四川长宁地区ML 4.0以上地震震源机制解及震源深度反演
- 格式:pdf
- 大小:496.70 KB
- 文档页数:5
长宁震区恢复重建引言2019年6月17日,四川省长宁县发生了一次强烈的地震,震中位于北纬28.34度、东经104.90度,震级7.0级。
这次地震对长宁震区造成了严重的破坏,给人们的生命和财产安全带来了巨大的威胁。
在灾难之后,长宁县的政府和相关部门组织了大规模的抗震救灾行动,并启动了长宁震区的恢复重建工作。
本文将探讨长宁震区的恢复重建情况,并介绍一些重点项目和政策。
一、抗震救灾行动在地震发生后,长宁县政府迅速启动了抗震救灾行动。
他们派遣了大批救援人员和物资前往灾区,为受灾群众提供救援和医疗服务。
此外,政府还组织了志愿者队伍,协助救灾工作。
在短时间内,受灾群众得到了及时的援助和救济。
二、恢复重建工作1. 重建规划为了高效有序地进行恢复重建工作,长宁县政府制定了详细的重建规划。
根据规划,政府将分阶段、分领域地进行重建工作。
首先,政府将重点关注基础设施的修复和重建,包括道路、桥梁、供水系统、电力系统等。
其次,政府将重建受灾人员的住房,确保他们能够尽快回归正常的生活。
此外,政府还将重点支持受灾企业的恢复和重建。
整个重建工作将分为数个阶段进行,以确保每个阶段的工作能够顺利进行。
2. 重点项目长宁震区的恢复重建工作中,有几个重点项目需要特别关注。
(1)住房重建为了恢复受灾群众的住房,政府计划修复或重建受损的房屋,并提供金融支持和补贴,帮助居民重建家园。
政府还鼓励社会力量参与住房重建工作,并提供相应的补助。
(2)基础设施修复地震对长宁震区的基础设施造成了严重的破坏,包括道路、桥梁、供水系统、电力系统等。
政府将投入大量资源进行相关设施的修复和重建,以确保受灾地区基础设施的正常运作。
(3)产业恢复长宁震区的经济主要依靠农业和旅游业。
地震对这两个产业造成了严重影响。
政府将通过资金补贴、技术支持和市场开拓等措施,帮助受灾企业恢复和发展,促进经济的快速恢复。
3. 政策支持为了推进长宁震区的恢复重建工作,政府制定了一系列政策,以支持受灾群众和企业。
CAP方法反演震源机制的误差分析:以胶东半岛两次显著中等地震为例郑建常;林眉;王鹏;徐长朋【摘要】利用区域波形数据使用CAP方法反演中强地震的震源机制正逐渐得到广泛应用.本文以胶东半岛近期发生的两次显著中等地震为例,讨论了使用CAP方法反演震源机制时的误差估计,展示了反演结果的不确定性分析过程.2013年l1月23日和2014年1月7日在山东莱州和乳山分别发生了M4.6和M4.3级中等地震,两次事件均造成了较大影响.我们基于CAP方法,使用自助抽样(bootstrap)技术多次重复反演过程,得到大样本量的震源机制解数据;基于这些数据,使用粒子群算法和聚类分析技术给出了优化解,估计了震源机制解的误差范围,并利用震源机制解的P、T轴给出了震源球上的概率密度分布.【期刊名称】《地球物理学报》【年(卷),期】2015(058)002【总页数】10页(P453-462)【关键词】莱州地震;乳山地震;波形反演;聚类分析;不确定性【作者】郑建常;林眉;王鹏;徐长朋【作者单位】山东省地震局,济南 250014;山东省地震局,济南 250014;山东省地震局,济南 250014;山东省地震局,济南 250014【正文语种】中文【中图分类】P3151 引言据山东台网测定,2013年11月23日13时44分在山东省莱州市(37.10°N,120.02°E)发生 M4.6级地震,这次地震是山东陆地地区自1995年苍山5.2级地震后发生的最大地震,影响范围广,山东东部市地普遍有感;2014年1月7日22时24分在山东乳山(36.80°N,121.70°E)发生 M4.3级地震,这次地震也造成胶东地区大面积有感.这两次事件是1970年以来胶东半岛陆地及近海地区发生的最强烈的地震活动,其中莱州地震震中区在1970年以来的小震目录上属于典型的少震、弱震区,活动水平不高,很少有ML≥3.0地震发生,仅在1991年2月以及2012年7月分别发生最大ML3.8级小震序列各一次;乳山地震震中区历史上曾发生公元1046年岠嵎山51/2级和1939年乳山下初51/2级地震.虽然这两次地震的震中区历史上没有强烈地震活动,但胶东半岛北部近海曾发生多次6、7级强震,如1548年渤海海峡7.0、1948年威海近海6.0以及1969年渤海7.4级等.因此确定这两次显著中等地震的震源机制对于研究区域地质构造的活动特征,以及研判该地区的地震危险性等具有重要的科学价值.我们使用近年来在国内得到广泛使用的CAP(Cut and Paste)方法反演这两次地震的震源机制.为了得到更准确的解,并且合理地估计反演结果的不确定性,我们使用自助抽样法(bootstrap)对反演过程随机重复,在大样本量的反演结果基础上,使用粒子群算法搜索优化解,利用动态聚类技术对结果进行聚类分析,从而得到了更加稳定可靠的断层面解,给出了可能的误差范围,并进一步给出了震源球上P、T轴的概率密度分布.2 理论与方法2.1 CAP方法反演震源机制震源机制和传播效应决定了观测波形的变化.如果地壳模型已知,可以准确地计算波形传播过程中的效应,因此我们可以通过理论波形s(t)和观测波形u(t)的拟合来估计震源的断层面参数.双力偶震源产生的理论位移s(t)可以表示为(Zhu and Helmberger,1996):其中,i=1,2,3对应三种基本断层响应,即:垂直走滑、垂直倾滑以及倾角为45°的倾滑;Gi为格林函数,Ai是辐射系数,φ是台站方位角,M0为标量地震矩.θ,δ,λ分别为断层的走向、倾角、滑动角.系数Ai由6个矩张量分量和台站方位角表示如下(Jost and Herrmann,1989):走向θ、倾角δ、滑动角λ,以及标量地震矩M0等可以通过求解以下方程进行估计:波形反演可以使用全波形数据,也可以单独使用体波或面波震相进行拟合.CAP方法是一种联合使用体波和面波进行反演的方法,近年来在国内得到了广泛的应用(吕坚等,2008;黄建平等,2009;郑勇等,2009;龙锋等,2010;韩立波等,2012),由于该方法分别截取波形的Pnl部分和面波部分分别拟合(Zhao and Helmberger,1994;Zhu and Helmberger,1996),并在反演的过程中允许它们在适当的时间变化范围内相对移动,在一定程度上避免了因为地壳模型不准确而引起的震相到时的误差因素,对速度模型和地壳横向变化的依赖性较小,因此在实际的区域地震震源机制求解中有明显的优势.CAP方法使用频率F-波数K法(Zhu and Rivera,2002)计算格林函数,使用网格搜索方法搜寻最优震源机制参数和震源深度.考虑到波形随震中距的衰减,方法定义误差函数如下:式中,r为台站震中距,r0为选定的参考震中距,p为指数因子.参考有关研究,对体波p=1,面波p=0.5(韩立波和蒋长胜,2012).2.2 CAP方法的优化解及其不确定性估计地球内部的任意震源可以表示为6个独立分量的矩张量,由于CAP方法限制震源为双力偶模型,并且无需发震时刻的对齐,因此只需对震源模型的三个角度,即走向θ、倾角δ、滑动角λ,以及标量地震矩M0进行搜索,理论上而言,仅需要2个台站的三分向波形就可以求解;虽然研究显示,对于大多数3个三分向台的组合,使用波形反演就可以得到相对准确的震源机制,但实际情况也显示,不同的台站组合波形反演得到的解之间仍然存在一定的差异(Godano et al.,2009;郑建常和陈运泰,2012).