分子克隆详细步骤
- 格式:docx
- 大小:37.07 KB
- 文档页数:2
分子克隆实验流程一、引物的稀释1、引物干粉冻存于-20℃,用前12000rpm离心1min;2、按引物管上的nmol数稀释,nmol=4.92,加49.2µL ddH2O至100µM;3、稀释至10µM(5µL引物F+5µL引物R+40µL ddH2O)二、目的基因的扩增实验前准备:生物安全柜紫外照射30min,模板DNA、水、引物、buffer,dNTP提前10min拿出解冻,用75%酒精擦拭移液器及台面。
扩增体系:Reagent 25µL 50µL10xbuffer (含Mg2+) 2.5µL 5µLdNTP (10mM) 0.5µL 1µLrT aq酶0.25μL0.5μLprimer (10μM) 1.25μL 2.5μLTemplate DNA 2μL4μLddH2O 18.5µL 37µL反应程序:(延伸时间按目的片段大小进行调整)95℃预变性3min(95℃变性30 s,60℃退火30s,72℃延伸45s)x3572℃后延伸7min4℃保持电泳:120V,加2µLloading buffer,上样5µL,1000bp marker 5µL小胶:2%,0.6g琼脂糖,30ml 1xTAE中胶:2%,1g琼脂糖,50ml 1xTAE大胶:2%,2g琼脂糖,100ml 1xTAE三、目的产物切胶回收(试剂盒)四、连接实验前准备:SolutionI在冰上融化连接体系:Reagent 10µL胶回收DNA(50ng/μL)4µLPDM-18T载体1µLSolution I 5µL反应条件:16℃,4h(PCR仪,热盖105℃)/ 4℃过夜五、转化实验前准备:开启42℃水浴锅实验步骤:样品+阴性对照(无质粒)+阳性对照(感受态带的质粒)1、把感受态细胞TOP10从-80℃冰箱拿出并放置于冰上解冻;2、每管分装30 - 50μL感受态细胞(冰浴);3、向感受态细胞中加入5μL连接产物,冰浴30min。
分子克隆步骤:一、贴壁细胞总RNA 提取:1、吸掉培养液,用PBS 洗一遍 ?2、往培养皿中加入1ml,TRIzol, 吹打几次3、移至 1.5mlEP 管,静置 5 分钟(每 10cm2面积 ,即3.5cm直径的培养板加1ml)4、加入5、4 度6、加入7、4 度200ul 三氯甲烷,震荡混匀,室温静置12000r/min ,离心 15 分钟,取上清,约500ul 异丙醇,混匀后,静置30 分钟?12000r/min ,离心 15 分钟,弃上清5 分钟600ul8、加入 1ml70% 预冷酒精洗涤沉淀物9、 4 度 7500r/min ,离心 5 分钟10、弃上清,自然晾干11、加入 50ulDEPC 水溶解,测OD值*鼠尾基因组DNA粗提取:1、 100ul lysis buffer for each tail,and 2ul 10mg/ml PK,55℃ ,overnight.2、 Then,100 ℃ for 10min to denature the PK, use 0.5~1ul lysate as template to do PCR.Lysis buffer:(store at 4KCl 0.5M Tris0.1M NP-40 1%Tween-20 1%℃)二、 RT-PCR:1、预变性体系12ul :Total RNAOligo ( dT18) primer DH water 2ul 1ul 9ul65℃5min速置冰上2、 RT 体系: 20ul :预变性体系5×buffer RNAase inhibiter 10m dNTP MMLV 12ul 4ul 1ul 2ul 1ul42 ℃60min 70 ℃5min 12 ℃forever3、 PCR体系20ul :10×buffer2ul10m dNTP0.5ulPrimer(F+R)1ul( 0.5ul+0.5ul)稀释后cDNA ( 50ul )1ulPfu0.2uldd water15.3ul95 ℃ 3min 、( 95℃ 30s , 55 ℃30s , 72℃ 35s )×29cycle 、72 ℃ 10min 、 12 ℃ forever三、跑胶鉴定PCR 产物:四、醇沉PCR 产物:1、将 