是关于未知数的代数式的值,如以下问题:已知实数x ,y 满足3x -y =5①,2x +3y =7②,求x -4y 和7x +5y 的值.本题常规思路是将①②两式联立组成方程组,解得x ,y 的值再代入欲求值的代数式得到答案,常规思路运算量比较大.其实,仔细观察两个方程未知数的系数之间的关系,本题还可以通过适当变形整体求得代数式的值,如由①-②可得x -4y =-2,由①+②×2可得7x +5y =19.这样的解题思想就是通常所说的”整体思想”.解决问题:(1)已知二元一次方程组⎩⎪⎨⎪⎧2x +y =7,x +2y =8,则x -y = -1 ,x +y = 5 ; (2)某班级组织活动购买小奖品,买20支铅笔、3块橡皮、2本日记本共需32元,买39支铅笔、5块橡皮、3本日记本共需58元,则购买5支铅笔、5块橡皮、5本日记本共需多少元?解:(2)设铅笔的单价为m 元,橡皮的单价为n 元,日记本的单价为p 元.依题意,得⎩⎪⎨⎪⎧20m +3n +2p =32,①39m +5n +3p =58,② 由①×2-②可得m +n +p =6,∴5m +5n +5p =5×6=30(元).答:购买5支铅笔、5块橡皮、5本日记本共需30元.。
学习必备欢迎下载重庆市2016中考数学阅读理解题(专题二)1、若x 1,x 2是关于x 的方程x 2+bx+c=0的两个实数根,且的两个实数根,且|x |x 1|+|x 2|=2|k||=2|k|((k 是整数),则称方程x 2+bx+c=0为“偶系二次方程”.如方程x 2﹣6x 6x﹣﹣27=027=0,,x 2﹣2x 2x﹣﹣8=08=0,,,x 2+6x +6x﹣﹣27=027=0,,x 2+4x+4=0+4x+4=0,,都是“偶系二次方程”.(1)判断方程x 2+x +x﹣﹣12=0是否是“偶系二次方程”,并说明理由;(2)对于任意一个整数b ,是否存在实数c ,使得关于x 的方程x 2+bx+c=0是“偶系二次方程”,并说明理由.2、阅读材料:若a ,b 都是非负实数,则a+b≥.当且仅当a=b 时,“=”成立.证明:∵()2≥0,∴a﹣+b≥0.∴a+b≥.当且仅当a=b 时,“=”成立.举例应用:已知x >0,求函数y=2x+的最小值.解:解:y=2x+y=2x+≥=4=4.当且仅当.当且仅当2x=,即x=1时,“=”成立.当x=1时,函数取得最小值,时,函数取得最小值,y y 最小=4=4..问题解决:汽车的经济时速是指汽车最省油的行驶速度.某种汽车在每小时7070~~110公里之间行驶时(含70公里和110公里),每公里耗油(+)升.若该汽车以每小时x 公里的速度匀速行驶,1小时的耗油量为y 升.(1)求y 关于x 的函数关系式(写出自变量x 的取值范围);(2)求该汽车的经济时速及经济时速的百公里耗油量(结果保留小数点后一位).3、在平面直角坐标系中,我们不妨把横坐标和纵坐标相等的点叫我们不妨把横坐标和纵坐标相等的点叫“梦之点”“梦之点”,例如点(1,11,1)),(-2-2,,-2-2)),22(,),…都是“梦之点”,显然“梦之点”有无数个。
,…都是“梦之点”,显然“梦之点”有无数个。
2019年重庆中考数学材料阅读题专题一.方程类1.阅读下面的内容用换元法求解方程组的解题目:已知方程组①的解是,求方程组②的解.解:方程组②可以变形为:方程组③设2x=m,3y=n,则方程组③可化为④比较方程组④与方程组①可得,即所以方程组②的解为参考上述方法,解决下列问题:(1)若方程组的解是,则方程组的解为;(2)若方程组①的解是,求方程组②的解.2.阅读理解题:小聪是个非常热爱学习的学生,老师在黑板上写了一题:若方程x2﹣6x﹣k ﹣1=0与x2﹣kx﹣7=0有相同根,试求k的值及相同根.思考片刻后,小聪解答如下:解:设相同根为m,根据题意,得①﹣②,得(k﹣6)m=k﹣6 ③显然,当k=6时,两个方程相同,即两个方程有两个相同根﹣1和7;当k≠6时,由③得m=1,代入②式,得k=﹣6,此时两个方程有一相同根x=1.∴当k=﹣6时,有一相同根x=1;当k=6时,有两个相同根是﹣1和7聪明的同学,请你仔细阅读上面的解题过程,解答问题:已知k为非负实数,当k取什么值时,关于x的方程x2+kx﹣1=0与x2+x+k﹣2=0有相同的实根.3.阅读材料:材料1、若一元二次方程ax2+bx+c=0(a≠0)的两根为x1,x2,则x1+x2=,x1x2=.材料2、已知实数m、n满足m2﹣m﹣1=0,n2﹣n﹣1=0,且m≠n,求的值.解:由题知m、n是方程x2﹣x﹣1=0的两个不相等的实数根,根据材料1得m+n=1,mn=﹣1∴=根据上述材料解决下面问题;(1)一元二次方程2x2+3x﹣1=0的两根为x1、x2,则x1+x2=,x1x2=.(2)已知实数m、n满足2m2﹣2m﹣1=0,2n2﹣2n﹣1=0,且m≠n,求m2n+mn2的值.(3)已知实数p、q满足p2=3p+2,2q2=3q+1,且p≠2q,求p2+4q2的值.4.相传,大禹治水时,洛水中出现了一个“神龟”背上有美妙的图案,史称“洛书”,用现在的数字翻译出来,就是三级幻方.三阶幻方是最简单的幻方,又叫九宫格,它是由九个数字组成的一个三行三列的矩阵.其对角线、横行、纵向的数字之和均相等,这个和叫做幻和,正中间那个数叫中心数,如图1,是由1、2、3、4、5、6、7、8、9所组成的一个三阶幻方,其幻和为15,中心数为5.(1)如图2也是由1、2、3、4、5、6、7、8、9所组成的一个三阶幻方,则x的值为;(2)由1、2、3、4、5、6、7、8、9生成的幻方称为基本三阶幻方,在此基础上各数再加或减一个相同的数,可组成新三阶幻方,新三阶幻方的幻和也随之变化.如图3,是由基本三阶幻方中各数加上m后生成的新三阶幻方,该新三阶幻方的幻和为a3的4倍,且a5﹣a3=3,求a7的值;(3)由1、2、3、4、5、6、7、8、9生成的基本三阶幻方中每个数都乘以或除以一个不为0的数也可组成一个新三阶幻方,如图4,是由基本三阶幻方中各数乘以p再减2后生成的新三阶幻方,其中n8为9个数中的最大数,且满足n1﹣2n6=2,n82﹣n62=2448,求p及n9的值.5.如果关于x的一元二次方程ax2+bx+c=0有两个实数根,且其中一个根为另一个根的2倍,则称这样的方程为“倍根方程”,(1)方程x2﹣x﹣2=0(填“是”或“不是”)倍根方程;(2)若(x﹣2)(mx+n)=0是倍根方程,则求代数式4m2+5mn+n2值;(3)若点(p,q)在反比例函数y=的图象上,则关于x的方程px2+3x+q=0是倍根方程吗?6.阅读理解:若p、q、m为整数,且三次方程x3+px2+qx+m=0有整数解c,则将c代入方程得:c3+pc2+qc+m=0,移项得:m=﹣c3﹣pc2﹣qc,即有:m=c×(﹣c2﹣pc﹣q),由于﹣c2﹣pc﹣q与c及m都是整数,所以c是m的因数.上述过程说明:整数系数方程x3+px2+qx+m =0的整数解只可能是m的因数.例如:方程x3+4x2+3x﹣2=0中﹣2的因数为±1和±2,将它们分别代入方程x3+4x2+3x﹣2=0进行验证得:x=﹣2是该方程的整数解,﹣1,1,2不是方程的整数解.解决问题:(1)根据上面的学习,请你确定方程x3+x2+5x+7=0的整数解只可能是哪几个整数?(2)方程x3﹣2x2﹣4x+3=0是否有整数解?若有,请求出其整数解;若没有,请说明理由.7.阅读材料材料1:“上海自来水来自海上”是耳熟能详的回文对联,数学世界里有一些整数你无论从左往右看,还是从右往左看,数字都是完全一样的,例如:22、131、1991、123321、…,像这样的数我们叫它“回文数”.材料2:如果一个三位数,满足a+b+c=8,我们就称这个三位数为“吉利数”.(1)请直接写出既是“回文数”又是“吉利数”的所有三位数;(2)三位数①是大于500的“回文数”;②的各位数字之和等于k是一个完全平方数;求这个三位数(请写出必要的推理过程).8.进位数是一种记数方式,可以用有限的数字符号代表所有的数值,使用数字符号的数目称为基数,基数为n,即可称n进制.现在最常用的是十进制,通常使用10个阿拉伯数字0~9进行记数,特点是逢十进一,对于任意一个用n(n≤10)进制表示的数,通常使用n个阿拉伯数字0~(n﹣1)进行记数,特点是逢n进一,我们可以通过以下方式把它转化为十进制:例如:五进制数(234)5=2×52+3×5+4=69,记作(234)5=69,七进制数(136)7=1×72+3×7+6=76,记作(136)7=76(1)请将以下两个数转化为十进制:(331)5=,(46)7=(2)若一个正数可以用七进制表示为(),也可以用五进制表示为,请求出这个数并用十进制表示.9.进制也就是进位制,是人们利用符号进行计数的科学方法.对于任何一种进制X进制,就表示某一位置上的数运算时逢X进一位,如十进制数123=1×102+2×101+3×100,记作123(10);七进制123=1×72+2×71+3×70,记作123(7).各进制之间可进行转化,如:将七进制转化为十进制:123(7)=1×72+2×7+3×70=66,即123(7)=66(10),将十进制转化为七进制:(因为72<66<73,所以做除法从72开始)66÷72=1…17,17÷71=2…3,即66(10)=123(7)(1)根据以上信息,若将八进制转化为十进制:15(8)=1×81+5×80=13,即15(8)=;若将十进制转化为九进制:98÷92=1…17,17÷91=1…8,即98(10)=(9)(10)(2)若将一个十进制两位数转换成九进制和八进制数后,得到一个九进制两位数和一个八进制两位数,首位分别2,3,个位分别为x,y.①若x=7,则y=.②请求出满足上述条件的所有十进制两位数.10.请阅读下列材料:问题:已知方程x2+15x﹣1=0,求一个一元二次方程,是它的根分别是已知方程根的2倍.解:设所求方程根为y,则y=2x,所以,把带人已知方程,得,化简得y2+30y﹣4=0.故所求的方程为y2+30y﹣4=0.这种利用方程根的代换求新方程的方法,我们称为“换根法”.请用阅读材料提供的换根法求新方程(要求把方程化为一般形式):(1)已知方程x2+x﹣2=0,求一个一元二次方程.是它的根是已知方程根的相反数,则所求方程为:.(2)已知关于x的一元二次方程ax2+bx+c=0(a≠0)有两个不等于零的实根,求一个一元二次方程,使它的根分别是已知方程根的倒数.11.函数[x]称为高斯函数,它表示不超过x的最大整数,例如[5.3]=5,[﹣2.4]=﹣3,[4]=4.对任意的实数x,x﹣1<[x]≤x.(1)证明:对于任意实数x,有[x]+[x+]=[2x];(2)解方程:[]=.12.仔细阅读下列材料.“分数均可化为有限小数或无限循环小数”.反之,“有限小数或无限循环小数均可化为分数”例如:=1÷4=0.25,1=1+=1+0.6=1.6或1==8÷5=1.6,=1÷3=0.,反之,0.25==,1.6=1+0.6=1+=1或1.6==,那么0.怎么化为呢?解:∵0.×10=3.=3+0.∴不妨设0.=x,则上式变为10x=3+x,解得x=即0.=根据以上材料,回答下列问题.(1)将“分数化为小数”:=;=.(2)将“小数化为分数”:0.=;1.5=.(3)将小数1.化为分数,需写出推理过程.13.我们知道≈1.414,于是我们说:“的整数部分为1,小数部分则可记为﹣1”.则:(1)﹣3的整数部分为,小数部分则可记为;(2)已知3+的小数部分为a,7﹣的小数部分为b,那么a+b的值是;(3)已知x是的整数部分,y是的小数部分,求的平方根.14.“十字相乘法”能把二次三项式分解因式,对于形如ax2+bxy+cy2的x,y二次三项式来说,方法的关键是把x2项系数a分解成两个因数a1,a2的积,即a=a1•a2,把y2项系数c分解成两个因数,c1,c2的积,即c=c1•c2,并使a1•c2+a2•c1正好等于xy项的系数b,那么可以直接写成结果:ax2+bxy+cy2=(a1x+c1y)(a2x+c2y)例:分解因式:x2﹣2xy﹣8y2解:如右图,其中1=1×1,﹣8=(﹣4)×2,而﹣2=1×(﹣4)+1×2∴x2﹣2xy﹣8y2=(x﹣4y)(x+2y)而对于形如ax2+bxy+cy2+dx+ey+f的x,y的二元二次式也可以用十字相乘法来分解,如图1,将a分解成mn乘积作为一列,c分解成pq乘积作为第二列,f分解成jk乘积作为第三列,如果mq+np=b,pk+qj=e,mk+nj=d,即第1,2列、第2,3列和第1,3列都满足十字相乘规则,则原式=(mx+py+j)(nx+qy+k);例:分解因式:x2+2xy﹣3y2+3x+y+2解:如图2,其中1=1×1,﹣3=(﹣1)×3,2=1×2;而2=1×3+1×(﹣1),1=(﹣1)×2+3×1,3=1×2+1×1;∴x2+2xy﹣3y2+3x+y+2=(x﹣y+1)(x+3y+2)请同学们通过阅读上述材料,完成下列问题:(1)分解因式:6x2﹣7xy+2y2=x2﹣6xy+8y2﹣5x+14y+6=(2)若关于x,y的二元二次式x2+7xy﹣18y2﹣5x+my﹣24可以分解成两个一次因式的积,求m的值.(3)已知x,y为整数,且满足x2+3xy+2y2+2x+4y=﹣1,求x,y.二、不等式类15.求不等式(2x﹣1)(x+3)>0的解集.解:根据“同号两数相乘,积为正”可得:①或②.解①得x>;解②得x<﹣3.∴不等式的解集为x>或x<﹣3.请你仿照上述方法解决下列问题:(1)求不等式(2x﹣3)(x+1)<0的解集.(2)求不等式≥0的解集.16.对非负实数x“四舍五入”到个位的值记为<x>.即:当n为非负整数时,如果n﹣,则<x>=n.反之,当n为非负整数时,如果<x>=n,则n﹣,例如:<0>=<0.48>=0,<0.64>=<1.49>=1,<2>=2,<3.5>=<4.12>=4.试解决下列问题:(1)填空:①<π>=(π为圆周率);②如果<x﹣1>=3,则实数x的取值范围为.(2)①若关于x的不等式组的整数解恰有3个,则a的取值范围是.②若关于x的方程+x﹣2=﹣有正整数解,求m的取值范围.(3)求满足<x+1>=x的所有非负整数x的值.17.对于实数x,y我们定义一种新运算L(x,y)=ax+by(其中a,b均为非零常数),等式右边是通常的四则运算,由这种运算得到的数我们称之为线性数,记为L(x,y),其中x,y叫做线性数的一个数对.若实数x,y都取正整数,我们称这样的线性数为正格线性数,这时的x,y叫做正格线性数的正格数对.(1)若L(x,y)=x+3y,则L(2,1)=,L(,)=;(2)已知L(1,﹣2)=﹣1,L(,)=2.①a=,b=;②若正格线性数L(m,m﹣2),求满足50<L(m,m﹣2)<100的正格数对有多少个;③若正格线性数L(x,y)=76,满足这样的正格数对有多少个;在这些正格数对中,有满足问题②的数对吗?若有,请找出;若没有,请说明理由.小丁在研究数学问题时遇到一个定义:对于排好顺序的三个数:x1,x2,x3,称为数列x1,x2,x3.计算|x1|,,,将这三个数的最小值称为数列x1,x2,x3的价值.例如,对于数列2,﹣1,3,因为|2|=2,=,=,所以数列2,﹣1,3的价值为.小丁进一步发现:当改变这三个数的顺序时,所得到的数列都可以按照上述方法计算其相应的价值.如数列﹣1,2,3的价值为;数列3,﹣1,2的价值为1;….经过研究,小丁发现,对于“2,﹣1,3”这三个数,按照不同的排列顺序得到的不同数列中,价值的最小值为.根据以上材料,回答下列问题:(1)数列﹣4,﹣3,2的价值为;(2)将“﹣4,﹣3,2”这三个数按照不同的顺序排列,可得到若干个数列,这些数列的价值的最小值为,取得价值最小值的数列为(写出一个即可);(3)将2,﹣9,a(a>1)这三个数按照不同的顺序排列,可得到若干个数列.若这些数列的价值的最小值为1,则a的值为.有些大数值问题可以通过用字母代替数转化成整式问题来解决,请先阅读下面的解题过程,再解答后面的问题.例:若x=123456789×123456786,y=123456788×123456787,试比较x、y的大小.