目前国内台网密度已经达到相当水平,在东部地区,一个中等地震通常有数十甚至上百个宽频带台能够记录到清晰的波形,以此次莱州地震为例,通过对原始波形进行去均值、去趋势、积分等简单变换后,根据直观的观察,震中距300km范围内,采样率100Hz的宽频带三分向波形有近40个台站的资料可用.在使用CAP方法求解震源机制时,一般的做法是选择部分波形拟合较好的台进行反演,删去拟合不好的台或者震相;有些情况下,甚至仅使用面波部分而删除体波震相,需知面波尤其是径向和切向分量,很容易受到台站下方浅层地壳结构的影响.由于CAP方法是采用网格搜索的方法,因而这种人为的选择,必然会为反演结果增加主观的不确定性因素.我们无法令人信服地说明,拟合不好的波形究竟是数据本身确实存在干扰,还是说搜索到的解无法满足该条数据.另外,CAP方法虽然可以在最后的输出结果中给出断层面参数的不确定性,但该估计值只是面向所使用的台站数据的结果,在上述的人为选择下,该不确定性估计能够在多大程度上客观地反映最终解的整体不确定性,是无法说明的.为了求得更加稳定可靠的解并且合理客观地给出解的误差估计,我们在相对丰富的观测数据基础上,采用自助抽样统计方法进行分析.具体方法是在可用的观测台站中可重复地随机抽取一定数量的台站组成新的台站组合,使用该台站组合的观测数据重复反演过程.在大量的重复计算后(例如,超过1000次),可以有效地排除观测质量不高或存在较大干扰误差的数据的影响,从而得到更加接近真实解的结果,并且可以有效地给出解的不确定性.另外,由于CAP方法在搜索断层面解时采用的是网格搜索的方法,然后通过插值计算误差函数e的最小值,并且由于固定步长的走向、倾角、滑动角的尝试位置在震源球上的分布是不均匀的(许向彤等,1995),因此在最终解中可能会有空缺(gap)的存在.为了求解优化解,我们进一步使用Kagan(1991)定义的双力偶模型最小空间旋转角,对上面自助抽样得到的大量满足条件的震源机制结果进行分析,定义与所有解的空间偏转角度和为目标函数,使用粒子群非线性优化方法搜索该目标函数最小的结果,视为最优解.2.3 聚类分析在震源机制求解中,常见的情况是在震源球上存在几簇相对集中分布的解,对这些可能的解直接取数学平均是不甚合理的,并且在数据存在较大误差或干扰的情况下,满足条件的可能解的分布范围也许会相当大.因此针对这一现象,刁桂苓等(1992)、俞春泉等(2009)分别使用系统聚类和动态聚类技术,对所有的可能解进行聚类分析,求取聚类中心作为反演的优化解,数值试验和实际应用都有很好的效果.聚类分析可以很好地排除孤立解和错误解,从而在大量的数据中获取更加接近真实解的结果.本文在使用不同台站组合重复进行波形反演后,同样得到了大量的震源机制解数据,受台站布局和数据误差的影响,这些解或多或少存在差别,因此对这些结果进行聚类分析是很有必要的.3 数据与资料本文使用了山东台网提供的波形资料,其中还包括了邻省如辽宁、河北、江苏等省交换资料的部分台站.图1给出了本项研究使用的台站分布,其中个别台如JIM、ZSL、HUD等为短周期台,在波形反演中没有使用.本文研究中,首先由观测记录直接读取初动符号,用于约束波形反演;然后将观测数据扣除仪器响应,经过去均值、零漂等预处理后积分至位移记录,旋转到Z-R-T坐标系,对观测波形和理论波形同样进行带通滤波,然后用于反演.图1 本文研究的两次地震震中及山东台网台站分布图Fig.1 Map of stations in Shandong Network and two earthquakes studied in this paper.Red circles denote epicenter,triangles are stations,and solid black lines are faults.使用Chang等(2006)给出的朝鲜半岛南部至黄海地区的中上地壳速度结构模型用于本文的震源机制反演.相关地质资料显示,胶东半岛、南黄海以及朝鲜半岛南部在大地构造分区上都属于下扬子地块,地质构造属性相对较为一致(Ree et al.,1996).4 结果与分析4.1 乳山M4.3震源机制选择震中距在250km以内的15个台站的宽频带波形记录进行反演,Pnl和面波的反演波段分别选择0.05~0.15Hz和0.033~0.067Hz频段.图2给出了不同深度的最佳双力偶解,及拟合误差随不同深度变化的关系,由图可见,震源深度在4km时观测波形和理论波形的错配值最小,说明事件的震源深度较浅.由CAP方法反演得到的最佳震源机制:节面A的参数为:走向202°、倾角75°、滑动角153°;节面B的参数为:走向299.5°、倾角64°、滑动角16.7°;参考乳山序列的双差定位结果(李冬梅和郑建常,2014)分析认为,节面B可能是乳山地震的发震断层;震源机制显示为左旋走滑型,反演得到此次地震的矩震级MW=4.2.图2 2014年1月7日乳山M4.3级地震不同震源深度的波形拟合误差及最佳震源机制解Fig.2 Waveform fit errors and best focal mechanisms as function of depth for Jan.7,2014Rushan M4.3event图3给出了对应最优解的理论波形和观测波形的拟合情况.15个台一共75个震相,其中理论波形与观测波形相关系数大于0.9的有39个,超过50%;相关系数大于0.6(相关性较好)的有67个,约占89.3%;最佳解的方差减少(variance reduction)为70.3%,说明理论波形很好地拟合了观测波形,反演结果是可靠的.个别台(如WEH)平均相关系数较差,可能与台站位于震源机制解的节面线附近,振幅相对较小所致;另外如CHD台的拟合程度不好,可能与该台处于海域、噪声干扰较大有关.使用自助抽样的统计方法,对乳山地震震源机制解的不确定性进行估计.选用震中距在300km以内的采样率为100Hz的22个三分向宽频带台的观测波形组成原始数据集,为了保证用于反演的数据的样本量,设用于反演的台站数为20个,对原始数据集进行每个台站等概率、可重复地随机抽取,抽取出的台站波形组成新的数据集,然后用于CAP方法的波形反演.对上述的抽取台站反演过程重复1000次,将反演得到的震源机制的断层节面解和P、T轴绘制在一个震源球上,见图4.可以看出,反演中除去个别反演过程的断层面解出现一定程度的偏离外,其余结果集中分布,均显示为近走滑的机制;图4中的P、T轴位置和断层节面线集中成丛,大致显示出断层面解的误差范围.使用粒子群非线性优化方法,以与自助抽样给出的1000个机制解(图4)的Kagan角之和为目标函数,搜索最优解.结果显示最优解为,节面A:走向208.4°,倾角89.7°,滑动角154.3°;节面B:走向298.5°,倾角64.3°,滑动角0.3°;最优解与图4所示1000个解的平均夹角4.37°,以其与所有解Kagan角的2倍标准差为震源机制解的误差范围,结果显示不确定性为6.44°(图5).