PCR 产物转移至 1.5mlEP 管中2、加入 0.1 倍体积预冷NaAC , 3 倍体积 70%预冷乙醇,混匀3、— 80℃静置30min4、4 度5、4 度6、加入14000r/min , 10min 离心弃上清,加1ml70%14000r/min , 10min 离心弃上清,自然晾干25-20ul dd water吹匀静置10-20min待溶解预冷乙醇洗涤沉淀五、原始质粒 /PCR 醇沉产物双酶切体系50ul:Enzyme11ulEnzyme21ul10×Buffer5ul(在体系中被稀释成 1×)10×BSA5ul(看需要)Template1ugADD dd water to50ul酶切过夜?六、单独鉴定质粒酶切产物:1、采用 20ul 体系:酶各0.5ul、 buffer2ul 、 bsa0.5ul、 template2ul)酶切 2h2、跑胶鉴定七、电泳,切胶回收与纯化:使用 DNA 回收试剂盒(QIAquick Gel Extraction Kit Protocol)PCR 酶切产物纯化:1.将 PCR 产物于需要的电压和电流下跑电泳2.紫外灯下仔细切下含待回收DNA 的凝胶,置 1.5ml 离心管中,称重。
分子克隆的基本步骤嘿,各位科学小达人,今天咱们就来聊聊分子克隆的基本步骤,这可是实验室里的“高级魔术”,我保证,听完我的讲解,你也能变成一个“DNA巫师”。
首先,得准备好我们的“魔法材料”,也就是那些瓶瓶罐罐里的“液体宝贝”。
什么“PCR试剂”、“限制酶”、“连接酶”啦,这些都是我们“克隆大业”的必备良药。
第一步,来个“DNA热舞派对”,也就是PCR扩增。
把我们的目标DNA扔进“PCR机器”里,让它跟着高温曲线一起“热舞”,直到它“子孙满堂”,复制出成千上万的DNA副本。
第二步,给DNA来个“精致修剪”,这就是传说中的“酶切反应”。
我们用限制酶这个“分子剪刀”把DNA切成我们想要的形状,这可是个精细活儿,稍微手一抖,就可能变成“DNA碎片”。
接下来,是“DNA联姻”环节,也就是“连接反应”。
我们把修剪好的DNA片段和载体DNA“牵线搭桥”,让它们在连接酶的“见证”下,成为“一家人”。
这就像是在实验室里举办了一场“分子婚礼”。
然后,是“细胞变身”时间,也就是“转化反应”。
我们把连接好的DNA“送入”细菌细胞,让它们变成“DNA搬运工”。
这个过程就像是在细胞界搞了一场“特工行动”。
紧接着,得来个“D NA身份验证”,也就是“筛选转化子”。
我们把这些“可能怀孕”的细胞放在含有抗生素的培养基上,只有那些成功“怀孕”的细胞才能存活下来,这就像是在玩“细胞版”的“谁是卧底”。
最后,我们要进行“DNA产前检查”,也就是“DNA测序”。
通过测序,我们可以确认我们的克隆是否“健康成长”,没有出现“基因突变”这类“家庭悲剧”。
总之,分子克隆这事儿,听起来高大上,其实就是一场实验室里的“魔法表演”。
只要掌握了这些“咒语”和“魔法棒”,你也能在DNA的世界里,玩转“克隆大法”。
别忘了,每个科学家心里都住着一个小巫师,分子克隆,只是我们施展魔法的一部分!。
分子克隆的基本流程下载温馨提示:该文档是我店铺精心编制而成,希望大家下载以后,能够帮助大家解决实际的问题。
文档下载后可定制随意修改,请根据实际需要进行相应的调整和使用,谢谢!并且,本店铺为大家提供各种各样类型的实用资料,如教育随笔、日记赏析、句子摘抄、古诗大全、经典美文、话题作文、工作总结、词语解析、文案摘录、其他资料等等,如想了解不同资料格式和写法,敬请关注!Download tips: This document is carefully compiled by theeditor. I hope that after you download them,they can help yousolve practical problems. The document can be customized andmodified after downloading,please adjust and use it according toactual needs, thank you!In addition, our shop provides you with