解:设123456788=a,那么x=(a+1)(a﹣2)=a2﹣a﹣2,y=a(a﹣1)=a2﹣a∵x=y=(a2﹣a﹣2)﹣(a2﹣a)=﹣2<0∴x<y看完后,你学到了这种方法吗?再亲自试一试吧,你准行!问题:(1)x=98760×98765﹣98761×98764,y=98761×98764﹣98762×98763,试比较x、y 的大小;(2)计算:1.345×0.345×2.69﹣1.3453﹣1.345×0.3452.三、函数类20.平面直角坐标系中,点P(x,y)的横坐标x的绝对值表示为|x|,纵坐标y的绝对值表示为|y|,我们把点P(x,y)的横坐标与纵坐标的绝对值之和叫做点P(x,y)的勾股值,记为「P」,即「P」=|x|+|y|.(其中的“+”是四则运算中的加法)例如:如果A(﹣1,3),那么「A」=|﹣1|+|3|=4.(1)点M在反比例函数y=的图象上,且「M」=4,求点M的坐标;(2)求满足条件「N」=3的所有点N围成的图形的面积.21.在平面直角坐标系中,我们不妨把横坐标和纵坐标相等的点叫“梦之点”,例如点(1,1),(﹣2,﹣2),(,),…,都是“梦之点”,显然“梦之点”有无数个.(1)若点P(m,5)是反比例函数y=(n为常数,n≠0)的图象上的“梦之点”,求这个反比例函数的解析式;(2)一次函数y=2kx﹣1(k为常数,k≠0)的图象上存在“梦之点”吗?若存在,请求出“梦之点”的坐标,若不存在,说明理由;(3)若二次函数y=ax2+bx+1(a,b为常数,a≠0)的图象上有且只有一个“梦之点”A(c,c),令t=b2+4a,当﹣2<b<2时,求t的取值范围.22.新定义:若两个二次函数图象的顶点、开口方向都相同,则称这两个二次函数为“共性二次函数”.(1)请写出两个为“共性二次函数”的函数;(2)已知关于x的二次函数y1=2x2﹣4nx+2n2+1和y2=ax2+bx+5,其中y1的图象经过点A(1,1),若y1+y2与y1为“共性二次函数”,求函数y2的表达式.23.阅读材料,解答问题.知识迁移:当a>0且x>0时,因为()2≥0,所以x﹣2+≥0,从而x+(当x=时取等号),记函数y=x+(a>0,x>0),由上述结论可知:当x=时,该函数有最小值为2.直接应用:已知函数y1=x(x>0)与函数y2=(x>0),则当x=时,y1+y2取得最小值为.变形应用:已知函数y1=x+2(x>﹣2)与函数y2=(x+2)2+9(x>﹣2),求的最小值,并指出取得该最小值时相应的x的值.实际应用:建造一个容积为8立方米,深2米的长方体无盖水池,池底和池壁的造价分别为每平方米120元和80元,设池长为x米,水池总造价为y(元),求当x为多少时,水池总造价y最低?最低是多少?24.小明在课外学习时遇到这样一个问题:定义:如果二次函数y=a1x2+b1x+c1(a1≠0,a1,b1,c1是常数)与y=a2x2+b2x+c2(a2≠0,a2,b2,c2是常数)满足a1+a2=0,b1=b2,c1+c2=0,则称这两个函数互为“旋转函数”.求y=﹣2x2+5x﹣3函数的“旋转函数”.小明是这样思考的:由y=﹣2x2+5x﹣3函数可知,a1=﹣2,b1=5,c1=﹣3,根据a1+a2=0,b1=b2,c1+c2=0,求出a2,b2,c2就能确定这个函数的“旋转函数”.请参考小明的方法解决下面的问题:(1)写出函数y=﹣2x2+5x﹣3的“旋转函数”;(2)若函数y1=x2+x﹣n与y2=﹣x2﹣mx﹣2互为“旋转函数”,求(m+n)2019的值;(3)已知函数y=(x﹣2)(x+3)的图象与x轴交于A、B两点,与y轴交于点C,点A、B、C关于原点的对称点分别是A1、B1、C1,试证明经过点A1、B1、C1的二次函数与函数y=(x﹣2)(x+3)互为“旋转函数”.25.问题背景:若矩形的周长为1,则可求出该矩形面积的最大值.我们可以设矩形的一边长为x,面积为s,则s与x的函数关系式为:(x>0),利用函数的图象或通过配方均可求得该函数的最大值.提出新问题:若矩形的面积为1,则该矩形的周长有无最大值或最小值?若有,最大(小)值是多少?分析问题:若设该矩形的一边长为x,周长为y,则y与x的函数关系式为:(x>0),问题就转化为研究该函数的最大(小)值了.解决问题:借鉴我们已有的研究函数的经验,探索函数(x>0)的最大(小)值.(1)实践操作:填写下表,并用描点法画出函数(x>0)的图象:x…1/41/31/21234…y…545…(2)观察猜想:观察该函数的图象,猜想当x=时,函数(x>0)有最值(填“大”或“小”),是.(3)推理论证:问题背景中提到,通过配方可求二次函数(x>0)的最大值,请你尝试通过配方求函数(x>0)的最大(小)值,以证明你的猜想.〔提示:当x>0时,〕26.对某一个函数给出如下定义:若存在实数M>0,对于任意的函数值y,都满足﹣M≤y ≤M,则称这个函数是有界函数.在所有满足条件的M中,其最小值称为这个函数的边界值.例如图中的函数是有界函数,其边界值是1.(1)若函数y=﹣x+1(a≤x≤b,b>a)的边界值是2,且这个函数的最大值也是2,求b的取值范围;(2)将函数y=x2(﹣1≤x≤m,m≥0)的图象向下平移m个单位长度,得到的函数的边界值是t,当m在什么范围时,满足≤t≤1?27.在平面直角坐标系xOy中,当图形W上的点P的横坐标和纵坐标相等时,则称点P为图形W的“梦之点”.(1)已知⊙O的半径为1.①在点E(1,1),F(﹣,﹣),M(﹣2,﹣2)中,⊙O的“梦之点”为;②若点P位于⊙O内部,且为双曲线y=(k≠0)的“梦之点”,求k的取值范围.(2)已知点C的坐标为(1,t),⊙C的半径为,若在⊙C上存在“梦之点”P,直接写出t的取值范围.(3)若二次函数y=ax2﹣ax+1的图象上存在两个“梦之点”A(x1,y1),B(x2,y2),且|x1﹣x2|=2,求二次函数图象的顶点坐标.28.著名数学教育家波利亚曾说:“对一个数学问题,改变它的形式,变换它的结构,直到发现有价值的东西,这是数学解题的一个重要原则.”阅读下列两则材料,回答问题材料一:平方运算和开方运算是互逆运算,如:a2±2ab+b2=(a±b)2,那么=|a±b|,那么如何将双重二次根式(a>0,b>0,a±2>0)化简呢?如能找到两个数m,n(m>0,n>0),使得(2+()2=a即m+n=a,且使即m•n=b,那么a±2=()2+()2±2=(2∴==|,双重二次根式得以化简:例如化简:;∵3=1+2且2=1×2,∴3+2=()2+()2+2∴==1+材料二:在直角坐标系xoy中,对于点P(x,y)和点Q(x,y′)出如下定义:若y′=,则称点Q为点P的“横负纵变点”例如,点(3,2)的“横负纵变点”为(3,2)点(﹣2,5)的“横负纵变点”为(﹣2,﹣5)问题:(1)请直接写出点(﹣3,﹣2)的“横负纵变点”为;化简,=;(2)点M为一次函数y=﹣x+1图象上的点,M′为点M的横负纵变点,已知N(1,1),若M′N=,求点M的坐标.(3)已知b为常数且1≤b≤2,点P在函数y=﹣x2+16(+)(﹣7≤x≤a)的图象上,其“横负纵变点”的纵坐标y′的取值范围是﹣32<y′≤32,若a 为偶数,求a的值.29.对于三个数a、b、c,M|a,b,c|表示这三个数的平均数,min{a,b,c}表示a、b、c 这三个数中最小的数,如:M|﹣1,2,3|==,min{﹣1,2,3}=﹣1;M|﹣1,2,a|==,min{﹣1,2,a}=解决下列问题:(1)填空:M|,,|=;min{﹣3,,﹣π}=;(2)若min{2,2x+2,4﹣2x}=2,求x的取值范围;(3)若M|2,x+1,2x|=min{2,x+1,2x},求x的值;(4)如图,在同一平面直角坐标系中,画出了函数y=x+1,y=(x﹣1)2,y=2﹣x的图象,则min{x+1,(x﹣1)2,2﹣x}的最大值为.30.定义:如果一个y与x的函数图象经过平移后能与某反比例函数的图象重合,那么称这个函数是y与x的“反比例平移函数”.例如:y=+1的图象向左平移2个单位,再向下平移1个单位得到y=的图象,则y=+1是y与x的“反比例平移函数”.(1)若矩形的两边分别是2cm、3cm,当这两边分别增加x(cm)、y(cm)后,得到的新矩形的面积为8cm2,求y与x的函数表达式,并判断这个函数是否为“反比例平移函数”.(2)如图,在平面直角坐标系中,点O为原点,矩形OABC的顶点A、C的坐标分别为(9,0)、(0,3).点D是OA的中点,连接OB、CD交于点E,“反比例平移函数”y =的图象经过B、E两点.①求这个“反比例平移函数”的表达式;②这个“反比例平移函数”的图象经过适当的变换与某一个反比例函数的图象重合,请直接写出这个反比例函数的表达式.31.请阅读下述材料,并解答问题例:说明代数式+的几何意义,并求它的最小值.解:在平面直角坐标系中,已知两点P1(x1,y1),P2(x2,y2)则这两点间的距离公式为:P1P2=所以原式=+如图建立直角坐标系,点P(x,0)是x轴上一点,则可以看成点P 与点A(0,1)的距离,可以看成点P与点B(3,2)的距离,所以原代数式的值可以看成线段P A与PB的长度之和,它的最小值就是P A+PB的最小值.设点A关于x轴的对称点为A′,则P A=P A′,因此,求P A+PB的最小值,只需求P A′+PB的最小值,由两点之间,线段最短可得,P A′+PB的最小值为线段A′B的长度.为求A′B我们可以构造直角三角形A′CB,因为A′C=3,CB=3,所以A′B=3,即原式的最小值为3解答问题:(1)代数式+的值可以看成平面直角坐标系中点P(x,0)与点A(1,1)、点B的距离之和(填写点B的坐标);(2)代数式+的最小值为.32.“三等分角”是数学史上一个著名的问题,但仅用尺规不可能“三等分角”.下面是数学家帕普斯借助函数给出的一种“三等分锐角”的方法(如图):将给定的锐角∠AOB置于直角坐标系中,边OB在x轴上、边OA与函数y=的图象交于点P,以P为圆心、以2OP为半径作弧交图象于点R.分别过点P和R作x轴和y轴的平行线,两直线相交于点M,连接OM得到∠MOB,则∠MOB=∠AOB.要明白帕普斯的方法,请研究以下问题:(1)设P(a,)、R(b,),求直线OM对应的函数表达式(用含a,b的代数式表示);(2)分别过点P和R作y轴和x轴的平行线,两直线相交于点Q.请说明Q点在直线OM上,并据此证明∠MOB=∠AOB;(3)应用上述方法得到的结论,你如何三等分一个钝角(用文字简要说明).四、因式分解类33.阅读下列材料1637年笛卡儿(R.Descartes,1596﹣1650)在其《几何学》中,首次应用待定系数法将4次方程分解为两个2次方程求解,并最早给出因式分解定理.他认为,若一个高于二次的关于x的多项式能被(x﹣a)整除,则其一定可以分解为(x ﹣a)与另外一个整式的乘积,而且令这个多项式的值为0时,x=a是关于x的这个方程的一个根.例如:多项式x2+9x﹣10可以分解为(x﹣1)与另外一个整式M的乘积,即x2+9x﹣10=(x﹣1)M,令x2+9x﹣10=0时,可知x=1为该方程的一个根.关于笛卡尔的“待定系数法”原理,举例说明如下:分解因式:x3+2x2﹣3.观察知,显然x=1时,原式=0,因此原式可分解为(x﹣1)与另一个整式的积.令:x3+2x2﹣3=(x﹣1)(x2+bx+c),而(x﹣1)(x2+bx+c)=x3+(b﹣1)x2+(c﹣b)x﹣c,因等式两边x同次幂的系数相等,则有:,得,从而x3+2x2﹣3=(x﹣1)(x2+3x+3).此时,不难发现x=1是方程x3+2x2﹣3=0的一个根.根据以上材料,理解并运用材料提供的方法,解答以下问题:(1)若x+1是多项式x3+ax+1的因式,求a的值并将多项式x3+ax+1分解因式.(2)若多项式3x4+ax3+bx﹣34含有因式x+1及x﹣2,求a+b的值.(3)若多项式6x2﹣xy﹣2y2+5x﹣8y+a可以分解为两个一次因式之积,求a的值将该多项式分解因式.34.阅读理解:若一个整数能表示成a2+b2(a、b是整数)的形式,则称这个数为“平和数”,例如5是“平和数”,因为5=22+1,再如,M=x2+2xy+2y2=(x+y)2+y2(x,y是整数),我们称M也是“平和数”.(1)请你写一个小于5的“平和数”,并判断34是否为“平和数”.(2)已知S=x2+9y2+6x﹣6y+k(x,y是整数,k是常数,要使S为“平和数”,试求出符合条件的一个k值,并说明理由.(3)如果数m,n都是“平和数”,试说明也是“平和数”.35.阅读下列材料解决问题两个多位数整数,若它们各数位上的数字之和相等,则称这两个多位数互为“调和数”,例如37和82,它们各数位上的数字之和分别为3+7和8+2,显然3+7=8+2=10故37和82互为“调和数”.(1)下列说法错误的是A.123和51互为调和数”B.345和513互为“调和数C.2018和8120互为“调和数”D.两位数和互为“调和数”(2)若A、B是两个不等的两位数,A=,B=,A和B互为“调和数”,且A与B 之和是B与A之差的3倍,求满足条件的两位数A.36.请阅读以下材料,并解决相应的问题:材料一:换元法是数学中的重要方法,利用换元法可以从形式上简化式子,在解某些特殊方程时,使用换元法常常可以达到转化与化归的目的,例如在求解一元四次方程x4﹣2x2+1=0时,令x2=t,则原方程可变为t2﹣2t+1=0,解得t=1,从而得到原方程的解为x=±1.村料二:杨辉三角形是中国数学史上的一个伟大成就,在中国南宋数学家杨辉1261年所著的《详解九章算法》一书中出现.它呈现了某些特定系数在三角形中的一种有规律的几何排列.如图为杨辉三角形:(1)利用换元法解方程:(x2+3x﹣1)2+2(x2+3x﹣1)=3(2)在杨辉三角形中,按照由上至下、从左到右的顺序观察,设a n是第n行的第2个数(其中n≥4),b n是第n行的第3个数,c n是第(n﹣1)行的第3个数.请利用换元法因式分解:4(b n﹣a n)•c n+137.材料一:一个大于1的正整数,若被N除余1,被(N﹣1)除余1,被(N﹣2)除余1…,被3除余1,被2除余1,那么称这个正整数为“明N礼”数(N取最大),例如:73(被5除余3)被4除余1,被3除余1,被2除余1,那么73为“明四礼”数.材料二:设N,(N﹣1),(N﹣2),…3,2的最小公倍数为k,那么“明N礼”数可以表示为kn+1,(n为正整数),例如:6,5,4,3,2的最小公倍数为60,那么“明六礼”数可以表示为60n+1.(n为正整数)(1)17“明三礼”数(填“是”或“不是”);721是“明礼”数;(2)求出最小的三位“明三礼”数;(3)一个“明三礼”数与“明四礼”数的和为32,求出这两个数.38.阅读下列材料:我们把多项式a2+2ab+b2及a2﹣2ab+b2叫做完全平方式,如果一个多项式不是完全平方式,我们常做如下变形:先添加一个适当的项,使式子中出现完全平方式,再减去这个项,使整个式子的值不变,这种方法叫做配方法.配方法是一种重要的解决问题的数学方法,不仅可以将一个看似不能分解的多项式分解因式,还能解决一些与非负数有关的问题或求代数式最大值,最小值等.例如:分解因式x2+2x﹣3=(x2+2x+1)﹣4=(x+1)2﹣4=(x+1+2)(x+1﹣2)=(x+3)(x﹣1);再例如求代数式2x2+4x﹣6的最小值.2x2+4x﹣6=2(x2+2x﹣3)=2(x+1)2﹣8.可知当x=﹣1时,2x2+4x﹣6有最小值,最小值是﹣8,根据阅读材料用配方法解决下列问题:(1)分解因式:m2﹣4m﹣5=.(2)当a,b为何值时,多项式a2+b2﹣4a+6b+18有最小值,并求出这个最小值.(3)已知a,b,c为△ABC的三边,且满足a2+2b2+c2﹣2b(a+c)=0,试判断此三角形的形状.39.任意三个正整数a、b、c,若满足a+b2﹣2c=2,我们称这三个数组成的一组数为和谐数组,记为(a,b,c).对每一和谐数组,我们用F(a,b,c)表示它的和谐度,规定:F(a,b,c)=abc.例如:∵6+22﹣2×4=2,∴(6,2,4)是和谐数组,F(6,2,4)=6×2×4=48.(1)(a,b,c)是和谐数组,求和谐度F(a,b,c)的最小值.(2)(a,b,c)是和谐数组,且a,b、c满足3a2﹣8b+c=0.求和谐度F(a,b,c)的最小值.40.若在一个两位正整数N的个位数与十位数字之间添上数字5,组成一个新的三位数,我们称这个三位数为N的“至善数”,如34的“至善数”为354;若将一个两位正整数M加5后得到一个新数,我们称这个新数为M的“明德数”,如34的“明德数”为39.(1)26的“至善数”是,“明德数”是.(2)求证:对任意一个两位正整数A,其“至善数”与“明德数”之差能被45整除;(2)若一个两位正整数B的“明德数”的各位数字之和是B的“至善数”各位数字之和的一半,求B的值.。