表1 波形反演乳山M4.3地震震源机制解结果Table 1 Parameters of focal mechanism results from waveform inversion for Jan.7,2014RushanM4.3event节面A方法节面B走向(°)倾角(°)滑动角(°)走向(°)倾角(°)滑动角(°)CAP 202 75 153 299.5 64.0 16.7粒子群优化 208.4 89.7 154.3 298.5 64.3 0.3聚类分析208.0 89.3 154.1 298.4 64.1 1.8对自助抽样结果进行动态聚类分析,结果显示最优解为:节面 A:走向208.0°,倾角89.3°,滑动角154.1°,节面B:走向298.4°,倾角64.1°,滑动角1.8°,与粒子群优化解非常一致(见表1).将自助抽样结果中的P、T轴投影到震源球上(图4),对其进行概率密度统计分析,结果见图6.4.2 莱州M4.6震源机制使用CAP方法对2013年11月23日莱州M4.6地震进行反演(郑建常等,2015),同样进行CAP反演情况的自助抽样统计分析.选用震中距在270km以内的采样率为100Hz的22个三分向宽频带台的观测波形组成原始数据集,采用全样本随机抽取方法,自助抽样反演1000次,图7给出了反演得到的震源机制的断层节面解和P、T轴在震源球上的分布情况.结果显示,莱州地震的自助抽样结果同样很好地显示出了反演得到震源机制解的误差范围,相对于乳山地震,出现了极个别反演过程的结果偏离较大的情况.使用粒子群非线性优化方法,搜索与自助抽样结果的旋转角最小的解.结果显示最优解为,节面A:走向236.9°,倾角76.2°,滑动角-169.3°;节面B:走向144.3°,倾角79.6°,滑动角-14.0°;与所有自助抽样解的平均偏转角17.4°(图8),以其与所有解Kagan角的2倍标准差(图8红色虚线所示)为误差范围,结果显示震源机制解的不确定性为23.7°.从自助抽样得到的所有机制解在震源球上的分布情况(图7)可以直观地看出,断层节面线尤其是北西向节面呈现出两组集中.由于我们定义的粒子群优化的目标函数是搜索与所有自助抽样解的空间旋转最小,因此从图7可以看出,最优解的节面位置处于其中一组的边缘位置,在此情况下,对自助抽样结果进行聚类分析是有意义的.图3 2014年1月7日乳山M.3地震最优解的理论波形(红)与观测黑波形图下方第一行数字为各段理论地震波形相对实际观测波形的移动时间,正值表示理论波形相对观测波形超前.第二行数字为理论波形与观测波形的相关系数(百分比).波形图左侧字母为台站,其下数字分别为台站震中距(km)和方位角(°).图左侧的震源球上红色区域代表压缩区,白色代表拉张区,震源球采用下半球投影.震源球上标注的“+”和“-”表示反演使用台站的P波初动.Fig.3 Comparison between synthetics(red)and observed(black)seismograms of Jan.7,2014Rushan M4.3event The numbers on the lower left side of each seismogram are the time shifts(upper)and cross-correlation coefficient in percent(lower).Positive time shifts mean that the observed data have been delayed.The letters on the left side are stations,the numbers below it are epicentral distance(in km)and azimuth(degree).The red color in beach-ball denotes compression area,while white isextension.The‘+’and‘-’signs on beach-ball indicate polarities on inversion used stations.Lower hemisphere projection is used.图4 自助抽样得到的1000次乳山地震震源机制解及粒子群最优解(下半球极射投影)震源球上黑色细线条表示自助抽样结果的断层节面线,红色线条表示粒子群优化解的节面线.Fig.4 1000focal mechanisms of Rushan M4.3event retrieved by a bootstrapping process,all nodal lines(black)and P,Taxes(blue and red points,respectively)are plotted on one beach-ball.The red lines on the beach-ball show the optimized solution given by a Particle Swarm Optimization method.Its corresponding P,Taxes are also displayed on the beach-ball (yellow and green point,respectively).Lower hemisphereprojection is used.图5 乳山地震自助抽样结果与粒子群优化解的Kagan角分布Fig.5 Kagan angles of bootstrap results to the PSO solution for Rushan event以两个震源机制解之间的最小空间旋转角(即Kagan角)为距离的定义,对1000次自助抽样结果进行聚类分析,图9给出了聚类谱系图(由于完整的聚类树过于密集和庞大,因此我们只显示了Kagan>7°的部分),以50°为阈值,可以将结果分为5类.图10给出了聚类分析的结果,属于Ⅰ类的数据占32.1%,Ⅱ类66.6%,其余三类数据合计仅有1.3%.由图10可以看出,其余三类的断层节面线和P、T轴位置明显偏离集中区且机制解类型与绝大部分结果(走滑型)不一致,是典型的孤立解.孤立解(或错误解)的出现,可能说明我们使用的数据中个别台站(或分向)存在较大干扰.使用俞春泉等(2009)的方法求取了四类解的聚类中心,其中I类解的聚类中心的断层面参数(设北东向节面为发震断层面)为:走向231.6°,倾角88.7°,滑动角-168.2°;Ⅱ类解的聚类中心为:走向238.5°,倾角74.1°,滑动角-164.8°.图6 乳山地震自助抽样结果的震源球概率密度分布俯视图(未进行极射投影)色标中正值表示T轴的概率密度分布,负值表示P轴的概率密度分布.Fig.6 Probability density distribution of solutions on beach-ball(top view of lower hemisphere,without projection)Positive values on the color scale (corresponding to the red area on beach-ball)indicate probability of T axis,while negative values(corresponding to blue area)mean probability of Paxis.