九年级物理磁知识点总结
- 格式:docx
- 大小:37.22 KB
- 文档页数:4
九年级物理全一册“第二十章电与磁”必背知识点一、磁现象与磁场1.磁性:物体具有吸引铁、钴、镍等物质的性质叫做磁性。
具有磁性的物体叫做磁体。
2.磁极:磁体上磁性最强的部分叫磁极,分为南极 (S极)和北极 (N极)。
任何磁体都有两个磁极,且同名磁极相斥,异名磁极相吸。
3.磁场:磁体周围存在一种看不见、摸不着,但客观存在的物质叫做磁场。
磁场的基本性质是对放入其中的磁体产生磁力的作用。
磁场有方向,规定小磁针静止时北极所指的方向为该点的磁场方向。
4.磁感线:为了形象地描述磁场的方向和分布情况,我们在磁场中画一些有方向的曲线,这些曲线叫做磁感线。
磁感线的方向就是小磁针在该点的受力方向,也是该点的磁场方向。
磁感线在磁体外部从N极出发回到S极,在磁体内部从S极到N极。
磁感线的疏密程度表示磁场的强弱。
二、电生磁与磁生电1.电生磁:奥斯特实验表明,通电导线周围存在磁场,且磁场方向与电流的方向有关。
通电螺线管外部的磁场与条形磁体的磁场相似,其两端的磁场方向跟电流方向有关,关系由安培定则判断。
2.磁生电:闭合电路的一部分导体在磁场中做切割磁感线运动时,导体中会产生感应电流,这种现象叫做电磁感应现象,产生的电流叫做感应电流。
感应电流的方向与导体运动方向和磁场方向都有关。
发电机就是根据电磁感应现象制成的,它将机械能转化为电能。
三、电磁铁与电磁继电器1.电磁铁:内部带有铁芯的通电螺线管叫做电磁铁。
电磁铁的磁性有无可以由电流的通断来控制,磁性强弱可以由电流大小和线圈匝数的多少来控制,磁极方向可以由电流方向来控制。
2.电磁继电器:电磁继电器是一种利用电磁铁来控制工作电路通断的开关。
它由电磁铁、衔铁、弹簧、触点等部分组成,可以实现用低电压、弱电流电路的通断来间接控制高电压、强电流电路的通断,还可以实现远距离操纵和自动化控制。
四、电动机与扬声器1.电动机:电动机是将电能转化为机械能的装置。
它的工作原理是通电线圈在磁场中受到力的作用而发生转动。
九年级上册物理磁场知识点
以下是九年级上册物理磁场的一些主要知识点:
1. 磁场的概念:磁场是指磁场中每一个点所具有的一种物理量,用以描述磁场对磁性
物质的作用。
2. 磁感线:磁感线是描述磁场分布的线条,磁感线是由磁场中各点的切线方向构成的。
3. 磁力线:磁力线是描述磁场对磁铁或电流的作用的线条,磁力线是磁感线在磁铁或
电流周围形成的闭合曲线。
4. 磁场的性质:磁场具有方向性、相对性和激励性三个基本性质。
5. 磁力:磁力是磁场对磁性物体或运行电荷所产生的力。
6. 磁铁:磁铁是具有磁性的物体,可以产生磁场并对其他磁性物体或电流产生作用。
7. 磁场的形成:磁场可以由静电场产生,也可以由电流产生。
8. 安培定则:安培定则是描述电流产生的磁场的方向规律,它规定:用右手握向导线,指向电流的方向,垂直向上弯曲的大拇指的方向就是产生的磁场的方向。
9. 磁场介质:磁场介质是对磁场传播和作用起重要作用的物质,如空气、铁、钢等。
10. 磁感应强度:磁感应强度是描述磁场强弱的物理量,用符号B表示,单位是特斯
拉(T)。
以上是九年级上册物理磁场的一些主要知识点,希望能对你有所帮助。
九年级物理电生磁知识点以下是九年级物理电生磁的一些主要知识点:
1. 电流和电路
- 电流的定义和单位
- 科尔特斯定律
- 串联和并联电路
- 电阻和电阻率
2. 电压和电功
- 电压的定义和单位
- 电路中的电势差
- 电功的计算和单位
3. 电阻和欧姆定律
- 欧姆定律的定义
- 电阻的计算和单位
- 电压、电流和电阻之间的关系