以下是查字典数学网为您推荐的中考数学阅读理解型问题试题(附答案),希望本篇文章对您学习有所帮助。
中考数学阅读理解型问题试题(附答案)21.(2016四川达州,21,8分)(8分)?问题背景若矩形的周长为1,则可求出该矩形面积的最大值.我们可以设矩形的一边长为,面积为,则与的函数关系式为:﹥0),利用函数的图象或通过配方均可求得该函数的最大值.提出新问题若矩形的面积为1,则该矩形的周长有无最大值或最小值?若有,最大(小)值是多少?分析问题若设该矩形的一边长为,周长为,则与的函数关系式为:( ﹥0),问题就转化为研究该函数的最大(小)值了.解决问题借鉴我们已有的研究函数的经验,探索函数( ﹥0)的最大(小)值.(1)实践操作:填写下表,并用描点法?画出函数 ( ﹥0)的图象:(2)观察猜想:观察该函数的图象,猜想当= 时,函数 ( ﹥0)有最值(填大或小),是 .(3)推理论证:问题背景中提到,通过配方可求二次函数﹥0)的最大值,请你尝试通过配方求函数( ﹥0)的最大(小)值,以证明你的猜想. 〔提示:当 0时,〕解析:对于(1)按照画函数图象的列表、描点、连线三步骤进行即可;对于(2),由结合图表可知有最小值为4;对于(3),可按照提示,用配方法来求出。
答案:(1)..(1分).(3分)(2)1、小、4..(5分)?(3)证明:(7分)28.(2016江苏省淮安市,28,12分)阅读理解如题28-1图,△ABC中,沿BAC的平分线AB1折叠,剪掉重叠部分;将余下部分沿B1A1C的平分线A1B2折叠,剪掉重叠部分;将余下部分沿BnAnC的平分线AnBn+1折叠,点Bn与点C重合.无论折叠多少次,只要最后一次恰好重合,我们就称BAC是△ABC的好角.小丽展示了确定BAC是△ABC的好角的两种情形.情形一:如题28-2图,沿等腰三角形ABC顶角BAC的平分线AB1折叠,点B与点C重合;情形二:如题28-3图,沿△ABC的BAC的平分线AB1折叠,剪掉重叠部分;将余下的部分沿B1A1C的平分线 A1B2折叠,此时点B1与点C重合.探究发现(1)△ABC中,B=2C,经过两次折叠,BAC 是不是△ABC的好角? .(填:是或不是).(2)小丽经过三次折叠发现了BAC是△ABC的好角,请探究B与C(不妨设C)之间的等量关系.根据以上内容猜想:若经过n次折叠BAC是△ABC 的好角,则B与C(不妨设C)之问的等量关系为 .应用提升(3)小丽找到一个三角形,三个角分别为15,60,l05,发现60和l05的两个角都是此三角形的好角.请你完成,如果一个三角形的最小角是4,试求出三角形另外两个角的度数,使该三角形的三个角均是此三角形的好角.【解析】(1)利用三角形外角的性质和折叠对称性即可解决;(2)根据第(1)问的结论继续探索;(3)利用好角的定义和三角形内角和列出方程解之.具体过程见以下解答.【答案】解: (1) 由折叠的性质知,AA1B1.因为AA1B1=A1B1C+C,而B=2C,所以A1B1C=C,就是说第二次折叠后A1B1C与C重合,因此BAC是△ABC的好角.(2)因为经过三次折叠BAC是△ABC的好角,所以第三次折叠的A2B2C=C.如图12-4所示.图12-4因为ABB1=AA1B1,AA1B1=A1B1C+C,又A1B1C=A1A2B2,A1A2B2=A2B2C+C,所以ABB1=A1B1C+A2B2C+C=3C.由上面的探索发现,若BAC 是△ABC的好角,折叠一次重合,有C;折叠二次重合,有B=2折叠三次重合,有B=3由此可猜想若经过n次折叠BAC是△ABC的好角,则B=nC.(3)因为最小角是4是△ABC的好角,根据好角定义,则可设另两角分别为4m,4mn(其中m、n都是正整数).由题意,得4m+4mn+4=180,所以m(n+1)=44.因为m、n都是正整数,所以m与n+1是44的整数因子,因此有:m=1,n+1=44;m=2,n+1=22;m=4,n+1=11;m=11,n+1=4;m=22,n+1=2.所以m=1,n=43;m=2,n=21;m=4,n=10;m=11,n=3;m=22,n=1.所以4m=4,4mn=172;4m=8,4mn=168;4m=16,4mn=160;4m=44,4mn=132;4m=88,4mn=88.所以该三角形的另外两个角的度数分别为:4,1728,16816,16044,13288,88.【点评】本题主要考查轴对称图形、等腰三角形、三角形形的内角和定理及因式分解等知识点的理解和掌握,本题是阅读理解题,解决本题的关键是读懂题意,理清题目中数字和字母的对应关系和运算规则,然后套用题目提供的对应关系解决问题,具有一定的区分度.23.(2016湖北咸宁,23,10分)如图1,矩形MNPQ中,点E,F,G,H分别在NP,PQ,QM,MN上,若,则称四边形EFGH为矩形MNPQ的反射四边形.图2,图3,图4中,四边形ABCD为矩形,且, .理解与作图:(1)在图2、图3中,点E,F分别在BC,CD边上,试利用正方形网格在图上作出矩形ABCD的反射四边形EFGH.计算与猜想:(2)求图2,图3中反射四边形EFGH的周长,并猜想矩形ABCD的反射四边形的周长是否为定值?启发与证明:(3)如图4,为了证明上述猜想,小华同学尝试延长GF交BC的延长线于M,试利用小华同学给我们的启发证明(2)中的猜想.【解析】(1)根据网格结构,作出相等的角得到反射四边形;(2)图2中,利用勾股定理求出EF=FG=GH=HE的长度,然后可得周长;图3中利用勾股定理求出EF=GH,FG=HE的长度,然后求出周长,得知四边形EFGH的周长是定值;(3)证法一:延长GH交CB的延长线于点N,再利用角边角证明Rt△FCE≌Rt△FCM,根据全等三角形对应边相等可得EF=MF,EC=MC,同理求出NH=EH,NB=EB,从而得到MN=2BC,再证明GM=GN,过点G作GKBC于K,根据等腰三角形三线合一的性质求出MK= MN=8,再利用勾股定理求出GM的长度,然后可求出四边形EFGH的周长;证法二:利用角边角证明Rt△FCE≌Rt△FCM,根据全等三角形对应边相等可得EF=MF,EC=MC,再根据角的关系推出HEB,根据同位角相等,两直线平行可得HE∥GF,同理可证GH∥EF,所以四边形EFGH是平行四边形,过点G作GKBC于K,根据边的关系推出MK=BC,再利用勾股定理列式求出GM的长度,然后可求出四边形EFGH的周长.【答案】(1)作图如下: 2分(2)解:在图2中,,四边形EFGH的周长为 . 3分在图3中,, .四边形EFGH的周长为 . 4分猜想:矩形ABCD的反射四边形的周长为定值. 5分(3)如图4,证法一:延长GH交CB的延长线于点N.∵,,.而,Rt△FCE≌Rt△FCM., . 6分同理:, .. 7分∵,,. . 8分过点G作GKBC于K,则 . 9分.四边形EFGH的周长为 . 10分证法二:∵,, .而, Rt△FCE≌Rt△FCM., . 6分∵,,而, .HE∥GF. 同理:GH∥EF.四边形EFGH是平行四边形.. 而,Rt△FDG≌Rt△HBE. .过点G作GKBC于K,则.四边形EFGH 的周长为 .【点评】本题主要考查了应用与设计作图,全等三角形的判定与性质,勾股定理的应用,矩形的性质,读懂题意理解反射四边形EFGH特征是解题的关键.25.(2016贵州黔西南州,25,14分)问题:已知方程x2+x-1=0,求一个一元二次方程,使它的根分别是已知方程根的2倍.解:设所求方程的根为y,则y=2x,所以x=y2.把x=y2代入已知方程,得(y2)2+y2-1=0.化简,得:y2+2y-4=0.故所求方程为y2+2y-4=0.这种利用方程根的代换求新方程的方法,我们称为换根法.请用阅读材料提供的换根法求新方程(要求:把所求方程化成一般形式):(1)已知方程x2+x-2=0,求一个一元二次方程,使它的根分别是已知方程根的相反数.(2)已知关于x的一元二次方程ax2+bx+c=0(a0)有两个不等于零的实数根,求一个一元二次方程,使它的根分别是已知方程根的倒数.【解析】按照题目给出的范例,对于(1)的根相反,用y=-x作替换;对于(2)的根是倒数,用y=1x作替换,并且注意有不等于零的实数根的限制,要进行讨论.【答案】(1)设所求方程的根为y,则y=-x,所以x=-y.(2分)把x=-y 代入已知方程x2+x-2=0,得(-y)2+(-y)-2=0.(4分)化简,得:y2-y-2=0.(6分)(2)设所求方程的根为y,则y=1x,所以x=1y.(8分)把x=1y 代如方程ax2+bx+c=0得.a(1y)2+b1y+c=0,(10分)去分母,得,a+by+cy2=0.(12分)若c=0,有ax2+bx=0,于是方程ax2+bx+c=0有一个根为0,不符合题意.c0,故所求方程为cy2+by+a=0(c0).(14分)【点评】本题属于阅读理解题,读懂题意,理解题目讲述的方法的基础;在实际解题时,还要灵活运用题目提供的方法进行解题,实际上是数学中转化思想的运用.八、(本大题16分)26.(2016贵州黔西南州,26,16分)如图11,在平面直角坐标系xoy中,已知抛物线经过点A(0,4),B(1,0),C(5,0)抛物线的对称轴l与x轴相交于点M.(1)求抛物线对应的函数解析式和对称轴.(2)设点P为抛物线(x5)上的一点,若以A、O、M、P为顶点的四边形的四条边的长度为四个连续的正整数.请你直接写出点P的坐标.(3)连接AC,探索:在直线AC下方的抛物线上是否存在一点N,使△NAC的面积最大?若存在,请你求出N的坐标;若不存在,请说明理由.【解析】(1)已知抛物线上三点,用待定系数法确定解析式;(2)四边形AOMP中,AO=4,OM=3,过A作x轴的平行线交抛物线于P点,这个P点符合要求四条边的长度为四个连续的正整数(3)使△NAC的面积最大,AC确定,需要N点离AC的距离最大,一种方法可以作平行于AC的直线,计算这条直线与抛物线只有一个交点时,这个交点即为N;另一种方法,过AC上任意一点作y轴的平行线交抛物线于N点,这样△NAC被分成两个三角形,建立函数解析式求最大值.【答案】(1)根据已知条件可设抛物线对应的函数解析式为y=a(x―1)(x―5),(1分)把点A(0,4)代入上式,得a=45.(2分)y=45(x―1)(x―5)=45x2―245x+4=―45(x―3)2―165.(3分)抛物线的对称轴是x=3.(4分)(2)点P的坐标为(6,4).(8分)(3)在直线AC下方的抛物线上存在点N,使△NAC的面积最大,由题意可设点N的坐标为(t,45t2―245t+4)(0如图,过点N作NG∥y 轴交AC于点G,连接AN、CN.由点A(0,4)和点C(5,0)可求出直线AC的解析式为:y=―45x+4.(10分)把x=t代入y=―45x+4得y=―45t+4,则G(t,―45t+4).(11分)此时NG=―45t+4―(45t2―245t+4)=―45t2+205t.(12分)S△NAC=12NGOC=12(-45t2+205t)5=―2t2+10t=―2(t-52)2+252.(13分)又∵0当t=52时,△CAN的面积最大,最大值为252 .(14分)t=52时,45 t2-245t+4=-3.(15分)点N的坐标为(52,-3).(16分)【点评】本题是一道二次函数、一次函数、三角形的综合题,其中第(3)问也是一道具有难度的存在性探究问题.本题主要考查二次函数、一次函数的图象与性质的应用.专项十阅读理解题19. (2016山东省临沂市,19,3分)读一读:式子1+2+3+4++100表示从1开始的100个连续自然数的和,由于式子比较长,书写不方便,为了简便起见,我们将其表示为,这里是求和符号,通过以上材料的阅读,计算 = .【解析】式子1+2+3+4++100的结果是,即 = ;又∵,,,= + ++ =1- ,= = + ++ =1- = .【答案】【点评】本题是一道找规律的题目,要求学生的通过观察,分析、归纳并发现其中的规律,并应用发现的规律解决问题.此题重点除首位两项外,其余各项相互抵消的规律.23. (2016浙江省嘉兴市,23,12分)将△ABC绕点A按逆时针方向旋转度,并使各边长变为原来的n倍,得△AB C ,即如图①,BAB =, ,我们将这种变换记为.(1)如图①,对△ABC作变换得△AB C ,则 : =_______;直线BC与直线BC所夹的锐角为_______度;(2)如图② ,△ABC 中,BAC=30ACB=90 ,对△ABC作变换得△AB C ,使点B、C、在同一直线上,且四边形ABBC为矩形,求和n的值;(3)如图③ ,△ABC中,AB=AC,BAC=36 ,BC=1,对△ABC作变换得△ABC ,使点B、C、B在同一直线上,且四边形ABBC为平行四边形,求和n的值.【解析】(1) 由题意知, 为旋转角, n为位似比.由变换和相似三角形的面积比等于相似比的平方,得 : = 3, 直线BC与直线BC所夹的锐角为60(2)由已知条件得=CAC=BAC-BAC=60.由直角三角形中, 30锐角所对的直角边等于斜边的一半得n= =2.(3) 由已知条件得=CAC=ACB=72.再由两角对应相等,证得△ABC∽△BBA,由相似三角形的性质求得n= = .【答案】(1) 3;60.(2) ∵四边形ABBC是矩形,BAC=90.=CAC=BAC-BAC=90-30=60.在Rt△ABB中,ABB=90BAB=60,n= =2.(3) ∵四边形ABBC 是平行四边形,AC∥BB,又∵BAC=36=CAC=ACB=72CAB=ABB=BAC=36,而B,△ABC∽△BBA,AB2=CBBB=CB(BC+CB),而CB=AC=AB=BC, BC=1, AB2=1(1+AB)AB= ,∵AB0,n= = .【点评】本题是一道阅读理解题.命题者首先定义了一种变换,要求考生根据这种定义解决相关的问题. 读懂定义是解题的关键所在.本题所涉及的知识点有相似三角形的面积比等于相似比的平方,黄金比等.27.(2015江苏省无锡市,27,8)对于平面直角坐标系中的任意两点 ,我们把叫做两点间的直角距离,记作 .(1)已知O为坐标原点,动点满足 =1,请写出之间满足的关系式,并在所给的直角坐标系中出所有符合条件的点P所组成的图形;(2)设是一定点,是直线上的动点,我们把的最小值叫做到直线的直角距离,试求点M(2,1)到直线的直角距离。