图7 自助抽样得到的莱州地震震源机制解及粒子群最优解(下半球极射投影)黑色节面线为自助抽样得到的震源机制解;红色节面线为粒子群最优解.Fig.7 1000Focal mechanisms of Laizhou M4.6event retrieved by a bootstrappingprocess,all nodal lines(black)and P,Taxes(blue and red points,respectively)are plotted on one beach-ball.The red lines on the beachball show the optimized solution given by a PSO method.Its corresponding P,Taxes are also displayed on the beach-ball(cyan and yellow point,respectively).Lower hemisphere projection is used.图8 莱州地震自助抽样结果与粒子群优化解的Kagan角分布Fig.8 Kagan angles of bootstrap results to the PSO solution for Laizhou event图9 莱州地震自助抽样结果的聚类谱系图Fig.9 Dendrogram plot of the hierarchical binary cluster tree for Laizhou event图10 莱州地震自助抽样结果的聚类分析(a)断层节面线的分类显示;(b)机制解P(+)、T(⊙)轴位置的分类显示.断层节面线和P、T轴颜色表示分类,与图9分类颜色一致.Fig.10 Clustering results of focal mechanisms from a bootstrap process for Laizhou event The different colors of nodal lines and P (“+”sign in right panel),T (“⊙”in right panel)axes denote different classes,which are corresponding to colors shown in Fig.9将自助抽样结果中的P、T轴投影到震源球上,对其进行概率密度统计分析,结果见图11.可见,同聚类分析的结果一致,P轴位置的概率密度在震源球上出现了两个极值区,分别对应Ⅰ类和Ⅱ类两个聚类中心.5 讨论与结论基于山东省宽频带数字地震波形资料,本文首先使用CAP方法反演了近期胶东半岛地区发生的两次显著中等地震活动的震源机制,讨论了如何合理地估计CAP方法反演震源机制的误差范围以及如何确定优化解的问题.我们首先使用自助抽样方法,对原始数据进行等概率随机抽样,多次重复波形反演过程,排除了人为选择数据的干扰,得到大样本量的震源机制解数据;在此基础上,我们(1)使用了粒子群优化算法从中搜索与这些机制解空间偏转角最小的解当作优化解,以Kagan角的二倍标准差作为反演结果的不确定性范围,结果显示:乳山地震的粒子群优化解为:走向298.5°,倾角64.3°,滑动角0.3°,不确定性为±6.4°;莱州地震的优化解为:走向236.9°、倾角76.2°、滑动角-169.3°,不确定性为±23.7°.(2)对自助抽样结果进行聚类分析,其中:乳山地震结果的聚类中心与粒子群优化解基本一致;莱州地震结果存在多个聚类,排除孤立解后,有两个聚类中心,其对应两类数据合计占结果的98.7%,说明此次地震的真实解在这两类数据范围内. 图11 莱州地震自助抽样结果的震源球概率密度分布(a)下半球俯视图(未进行极射投影);(b)东南方向,45°三维侧视图.色标说明同图6.Fig.11 Probability density distribution of solutions on beach-ball(a)Top view of lower hemisphere,without any projection;(b)Side view of whole beach-ball,from south-east 45°po sition.Positive values on the color scale (corresponding to the red area on beach-ball)indicate probability of Taxis,while negative values(corresponding to blue area)mean probability of Paxis.(3)将自助抽样结果中的P、T轴投影到震源球,对其进行概率密度统计,给出了机制解在震源球上的概率密度分布图.本文方法不单可以得到更准确的震源机制优化解、给出科学合理的误差估计,而且可以有效地排除孤立解和错误解,克服存在较大干扰台站的数据的影响,因此在震后应急的震源机制自动化求解中可以发挥作用.在强大计算能力的支持下,无须人工干预即可得到准确可靠的震源机制结果,从而为震害评估、趋势分析等提供重要的科学依据.自助抽样结果显示乳山地震震源机制解的不确定性要小于莱州地震,笔者推测可能有莱州地震使用的台站中个别台的干扰较大的原因,另外也无法排除莱州地震的震源破裂过程可能更加复杂的可能.CAP方法中用于计算格林函数的F-K方法使用狄拉克-Delta函数作为震源时间函数(Zhu and Rivera,2002),对于小震级的事件该简化方案更为适用,莱州地震(M4.6)与乳山地震(M4.3)震级相差不大,但莱州地震的自助抽样结果出现了两个概率较高的聚类中心,在使用大部分相同台站的情况下,这可能意味着莱州地震的震源破裂随时间的变化可能与狄拉克-Delta函数存在一定的偏离.Rodríguez-Lozoya等(2008)的研究显示,区域中等地震也可能有复杂的震源破裂过程,在该问题上的深入研究需要更进一步的工作. 致谢感谢两位匿名审稿专家提出的宝贵意见.聚类分析中使用了俞春泉等(2009)提供的部分开放代码,粒子群搜索使用了S Chen给出的Matlab软件包,在此一并表示感谢!ReferencesChang S J,Baag C E.2006.Crustal structure in Southern Korea from joint analysis of regional broadband waveforms and traveltimes.Bull.Seism.Soc.Amer.,96(3):856-870.Diao G L,Yu L M,Li Q Z.1992.Hierarchical clustering analysis of the focal mechanism solution-Taking the Haicheng Earthquake Sequences for example.Earthquake Research in China (in Chinese),8(3):86-92. Godano M,Regnier M,Deschamps A,et al.2009.Focal mechanisms from sparse observations by nonlinear inversion of amplitudes:method and tests on synthetic and real data.Bull.Seism.Soc.Amer.,99(4):2243-2264.Han L B,Jiang C S,Bao F.2010.Source parameter determination of2010Taikang MS4.6earthquake sequences.Chinese J.Geophys.