4. 电流的影响因素
- 电阻的影响因素
- 电流强度的影响因素
5. 电能和电功率
- 电能的定义和单位
- 电功率的定义和单位
- 电能转化、电功率的计算
6. 磁场和电磁感应
- 磁场的定义和性质
- 磁感线的方向
- 电流在磁场中的力和磁场中的力
- 磁通量和法拉第电磁感应定律的概念- 感应电流的产生
7. 磁场的产生和磁场对电流的作用
- 定义和性质
- 安培定律和磁场的方向
- 磁场对电流的作用力和磁力的方向- 洛伦兹力定律
8. 电磁感应和发电机
- 电磁感应的原理和应用
- 发电机的原理和结构
9. 变压器
- 变压器的原理
- 变压器的结构和工作原理
以上是九年级物理电生磁的一些主要知识点,希望能对你有所帮助。
如需了解更多细节,请参考教科书或详细学习资料。
九年级物理知识点总结磁铁磁铁是一种特殊的物质,具有吸引铁和钢的能力。
在九年级物理学中,学生需要掌握一些关于磁铁的知识点。
以下是九年级物理知识点总结磁铁的内容。
一、磁性材料的分类磁性材料分为永磁体和非永磁体两种。
永磁体是指能够持续保持自身磁性的物质,如钢和铁;非永磁体是指无法持续保持自身磁性的物质,如镍和铜。
二、磁性现象磁铁具有吸引铁和钢的能力,这是由于磁性材料中的微观结构与电子自旋有关。
磁场由磁铁的北极和南极所产生,北极和南极之间存在着磁力线。
三、磁铁的磁化磁铁可以通过多种方式磁化,包括击打、摩擦和电磁感应。
而磁铁可以通过加热或敲击来消除其磁性。
磁力是磁铁与其他物体之间相互作用的结果。
它具有矢量性质,有大小和方向。
磁力的大小与磁铁的磁场强度相关,而方向则由磁铁的北极和南极决定。
五、磁场的性质磁场是磁力的产生者,其存在于任何磁铁周围。
磁场具有方向性,由磁铁的南极指向北极。
而磁场的强度则与距离磁铁的远近有关。
六、磁力线磁力线是用于表示磁场分布的虚拟线条。
它从磁铁的北极出发,经过磁铁的磁场,最终回到磁铁的南极。
磁力线的密度代表了磁场的强度,磁力线越密集,磁场越强。
七、磁场对电流的影响根据奥姆定律,电流会在磁场中受到力的作用。
当电流通过导线时,会产生磁场,并受到磁场力的影响。
这一现象称为磁场对电流的作用力,也被称为洛伦兹力。
磁铁在生活中有许多应用,如电磁铁、发电机、电动机等。
电磁铁是一种可以通过通电来开启和关闭磁性的装置,广泛应用于工业和日常生活中。
九、磁铁的保养为了保持磁铁的磁性,需要注意避免长时间暴露在高温环境中,避免敲打或撞击磁铁,以及避免与其他磁性物质靠近。
总结:磁铁是一种具有特殊磁性的物质,它具有吸引铁和钢的能力。
九年级物理学中,学生需要了解磁铁的分类、磁化、磁力的性质、磁场的性质、磁力线、磁场对电流的影响、磁铁的应用以及磁铁的保养等知识点。
通过掌握这些知识,我们可以更好地理解和应用磁铁在日常生活和工作中的作用。
物理九年级上册知识点磁磁是一种特殊的物质,它具有吸引铁、钢等磁性材料的能力。
在物理九年级上册中,我们学习了与磁有关的多个知识点,接下来将对这些知识点进行一一介绍。
1. 磁的性质磁的主要性质包括吸引性、磁性和方向性。
首先,磁具有吸引铁、钢等磁性物体的特性。
当一个磁体靠近铁、钢等物体时,它们会相互吸引,表现出吸引性。
其次,磁也具有磁性,即磁可以“传染”给其他物体,使它们也具备磁性。
最后,磁的方向性指的是磁有南极和北极之分。
相同方向的磁极之间会相互排斥,而不同方向的磁极之间则会相互吸引。
2. 磁的种类磁根据来源可分为天然磁和人工磁。
天然磁是指直接存在于自然界中的磁体,最典型的例子是自然磁石,如磁铁矿石。
人工磁是指通过特殊处理制备的磁体,最常见的人工磁是永磁体和电磁体。
3. 磁场磁体周围存在着一个磁场。