阅读理解1.在平面直角坐标系中,对于点(),P x y 和(),'Q x y ,给出如下定义:如果()()0'0y x y y x ⎧≤⎪=⎨-<⎪⎩,那么称点Q 为点P 的“伴随点”.例如:点()5,6的“伴随点”为点()5,6;点()5,6-的“伴随点”为点()5,6--. (1)直接写出点()2,1A 的“伴随点”'A 的坐标.(2)点(),1B m m +在函数3y kx =+的图象上,若其“伴随点”'B 的纵坐标为2,求函数3y kx =+的解析式.(3)点C D 、在函数24y x =-+的图象上,且点C D 、关于y 轴对称,点D 的“伴随点”为'D .若点C 在第一象限,且'CD DD =,求此时“伴随点”'D 的横坐标.(4)点E 在函数()212y x n x =-+-≤≤的图象上,若其“伴随点”'E 的纵坐标'y 的最大值为()13m x ≤≤,直接写出实数n 的取值范围.【解析】解:(1)点A '的坐标为(2,1). (2)①当m ≥0时,m +1=2,m =1;∴B (1,2),∵点B 在一次函数y=kx+3图象上, ∴k +3=2, 解得:k =-1;∴一次函数解析式为y=-x+3;②当m <0时,m +1=-2,m =-3;∴B (-3,-2).∵点B 在一次函数y=kx+3图象上, ∴-3k +3=-2,解得:k =53, ∴一次函数解析式为y=53x+3; (3)设点C 的横坐标为n ,点C 在函数y=-x 2+4的图象上, ∴点C 的坐标为(n ,-n 2+4),∴点D 的坐标为(-n ,-n 2+4),D '(-n ,n 2-4); ∵CD =DD ', ∴2n =2(-n 2+4),解得:n ; ∵点C 在第一象限,∴取112n -=,212n -=(舍);∴D . (4)-2≤n ≤0、1≤n ≤3. 解析如下:当左边的抛物线在上方时,如图①、图②.-2≤n≤0,当右边的抛物线在上方时,如图③、图④.1≤n≤3;2.阅读下列材料,然后解答问题:在进行二次根式的化筒与计算时我们有时会遇到如,这样的式子,其实我们还可以将其进一步化简2==;)()22212111⨯⨯===-以上将分母中的根号化去的过程,叫做分母有理化.请参照以上方法化简:(1(2(3+++⋅⋅⋅+【解析】解:(1==(2211===-;(3+⋅⋅⋅+=+⋅⋅⋅+12222=+++⋅⋅⋅+=3.设,a b 是任意两个不等实数,我们规定:满足不等式a x b ≤≤的实数x 的所有取值的全体叫做闭区间,表示为[],a b .对于一个函数,如果它的自变量x 与函数值y 满足:当m x n ≤≤时,有m y n ≤≤,我们就称此函数是闭区间[],m n 上的“闭函数”.如函数4y x =-+,当1x =时,3y =;当3x =时,1y =,即当13x ≤≤时,有13y ≤≤,所以说函数4y x =-+是闭区间[]1,3上的“闭函数”(1)反比例函数2019y x=是闭区间[]1,2019上的“闭函数”吗?请判断并说明理由; (2)若二次函数26y x x k =-+是闭区间[]3,4上的“闭函数”,求k 的值;(3)若一次函数(0)y kx b k =+≠是闭区间[],m n 上的“闭函数”,求此函数的表达式(可用含,m n 的代数式表示).【解析】(1)反比例函数2019y x=是闭区间[1,2019]上的“闭函数” 理由如下反比例函数2019y x=在第一象限,y 随x 的增大而减小, 当1x =时,2019y = 当2019x =时,1y =, 即图象过点(1,2019)和(2019,1)当12019x ≤≤时,有12019y ≤≤,符合闭函数的定义,反比例函数2019y x=是闭区间[1,2019]上的“闭函数” (2)由于二次函数26y x x k =-+的图象开口向上,对称轴为3x =, 二次函数26y x x k =-+在闭区间[3,4]内,y 随x 的增大而增大 当3x =时,3y =,12k ∴=当4x =时,4y =, 即图象过点(3,3)和(4,4)当34x ≤≤时,有34y ≤≤,符合闭函数的定义,12k ∴=(3)因为一次函数(0)y kx b k =+≠是闭区间[],m n 上的“闭函数”,根据一次函数的图象与性质,有①当0k >时,即图象过点(),m m 和(),n nm k b m nk b n +=⎧⎨+=⎩,解得10k b =⎧⎨=⎩.y x ∴=②当k 0<时,即图象过点(),m n 和(),n m ,mk b nnk b m +=⎧⎨+=⎩解得1 k b m n =-⎧⎨=+⎩∴直线解析式为y x m n =-++综上所述,当k >0时,直线的解析式为y =x ,当k <0,直线的解析式为y =−x +m +n . 4.阅读理解,解答下列问题:在平面直角坐标系中,对于点(),A x y 若点B 的坐标为(),kx y x ky +-,则称点B 为点A 的“k 级牵挂点”,如点()2,5A的“2级牵挂点”为(225,225)B ⨯+-⨯,即()9,8B -.(1)已知点()5,1P -的“3-级牵挂点”为1P 求点1P 的坐标,并求出点1P 到x 轴的距离;(2)已知点Q 的“4级牵挂点”为()15,3Q ,求Q 点的坐标及所在象限; (3)如果点(),1M m m +的“2级牵挂点”1M 在x 轴上,求点1M 的坐标;(4)如果点()1,1C c -+的“2级牵挂点”1C 在第二象限, ①求c 的取值范围;②在①中,当c 取最大整数时,过点1C 作11C D x ⊥轴于点1D ,连接1OC ,将11OC D ∆平移得到1OQD ∆,其中O 、1C 、1D 的对应点分别为1O 、Q 、D ,连接1C Q ,直接写出四边形111C D O Q 的面积为______.【解析】解:(1)点()5,1P -的“3-级牵挂点”为1P ,5(3)116∴-⨯-+=,5(3)12---⨯=-即()116,2P -且1P 到x 轴的距离为2(2)点Q 的“4级牵挂点”为()15,3Q设Q 点的坐标为(),x y4543x y x y +=⎧∴⎨-=⎩解得11x y =⎧⎨=⎩Q ∴点的坐标为()1,1,在第一象限.(3)点(),1M m m +的“2级牵挂点”1M2131m m m ∴++=+,2(1)2m m m -+=--即1(31,2)M m m +-- 点1M 在x 轴上20m ∴--= 2m =-则315m +=- 1M ∴的坐标为()5,0-(4)①点()1,1C c -+的“2级牵挂点”1C1211c c ∴-⨯++=-,12(1)23c c --+=--即1(1,23)C c c ---点1C 在第二象限10230c c -<⎧∴⎨-->⎩ 解得32c <-c ∴的取值范围为32c <-②由题意可以得到下图:所以四边形111C D O Q 的面积=1111111314122C D OC OO QSS+=⨯⨯+⨯=.故答案为112. 5.定义:若两条抛物线在x 轴上经过两个相同点,那么我们称这两条抛物线是“同交点抛物线”,在x 轴上经过的两个相同点称为“同交点”,已知抛物线y=x 2+bx+c 经过(﹣2,0)、( ﹣4,0),且一条与它是“同交点抛物线”的抛物线y=ax 2 +ex+f 经过点( ﹣3,3). (1)求b 、c 及a 的值;(2)已知抛物线y =﹣x 2+2x +3与抛物线y n =3n x 2﹣23n x ﹣n (n 为正整数) ①抛物线y 和抛物线y n 是不是“同交点抛物线”?若是,请求出它们的“同交点”,并写出它们一条相同的图像性质;若不是,请说明理由.②当直线y =12x+ m 与抛物线y 、y n ,相交共有4个交点时,求m 的取值范围. ③若直线y =k (k <0)与抛物线y =﹣x 2+2x +3与抛物线y n =3n x 2﹣23nx ﹣n (n 为正整数)共有4个交点,从左至右依次标记为点A 、点B 、点C 、点D ,当AB =BC=CD 时,求出k 、n 之间的关系式【解析】(1) ∵抛物线2y x bx c =++经过(–2,0)、( –4,0),则代入得:4201640b c b c -+=⎧⎨-+=⎩,解得:6b =,8c =,设“同交点抛物线”的解析式为()()24y a x x =++, 将(–3,3)代入得:()()33234a =-+-+, 解得:3a =-,故答案为:6b =,8c =,3a =-; (2)①令0y =,则2230x x -++=,解得:1213x x =-=,,∴抛物线223y x x =-++与x 轴的交点坐标为:(–1,0)、(3,0),令0n y =,则3n 2x -23n0x n -=, 解得:1213x x =-=,, ∴抛物线2233n n n y x x n =--与x 轴的交点坐标为:(–1,0)、(3,0), ∴抛物线y 和抛物线n y 是“同交点抛物线”, 它们图形共同性质:对称轴同为直线1x =; ②当直线12y x m =+与抛物线y 相交只有1个交点时, 由21223y x m y x x ⎧=+⎪⎨⎪=-++⎩,得:23302x x m -+-=, 由()223441302b ac m ⎛⎫=-=--⨯⨯-= ⎪⎝⎭⊿,解得:5716m =, 抛物线2233n n n y x x n =--的顶点坐标为(1,43n -),其中n 为正整数, 因为随着n 的增大,n y 的顶点纵坐标减小,所以当直线12y x m =+与抛物线n y 中1n =时的抛物线相交只有1个交点时,由21212133y x m y x x ⎧=+⎪⎪⎨⎪=--⎪⎩,得:()227660x x m --+=, 由()()224742660b ac m =-=--⨯⨯--=⊿,解得:9748m =-, 如图所示:当直线12y x m =+经过“同交点”时与两抛物线只有三个交点, 把“同交点”(–1,0)代入12y x m =+得:12m =, 把“同交点” (3,0)代入12y x m =+得:32m =-, ∴当直线12y x m =+与抛物线y 、n y 有4个交点时,m 的取值范围为: 97574816m -<<,且12m ≠,32m ≠-; ③设直线y k =分别与抛物线223y x x =-++和抛物线2233n n y x x n =--相交于A 、D 、B 、C ,如图:由223y k y x x =⎧⎨=-++⎩,得:2230x x k -+-=,∵122b x x a +=-=,123c x x k a==-, ∴()()()22221212124243164AD x x x x x x k k =-=+-=--=-, 由2233y k n n y x x n =⎧⎪⎨=--⎪⎩,得:()22330nx nx n k --+=, ∵342b x x a +=-=,()3433n k c x x a n-+==, , ∵AB BC CD ==,∴229AD BC =, ∴12164916k k n ⎛⎫-=+ ⎪⎝⎭, 整理得:32270n k nk ++=.6.回答下列问题:(1)已知一列数:2,6,18,54,162,….,若将这列数的第一个数记为1a ,第二个数记为2a …,第n 个数记为n a ,则67________;____a a ==(2)观察下列运算过程:231222...2n S =+++++①①2⨯得2312222...2n S +=++++②②-①得()()nk n k n x x x x x x BC 1216334242432432422+=+⨯+=-+=-=∴121n S +=-参考上面方法,求(1)中数列的前n 个数的和S .【解析】通过观察可发现其规律为:13n n a a -=,故653486a a =⨯=,7631458a a =⨯=;(2)根据题中已给的推导过程可得(1)中12121232323n S -=⨯+⨯+⨯+⋯+⨯①①3⨯得:123323232323n S =⨯+⨯+⨯+⋯+⨯②②-①得:2232n S =⨯-31n S =-7.如图,平面内的两条直线1l 、2l ,点A ,B 在直线1l 上,点C 、D 在直线2l 上,过A 、B 两点分别作直线2l 的垂线,垂足分別为1A ,1B ,我们把线段11A B 叫做线段AB 在直线2l 上的正投影,其长度可记作(,)AB AD T 或2(),AB l T ,特别地线段AC 在直线2l 上的正投影就是线段1AC .请依据上述定义解决如下问题:(1)如图1,在锐角ABC ∆中,5AB =,(,)3AC AB T =,则,()BC AB T = ;(2)如图2,在Rt ABC ∆中,90ACB ∠=︒,(),4AC AB T =,(,)9BC AB T ==,求ABC ∆的面积;(3)如图3,在钝角ABC ∆中,60A ∠=︒,点D 在AB 边上,90ACD ∠=︒,(),2AD AC T =,(),6BC AB T =,求(),BC CD T【答案】(1)2;(2)39;(3 【解析】解:(1)如图1中,作CH AB ⊥.(,)3AC AB T =,3AH ∴=,5AB =,532BH ∴=-=,(,)2BC AB T BH ∴==,故答案为2.(2)如图2中,作CH AB ⊥于H .(,)4AC AB T =,(,)9BC AB T ==,4AH ∴=,9BH =,90ACB CHA CHB ∠=∠=∠=︒,90A ACH ∴∠+∠=︒,90ACH BCH ∠+∠=︒,A BCH ∴∠=∠,ACH CBH ∴∆∆∽, ∴CH AH BH CH =, ∴49CH CH=, 6CH ∴=,111363922ABC S AB CH ∆∴==⨯⨯=. (3)如图3中,作CH AD ⊥于H ,BK CD ⊥于K .90ACD ∠=︒,(),2AD AC T =,2AC ∴=,60A ∠=︒,=30ADC BDK ACH ∴∠=∠∠=︒,CD ∴==24AD AC ==,112AH AC ==,3DH AD AH =-=, (,)6BC AB T =,CH AB ⊥,6BH ∴=,3DB BH DH ∴=-=,在Rt BDK ∆中,90K ∠=︒,3BD =,30BDK ∠=︒,cos30DK BD ∴=︒=,22CK CD DK ∴=+==(,)BC CD T CK ∴== 8.阅读下列一段文字,然后回答下列问题:材料 1:已知平面内两点1111,,()()M x y N x y 、,则这两点间的距离可用下列公式计算:MN =例如:已知()()3,1,1,2P Q -,则这两点的距离PQ ==材料2:在平面直角坐标系中,以任意两点()()1122,,,P x y Q x y 为端点的线段中点坐标为1212,22x x y y ++⎛⎫ ⎪⎝⎭例如:点()1,2P 、点()3,6Q ,则线段PQ 的中点M 的坐标为1326,22++⎛⎫ ⎪⎝⎭,即()2,4M ()1如图,已知()()1,4,6,1A B ,求线段AB 的长度和中点C 的坐标;()2若M 为x 轴上一动点,求MA MB +的最小值;()3已知ABC ∆的顶点坐标分别为()()()0,4,1,2,4,2A B C -,你能判定ABC ∆的形状吗?请说明理由.【解析】()1解:AB ===75,22C ⎛⎫⎪⎝⎭()2解:设(),0M a()()1,4,B 6,1A作点()1,4A 关于x 轴对称点'A()'1,4A -连接'A B'MA MB MA MB +=+()min 'MA MB A B ∴+===()3解:AB =AC =5BC ==2252025AB AC +=+=225BC =222AB AC BC +=ABC ∆∴为直角三角形9.一个三位正整数M ,其各位数字均不为零且互不相等.若将M 的十位数字与百位数字交换位置,得到一个新的三位数,我们称这个三位数为M 的“友谊数”,如:168的“友谊数”为“618”:若从M 的百位数字、十位数字、个位数字中任选两个组成一个新的两位数,并将得到的所有两位数求和,我们称这个和为M 的“团结数”,如:123的“团结数”为121321233132132+++++=(1)若M 的其百位数字为a ,十位数字为b 、个位数字为c ,试说明M 与其“友谊数”的差能被15整除;(2)若一个三位正整数N ,其百位数字为2,十位数字为a 、个位数字为b ,且各位数字互不相等(0,0)a b ≠≠,求N 的“团结数”【解析】(1)由题意得:M 为10010a b c ++,则M 的友谊数为10010b a c ++,因此有()1001010010a b c b a c ++-++,1001010010a b c b a c =++---,9090a b =-,()90901566a b a b -=-,9090a b ∴-能被15整除,即M 与其“友谊数”的差能被15整除;(2)()()()()()()1021021021021010a a b b a b b a ⨯++++⨯+++++++,20102201021010a a b b a b b a =+++++++++++,222244a b =++,则N 的“团结数”是222244a b ++.10.我们知道,假分数可以化为整数与真分数和的形式,例如:31122=+,在分式中,对于只含有一个字母的分式,当分子的次数大于或等于分母的次数时,我们称之为“假分数”;当分子的次数小于分母的次数时,我们称之为“真分式”.