various types ofpractical materials,such as educational essays, diaryappreciation,sentence excerpts,ancient poems,classic articles,topic composition,work summary,word parsing,copy excerpts,other materials and so on,want to know different data formats andwriting methods,please pay attention!分子克隆是一种在体外将 DNA 分子进行重组和扩增的技术,其基本流程包括以下步骤:1. 目的基因的获取:从生物体中提取总 DNA 或 mRNA。
分子克隆的五个步骤1 选择载体:在分子克隆的过程中,首先需要选择一种合适的载体来实现这一过程。
载体是要被克隆的DNA片段,生物体中的某种大分子结构,可以为克隆提供容器。
一般来说,载体选择最好是含有可重复使用的重组信息,如使用多种重组酶克隆更为容易和可靠,能在实验室之间转移。
该步骤需要考虑选择对于试验类型最合理、在实验中表现最佳的载体,与之相符的必要条件是有可操作和稳定的复制介质,以及品质可靠、价格相对划算的供应商。
2 将载体与要克隆的DNA片段连接:接下来需要将载体与要克隆的DNA片段连接。
这样一来,DNA片段就会受到载体中的重组酶以及其余细菌特有的信息影响,从而生存,复制,得以分离,克隆出多个相同的DNA断片。
连接DNA片段和载体的技术有各种方法,最常见的方法为用复制酶切割载体的方法,这种技术利用重组酶将DNA片段片段插入载体结构中,实现载体与DNA片段的融合。
3 转化:经过第二步的操作,则可以将融合的载体片段转入细菌,进行转化,实现将载体片段覆盖到细菌细胞中,形成细菌外源DNA的转基因,从而使细菌体系内发生变化,从而开始转化过程。
4 筛选:经过第三步的转化,载体就可以移植到细菌体内,从而形成转基因细菌,这时候就可以采用测试细胞以及一些标记物质来进行筛选,将转基因细菌与其他细菌相区分开来,根据一些指定条件进行筛选,从而得到被克隆的特异性DNA片段,实现分子克隆的目的。
5 收集:经过第四步的筛选,就可以将特异性的DNA断片收集起来,被收集的DNA断裂片段就是分子克隆的结果,可以得到被克隆的特异性DNA 断片,将其用于进一步的研究。
最后,分子克隆是一种复杂的实验过程,需要经过以上5个步骤,才能实现分子克隆的目的,如正确选择载体、把该DNA片段片段插入载体结构、将融合的载体片段转入细菌、用测试细胞以及一些标记物质对转基因细菌进行筛选,从而得到被克隆DNA片段,最终收集被克隆的DNA断片,这样就可以实现分子克隆的目的,得出满意的实验结果。
分子克隆基本流程及技术原理分子克隆是一种重要的实验技术,可用于制备大量的DNA和蛋白质,探索基因功能,研究生物学过程等。
其基本流程包括DNA片段选择、PCR 扩增、限制性内切酶切割、连接、转化和筛选等步骤。
以下将详细介绍分子克隆的基本流程及技术原理。
PCR扩增:接下来,使用聚合酶链反应(PCR)技术扩增DNA片段。
PCR是一种有效的DNA扩增方法,它通过反复复制DNA模板,生成大量的DNA片段。
PCR反应基本包括三个步骤:变性、引物结合和扩增。
-变性:将DNA模板加热至95°C,使其两个链分离,得到单链DNA。
-引物结合:将反应体系温度下调到适宜的引物结合温度,引物与DNA模板的互补序列结合,形成DNA-DNA复合物。
-扩增:在一定的温度下,聚合酶通过DNA-DNA复合物进行扩增。
扩增过程包括DNA链合成、DNA链延长、DNA链分离和DNA链结合。
多次循环后,可以得到大量的目标DNA片段。
限制性内切酶切割:在PCR扩增后,可选用特定的限制性内切酶切割目标DNA片段。
内切酶是一种具有特异性的酶,它能够在特定的DNA序列上切割产生特定的片段。
通过切割,可以克隆所需的片段,并在连接过程中提供黏性末端。
连接:将目标DNA片段与载体DNA(如质粒)连接起来。
连接可采用多种方法,如T4DNA连接酶方法、PCR重叠延伸法等。
连接时,需要确保目标DNA片段与载体DNA能够互补配对,并生成稳定的连接。