磁场是一种特殊的物理场,用来描述磁的作用范围。
磁场的单位是特斯拉(T)。
在磁场中,磁感线是用来表示磁场强度和方向的虚拟线条,指向磁南极的方向。
磁感线的形状可以通过使用磁细铁粉或散铁丝的实验方法观察得到。
4. 磁力磁力是磁体对其他磁性物体施加的吸引力或排斥力。
磁力的大小和方向由磁的特性和磁场决定。
按照“同性相斥,异性相吸”的原则,相同磁极之间会相互排斥,而不同磁极之间则会相互吸引。
磁力的大小与磁体的性质和距离有关。
5. 磁的应用磁在我们日常生活中有着广泛的应用。
其中最常见的应用就是制作磁铁和电磁铁。
磁铁被广泛应用于家庭用品、电子产品和工业设备等领域,如冰箱门上的磁吸门封、扬声器中的磁铁等。
电磁铁由电磁线圈和磁性材料组成,通过通电来产生磁场,可以用于杂物吸附、电磁铁门、电磁铁制动器等应用。
总结起来,物理九年级上册的磁学知识点主要包括磁的性质、磁的种类、磁场、磁力以及磁的应用等内容。
通过对这些知识的学习,我们可以更好地理解和应用磁的特性,为后续的学习打下坚实的基础。
以上就是关于物理九年级上册知识点磁的介绍,希望对你有所帮助!。
九年级磁体与磁场的知识点磁体与磁场是九年级物理学习中的重要知识点,对于理解磁性物质的特性以及应用具有重要意义。
下面将介绍磁体与磁场的基本概念和主要性质。
一、磁体的基本概念磁体是指具有一定磁性的物体,具有吸引铁、镍、钴等物质的特性。
常见的磁体有永磁体和临时磁体两种。
1. 永磁体:永磁体是指在常温下能够保持长久磁性的物体。
它可以是天然磁矿如磁铁矿等,也可以是人工制造的磁性材料。
2. 临时磁体:临时磁体是指在外界磁场的作用下才表现出磁性,失去外界磁场后失去磁性的物体。
临时磁体包括钢铁和其他带有磁性物质的物体。
二、磁场的基本概念磁场是指存在于磁体周围的物理量,它具有磁力和磁场线两个基本特征。
1. 磁力:磁场会对其他带磁性物质的物体产生力的作用。
磁力的大小与物体在磁场中的位置以及磁场的强度有关。
当两个磁体相互靠近或相互远离时,它们之间会产生相互作用的磁力。
2. 磁场线:磁场线是表示磁场强弱和方向的一种图示方式。
在磁体周围,磁场线会形成闭合的曲线,表现出从磁南极到磁北极的方向。
通过磁场线的密集程度可以表示磁场的强弱,而磁场线的形状则表示磁场的方向。
三、磁体与磁场的相互作用磁体与磁场之间存在着相互作用的关系,具体表现为磁体在磁场中的受力和自身的磁场对周围物体的影响。
1. 磁体在磁场中的受力:当磁体置于磁场中时,它会受到磁场力的作用。
磁体的北极会受到磁场的引力而向磁场中心运动,而磁体的南极会受到磁场的斥力而远离磁场中心。
磁体在磁场中的受力与磁场的强度和磁体的位置有关。
2. 磁体的磁场对周围物体的影响:磁体自身的磁场会对周围的物体产生影响。
当两个磁体相互靠近时,它们之间会产生相互作用的磁力,产生吸引或排斥的效果。
此外,磁场对电流也有影响,当电流通过导线时,会在周围产生磁场,形成电磁感应现象。
四、磁体与磁场的应用磁体与磁场的相互作用在生活中具有广泛的应用,在工业和科学领域起着重要的作用。
1. 电磁铁:电磁铁是一种由电流通过时产生磁场的磁体,可以通过控制电流的大小来控制磁体的磁性。
九年级物理磁性的知识点磁性是一种常见而神奇的物理现象,我们在生活中经常会遇到各种磁性物体,比如铁石吸附在磁铁上,磁挂冰箱上的照片等等。
那么,什么是磁性?又是什么使物体具有磁性呢?一、什么是磁性磁性是物体受到磁力作用而表现出的特性。
一般来说,具有磁性的物体被称为磁体,而磁体之间的相互作用就是磁力。
磁性主要分为两类:永磁和临时磁。
永磁是指在外界磁力作用停止之后,仍然保持一定程度的磁性。