例如:像x 1x 1+-,2x x 2-,……这样的分式是假分式;像4x 2-,221x x +,……这样的分式是真分式.类似的,假分式也可以化为整式与真分式的和的形式,例如:()x 12x 1x 1221x 1x 1x 1x 1x 1-++-==+=+-----;()()22x 2x 24x x 444x 2x 2x 2x 2x 2+-+-+===++----; (1)分式2x是 分式(填“真”或“假”) (2)将分式x 1x 2-+化为整式与真分式的和的形式 (3)如果分式22x 1x 1--的值为整数,求x 的整数值 【解析】解:(1)因为分子次数小于分母次数,我们称之为真分数,分式2x 分子零次,分母1次,所以分式2x是真分式; 故答案为:真;(2)x1x2-+=2323312222 x xx x x x+-+=-=-++++;(3)22x1x1--=()()()22111221121111x xxxx x x+-+-+==++---;∵分式的值为整数,且x为整数,∴x-1=±1,∴x=2或x=0∴x的整数值为2或0.11.阅读理解:己知:对于实数a≥0,b≥0,满足 a = b时,等号成立,此时取得代数式a+b的最小值.根据以上结论,解决以下问题:(1)拓展:若a>0,当且仅当a=___时,a+1a有最小值,最小值为____;(2)应用:①如图1,已知点P为双曲线y=4x(x>0)上的任意一点,过点P作PA⊥x轴,PB丄y轴,四边形OAPB的周长取得最小值时,求出点P的坐标以及周长最小值:②如图2,已知点Q是双曲线y=8x(x>0)上一点,且PQ∥x轴,连接OP、OQ,当线段OP取得最小值时,在平面内取一点C,使得以0、P、Q、C为顶点的四边形是平行四边形,求出点C的坐标.【解析】(1)根据题意知a=1a 时最小,又∵a>0,∴a=1,则a+1a=2. (2)①设点P(x ,4x ),(x>0);则四边形OAPB 周长为2(x+4x), 当x=4x 时,x=2,此时2(x+4x)有最小值8,即周长最小为8,此时点P(2,2).②设点P(x ,4x ),(x>0);OP== OP 最小,即x+4x 最小,所以x=4x,即x=2,∴点P (2,2); 由点P (2,2),即可知Q 点纵坐标是2,带入y=8x (x>0)得点Q (4,2); 所以由O ,P ,Q 三点坐标,要使OPQC 四点能构成平行四边形,则点C 坐标为:(-2,0)、(2,0)或(6,4).12.数学小组遇到这样一个问题:若a ,b 均不为零,求||||a b x a b=+的值.小明说:“考虑到要去掉绝对值符号,必须对字母a ,b 的正负作出讨论,又注意到a ,b 在问题中的平等性,可从一般角度考虑两个字母的取值情况.解:①当两个字母a ,b 中有2个正,0个负时,②当两个字母a ,b 中有1个正,1个负时,③当两个字母a ,b 中有0个正,2个负时.(1)根据小明的分析,求||||a b x a b=+的值. (2)若a b c ,,均不为零,且0a b c ++=,求代数式||||||a b b c c a c a b +++++的值. 【解析】(1)①当a b ,中有2个正,0个负时, 原式||||112a b x a b=+=+=;②当,a b 中有1个正,1个负时, 原式||||110a b x a b=+=-=; ③当,a b 中有0个正,2个负时, 原式||||112a b x a b=+=--=-; 综上所述,x 的值为2-或0或2.(2)∵0a b c ++=,∴a b c +=-,b c a +=-,c a b +=-,a b c ,,不可能都为正或都为负, ∴||||||||||||a b b c c a c a b c a b c a b +++---++=++. ①当a b c ,,中有两正一负时, 原式||||||1111c a b c a b---=++=+-=, ②当a b c ,,中有一正两负时, 原式||||||1111c a b c a b---=++=--+=-. 综上所述||||||a b b c c a c a b +++++的值为1或1-.。
中考数学总复习《阅读理解综合压轴题》专项提升练习(附答案)学校:___________班级:___________姓名:___________考号:___________1.阅读下列有关材料并解决有关问题.我们知道|x|={x (x>0) 0 (x=0)−x (x<0),现在我们可以利用这一结论来化简含有绝对值的代数式.例如:化简代数式|x+1|+|x−2|时,可令x+1=0和x−2=0,分别求得x=−1和x=2(称-1,2分别为|x+1|与|x−2|的零点值).在有理数范围内,零点值x=−1和x=2可将全体有理数分成不重复且不遗漏的三种情况:①x<−1;②−1≤x<2;③x≥2.化简|x+1|+|x−2|时,对应三种情况为:①当x<−1时,原式=−(x+1)−(x−2)=−2x+1;②当−1≤x<2时,原式=(x+1)−(x−2)=3;③当x≥2时,原式=(x+1)+(x−2)=2x−1.通过以上阅读,请你解决问题:(1)|x−3|+|x+4|零点值是_________和__________;(2)化简代数式|x−3|+|x+4|;(3)解方程|x−3|+|x+4|=9;(4)|x−3|+|x+4|+|x−2|+|x−2020|的最小值为_________,此时x的取值范围为____________.2.先阅读下列材料,再解答问题:常用的分解因式的方法有提取公因式法和公式法,但有的多项式只用上述一种方法无法分解,例如多项式x2−xy+4x−4y和a2−b2−c2+2bc.经过细心观察可以发现,若将多项式进行合理分组后,先将每一组进行分解,分别分解后再用提公因式法或公式法就可以完整分解了.解答过程如下:(1)x2−xy+4x−4y=(x2−xy)+(4x−4y)=x(x−y)+4(x−y)=(x−y)(x+4)(2)a2−b2−c2+2bc=a2−(b2+c2−2bc)=a2−(b−c)2=(a+b−c)(a−b+c)这种方法叫分组分解法,对于超过三项的多项式往往考虑这种方法.利用上述思想方法,把下列各式分解因式:(1)m3−2m2−3m+6(2)x2−2xy−9+y23.阅读下列材料:已知实数x y 满足(x 2+y 2+1)(x 2+y 2−1)=63 试求x 2+y 2的值.解:设x 2+y 2=a 则原方程变为(a +1)(a −1)=63 整理得a 2−1=63 a 2=64 根据平方根意义可得a =±8 由于x 2+y 2⩾0 所以可以求得x 2+y 2=8.这种方法称为“换元法” 用一个字母去代替比较复杂的单项式、多项式 可以达到化繁为简的目的.根据阅读材料内容 解决下列问题:(1)已知实数x y 满足(2x +2y +3)(2x +2y −3)=27 求x +y 的值.(2)已知a b 满足方程组{3a 2−2ab +12b 2=472a 2+ab +8b 2=36;求1a +12b 的值; (3)填空:已知关于x y 的方程组{a 1x +b 1y =c 1a 2x +b 2y =c 2的解是{x =9y =5 则关于x y 的方程组{a 1x 2−2a 1x +b 1y =c 1−a 1a 2x 2−2a 2x +b 2y =c 2−a 2的解是_______. 4.例:解不等式(x ﹣2)(x +3)>0解:由实数的运算法则:“两数相乘 同号得正”得①{x −2>0x +3>0 或②{x −2<0x +3<0解不等式组①得 x >2解不等式组②得 x <﹣3所以原不等式的解集为x >2或x <﹣3.阅读例题 尝试解决下列问题:(1)平行运用:解不等式x 2﹣9>0;(2)类比运用:若分式x+1x−2的值为负数 求x 的取值范围.5.定义:有一个内角为90° 且对角线相等的四边形称为准矩形.(1)如图1 准矩形ABCD 中 ∠ABC =90° 若AB =2 BC =3 则BD =_____;(2)如图2 正方形ABCD中点E F分别是边AD AB上的点且CF∠BE 求证:四边形BCEF是准矩形;(3)已知准矩形ABCD中∠ABC=90° ∠BAC=60° AB=2 当△ADC为等腰三角形时求这个准矩形的面积.6.仔细阅读下面例题解答问题.【例题】已知:m2−2mn+2n2−8n+16=0求m n的值.解:∠m2−2mn+2n2−8n+16=0∠(m2−2mn+n2)+(n2−8n+16)=0∠(m−n)2+(n−4)2=0∠m−n=0n−4=0∠m=4n=4.∠m的值为4 n的值为4.【问题】仿照以上方法解答下面问题:(1)已知x2+2xy+2y2−6y+9=0求x y的值.(2)在Rt∠ABC中∠C=90°三边长a b c都是正整数且满足a2+b2−12a−16b+100=0求斜边长c的值.x+4与x轴y轴分别交于点A和点B.7.如图直线y=43(1)求A B两点的坐标;(2)过B点作直线与x轴交于点P 若∠ABP的面积为8 试求点P的坐标.(3)点M是OB上的一点若将∠ABM沿AM折叠点B恰好落在x轴上的点B1处求出点M的坐标.(4)点C在y轴上连接AC 若∠ABC是以AB为腰的等腰三角形请直接写出点C的坐标.8.定义:把斜边重合且直角顶点不重合的两个直角三角形叫做共边直角三角形.(1)概念理解:如图1 在△ABC和△DBC中∠A=90∘,AB=3,AC=4,BD=2,CD=√21说明△ABC 和△DBC是共边直角三角形.(2)问题探究:如图2 △ABC和△DBC是共边直角三角形E F分别是AD BC的中点连结EF求证EF⊥AD.(3)拓展延伸:如图3 △ABC和△DBC是共边直角三角形且BD=CD连结AD求证:AD平分∠BAC.9.【定义】如果1条线段将一个三角形分成2个等腰三角形那么这1条线段就称为这个三角形的“好线” 如果2条线段将一个三角形分成3个等腰三角形那么这2条线段就称为这个三角形的“好好线”.【理解】如图① 在△ABC中∠A=27° ∠C=72° 请你在这个三角形中画出它的“好线” 并标出等腰三角形顶角的度数.如图② 已知△ABC是一个顶角为45°的等腰三角形请你在这个三角形中画出它的“好好线” 并标出所分得的等腰三角形底角的度数.【应用】(1)在△ABC中已知一个内角为24° 若它只有“好线” 请你写出这个三角形最大内角的所有可能值(按从小到大写);(2)在△ABC中∠C=27° AD和DE分别是△ABC的“好好线” 点D在BC边上点E在AB边上且AD =DC BE=DE 根据题意写出∠B的度数的所有可能值.10.【阅读】如图1 若ΔABD∽ΔACE且点B,D,C在同一直线上则我们把ΔABD与ΔACE称为旋转相似三角形.【理解】(1)如图2 ΔABC和ΔADE是等边三角形点D在边BC上连接CE.求证:ΔABD与ΔACE是旋转相似三角形.【应用】(2)如图3 ΔABD与ΔACE是旋转相似三角形AD//CE.求证:AC=DE.【拓展】(3)如图4 AC是四边形ABCD的对角线∠D=90°∠B=∠ACD BC=25AC=20AD= 16.试在边BC上确定一点E使得四边形AECD是矩形并说明理由.11.定义:如果三角形上有两点其中一点为一边的中点且这两点的连线将三角形分成周长相等的两部分我们就称这条线段为该三角形的“等分周线”.如图1 在△ABC中D是BC的中点点E在AB上若BD+BE=CD+AC+AE则DE为△ABC的一条“等分周线”.概念理解:(1)任意三角形的“等分周线”有______条若某三角形的一条“等分周线”有一个端点是三角形的顶点则这个三角形是______.规律探究:(2)如图1 在△ABC中DE为△ABC的一条“等分周线”.若AB>AC∠A=αAC=m求DE 的长.(用含mα的代数式表示).拓展应用(3)如图2 在四边形ABCD中BC=2CD AC平分∠BCD BA⊥AC点E在线段AC上连接ED EB 且AB=√3EC=√3+1∠BEC=120°求ED的长.12.(1)如图① 四边形ABCD中AB=AD ∠B=∠ADC=90°.E F分别是BC CD上的点且BE+FD=EF.试探究图中∠EAF与∠BAD之间的数量关系.小明同学探究此问题的方法是:延长FD到G 使DG=BE 连结AG.先证明△ABE≌△ADG再证明△AEF≌△AGF从而得出∠EAF=∠GAF 最后得出∠EAF与∠BAD之间的数量关系是.(2)将(1)中的条件“∠B=∠ADC=90°”改为“∠B+∠D=180°”(如图②)其余条件不变上述数量关系是否成立成立请证明;不成立说明理由(3)如图③ 中俄两国海军在南海举行联合军事演习中国舰艇在指挥中心(O)北偏西30°的A处俄罗斯舰艇在指挥中心南偏东70°的B处两舰艇到指挥中心距离相等.接到行动指令后中国舰艇向正东方向以60海里/小时的速度前进俄罗斯舰艇沿北偏东50°的方向以80海里/小时的速度前进2小时后指挥中心观测到两舰艇分别到达E F处且相距280海里.求此时两舰艇的位置与指挥中心(O处)形成的夹角∠EOF的大小.13.定义:如图1 点M N把线段AB分割成AM MN和BN若以AM MN BN为边的三角形是一个直角三角形则称点M N是线段AB的勾股点.已知点M N是线段AB的勾股点若AM=1 MN=2 则BN =.(1)【类比探究】如图2 DE是△ABC的中位线M N是AB边的勾股点(AM<MN<NB)连接CM CN 分别交DE于点G H.求证:G H是线段DE的勾股点.(2)【知识迁移】如图3 C D是线段AB的勾股点以CD为直径画∠O P在∠O上AC=CP连结P A PB若∠A=2∠B求∠B的度数.(x>0)上的动点直线y=−x+2与坐标轴(3)【拓展应用】如图4 点P(a b)是反比例函数y=2x分别交于A B两点过点P分别向x y轴作垂线垂足为C D且交线段AB于E F.证明:E F是线段AB的勾股点.14.【了解概念】有一组对角互余的凸四边形称为对余四边形连接这两个角的顶点的线段称为对余线.【理解运用】(1)如图① 对余四边形ABCD中AB=5 BC=6 CD=4 连接AC.若AC=AB求sin∠CAD的值;(2)如图② 凸四边形ABCD中AD=BD AD∠BD当2CD2+CB2=CA2时判断四边形ABCD是否为对余四边形.证明你的结论;【拓展提升】(3)在平面直角坐标系中点A(﹣1 0)B(3 0)C(1 2)四边形ABCD是对余四边形点E=u点D的纵坐标为t请直接写出u关于t 在对余线BD上且位于∠ABC内部∠AEC=90°+∠ABC.设AEBE的函数解析式.15.定义:若四边形有一组对角互补一组邻边相等且相等邻边的夹角为直角像这样的图形称为“直角等邻对补”四边形简称“直等补”四边形根据以上定义解决下列问题:(1)如图1 正方形ABCD中E是CD上的点将ΔBCE绕B点旋转使BC与BA重合此时点E的对应点F在DA的延长线上则四边形BEDF为“直等补”四边形为什么?(2)如图2 已知四边形ABCD是“直等补”四边形AB=BC=5CD=1AD>AB点B到直线AD的距离为BE.①求BE的长.②若M N分别是AB AD边上的动点求ΔMNC周长的最小值.16.定义:在平行四边形中若有一条对角线是一边的两倍则称这个平行四边形为两倍四边形其中这条对角线叫做两倍对角线这条边叫做两倍边.如图1 四边形ABCD是平行四边形BE//AC延长DC交BE于点E连结AE交BC于点F AB=1AD=m.(1)若∠ABC=90°如图2.①当m=2时试说明四边形ABEC是两倍四边形;②是否存在值m使得四边形ABCD是两倍四边形若存在求出m的值若不存在请说明理由;(2)如图1 四边形ABCD与四边形ABEC都是两倍四边形其中BD与AE为两倍对角线AD与AC为两倍边求m的值.17.定义:有一组邻边相等且对角互补的四边形叫做等补四边形.【问题理解】(1)如图1 点A B C在∠O上∠ABC的平分线交∠O于点D 连接AD CD.求证:四边形ABCD是等补四边形;【拓展探究】(2)如图2 在等补四边形ABCD中AB=AD 连接AC AC是否平分∠BCD?请说明理由;【升华运用】(3)如图3 在等补四边形ABCD中AB=AD 其外角∠EAD的平分线交CD的延长线于点F.