转化:将连接后的混合物转化到宿主细胞中。
转化可通过化学方法(如钙离子转化法)或生物方法(如细菌电穿孔法)实现。
转化后,将细胞培养在含有适当选择压力(如抗生素)的培养基中,这样只有转化成功的细胞才能存活。
筛选:根据实验目的选择合适的筛选方法。
通常,使用抗生素抗性标记和荧光蛋白等进行筛选,以识别并纯化所需克隆产物。
技术原理:-PCR技术:PCR技术是通过DNA聚合酶的模板依赖性合成,将DNA片段按特定序列进行扩增。
分子克隆技术操作手册【最新版】目录1.分子克隆技术的概念2.分子克隆技术的操作步骤3.分子克隆技术的应用4.分子克隆技术的优缺点正文一、分子克隆技术的概念分子克隆技术是一种生物技术方法,用于在体外将各种来源的 DNA 片段进行拼接组合,形成新的 DNA 分子。
这种技术可以在短时间内大量复制特定 DNA 序列,为基因工程、生物制药等领域提供重要的研究手段。
二、分子克隆技术的操作步骤分子克隆技术主要包括以下几个操作步骤:1.提取 DNA:从实验材料中提取 DNA,并通过特定方法进行纯化。
2.切割 DNA:使用限制性内切酶将 DNA 切割成特定大小的片段。
3.链接 DNA:将切割好的 DNA 片段通过 DNA 连接酶进行拼接组合。
4.转化细胞:将拼接好的 DNA 分子转化到受体细胞中,让细胞表达新的 DNA 序列。
5.筛选克隆:通过特定筛选方法,选出含有目标 DNA 序列的克隆细胞。
三、分子克隆技术的应用分子克隆技术在生物领域有广泛的应用,主要包括:1.基因工程:通过分子克隆技术,可以对特定基因进行拼接组合,研究基因的功能和调控关系。
2.生物制药:利用分子克隆技术,可以大量生产具有特定功能的蛋白质,用于药物研发和生产。
3.基因诊断:通过分子克隆技术,可以制备特定基因片段作为诊断试剂,用于疾病的早期诊断。
4.基因治疗:将正常或功能性基因通过分子克隆技术导入患者细胞,以治疗遗传性疾病。
四、分子克隆技术的优缺点分子克隆技术的优点包括:操作简便、效率高、可大量制备特定 DNA 序列。
但其缺点是:可能产生非特异性拼接、克隆产物可能不稳定、需要使用有毒的化学试剂等。
总之,分子克隆技术是一种重要的生物技术手段,广泛应用于基因工程、生物制药等领域。
分子克隆技术操作手册摘要:一、分子克隆技术的概念与原理二、分子克隆技术的操作步骤1.提取目的基因2.构建基因表达载体3.将目的基因导入受体细胞4.目的基因的检测与表达三、分子克隆技术在科研和生产中的应用四、分子克隆技术的发展趋势正文:一、分子克隆技术的概念与原理分子克隆技术是指在体外将各种来源的遗传物质——DNA 片段,与适当的载体DNA 相结合,然后导入受体细胞,使这些DNA 片段在受体细胞内复制、表达的操作技术。
分子克隆技术的原理主要基于重组DNA 技术,通过切割、连接、导入等步骤,实现外源基因与载体DNA 的重组,从而形成一个新的基因表达载体,最终达到在受体细胞中表达目的基因的目的。
二、分子克隆技术的操作步骤1.提取目的基因提取目的基因是分子克隆技术的第一步,通常采用PCR 扩增或化学合成的方法获取目的基因。
PCR 扩增是一种常见的方法,通过设计特定的引物,从基因组DNA 中扩增出目的基因。
化学合成则是根据目的基因的序列,通过化学合成方法直接合成目的基因。
2.构建基因表达载体构建基因表达载体是分子克隆技术的核心步骤,主要包括以下几个方面:(1)选择合适的载体:常用的载体有大肠杆菌的质粒等,根据实验目的和受体细胞的类型选择合适的载体。
(2)切割载体:使用限制性内切酶切割载体,暴露出载体的粘性末端,便于与目的基因连接。
(3)连接目的基因:将提取到的目的基因与切割后的载体DNA 片段通过DNA 连接酶连接,形成重组载体。
(4)转化受体细胞:将重组载体导入受体细胞,使目的基因在受体细胞内表达。
3.将目的基因导入受体细胞将目的基因导入受体细胞是分子克隆技术的关键步骤,根据受体细胞的类型选择不同的导入方法。
常用的方法有转化、转染、显微注射等。
4.目的基因的检测与表达在将目的基因导入受体细胞后,需要对目的基因进行检测和表达。
检测方法包括PCR、Western blot、南方杂交等,表达方法包括实时荧光定量PCR、Western blot、酶联免疫吸附试验等。