典型的永磁物质是铁石、钴、镍等。
临时磁则是在外界磁力作用停止之后,磁性会迅速消失。
临时磁的例子包括铁、钢等。
二、磁体的特性磁体除了具有磁性这个基本特性外,还有两个重要的特性:磁性和磁化强度。
磁性是指磁体吸引或排斥其他磁体的能力。
当两个具有磁性的物体相互靠近时,如果它们互相吸引,则具有相同磁性;如果它们互相排斥,则具有不同磁性。
而磁化强度是指磁体表面上表示的磁体磁力大小。
磁化强度越大,表示磁体越具有强大的磁力。
三、磁性的来源磁性的来源主要是物体内部的微观结构。
物体内部有许多微小的磁性小区域,被称为磁畴。
每个磁畴都有自己的磁矩,当磁畴内的磁矩方向一致时,整个物体就会表现出明显的磁性。
磁体具有磁性的原因是这些磁性小区域的磁矩方向相互协调,使得整个物体具有明显的磁性。
在没有外界磁场作用时,磁畴的方向是随机的,导致物体的磁性互相抵消,没有明显的磁性表现。
四、磁体的磁化过程磁体的磁化过程是指将原来无磁性或磁性很弱的物体,经过磁场作用后,其磁性增强或者出现。
磁体的磁化过程有几种方式,最常见的是通过摩擦磁化。
比如,我们经常用一块磁铁摩擦另一块无磁性的铁,会使得铁磁化,变得有磁性。
另一种方式是通过电流磁化,也就是利用电流在导线周围产生的磁场,磁化线圈中的铁芯,使其具有磁性。
需要注意的是,磁体的磁化过程是可逆的,也就是说,通过适当的操作可以恢复原来无磁性或磁性很弱的状态。
五、磁体的使用场景磁性在生活中的应用非常广泛。
我们常见的电磁铁就是利用磁性制成的,它可以通过控制电流的通断来改变磁体的磁化程度,从而实现吸附和释放物体的功能。
九年级物理磁与电知识点
以下是九年级物理磁与电的知识点:
1. 磁场和电流:
- 电流通过导体时会产生磁场,这个现象被称为安培定律。
- 磁场的方向可以通过安培右手规则确定,即右手握住导线,大拇指指向电流的方向,其他四指的弯曲方向表示磁场的方向。
- 磁场的方向可以用磁力线表示,磁力线是由北极向南极的方向,且磁力线不会相交或断裂。
2. 磁力和电动力:
- 磁力是由磁场对运动的电荷或磁体施加的力。
- 磁力的方向可以通过洛伦兹力定律确定,即力的方向垂直于磁场和电荷或磁体的运动方向,遵循右手定则。
- 磁力的大小可以通过洛伦兹力定律计算,即力的大小等于磁场的强度、电荷的电流和两者之间的夹角的乘积。
3. 磁感应强度和电磁感应:
- 磁场的强度也被称为磁感应强度,用B表示,单位为特斯拉(T)。
- 磁感应强度与磁力之间的关系可以用磁场的链接磁通量公式表示,即磁场的链接磁通量等于磁感应强度乘以垂直于磁场的面积。
- 一个变化的磁场可以产生感应电动势,在一个闭合电路中,这个现象被称为电磁感应。
- 电磁感应中的法拉第定律指出,电动势的大小等于磁场的变化率乘以电路中的导线数目。
4. 电磁波和电磁频谱:
- 电磁波是一种由振动的电场和磁场组成的无线波动。
- 电磁波的频率和波长之间的关系可以用速度等于频率乘以波长的公式表示,速度等于光速约为3 x 10^8米/秒。
- 电磁波按频率从低到高的顺序排列,称为电磁频谱,包括无线电波、微波、红外线、可见光、紫外线、X射线和γ射线。
这些是九年级物理磁与电的一些主要知识点,希望能对你有帮助!。
九年级上册物理磁知识点磁学作为物理学的分支,是研究磁场和磁性材料性质的科学。
在九年级上册物理课程中,我们学习了磁学基础知识与磁性材料等内容。
本文将介绍九年级上册物理中的磁学知识点。
一、磁性与磁性材料磁性是物质表现出的吸引或排斥其他物质的性质。
根据物质的磁性能够区分为铁磁体、顺磁体和抗磁体。
铁磁体具有自发磁化能力,顺磁体在外磁场作用下会被磁化,抗磁体则具有排斥外磁场的特性。