若CD=6 DF =2 求AF的长.18.我们把方程(x−m)2+(y−n)2=r2称为圆心为(m,n)半径长为r的圆的标准方程.例如圆心为(1,−2)半径长为3的圆的标准方程是(x−1)2+(y+2)2=9.在平面直角坐标系中⊙C与x轴交于点A B且点B的坐标为(8,0)与y轴相切于点D(0,4)过点A B D的抛物线的顶点为E.(1)求⊙C的标准方程;(2)求抛物线的解析式;(3)试判断直线AE与⊙C的位置关系并说明理由.19.定义:点P(a b)关于原点的对称点为P' 以PP'为边作等边∠PP'C则称点C为P的“等边对称点”;(1)若P(1 √3)求点P的“等边对称点”的坐标.(x>0)上一动点当点P的“等边对称点”点C在第四象限时(2)若P点是双曲线y=2x①如图(1)请问点C是否也会在某一函数图象上运动?如果是请求出此函数的解析式;如果不是请说明理由.②如图(2)已知点A(1 2)B(2 1)点G是线段AB上的动点点F在y轴上若以A G F C 这四个点为顶点的四边形是平行四边形时求点C的纵坐标y c的取值范围.20.【概念认识】在同一个圆中两条互相垂直且相等的弦定义为“等垂弦”两条弦所在直线..的交点为等垂弦的分割点.如图① AB CD是∠O的弦AB=CD AB∠CD垂足为E则AB CD是等垂弦E为等垂弦AB CD的分割点.【数学理解】(1)如图② AB是∠O的弦作OC∠O A OD∠OB分别交∠O于点C D连接CD.求证:AB CD是∠O的等垂弦.(2)在∠O中∠O的半径为5E为等垂弦AB CD的分割点BEAE =13.求AB的长度.【问题解决】(3)AB CD是∠O的两条弦CD=12AB且CD∠AB垂足为F.①在图③中利用直尺和圆规作弦CD(保留作图痕迹不写作法).②若∠O的半径为r AB=mr(m为常数)垂足F与∠O的位置关系随m的值变化而变化直接写出点F 与∠O的位置关系及对应的m的取值范围.参考答案1.解:(1)令x−3=0和x+4=0解得:x=3和x=−4故答案为:3 ﹣4.(2)当x<−4时|x−3|+|x+4|=−(x−3)−(x+4)=−2x−1;当−4≤x<3时|x−3|+|x+4|=−(x−3)+(x+4)=7;当x≥4时|x−3|+|x+4|=x−3+x+4=2x+1综上所述|x−3|+|x+4|={−2x−1,x<−4 7,−4≤x<32x+1,x>3.(3)当x<−4时3−x−x−4=9解得x=−5;当−4≤x<3时3−x+x+4=9方程无解;当x≥3时x−3+x+4=9解得x=4;∠方程的解为x=−5或x=4.(4)|x−3|+|x+4|+|x−2|+|x−2020|中的零点值分别为:x=3,x=−4,x=2,x=2020当x<−4时|x−3|+|x+4|+|x−2|+|x−2020|=3−x−x−4−x+2−x+2020=−4x+2021;当−4≤x<2时|x−3|+|x+4|+|x−2|+|x−2020|=3−x+x+4−x+2−x+2020=−2x+ 2029;当2≤x≤3时|x−3|+|x+4|+|x−2|+|x−2020|=3−x+x+4+x−2−x+2020=2025;当3<x<2020时|x−3|+|x+4|+|x−2|+|x−2020|=x−3+x+4+x−2−x+2020=2x+ 2019;当x≥2020时|x−3|+|x+4|+|x−2|+|x−2020|=x−3+x+4+x−2+x−2020=4x−2021;显然当2≤x≤3时原式取得最小值最小值为2025故答案为:2025 2≤x≤3.2.解:(1)m3−2m2−3m+6=m2(m−2)−3(m−2)=(m−2)(m2−3);(2)x2−2xy−9+y2=x2−2xy+y2−9=(x−y)2−32=(x−y+3)(x−y−3).3.解:(1)设2x +2y =a 则原方程变为(a +3)(a −3)=27整理 得:a 2−9=27 即a 2=36解得:a =±6则2x +2y =±6∴x +y =±3;(2)令a 2+4b 2=x ab =y则原方程变为:{3x −2y =472x +y =36解之得:{x =17y =2 ∠a 2+4b 2=17 ab =2∠(a +2b )2=a 2+4ab +4b 2=17+8=25∠a +2b =±5∠1a +12b =2b+a2ab =±54; (3)由方程组{a 1x 2−2a 1x +b 1y =c 1−a 1a 2x 2−2a 2x +b 2y =c 2−a 2 得{a 1x 2−2a 1x +a 1+b 1y =c 1a 2x 2−2a 2x +a 2+b 2y =c 2整理 得:{a 1(x −1)2+b 1y =c 1a 2(x −1)2+b 2y =c 2∵方程组{a 1x +b 1y =c 1a 2x +b 2y =c 2的解是{x =9y =5 ∴方程组{a 1(x −1)2+b 1y =c 1a 2(x −1)2+b 2y =c 2的解是:{(x −1)2=9y =5 ∴x −1=±3 且y =5解得:{x =4y =5 或{x =−2y =5. 4.解:(1)解不等式x 2﹣9>0 即为解(x +3)(x −3)>0根据“两数相乘 同号得正”得①{x −3>0x +3>0 或②{x −3<0x +3<0解不等式组①得 x >3解不等式组②得 x <﹣3∠原不等式的解集为x >3或x <﹣3;(2)由题得不等式x+1x−2<0根据“两数相除 同号得正 异号得负”得①{x +1>0x −2<0 或②{x +1<0x −2>0解不等式组①得−1<x<2不等式组②无解∠原不等式的解集为−1<x<2.5.解:(1)∠∠ABC=90∠BD=√AB2+BC2=√4+9=√13故答案为√13(2)∠四边形ABCD是正方形∠AB=BC,∠A=∠ABC=90°∠∠EBF+∠EBC=90°∠BE∠CF∠∠EBC+∠BCF=90°∠∠EBF=∠BCF∠∠ABE∠∠BCF(AAS)∠BE=CF 且∠CBF=90°∠四边形BCEF是准矩形;(3)∠∠ABC=90° ∠BAC=60°∠∠ACB=30°∠AB=2∠AC=4 BC=2√3准矩形ABCD中BD=AC=4①当AC=AD时则AD=AC=BD 如图1 作DE∠AB∠AE=BE=12AB=1∠DE=√AD−2AE2=√16−1=√15∠S准矩形ABCD =S△ADE+S梯形BCDE=12DE×AE+12(BC+DE )×BE=12×√15×1+12(2√3+√15)×1=√15+√3;②当CA=CD 时 则CD=CA=BD 如图2 作DF∠BC 垂足为F∠BD=CD∠BF=CF=12BC=√3∠DF=√CD 2−CF 2=√16−3=√13∠S 准矩形ABCD =S △DCF +S 梯形ABFD=12FC×DF+12(AB+DF )×BF=12×√3×√13+12(2+√13)×√3=√39+√3;③当DA=DC 如图3 取AC 中点G 连DG 则DG∠AC . 连接BG过B 作BH∠DG 垂足为H .在Rt △ABC 中 ∠ABC =90° ∠BAC =60° AB =2 G 为AC 中点∠AG=BG=12AC=AB=2∠∠ABG 为等边三角形 ∠∠BGC=120° ∠BGH=30°又BD=AC=4在Rt △BHG 中 BG=2 ∠BGH=30°∠BH=1 HG=√3在Rt △DHB 中 BH=1 BD=4∠DH=√15∠DG=DH ﹣HG=√15﹣√3∠S 准矩形ABCD =S △ABC +S △ACD=12AB×BC+12AC×DG=12×2√3×2+12×4×(√15﹣√3) =2√15;故答案为√15+√3;√39+√3;2√15.6.解:(1)∠x 2+2xy +2y 2−6y +9=0∠(x 2+2xy +y 2)+(y 2−6y +9)=0∠(x +y)2+(y −3)=20∠x +y =0,y −3=0∠x =−3,y =3(2)∠a 2+b 2−12a −16b +100=0∠(a 2−12a +36)+(b 2−16b +64)=0∠(a −6)2+(b −8)2=0∠a −6=0 b −8=0∠a =6 b =8 在Rt ∠ABC 中 ∠C =90°∠c =√a 2+b 2=√62+82=10.7.解:(1)对于y =43x +4 令y =0 即y =43x +4=0 解得x =﹣3 令x =0 则y =4 故点A B 的坐标分别为(﹣3 0) (0 4);(2)设点P (x 0)则∠ABP 的面积=12×AP ×OB =12×4×|x +3|=8 解得x =1或﹣7故点P 的坐标为(1 0)或(﹣7 0);(3)由点A B 的坐标知 OA =3 BO =4 则AB =√AO 2+BO 2=5=AB 1 故点B 1的坐标为(2 0)设点M 的坐标为(0 m )由题意得:MB =MB 1 即m 2+4=(m ﹣4)2 解得m =1.5故点M 的坐标为(0 1.5);(4)设点C (0 t )则AB =5 AC =√32+t 2当AB =BC 时 则5=|t ﹣4| 解得t =9或﹣1当AB =AC 时 即25=9+t 2 解得t =4(舍去)或﹣4故点C 的坐标为(0 9)或(0 ﹣1)或(0 ﹣4).8.解:(1)∠在△ABC 中∠BC=√32+42=5∠BD =2,CD =√21∠BD 2+CD 2=25=BC 2∠∠BCD 是直角三角形∠△ABC 和△DBC 是共边直角三角形.(2)如图 连接AE,DE∠E 点是BC 中点∠AE,DE 分别是Rt∠ABC 和Rt∠DBC 斜边上的中线∠AE=12BC DE=12BC ∠AE=DE∠∠ADE 是等腰三角形∠F 点是AD 中点∠EF∠AD ;(3)作DN∠AB DM∠AC 的延长线于M 点∠∠BAC=90°∠四边形ANDM 是矩形∠∠NDM=90°∠∠NDC+∠CDM=90°又∠BDC=90°∠∠NDC+∠BDN=90°∠∠BDN= CDM∠∠BND=∠CMD=90° BD=CD∠∠BDN∠∠CDM∠DN=DM∠AD平分∠BAC.9.解:(理解)如图① 如图②所示(应用)(1)①如图③当∠B=24° AD为“好线”则A C=AD=BD这个三角形最大内角是∠BAC=106°;②如图④当∠B=24° AD为“好线”则AB=AD AD=CD 这个三角形最大内角是∠BAC=144°;③如图⑤当∠ABC=24°时BD为“好线”则AD=BD CD=BC 故这个三角形最大内角是∠C=148°④如图⑥ 当∠B=24°时CD为“好线”则AD=CD=BC 故这个三角形最大内角是∠ACB=117°⑤如图⑦ 当∠B=24°时CD为“好线”则AD=AC CD=BD 故这个三角形最大内角是∠ACB=70°⑥如图⑧ 当∠B=24°时AD为“好线”则AB=BD AD=CD 故这个三角形最大内角是∠BAC=117°上所述这个三角形最大内角的所有可能值是70°或106°或117或144°或148°故答案为70°或106°或117或144°或148°;(2)设∠B=x°①当AD=DE时如图1(a)∠AD=CD∠∠C=∠CAD=27°∠DE=EB∠∠B=∠EDB=x°∠∠AED=∠DAE=2x°∠27×2+2x+x=180∠x=42∠∠B=42°;②当AD=AE时如图1(b)∠AD=CD∠∠C=∠CAD=27°∠DE=EB∠∠B=∠EDB=x°∠∠AED=∠ADE=2x°∠2x+x=27+27∠x=18∠∠B=18°.③当EA=DE时∠90﹣x+27+27+x=180∠x不存在应舍去.综合上述:满足条件的x=42°或18°.10.(1)证明:ΔABC和ΔADE是等边三角形∠AB=AC AD=AE∠BAC=∠DAE=60°∠AB AD =ACAE∠BAD=∠CAE∠ΔABD∽ΔACE又∠点B,D,C在同一直线∠ΔABD和ΔACE是旋转相似三角形.(2)证明:∠ΔABD与ΔACE是旋转相似三角形∠ΔABD∽ΔACE∠AB AC =ADAE∠BAD=∠CAE∠B=∠ACE∠∠BAC=∠DAE∠ΔABC∽Δ∠ADE∠∠B=∠ADE∠AED=∠ACB ∠ ∠ADE=∠ACE.∠AD//CE∠∠ADE=∠DEC∠ ∠ACE=∠DEC.∠∠AED=∠ACB∠∠AEC=∠DCE.又∠CE=CE∠ΔAEC≌ΔDCE(ASA)∠AC=DE.(3)解:如图过点A作AE⊥BC垂足为E连接DE.∠∠AEB=∠ADC=90°∠B=∠ACD∠ ΔABE∽ΔACD∠AB AC =AEAD∠BAE=∠CAD∠∠BAC=∠EAD ∠ΔABC∽ΔAED∠BC DE =ACAD∠ 25DE =2016∠DE=20.∠ΔABE∽ΔACD∠AE AD =BECD∠AE BE =√202−162=43.设AE=4k则BE=3k CE=25−3k在ΔACE中(4k)2+(25−3k)2=202解得k=3∠AE=12.又AD=16DE=20∠ΔADE是直角三角形∠DAE=90°.又∠AEC=∠ADC=90°∠四边形AECD是矩形.11.解:(1)∠任意三角形有三条边∠任意三角形有三条“等分周线”∠某三角形的一条“等分周线”有一个端点是三角形的顶点而另一点为一边的中点且将三角形的周长分为相等的两部分∠这个三角形是等腰三角形故答案为:3 等腰三角形;(2)延长BA 使AF=AC 连接CF 过点A 作AG∠CF 于G则∠ACF 为等腰三角形∠CG=GF=12CF ∠AGC=90° ∠ACF=∠AFC∠∠A =α 即∠BAC =α又∠BAC=∠ACF+∠AFC∠∠ACF=∠AFC=12∠BAC=12α∠ED 为∠ABC 的“等分周线”∠EB+BD=CD+CA+AE 又BD=CD∠EB=CA+AE=AF+AE=EF∠点E 为BF 的中点∠DE=12CF=CG在Rt∠AGC 中 ∠ACF=12α AC=m∠CG=m·cos 12α∠DE= m·cos 12α;(3)取BC 的中点F 连接EF 则BF=FC∠∠BEC=120°∠∠BEA=60°∠BA∠AC∠在Rt∠ABE 中 ∠ABE=30°∠AE=AB tan60∘=√3√3=1 BE=2AE=2∠EC =√3+1∠AB +AE =√3+1=EC∠BF=FC∠AB+AE+BF=CE+CF∠EF是∠ABC的一条“等分周线”由(2)知EF=AB·cos12∠BAC=√3cos45∘=√62∠BC=2CD∠CD=CF又∠AC平分∠BCD∠∠FCE=∠DCE 又CE=CE∠∠FCE∠∠DCE(SAS),∠ED=EF=√62.12.解:(1)如图① 延长FD到G 使DG=BE 连结AG.在∠ABE和∠ADG中AB=AD BE=DG ∠B=∠ADG=90°∠∠ABE∠∠ADG ∠AE=AG在∠AEF和∠AGF中AE=AG AF=AF EF=BE+FD=DG+FD=GF ∠∠AEF∠∠AGF ∠∠EAF=∠GAF=∠GAD+∠DAF=∠EAB+∠DAF∠∠BAD=∠EAF+∠EAB+∠DAF=2∠EAF∠∠EAF=12∠BAD(2)∠EAF=12∠BAD仍然成立.证明:如图② 延长FD到G 使DG=BE 连接AG.∠∠B+∠ADC=180° ∠ADC+∠ADG=180° ∠∠B=∠ADG∠∠ABE∠∠ADG(SAS).∠AE=AG ∠BAE=∠DAG.又∠EF=BE+DF DG=BE ∠EF=DG+DF=GF.∠∠AEF∠∠AGF(SSS).∠∠EAF=∠GAF.又∠∠GAF=∠DAG+∠DAF ∠∠EAF=∠DAG+∠DAF=∠BAE+∠DAF.而∠EAF+∠BAE+∠DAF=∠BAD∠∠EAF=1∠BAD2(3)如图③ 连接EF 延长AE BF相交于点C.∠2小时后舰艇甲行驶了120海里舰艇乙行驶了160海里即AE=120 BF=160.而EF=280 ∠在四边形AOBC中有EF=AE+BF又∠OA=OB 且∠OAC+∠OBC=(90°﹣30°)+(70°+50°)=180°∠符合(2)中的条件.∠AOB =70°.又∠∠AOB=30°+90°+(90°﹣70°)=140° ∠∠EOF=12答:此时两舰艇的位置与指挥中心(O处)形成的夹角∠EOF的大小为70°.13.解:定义:∠点M N是线段AB的勾股点∠BN=√AM2+MN2=√5或BN=√MN2−AM2=√3∠BN=√3或√5.