(inChinese),55(9):2973-2981,doi:10.6038/j.issn.0001-5733.2012.09.016.Han L B,Jiang C S.2012.Focal mechanism inversion of 8Jun 2011 Toksun MS5.3earthquake.Acta Seismologica Sinica (in Chinese),34(3):415-422.Huang J P,Ni S D,Fu R S,et al.2009.Source mechanism of the 2006MW5.1Wen′an earthquake determined from a joint inversion of local and teleseismic broadband waveform data.Chinese J.Geophys.(in Chinese),52(1):120-130.Jost M L,Hermann R B.1989.A student′s guide to and review of moment tensors.Seism.Res.Lett.,60(2):37-57.Kagan Y Y.1991.3-D rotation of double-couple earthquakesources.Geophys.J.Int.,106(3):709-716.Li D M,Zheng J C.2014.Relocation analysis of Oct.1,2013 Rushan swarms.Qilu Earthquake Sciences (in Chinese),10(1):26-28.Long F,Zhang Y J,Wen X Z,et al.2010.Focal mechanism solutions ofML≥4.0events in the MS6.1Panzhihua-Huili earthquake sequence of Aug 30,2008.Chinese J.Geophys.(in Chinese),53(12):2852-2860,doi:10.3969/j.issn.0001-5733.2010.12.008.LüJ,Zheng Y,Ni S D,et al.2008.Focal mechanisms and seismogenic structures of the MS5.7and MS4.8Jiujiang-Ruichang earthquakes of Nov.26,2005.Chinese J.Geophys.(in Chinese),51(1):158-164,doi:10.3321/j.issn:0001-5733.2008.01.020.Ree J-H,Cho M,Kwon S-T,et al.1996.Possible eastward extension ofChinese collision belt in South Korea:The Imjingang belt.Geology,24(12):1071-1074.Rodríguez-Lozoya H E,Quintanar L,Ortega R,et al.2008.Rupture process of four medium-sized earthquakes that occurred in the Gulf of California.J.Geophys.Res.,113(B10301),doi:10.1029/2007JB005323. Xu X T,Xu Z H,Zhang D N.1995.A probabilistic grid test method of determining earthquake focal mechanisms using P-wave onset polarity data.Seismological and Geomagnetic Observation and Research (in Chinese),16(4):34-42.Yu C Q,Tao K,Cui X F,et al.2009.P-wave first-motion focal mechanism solutions and their quality evaluation.Chinese J.Geophys.(in Chinese),52(5):1402-1411,doi:10.3969/j.issn.0001-5733.2009.05.030.Zhao L S,Helmberger D V.1994.Source estimation from broadband regional seismograms.Bull.Seism.Soc.Amer.,84(1):91-104.Zheng J C,Li D M,Wang P,et al.2015.Focal mechanisms and seismic tectonic features of the 2013Laizhou M4.6earthquakesequence.Seismology and Geology (in Chinese),in press.Zheng J C,Chen Y T.2012.Stability of sparse station data inversion for deviatoric moment tensor solution of regional earthquakes.Acta Seismologica Sinica (in Chinese),34(1):31-43.Zheng Y,Ma H S,LüJ,et al.2009.Source mechanism of strong aftershocks(Ms≥5.6)of the 2008/05/12Wenchuan earthquake and the implication for seismotectonics.ScienceinChinaSeriesD:Earth Sciences,52(6):739-753.Zhu L P,Helmberger D V.1996.Advancement in source estimation techniques using broadband regional seismograms.Bull.Seism.Soc.Amer.,86(5):1634-1641.Zhu L P,Rivera L A.2002.A note on the dynamic and static displacements from a point source in multilayered media.Geophys.J.Int.,148(3):619-627.附中文参考文献刁桂苓,于利民,李钦祖.1992.震源机制解的系统聚类分析——以海城地震序列为例.中国地震,8(3):86-92.韩立波,蒋长胜,包丰.2012.2010年河南太康MS4.6地震序列震源参数的精确确定.地球物理学报,55(9):2973-2981,doi:10.6038/j.issn.0001-5733.2012.09.016.韩立波,蒋长胜.2012.2011年6月8日新疆托克逊MS5.3地震震源机制解反演.地震学报,34(3):415-422.黄建平,倪四道,傅容珊等.2009.综合近震及远震波形反演2006文安地震(MW5.1)的震源机制解.地球物理学报,52(1):120-130.李冬梅,郑建常.2014.2013年10月1日乳山震群重新定位结果分析.齐鲁地震科学,10(1):26-28.龙锋,张永久,闻学泽等.2010.2008年8月30日攀枝花—会理6.1级地震序列ML≥4.0事件的震源机制解.地球物理学报,53(12):2852-2860,doi:10.3969/j.issn.0001-5733.2010.12.008.吕坚,郑勇,倪四道等.2008.2005年11月26日九江-瑞昌MS5.7,MS4.8地震的震源机制解与发震构造研究.地球物理学报,51(1):158-164,doi:。