磁现象的产生是由物质中的微观磁性基本粒子的排列与运动引起的。
在九年级上册物理中,我们学习了最基本的磁石的磁性与磁力之间的关系。
磁力是由磁场引起的,磁场是一个物体所受的磁力所构成的场。
磁场是沿磁力线的方向产生的,磁力线由北极到南极。
二、磁铁与磁体磁铁是磁性材料中常见的一种。
磁铁可以通过磁化或电流来产生磁场。
我们了解到的常见磁铁有永磁铁与电磁铁。
永磁铁是具有持久磁性的材料,如常见的铁磁体。
而电磁铁则是利用电流通过导线所产生的磁场而产生的。
磁体是指通过各种手段制作成的可以产生稳定磁场的装置。
我们学习的示波器中就有一种叫做“Y型偏转线圈”的磁体,可以通过电流产生一个均匀且稳定的磁场,用于调节电子束在示波器屏幕上的位置。
三、磁场与磁力磁场是指磁力作用的范围,磁场可以通过磁感线描述。
磁感线是从南极指向北极的线条,它们始终以闭合形式存在。
在磁场中,磁铁受到的力与其所在位置的磁场强弱、磁铁本身的磁性以及与其他磁体之间的相对位置都有关系。
磁感应强度是磁场强度的物理量,使用字母B表示。
磁感应强度是一个矢量量,其大小表示磁场强度,方向表示磁场方向。
通常情况下,我们使用磁力计来测量磁场中的磁感应强度。
四、磁力与磁感应强度的关系磁力是磁场作用于磁体所产生的效应。
磁力的大小和方向与磁感应强度、电流以及导线所在位置均有关系。
在九年级上册物理中,我们了解到洛伦兹力就是磁力对运动带电粒子的作用力。
洛伦兹力的大小与磁感应强度、电荷的大小以及运动带电粒子的速度有关。
九年级物理磁知识点总结
磁学是物理学的一个重要分支,它研究的是磁场及其相互作用。
在九年级的物理学习中,我们学习了许多关于磁学的知识。
以下
是九年级物理磁知识点的总结。
一、磁性物质
磁学的研究对象之一是磁性物质。
磁性物质分为铁磁性和顺磁
性两种类型。
铁磁性物质如铁、镍和钴具有强磁性,可以被磁体
吸引,并且可以自己成为磁体。
顺磁性物质如铝、锌和氧气磁化弱,只在外磁场的作用下表现出磁性。
二、磁场
磁场是指磁力的作用范围。
磁体可以产生磁场,磁场以力线的
形式表现出来。
磁场的方向由北极指向南极,磁力线的密度表示
磁场的强度。
三、磁感线
磁感线是用来表示磁场分布的线条。
磁感线的性质包括:1)
磁感线是自北极指向南极;2)磁感线在磁体内部是密集的;3)
磁感线不可以相交。
四、磁力
磁力是磁场对物体或电流的作用力。
磁力的方向遵循左手定则,即大拇指指向电流的方向,其他四指方向即为磁力的方向。
磁力
的大小取决于物体或电流与磁场的相互作用。
五、电磁感应
电磁感应是指磁场通过磁感应线产生感应电流的现象。
当磁场
发生变化时,会在物体中产生感应电流。
电磁感应的应用非常广泛,例如发电机和变压器等。
六、磁场对电流的作用
磁场也可以对电流产生作用。
当有导体中有电流通过时,会产
生磁场。
根据安培电流定律,电流所产生的磁场方向可以由右手
定则确定。
七、电磁铁
电磁铁是一种利用电磁感应效应使铁磁性物质转为磁体的装置。
当通过电磁铁的线圈通电时,会在铁芯中产生磁场,使铁磁性物
质具有吸引性。
八、电动机
电动机是一种能够将电能转化为机械能的设备。
它利用电磁感
应的原理,通过磁场对电流产生的力来驱动电动机的转动。
九、电磁波
电磁波是带有振荡电场和振荡磁场的波动现象。
根据频率的不同,电磁波可以分为无线电波、微波、红外线、可见光、紫外线、X射线和γ射线。
以上是九年级物理磁知识点的总结。
通过学习这些知识,我们
能够了解磁学的基本概念和原理,理解磁场对物体和电流的作用,以及掌握一些与磁场有关的应用技术。
在今后的学习和生活中,
我们可以更好地理解和利用磁学知识。