(1)如图∠CD =DA CE =EB∠DE ∠AB∠CG =GM CH =HN∠DG =12AM GH =12MN EH =12BN ∠BN 2=MN 2+AM 2∠14BN 2=14MN 2+14AM 2 ∠(12BN )2=(12MN )2+(12AM )2∠EH 2=GH 2+DG 2∠G H 是线段DE 的勾股点.(2)如图所示 连接PD∠AC =PC∠∠A =∠APC∠∠PCD =2∠A∠C D 是线段AB 的勾股点∠AC 2+BD 2=CD 2∠PC 2+BD 2=CD 2∠CD 是∠O 的直径∠∠CPD =90°∠PC 2+PD 2=CD 2∠PD=BD∠∠PDC=2∠B∠∠A=2∠B∠∠PDC=∠A在Rt∠PCD中∠∠PCD+∠PDC=90°∠2∠A+∠A=90°解得∠A=30°则∠B=12∠A=15°.(3)∠点P(a b)是反比例函数y=2x(x>0)上的动点∠b=2a.∠直线y=﹣x+2与坐标轴分别交于A B两点∠点B的坐标为(0 2)点A的坐标为(2 0);当x=a时y=﹣x+2=2﹣a∠点E的坐标为(a2﹣a);当y=2a 时有﹣x+2=2a解得:x=2﹣2a∠点F的坐标为(2﹣2a 2a ).∠BF=√(2−2a −0)2+(2a−2)2=√2(2﹣2a)EF=√(2−2a −a)2+[2a−(2−a)]2,=√2|2﹣a﹣2a| AE=√(2−a)2+[0−(2−a)]2=√2(2﹣a).∠BF2+AE2=16+2a2﹣8a+8a2﹣16a=EF2∠以BF AE EF为边的三角形是一个直角三角形∠E F是线段AB的勾股点.14.解:(1)过点A作AE∠BC于E 过点C作CF∠AD于F.∠AC=AB∠BE=CE=3在Rt∠AEB中AE=√AB2−BE2=√52−32=4∠CF∠AD∠∠D+∠FCD=90°∠∠B+∠D=90°∠∠B=∠DCF∠∠AEB=∠CFD=90°∠∠AEB∠∠DFC∠EB CF =ABCD∠3 CF =54∠CF=125∠sin∠CAD=CFAC =1255=1225.(2)如图②中结论:四边形ABCD是对余四边形.理由:过点D作DM∠DC 使得DM=DC 连接CM.∠四边形ABCD中AD=BD AD∠BD∠∠DAB=∠DBA=45°∠∠DCM=∠DMC=45°∠∠CDM=∠ADB=90°∠∠ADC=∠BDM∠AD=DB CD=DM∠∠ADC∠∠BDM(SAS)∠AC=BM∠2CD2+CB2=CA2CM2=DM2+CD2=2CD2∠CM2+CB2=BM2∠∠BCM=90°∠∠DCB=45°∠∠DAB+∠DCB=90°∠四边形ABCD是对余四边形.(3)如图③中过点D作DH∠x轴于H.∠A(﹣1 0)B(3 0)C(1 2)∠OA=1 OB=3 AB=4 AC=BC=2√2∠AC2+BC2=AB2∠∠ACB=90°∠∠CBA=∠CAB=45°∠四边形ABCD是对余四边形∠∠ADC+∠ABC=90°∠∠ADC=45°∠∠AEC=90°+∠ABC=135°∠∠ADC+∠AEC=180°∠A D C E四点共圆∠∠ACE=∠ADE∠∠CAE+∠ACE=∠CAE+∠EAB=45°∠∠EAB=∠ACE∠∠EAB=∠ADB∠∠ABE=∠DBA∠∠ABE∠∠DBA∠BE AB =AEAD∠AE BE =ADAB∠u=AD4设D(x t)由(2)可知BD2=2CD2+AD2∠(x﹣3)2+t2=2[(x﹣1)2+(t﹣2)2]+(x+1)2+t2整理得(x+1)2=4t﹣t2在Rt∠ADH中AD=√AH2+AD2=√(x+1)2+t2=2√t∠u=AD4=√t2(0<t<4)即u=√t2(0<t<4).15.解:(1)如图1由旋转的性质得:∠F=∠BEC ∠ABF=∠CBE BF=BE ∠∠BEC+∠BED=180° ∠CBE+∠ABE=90°∠∠F+∠BED=180°∠ABF+∠ABE=90°即∠FBE=90°故满足“直等补”四边形的定义∠四边形BEDF为“直等补”四边形;(2)∠四边形ABCD是“直等补”四边形AB=BC∠∠A+∠BCD=180° ∠ABC=∠D=90°如图2 将∠ABE绕点B顺时针旋转90°得到∠CBF则∠F=∠AEB=90° ∠BCF+∠BCD=180° BF=BE∠D C F共线∠四边形EBFD是正方形∠BE=FD设BE=x 则CF=x-1在Rt∠BFC中BC=5由勾股定理得:x2+(x−1)2=25即x2−x−12=0解得:x=4或x=﹣3(舍去)∠BE=4(3)如图3 延长CD到P 使DP=CD=1 延长CB到T 使TB=BC=5,则NP=NC MT=MC,∠∠MNC的周长=MC+MN+NC=MT+MN+NP≥PT当T M N P共线时∠MNC的周长取得最小值PT过P作PH∠BC 交BC延长线于H∠∠F=∠PHC=90°,∠BCF=∠PCH,∠∠BCF∠∠PCH,∠BC PC =BFPH=CFCH,即52=4PH=3CH解得:CH=65,PH=85,在Rt∠PHT中TH=5+5+65=565,PT =√PH 2+HT 2=8√2,∠ΔMNC 周长的最小值为8√2.16.(1)①证明:∠四边形ABCD 是平行四边形∠AB∠CD BC=AD=2∠BE//AC AB∠CE∠四边形ABEC 是平行四边形 BC =2AB∴四边形ABEC 是两倍四边形;②存在 理由如下:当AC=2AB 时 则AC=2∠∠ABC =90° ∠BC =√AC 2−AB 2=√22−12=√3,∠m=AD=BC=√3;当AC=2AD 时 则AC=2m∠m 2+12=(2m)2解得m=√33或m=-√33(舍去)∠m 的值为√3或√33时 四边形ABCD 是两倍四边形;(2)∠四边形ABCD 是两倍四边形 BD 为两倍对角线 AD 为两倍边∠AD=DG∠∠DAG=∠AGD∠四边形ABEC 是两倍四边形 AE 为两倍对角线 AC 为两倍边∠AC=AF∠∠ACF=∠AFC又∠∠DAG=∠ACF∠∠DAG=∠AGD=∠ACF=∠AFC ∠∠ADG=∠CAF又∠ADBD =12ACAE=12∠AD BD =ACAE∠∠ADB∠∠ACE又∠AB=CE∠相似比为1∠∠ADB∠∠ACE∠AC=AD作DM∠AC于M 如图1设AM=x 则AC=AD=4x在Rt∠ADM中由勾股定理得:DM=√15x在Rt∠DMC中由勾股定理得:CD=2√6x∠CD=AB=1∠ 2√6x=1∠x=√612∠AD=4x=√63即m=√63.17.(1)证明:∠四边形ABCD为圆内接四边形∠∠A+∠C=180° ∠ABC+∠ADC=180°.∠BD平分∠ABC∠∠ABD=∠CBD∠弧AD=弧CD∠AD=CD∠四边形ABCD是等补四边形(2)AC平分∠BCD 理由如下:过点A作AE∠BC于E AF∠CD于F则∠AEB=∠AFD=90°∠四边形ABCD是等补四边形∠∠ADC+∠B=180°又∠∠ADC+∠ADF=180°∠∠B=∠ADF在∠AFD与∠AEB中{∠ADF=∠B ∠AEB=∠AFD AB=AD∠ΔAFD∠ΔAEB∠AE=AF∠点A一定在∠BCD的平分线上即AC平分∠BCD.(3)连接AC同(2)理得∠EAD=∠BCD由(2)知AC平分∠BCD所以∠FCA=12∠BCD同理∠FAD=12∠EAD∠∠FCA=∠FAD.又∠∠F=∠F∠∠FAD∠∠FCA∠AF DF =CFAF即AF2=DF⋅CF=DF(DF+CF)=2×(2+6)=16∠AF=418.解:(1)如图连接CD CB 过点C作CM∠AB于M 设∠C的半径为r.∠与y轴相切于点D(0 4)∠CD∠OD∠∠CDO=∠CMO=∠DOM=90°∠四边形ODCM是矩形∠CM=OD=4 CD=OM=r∠B(8 0)∠OB=8 ∠BM=8-r在Rt∠CMB中∠BC2=BM2+CM2∠ r2=42+(8−r)2解得r=5 ∠C (5 4)∠∠C 的标准方程为(x −5)2+(y −4)2=25.(2)连接AC CE .∠CM∠AB ∠AM=BM=3 ∠A (2 0) B (8 0)∠可设抛物线的解析式为y=a (x -2)(x -8)把D (0 4)代入y=a (x -2)(x -8) 可得a=14 ∠抛物线的解析式为y=14(x -2)(x -8)=14x 2−52x +4=14(x −5)2−94;(3)结论:AE 是∠C 的切线.理由:由(2)可得抛物线的顶点E (5 −94) ∠AE=√(5−2)2+(−94)2=154 CE= 4−(−94)=4+94=254 AC=5∠CE 2=AC 2+AE 2 ∠∠CAE=90° ∠CA∠AE∠AE 是∠C 的切线.19.解:(1)∠P (1 √3)∠P '(﹣1 ﹣√3)∠PP '=4设C (m n )∠等边∠PP ′C∠PC =P 'C =4∠√(m −1)2+(n −√3)2=√(m +1)2+(n +√3)2=4∠m =﹣√3n∠(﹣√3n ﹣1)2+(n ﹣√3)2=16.解得n =√3或﹣√3∠m =﹣3或m =3.如图1 观察点C 位于第四象限 则C (﹣3 √3).即点P 的“等边对称点”的坐标是(3 √3).(2)①设P (c 2c )∠P '(﹣c ﹣2c )∠PP'=2√c2+4c2设C(s t)PC=P'C=2√c2+4c2∠√(s−c)2+(t−2c )2=√(s+c)2+(t+2c)2=2√c2+4c2∠s=﹣2tc2∠t2=3c2∠t=±√3c∠C(﹣2√3c √3c)或C(2√3c﹣√3c)∠点C在第四象限c>0∠C(2√3c﹣√3c)令{x=2√3cy=−√3c∠xy=﹣6 即y=﹣6x(x>0);②当AG为平行四边形的边时G与B重合时为一临界点通过平移可求得C(1 ﹣6)∠y c≤﹣6;当AG为平行四边形的对角线时G与B重合时求得C(3 ﹣2)G与A重合时C(2 ﹣3)此时﹣3<y c≤﹣2综上所述:y c≤﹣6或﹣3<y c≤﹣2.20.解:(1)如图① 连接BC∠OC∠O A OD∠OB∠∠AOC=∠BOD=90°∠∠AOB=∠COD∠AB=CD∠AC=AC∠∠ABC=1∠AOC=45°.2∠BOD=45°同理∠∠BCD=12∠∠AEC=∠ABC+∠BCD=90°即AB∠CD∠AB=CD AB∠CD∠ AB CD是∠O的等垂弦.(2)如图② 若点E在∠O内作OH∠AB垂足为H作OG∠CD垂足为G∠AB CD是∠O的等垂弦∠AB=CD AB∠CDAB OA=OD∠AHO=∠DGO∠AH=DG=12∠∠AHO∠∠DGO∠OH=OG∠矩形OHEG为正方形∠OH=HE .∠BE AE =13又AH=BH∠AH=2BE=2OH在Rt∠AOH中AO2=AH2+OH2.即(2OH)2+OH2=AO2=25解得OH=√5则AB=4HE=4√5;若点E在∠O外同理AH=√5则AB=2AH=2√5.(3)①如图所示弦CD即为所求;②∠AB是∠O的弦∠AB≤2r 即m≤2当点F在圆上时如图所示此时AB=mr CD=mr2AD=2r由勾股定理得(mr)2+(mr2)2=(2r)2解得m=45√5因此当0<m<45√5时点F在∠O外;当m=45√5时点F在∠O上;当45√5<m≤2时点F在∠O内.。
2011年阅读理解试题汇编: (2011年昌平区一模) 22. 现场学习题问题背景:在△ABC 中,AB 、BC 、AC小辉同学在解答这道题时,先建立一个正方形网格(每个小正方形的边长为1),再在网格中画出格点△ABC (即△ABC 三个顶点都在小正方形的顶点处),如图1所示.这样不需求△ABC 的高,而借用网格就能计算出它的面积.AB C图3图2图1(1)请你将△ABC 的面积直接填写在横线上.________ 思维拓展:(2)我们把上述求△ABC 面积的方法叫做构图法.若△ABC、(0)a >,请利用图2的正方形网格(每个小正方形的边长为a )画出相应的△ABC ,并求出它的面积是: .探索创新:(3)若△ABC、(0,,)m n o m n >>≠ ,请运用构图法在图3指定区域内画出示意图,并求出△ABC 的面积为:答案:(1) 25.(2)面积:23a .(3)面积:3mn .图2AB CA CB 4m2m 2mn n 2n 图3(通州区一模) 22.问题背景(1)如图22(1),△ABC 中,DE ∥BC 分别交AB ,AC 于D ,E 两点,过点E 作EF ∥AB交BC 于点F .请按图示数据填空:四边形DBFE 的面积S = ,△EFC 的面积1S = ,△ADE 的面积2S = . 探究发现(2)在(1)中,若BF a =,FC b =,DE 与BC 间的距离为h .请证明2124S S S =.拓展迁移(3)如图22(2),□DEFG 的四个顶点在△ABC 的三边上,若△ADG 、△DBE 、△GFC 的面积分别为2、5、3,试利用..(2.)中的结论....求△ABC 的面积.答案:(1)四边形DBFE 的面积S =632=⨯,△EFC 的面积1S =93621=⨯⨯,△ADE 的面积2S =1.(2)根据题意可知:ah S =,bh S 211=,DE ∥BC ,EF ∥AB∴四边形DEFB 是平行四边形,EFC ADE ∠=∠,C AED ∠=∠∴DE=a ; ADE ∆∽EFC ∆, ∴122S S b a =⎪⎭⎫ ⎝⎛ ∴b h a S b a S 221222== ∴222212244h a bha bh S S =⨯⨯= ∴2124S S S =(3) 过点G 作GH//AB∴由题意可知:四边形DGFE 和四边形DGHB 都是平行四边形 ∴DG=BH=EF ∴BE=HFGHF DBE S S ∆∆=8=∆GHC S64824S 4S G H C A D G D G H B 2=⨯⨯=⋅=∆∆四边形S∴8DGHB=四边形S∴18882S ABC =++=∆B C D G F E A6 22(1)A GFDCBA(2011年房山区一模) 22.(本小题满分5分)小明想把一个三角形拼接成面积与它相等的矩形.他先进行了如下部分操作,如图1所示: ①取△ABC 的边AB 、AC 的中点D 、E ,联结DE ; ②过点A 作AF ⊥DE 于点F ;(1)请你帮小明完成图1的操作,把△ABC 拼接成面积与它相等的矩形.(2)若把一个三角形通过类似的操作拼接成一个与原三角形面积相等的正方形,那么原三角形的一边与这边上的高之间的数量关系是________________.(3)在下面所给的网格中画出符合(2)中条件的三角形,并将其拼接成面积与它相等的 答案:解:(1)(22:1 (3)画对一种情况的一个图给1分或N M ②①②①F E D C B A(2011年海淀一模)22.如图1,已知等边△ABC 的边长为1,D 、E 、F 分别是AB 、BC 、AC 边上的点(均不与点A 、B 、C 重合),记△DEF 的周长为p .(1)若D 、E 、F 分别是AB 、BC 、AC 边上的中点,则p =_______;(2)若D 、E 、F 分别是AB 、BC 、AC 边上任意点,则p 的取值范围是 .小亮和小明对第(2)问中的最小值进行了讨论,小亮先提出了自己的想法:将ABC △以AC 边为轴翻折一次得1AB C △,再将1AB C △以1B C 为轴翻折一次得11A B C △,如图2所示. 则由轴对称的性质可知,112DF FE E D p ++=,根据两点之间线段最短,可得2p DD ≥. 老师听了后说:“你的想法很好,但2DD 的长度会因点D 的位置变化而变化,所以还得不出我们想要的结果.”小明接过老师的话说:“那我们继续再翻折3次就可以了”.请参考他们的想法,写出你的答案.答案 解:(1)32p =; .…………………………….……………………………2分 (2)332p <≤..…………………………….……………………………5分(2011年顺义一模)22. 如图,将正方形沿图中虚线(其x y <)剪成① ② ③ ④ 四块图形,用这四块图形恰好能拼成一个矩形(非正方形).(1)画出拼成的矩形的简图; (2)求xy的值.答案.(1)如图(2)面积可得 2()(2)x y x y y +=+ ----------------------3分 22222x xy y xy y ++=+ 220x xy y +-= 2()10xx yy +-=x y =(舍去)x y = A B DFC E1图AB DFCE 1F 1A 1B 2D 1D 1E 2图yy xy x y x x④③②①④③②①(2011年朝阳区一模)22.