近震全波形反演2017年九寨沟M7.0地震序列震源机制解杨宜海;范军;花茜;高见;王朝亮;周鲁;赵韬【期刊名称】《地球物理学报》【年(卷),期】2017(060)010【摘要】搜集了四川地震台网的波形资料,采用全波形反演2017年8月8日九寨沟M7.0地震序列震源机制解.反演结果显示,九寨沟主震矩震级为Mw6.36,震源深度为22 km,节面Ⅰ走向为150°,倾角为80°,滑动角为-20°;节面Ⅱ走向为244°,倾角为70°,滑动角为-169°.余震主要分布在14~22 km深度范围内,震源机制以走滑型为主,其中正断型地震2个,逆冲型地震2个,走滑型地震24个,混合型地震8个.断层面优势方向为SSE向,与塔藏断裂和虎牙断裂走向基本一致,但与塔藏断裂最南段存在明显差异.倾角变化集中在60°~80°,滑动角主要分布在0°附近,表明九寨沟地震序列主要受SSE走向、近似直立的左旋走滑断层控制.P轴优势方位为SEE向,仰角主要分布在30°以内,与区域应力场基本一致.震源区的机制类型和应力状态均存在空间分段差异.本文推测此次九寨沟M7.0地震序列可能发生在虎牙断裂向北延伸的隐伏断裂上,但不排除地震引起了塔藏断裂南段和虎牙断裂以北隐伏断裂同时破裂的可能.%In this paper,we apply the full waveform inversion to determine the focal mechanisms of the 2017 Jiuzhaigou M7.0 earthquake sequence using near-field waveforms from Sichuan Seismic Network.Focal mechanism solutions show that the Jiuzhaigou M7.0 mainshock's moment magnitude is 6.36 and the depth is about 22 km.The two nodal planes' parameters are..strike=150°,dip=80°,rake=-20°;andstrike=244°,dip=70°,and rake=-169°.The aftershock sequences are locatedin the depth range of 14~22 km,and focal mechanisms of the Jiuzhaigou event sequence are dominated by strike-slip faulting,of which 2 are normal,2 are thrust,24 are strike-slip,and 8 are mixed faulting.Strikes of fault planes are mostly in SSE direction,consistent with the trend of the Tazang fault and Huya fault,but different from the strike of southernmost part of the Tazang fault.The dip angles are in the range of 60°~80°,and rake angles are largely close to 0°,indicating the Jiuzhaigou earthquake sequence is under the control of the SEE-striking,approximately vertical left-lateral strike-slip fault.The azimuths of P-axes are mostly in SEE direction,and the plunges of P-axes are mostly less than 30°,generally coincide with the regional tectonic stress field.Focal mechanisms and stresses vary between various segments in the space.We infer that the seismogenic fault of the Jiuzhaigou earthquake sequence is a blind fault extending northward from the Huya fault.However,we can not rule out the possibility that the rupture of the southern segment of the Tazang fault and the blind fault to the north of Huya fault may both contributed to the Jiuzhaigou earthquake.【总页数】7页(P4098-4104)【作者】杨宜海;范军;花茜;高见;王朝亮;周鲁;赵韬【作者单位】陕西省地震局,西安710068;四川省地震局,成都610041;陕西省地震局,西安710068;重庆市地震局,重庆401147;成都理工大学地球物理学院,成都610059;成都理工大学地球物理学院,成都610059;陕西省地震局,西安710068【正文语种】中文【中图分类】P315【相关文献】1.2017年8月8日九寨沟M7.0地震及余震震源机制解与发震构造分析 [J], 易桂喜;宫悦;乔惠珍;汪智;邱桂兰;苏金蓉;龙锋;梁明剑;张会平;赵敏;叶有清;张致伟;祁玉萍;王思维2.2017年8月九寨沟M7.0地震序列的断层结构及应力场特征 [J], 李君;王勤彩;崔子健;刘庚;周琳3.2017年九寨沟7.0级地震序列震源机制解和构造应力场特征 [J], 祁玉萍;龙锋;肖本夫;路茜;江鹏4.2017年8月8日四川九寨沟M7.0和9日新疆精河M6.6地震震源机制解 [J], 郭志;陈立春;李通;高星5.2017年8月九寨沟M7.0地震序列断层结构及构造应力场特征 [J], 李君;王勤彩;崔子健;刘庚;周琳;路珍;周辉因版权原因,仅展示原文概要,查看原文内容请购买。
班级姓名学号分数《第1章宇宙中的地球》测试卷(A卷)(测试时间:50分钟满分:100分)一、选择题。
(在每个小题给出的四个选项中,只有一项是符合题目要求的。