阅读并操作:如图①,这是由十个边长为1的小正方形组成的一个图形,对这个图形进行适当分割(如图②),然后拼接成新的图形(如图③).拼接时不重叠、无空隙,并且拼接后新图形的顶点在所给正方形网格图中的格点上(网格图中每个小正方形边长都为1).图①图②图③请你参照上述操作过程,将由图①所得到的符合要求的新图形画在下边的正方形网格图中.(1)新图形为平行四边形;(2)新图形为等腰梯形.答案:解:(1)(2)ABCABCFEDA BC(2011年丰台一模)22.认真阅读下列问题,并加以解决:问题1:如图1,△ABC 是直角三角形,∠C =90º.现将△ABC 补成一个矩形.要求:使△ABC 的两个顶点成为矩形一边的两个端点,第三个顶点落在矩形这一边的对边上.请将符合条件的所有矩形在图1中画出来;图1 图2问题2:如图2,△ABC 是锐角三角形,且满足BC >AC >AB ,按问题1中的要求把它补成矩形.请问符合要求的矩形最多可以画出 个,并猜想它们面积之间的数量关系是 (填写“相等”或“不相等”);问题3:如果△ABC 是钝角三角形,且三边仍然满足BC >AC >AB ,现将它补成矩形.要求:△ABC 有两个顶点成为矩形的两个顶点,第三个顶点落在矩形的一边上,那么这几个矩形面积之间的数量关系是 (填写“相等”或“不相等”).答案.解:(1)………………… 正确画出一个图形给1分,共2’(2)符合要求的矩形最多可以画出 3 个,它们面积之间的数量关系是 相等 ;………4’ (3) 不相等 . …………………………………………………………………………………5’(燕山区一模)22.将正方形ABCD (如图1)作如下划分:第1次划分:分别联结正方形ABCD 对边的中点(如图2),得线段HF 和EG ,它们交于点M ,此时图2中共有5个正方形;第2次划分:将图2左上角正方形AEMH 按上述方法再作划分,得图3,则图3中共有_______个正方形; 若每次都把左上角的正方形依次划分下去,则第100次划分后,图中共有_______个正方形;继续划分下去,能否将正方形ABCD 划分成有2011个正方形的图形?需说明理由.答案:第2次划分,共有9个正方形; 第100次划分后,共有401个正方形;依题意,第n 次划分后,图中共有4n+1个正方形,而方程4n+1=2011没有整数解,A D A H D A H DE M G E M GB FC B F C 图1 图2 图3所以,不能得到2011个正方形. (2011年西城一模)22.我们约定,若一个三角形(记为1A ∆)是由另一个三角形(记为A ∆)通过一次平移,或绕其任一边中点旋转︒180得到的,称1A ∆是由A ∆复制的。
九年级数学上册第一章《2-直角三角形(一)》阅读材料会标勾股定理中考题2002年8月20 ~28日,我国在首都北京成功举办了第24届国际数学家大会. 这是在发展中国家举行的第一次国际数学家大会,也是多年来在我国举行的最重要的一次国际会议. 它标志着我国数学已度过了六百多年的低谷,进入了数学大国的行列,并向着新世纪成为数学强国迈开了步伐. 这次大会的会标如右图所示。
它取材于我国三国时期(公元3世纪)赵爽所著的《勾股圆方图注》.赵爽在这本书中,画了一个弦图(如图)。
两个全等的直角三角形(三角形涂上朱色,它的面积叫做“朱实”)合起来形成矩形,四个这样的矩形合成一个正方形,中间留出了一个正方形的空格(涂上黄色,其面积叫做“中黄实”,也叫“差实”).赵爽注释道:“勾股各自乘,并之为弦实,开方除之即弦. ”开方除之是当时开方运算的术语. 上面这句话实际上就是勾股定理即:a2+b2=c2.他又巧妙地证明出:“按弦图,又可以勾股乘朱实二,信之为朱实四. 以勾股之差自相乘中黄实. 加差实亦成弦实. ”即2ab+(b-a)2=c2化简便得出:a2+b2=c2这个证明不但是勾股定理最早的严谨的证明,而且也是有史以来勾股定理证明中最巧妙的一个.借助第24届国际数学家大会的东风,宣传民族文化,激发自豪感,这些也正是中考命题专家们看重的地方.例1(2003年安徽省中考题)如图是2002年8月在北京召开的第24届国际数学家大会会标中的图案,其中四边形ABCD和EFGH都是正方形.求证:△ABF≌△DAE分析:在小学我们就知道,正方形的四条边相等,四个角都是直角.∴∠BAF= 900-∠DAE=∠ADE.在Rt△ABF与△DAE中,∠BAF=∠ADE,AB=AD∴△ABF≌△DAE(AAS).例2(2003年山东省中考题)2002年8月在北京召开的国际数学家大会会标取材于我国古代数学家赵爽的《勾股圆方图注》,它是由四个全等的直角三角形与中间的小正方形拼成的一个大正方形(如下图所示). 如果大正方形的面积是13,小正方形的面积是1,直角三角形的较短直角边长为a,较长直角边长为b,那么(a+b)2的值为()A.13;B.19;C.25;D.169.分析:由勾股定理,结合题意得 a2+b2=13 ①.由题意,得 (b-a)2=1 ②.由②,得 a2+b2-2ab =1 ③.把①代入③,得 13-2ab=1∴ 2ab=12.∴ (a+b)2 = a2+b2+2ab =13+12=25.因此,选C.例3(2003年山东省烟台市中考题)(1)四年一度的国际数学家大会于2002年8月20日在北京召开. 大会会标如图甲. 它是由四个相同的直角三角形与中间的小正方形拼成的一个大正方形. 若大正方形的面积为13,每个直角三角形两条直角边的和是5. 求中间小正方形的面积.(2)现有一张长为6.5cm、宽为2cm的纸片,如图乙,请你将它分割成6块,再拼合成一个正方形.(要求:先在图乙中画出分割线,再画出拼成的正方形并表明相应数据)分析:(1)设直角三角形的较长直角边长为a,较短直角边长为b,则小正方形的边长为a-b. 由题意得a+b=5①由勾股定理,得a2+b2=13②.①2–②,得 2ab=12.∴(a-b)2 = a2+b2-2ab=13 –12 =1③.即所求的中间小正方形的面积为1.(2)所拼成的正方形的面积为6.5×2= 13(cm2),所以,可按照图甲制作.由③,得a-b=1.由①、③组成方程组解得 a=3, b=2.结合题意,每个直角三角形的较长的直角边只能在纸片6.5cm的长边上截取,去掉四个直角三角形后,余下的面积为13-×3×2×4=13-12=1(cm2),恰好等于中间的小正方形面积. 于是,得到以下分割拼合方法:。
第 1 页 共 11 页 1.材料一:若一个四位正整数,它的千位数字与个位数字相同,百位数字与十位数字相同,且千位数字小于百位数字,则称这个四位数为“美好数”,例如3443为“美好数”; 材料二:一个正整数x能写成22bax(a,b均为正整数,且ba),则称x为“美满数”,a,b为x的一个
平方差分解,在x的所有平方差分解中,若22ba最大,则称a,b为x的最佳平方差分解,此时baxF)(。 例如:222521,21为“美满数”,5和2为21的一个平方差分解,2222221748111348,因为22222217481113,所以13和11为48的最佳平方差分解,所以1113)48(F.
根据材料回答: (1)求证:任一个美好数的各数位上的数字之和为6的倍数,则这个“美好数”一定能被33整除; (2)若一个数m既是“美好数”又是“美满数”,并且另一个“美好数”的前两位数字组成的两位数与后两位数组成的两位数恰好是m的一个平方差分解,求出所有满足条件的数m中)(mF的最大值。
2.材料一:一个正整数x能写成babax,(22均为正整数,且)ba,则称x为“雪松数”,ba,为x的一个平方差分解,在x的所有平方差分解中,若22ba最大,则称ba,为x的最佳平方差分解,此时22)(baxF。例如:225724,24为雪松数,7和5为24的一个平方差分解,227932,222632,
因为22222679,所以9和7为32的最佳平方差分解,2279)32(F。 材料二:若一个四位正整数,它的千位数字与个位数字相同,百位数字与十位数字相同,但四个数字不全相同,则称这个四位数为“南麓数”.例如4334,5665均为“南麓数”。 根据材料回答: (1)请直接写出两个雪松数,并分别写出它们的一对平方差分解; (2)试证明10不是雪松数; (3)若一个数t既是“雪松数”又是“南麓数”,并且另一个“南麓数”的前两位数字组成的两位数与后两位数字组成的两位数恰好是t的一个平方差分解,请求出所有满足条件的数t中)(tF的最大值。 第 2 页 共 11 页
3.我们来定义下面两种数: ①平方和数:若一个三位数或者三位以上的整数分成左、中、右三个数后满足:中间数=(左边数)2+(右边数)2,我们就称该整数为平方和数;例如:对于整数251.它中间的数字是5,左边数是2,右边数是1.∵22+12=5,
∴251是一个平方和数.又例如:对于整数3254,它的中间数是25,左边数是3,右边数是4,∵32+42=25∴2,34是一个平方和数.当然152和4253这两个数也是平方和数; ②双倍积数:若一个三位数或者三位以上的整数分拆成左、中、右三个数后满足:中间数=2×左边数×右边数,我们就称该整数为双倍积数;例如:对于整数163,它的中间数是6,左边数是1,右边数是3,∵2×1×3=6,∴163是一个双倍积数,又例如:对于整数3305,它的中间数是30,左边数是3,右边数是5,∵2×35=30,∴3305是一个双倍积数,当然361和5303这两个数也是双倍积数; 注意:在下面的问题中,我们统一用字母a表示一个整数分出来的左边数,用字母b表示一个整数分出来的右边数,请根据上述定义完成下面问题: (1)如果一个三位整数为平方和数,且十位数为9,则该三位数为 ;如果一个三位整数为双倍积数,且十位数字为4,则该三位数为 ; (2)如果一个整数既为平方和数,又是双倍积数.则a,b应该满足什么数量关系;说明理由;
(3)ba625为一个平方和数,ba600为一个双倍积数,求22ba。 第 3 页 共 11 页
4.阅读材料:规定若一个正整数x能表示成baba,(22是正整数,且)ba的形式,则称这个数为“风月同天数”,a与b是x的一个平方差分解。例如:因为22235,所以5是“风月同天数”,3和2是5的平方差分解;再如:yxyyxyyxyxxyxM,()(22222222是正整数),所以M也是“风月同天数”,)(yx与y是M的一个平方差分解。 (1)判断:7 “风月同天数”(填“是”或“不是”); (2)已知yxkyxyxN,(4622是正整数,k是常数,且)1yx,要使N是“风月同天数”,试求出符合条件的一个k值,并说明理由; (3)对于一个三位位,如果满足十位数字是7,且个位数字比百位数字大7,称这个三位数为“岂无衣数”。若m既是“岂无衣数”,又是“风月同天数”,请求出m的所有平方差分解。
5.阅读下列材料解决问题: 材料:完全平方数,是指可能写成某个整数的平方的数,即其平方根为整数的数。例如,239,9是一个完全平方数。 (1)填空:22102 完全平方数,33162 完全平方数(填“是”或“不是”); 有一个初始数M,将其加上2020后得到一个四位数,且该四位数为完全平方数,再将该完全平方数加上1111后得到的数仍然是一个完全平方数,求该初始数M。 第 4 页 共 11 页
6.对于两位正整数A,在个位数字与十位数字之间添上数字5,组成一个新的三位数N,我们称这个三位数N为A的“至善数”,如27的“至善数”为257;若将两位正整数A加5后得到一个新数M,我们称这个新数M为A“明德数”,如27的“明德数”为32527。 (1)①82的“至善数”是 ,“明德数”是 。 ② 一个两位正整数的“至善数”、“明德数”的和为285,则该两位数为 。
(2)两位正整数)(yxxy,其中“至善数”与“明德数”之差能被7整除,求这个两位正整数xy。
7.当一个多位数的位数为偶数时,在其中间位插入一位数k,),90(为整数且kk得到一个新数,我们把这个新数称为原数的关联数。如:在435729中间插入数字6可得435729的一个关联数4356729;在435729中间插入数字7可得425729的另一个关联数4357729. 请阅读以上材料,解决下列问题。 (1)若一个两位数M的关联数是原数的9倍,求满足条件的M的关联数;
(2)对于一个六位数)70,90,51(为整数、、且zyxzyxxyzxyzN,在N的中间插入一位数)2(z,得其关联数,已知N为21的倍数,且N的关联数与N的之差为9的倍数。求证:1yx能被3整除。 第 5 页 共 11 页
8.对于任意一个三位正整数,十位上的数字减去个位上的数字之差恰好等百位上的数字,则称这个三位数为“极差数”。例如:对于三位数451,415,则451是“极差数”;对于三位数110,101,则110是“极差数”。 (1)求证:任间一个“极差数”一定能被11整除; (2)在一个“极差数”首位之前添加其十位数得到一个新的四位数M,在一个“极差数”末位之后添加数字1得到一个新的四位数N,若NM能被12整除,求满足条件的“极差数”。
9.任意一个正整数m都可以表示为:bam2(a,b均为正整数),在m的所有表示结果中,当ba最小时,规定abmQ2)(。例如:3612327210811082222,因为361232721081,所以
41623)108(Q。 (1))48(Q= ;如果一个正整数n是另一个正整数c的立方,那么称正整数n是立方数,求证:对于任意立方数n,总有21)(nQ; (2)一个整数t,yxt20(91x,90y,x,y是自然数),如果t与其各个数位上数字之和能被19整除,那么我们称这个数t为“希望数”。求所有“希望数”中)(tQ的最小值。 第 6 页 共 11 页
10.阅读下列材料: 材料1,若五位整数去掉个位数字后剩下的数再加上去掉的个位数字的4倍,其结果能被13整除,则这个数能被13整除。若数字太大不能直接观察出来,就重复此过程。 例如:14443去掉个位数字后得到1444,加上3的4倍得到1456,1456去掉个位数字6得到145,再加上6的4倍得到169,169能被13整除,故14443能被13整除, 材料2:任意一个大于3的正整数M都有如下分解:
cbaM22(a,b,c为正整数,且cbaba,)。当cba的值最小时,定义
cbaMF32)(。
例如:1032152264113311821211123222222222212,当1a,6,4cb时,cba的值最小,所以2163421)23(F。
(1)请判断:32799 (能/不能)被13整除;请证明:任意四位整数去掉个位数字后剩下的数再加上去掉的个位数字的4倍,其结果能被13整除,这个数也能被13整除。
(2)若整数91,91(10nmnmA,且nm,为整数),1020'mnA。若一个整数从左到右的数位上的数字和另一个整数从右到左的数位上的数字完全相同,则称这两个整数互为对称数。将A作为数P的后两位数,'A作数P后两位数以前的数。若P的对称数能被39整除,求)(AF的值。 第 7 页 共 11 页
11.对于自然数n,在计算)2()1(nnn时,各数位都不产生进位,则称这个自然数n为“纯数”。例如:2020是纯数,因为计算20222021202时,各数位都不产生进位。任意一个正整数m都可以表示为:
bam2(a、b均为正整数),在m的所有表示结果中,当ba最小时,规定:abmF2)(,例如
321211222,32121,12322)12(F。
(1)计算)32(F的值,并判断)32(F是否为纯数,说明理由; (2)若)(xF比最大的三位数纯数小310,求x。
12.众所周知,所有实数都可以用数轴上的点来表示。其中,我们将数轴上表示正整数的点称为“正点”。取任意一个“正点”P,到点P距离为1的点所对应的数分别记为)(baba,,定义:若数33abm,则称数m
为“复合数”。例如:若“正点”P所表示的数为2,则31ba,,那么261322m,所以26是“复合数”。(立方差公式:))((2233aabbabab)。 (1)请直接判断6和98是不是“复合数”,(2)证明所有的“复合数”一定被6除余2; (2)已知两个“复合数”的差是126,求这两个“复合数”。