每小题2.5分,20小题,共50分)(2020·浙江省高一期末)2020年4月美国宇航局(NASA)表示在开普勒历史数据中发现了一颗隐藏的类地行星(Kepler-1649c),它距离地球约300光年,接受的光照约为地球的75%,有望供生命繁衍生息。
完成下列小题。
1.行星(Kepler-1649c)位于()A.地月系B.太阳系C.银河系D.河外星系2.依据材料信息推测,行星(Kepler-1649c)()A.运行的轨道环境不安全B.可能存在固态和液态水C.公转轨道半径一定大于日地距离D.具有适合生物呼吸和生存的氧气【答案】1.C 2.B【解析】1.从材料可知,类地行星(Kepler-1649c)距离地球约300光年,超出了太阳系的范围,但位于银河系的范围,C正确,故选C。
2.依据材料可知,“有望供生命繁衍生息”,是类地行星,说明这颗类地行星运行轨道是安全的,A错误。
是类地行星,因接受的光照为地球75%,可能有固态和液态水,B正确。
接受的光照为地球75%,公转轨道半径有可能大于日地距离,C错误。
无法判断是否有适合生物呼吸和生存的氧气,D错误。
故选B。
(2020·陕西省清华附中文安驿学校高一期末)欧洲天文学家宣称,他们在距离地球20.5光年外的太空发现了一颗与地球颇为相似的行星,并认为这颗行星上“可能孕育生命”。
据此回答下面小题。
3.该行星“适合孕育生命”的条件主要包括①温度适宜②有液态水③有卫星绕转④宇宙安全、稳定A.①②③B.①②④C.②③④D.①③④4.地球上的大气层适合生物的呼吸,大气层的存在主要取决于A.日照条件稳定B.日地距离适中C.地球的质量和体积适中D.有原始海洋【答案】3.B 4.C【解析】3.地球上生命存在的自身条件包括“适宜的温度、较厚的大气层和液态水”;由于大小行星各行其道,故地球形成了较安全的宇宙环境和稳定的光照条件。
地震反演技术解析地震是地球内部强烈能量释放的一种自然现象,经常给人类造成严重的损失。
为了提前预警和减轻地震带来的影响,科学家们不断研究并发展地震反演技术,通过分析地震波传播过程,从而推断地球内部的物质性质和结构。
在本文中,我们将对地震反演技术进行详细解析。
一、地震反演的基本原理地震反演技术是通过分析地震波在地球内部传播的方式来推断地下的物质组成和结构。
它的基本原理是利用地震波在不同介质中传播速度的变化,推断地下结构的差异性。
地震波在不同介质中的传播速度受到介质密度、弹性模量和损耗等因素的影响。
通过测量地震波的传播速度和到达时间,科学家可以对地下结构进行反演。
二、地震波的测量方法地震波的测量是地震反演技术的基础。
常用的地震波测量方法包括接收地震波的地震仪、利用爆炸物或震源人工产生的地震波、以及记录地震波传播路径上的速度和振幅等。
这些测量数据会成为地震反演的基础输入。
三、地震波的模拟与正演为了研究地震波在地球内部的传播规律,科学家们利用计算机模拟和数值方法进行地震波的正演。
正演模拟可以根据地震波的源和介质参数,计算出地震波在地下的传播路径、速度和振幅等。
通过与实际观测数据进行对比,可以验证地震模型的准确性。
四、地震波的反演方法为了从地震观测数据中推断地下结构,科学家们发展了多种地震波反演方法。
其中,最常用的方法包括走时反演、频率反演、波动方程反演等。
走时反演是基于地震波到达时间的变化来进行反演。
通过测量地震波的传播时间和地震波速度模型,可以推断地下结构的速度分布。
频率反演是基于地震波信号频率的变化来进行反演。
通过分析地震波信号的频谱特征,可以推断地下结构的频率响应和介质的频率衰减特性。
波动方程反演是一种基于波动方程的直接反演方法。
通过求解波动方程,建立地震波传播的物理模型,进而推断地下结构的物质组成和弹性参数。
五、地震反演技术的应用地震反演技术在地球物理勘探、地球内部结构研究、地震灾害预警等领域都有广泛的应用。
知识长廊2019年6月17日22时55分(北京时间)在四川宜宾市长宁县发生6.0级地震,震源深度16千米。
此次地震震中位于长宁县双河镇,北纬28.34度,东经104.90度(图1)。
震源机制解显示为走滑型地震。
据中国地震台网中心消息,截至7月4日11时整,长宁地震共记录到2.0级及以上余震225次,其中5.0-5.9级地震4次,4.0-4.9级地震6次, 3.0-3.9级地震52次,2.0-2.9级地震163次,目前最大余震为7月4日10时17分在四川宜宾市珙县(北纬28.41度,东经104.74度)发生5.6级地震。
经过中国地震局批准,四川省地震局向社会发布长宁6.0级地震烈度分布图(图1)。
Ⅷ度(8度)区面积84平方千米;Ⅶ度(7度)区面积为436平方千米,长宁县、兴文县、珙县部分地区地震烈度达Ⅶ度(7度),震感强烈;VI度(6度)区面积为2538平方千米。
6月17日长宁6.0级地震发生后,由成都高新减灾研究所研发的地震预警系统ICL(Institute of Care-Life)让许多四川省及邻近的贵州省居民在地震波到来前收到避险信号。
该系统提前10秒给宜宾市预警、提前18秒给泸州市预警、提前27秒给自贡市预警、提前31秒给贵州毕节预警,提前61秒给与长宁地震震中相隔200多千米的成都市预警,为最大程度减少地震造成人员伤亡争取宝贵的时间。
因此地震预警系统被人们称为跑赢地震波的“神器”。
“6·17”长宁地震灾情及造成的主要原因截至6月21日16时统计,此次地震造成13人死亡,226人受伤,地震造成倒塌和严重损坏房屋9532户20185间,一般损坏房屋21123户75713间。
S309古高路长宁县硐底镇路段发生山体塌方,造成道路阻塞封闭交通,初步统计直接经济损失88.89亿元。
尽管此次地震震级不算很大,造成人员伤亡及财产损失主要有三方面原因。
其一,震源深度16四川长宁地震你所不知道的……叶清图1四川长宁6.0级地震烈度图千米,属于浅源地震,震中区烈度达Ⅷ度(8度)。
第36卷第6期2020年12月Vol.36,No.6Dec.2020结构工程师Structural Engineers四川长宁、珙县地震灾害分析与反思张航华郝潞岑肖建庄*陈子璇(同济大学建筑工程系,上海200092)摘要2019年6月17日,四川省宜宾市长宁县发生6.0级地震,并伴随多次余震。
其中,村镇房屋在本次地震中震害严重,导致了人员伤亡和财产损失。
通过对村镇地区建筑深入研究,结合典型震害案例,分析了导致建筑结构损毁的原因。
进而,对如何提高村镇建筑结构的抗震设计水平和如何规范化工程施工管理等方面给出建议,为今后村镇地区降低震害风险提供了参考。
关键词长宁县地震,震害分析,村镇建筑,抗震设计Analysis on Seismic Damage in Changning and Gong County EarthquakeZHANG Hanghua HAO Lucen XIAO Jianzhuang*CHEN Zixuan(Department of Structural Engineering,Tongji University,Shanghai200092,China)Abstract On June17,2019,a6.0-magnitude earthquake occurred in Changning County,Yibin City,Sichuan Province,accompanied by several aftershocks.The village buildings were seriously damaged during this earthquake,resulting in casualties and property losses.In this paper,the causes of structural damage were analyzed through an in-depth study of building damage in villages and towns,combined with typical earthquake damage cases.Furthermore,it gives positive suggestions on how to improve the seismic design level of village buildings and how to standardize the construction management,and provide a recommendation for reducing the risk of earthquake damage in villages and towns in the future.Keywords Changning earthquake,seismic damage analysis,village buildings,seismic design0引言2019年6月17日,四川省宜宾市长宁县发生里氏6.0级地震,并伴随有多次余震,给人民生命财产带来了重大损失。
梁姗姗,邹立晔,刘艳琼,等. 2023年11月—2024年2月中国大陆地区M ≥4.0地震震源机制解测定[J]. 地震科学进展,2024, 54(3): 229-236. doi:10.19987/j.dzkxjz.2024-036Liang S S, Zou L Y, Liu Y Q, et al. Determination of focal mechanism solutions of the earthquakes with M ≥4.0 occurred in the mainland of China during November 2023 to February 2024[J]. Progress in Earthquake Sciences, 2024, 54(3): 229-236. doi:10.19987/j.dzkxjz.2024-036地震科学数据应用2023年11月—2024年2月中国大陆地区M ≥4.0地震震源机制解测定梁姗姗※ 邹立晔 刘艳琼 任 枭(中国地震台网中心,北京 100045)摘要 本文利用中国地震台网记录的宽频带波形资料,采用近震全波形反演方法得到2023年11月1日—2024年2月29日发生在中国大陆地区的M ≥4.0共62次地震震源机制解。
结果显示逆断型45次,走滑型13次,正断型3次,未知型1次。
关键词 震源机制;震源参数;乌什M S 7.1地震中图分类号:P315.3+3 文献标识码: A 文章编号: 2096-7780(2024)03-0229-08doi :10.19987/j.dzkxjz.2024-036Determination of focal mechanism solutions of the earthquakes with M ≥4.0occurred in the mainland of China during November 2023 to February 2024Liang Shanshan, Zou Liye, Liu Yanqiong, Ren Xiao (China Earthquake Networks Center, Beijing 100045, China)Abstract In this paper, the regional full waveform inversion using the broadband waveforms recorded by China Seismic Network were conducted, and the focal mechanism solutions of the 62 earthquakes with M ≥4.0 occurred in the mainland of China during November 2023 to February 2024 were obtained. The types of these focal mechanism solutions show 45 reverse faulting, 13 strike-slip faulting, 3 normal faulting and 1 odd earthquakes.Keywords focal mechanism; source parameters; Wushi M S 7.1 earthquake0 引言据中国地震台网测定,北京时间2023年11月1日0时—2024年2月29日24时,中国大陆地区共发生M ≥4.0地震71次(表1)。
利用矩张量反演法研究江苏高邮—宝应Ms4.9级地震震源机制解和震源深度康清清;缪发军;刘红桂;徐戈;李峰【期刊名称】《地球物理学报》【年(卷),期】2015(58)1【摘要】基于江苏、安徽、山东和浙江等省区域台网共19个宽频带数字台站的地震波形,采用H ypoDD双差定位方法确定了2012年7月20日江苏高邮宝应M4.9级地震震中位置,再利用时间域矩张量反演法TDMT_INV获得了其震源机制解和震源深度.反演结果显示:最佳双力偶解为节面Ⅰ走向290°,倾角88°,滑动角-21°;节面Ⅱ走向21°,倾角69°,滑动角-177°,地震矩震级为Mw4.95,震源深度约为7~9 km.利用滑动时窗相关法提取sPn震相测定震源深度为8.95 km,两者一致性较好.随后不同地壳模型和不同震中定位误差对反演结果的影响试验揭示了反演结果具有稳定性.通过以下几种分析:①与利用CAP(Cut and Paste)矩张量反演法得到的结果进行对比;②P波初动投影;③正反演试验探求反演结果不稳定的影响因素等方法,验证了反演结果的可靠性.综合本文研究成果、震后科学考察结果(包括重力测量和地震烈度分布图)及现有的地质构造资料,推测此次地震的发震构造为杨汊仓桑树头断裂,节面Ⅱ为断层面,是一个右旋走滑兼有少量正断层性质的错动.【总页数】12页(P204-215)【作者】康清清;缪发军;刘红桂;徐戈;李峰【作者单位】江苏省地震局,南京210014;江苏省地震局,南京210014;江苏省地震局,南京210014;中国地震局地球物理研究所,北京 100081;中国地震局地震预测研究所,北京 100036;江苏省地震局,南京210014;江苏省地震局,南京210014【正文语种】中文【中图分类】P315【相关文献】1.江苏高邮、宝应Ms4.9级地震现场震害调查与破坏原因研究 [J], 洪海春;杨伟林;彭小波;范小平;顾勤平2.利用不同速度模型反演越西MS 5.2地震震源机制解及震源深度 [J], 魏娅玲;黄雪影3.2003年11月13日岷县ML5.5级地震震源机制的矩张量反演 [J], 李亚荣;荣代潞;刘旭宙;韩晓明4.广西苍梧Ms5.4级地震震源机制解与震源深度 [J], 姚海东;尹欣欣;沈平;蒲举5.多种方法研究2012年7月20日江苏高邮M_S4.9级地震震源机制解和震源深度 [J], 洪德全;王行舟;倪红玉;李锋因版权原因,仅展示原文概要,查看原文内容请购买。