分子克隆法
分子克隆法是一种分子生物学技术,用于在体外制备和复制DNA 分子,包括基因、DNA片段和整个染色体。
这种技术允许科学家复制和操纵DNA,以进行各种研究和应用,包括基因工程、药物开发和基因治疗。
下面是分子克隆法的主要步骤:
1.DNA提取:首先,需要从源材料(通常是细胞或组织样本)中
提取DNA。
这可以通过细胞裂解和蛋白质分离等方法来完成。
2.DNA切割:提取的DNA通常是大片段,需要将其切割成较小
的片段,以便后续克隆。
这一步通常使用限制性内切酶来实现,
这些酶可以在特定DNA序列上切割。
3.DNA连接:切割后的DNA片段可以通过DNA连接酶与载体
DNA(如质粒或病毒DNA)连接在一起,形成重组DNA分子。
这个过程称为DNA重组。
4.DNA转化:重组DNA可以被引入宿主细胞中,这个过程称为
DNA转化。
这可以通过热激冷却法、电穿孔法、化学法等方法
来实现。
5.宿主细胞培养:转化后的细胞被培养,以允许它们繁殖并扩增
重组DNA。
6.筛选与识别:在宿主细胞中,可以筛选出携带重组DNA的细
胞,通常使用抗生素抗性标记或荧光标记等方法来进行筛选。
7.DNA提取与纯化:从筛选出的细胞中提取和纯化重组DNA,
以便进一步的研究或应用。
8.分析与验证:最后,分析和验证克隆的DNA,确保它是所需的
目标DNA,并不包含错误或突变。
分子克隆法有许多应用,包括基因表达、基因编辑、蛋白质生产、疾病研究等。
它在生物学研究和生物工程领域发挥着关键作用,允许科学家操纵和研究DNA,以深入了解生命的分子机制。
分子克隆主要步骤分子克隆是一种常用的分子生物学技术,用于复制DNA分子。
下面是分子克隆的主要步骤:1.DNA提取:首先需要从一个已知的DNA源(例如细菌、动物组织等)中提取所需的DNA。
这可以通过使用不同的提取方法(如酚/氯仿提取、自动提取仪等)来实现。
2.限制性内切酶切割:将目标DNA切割成片段。
此步骤可以通过使用限制性内切酶来实现,这些酶可以识别特定的DNA序列,并在这些序列中切割DNA,形成切割产物。
3.DNA修饰:如果需要,在第2步切割的DNA片段末端添加修饰,以便后续步骤的操作。
例如,可以在DNA片段的末端添加磷酸基团(通过激酶酶和ATP)或羟基(通过糖转移酶和dTTP)。
4.连接DNA片段:将目标DNA片段与载体DNA(通常是质粒)连接起来。
这可以通过使用DNA连接酶,如DNA连接酶I或T4DNA连接酶,将DNA片段与载体DNA的末端连接。
5.转化:将连接好的DNA导入到宿主细胞中。
这可以通过转化(常见的转化宿主细胞包括大肠杆菌和酵母)来实现。
转化可以通过热冲击法、电转化或使用化学方法来进行。
6.筛选:在经过转化的细胞中筛选出带有目标DNA的细胞。
这可以通过将转化后的细胞接种到含有适当选择标记的培养基上来实现。
只有带有目标DNA的细胞才能生长并形成克隆。
7.复制:选取带有目标DNA的细胞进行培养,并使其进行大量复制。
这可以通过将细胞培养在含有适当培养基和条件的培养皿中来实现。
8.提取:从大量复制的细胞中提取含有目标DNA的质粒。
这可以通过使用质粒提取试剂盒来实现,其中包含了一系列的化学试剂和步骤,用于纯化和提取目标DNA。
9.鉴定:验证提取的DNA是否为目标DNA。
这可以通过进行限制性内切酶切割、PCR扩增或测序等方法来实现。
分子克隆是一种重要的实验技术,可用于构建重组DNA分子、研究基因功能、制备蛋白质等。
虽然上述步骤描述了分子克隆的基本过程,但具体操作可能会因实验目的和需求而略有不同。
分子克隆详细步骤
分子克隆是通过重组DNA分子来产生大量完全相同的DNA序列的技术。
在分子克隆工作中,我们主要进行克隆载体的构建、目标DNA的扩增、将
目标DNA插入克隆载体中、转化和筛选等步骤。
下面将详细介绍这些步骤:1.克隆载体的构建:
克隆载体是用于插入目标DNA的DNA分子。
常用的克隆载体包括质粒、噬菌体和人工染色体等。
在构建克隆载体时,我们首先需要选择适合的载体,并提取载体的DNA。
然后,利用酶切酶对载体进行酶切,生成线性的
载体DNA。
接下来,将目标DNA插入克隆载体的相应位点上,形成重组的
载体。
2.目标DNA的扩增:
目标DNA可以通过PCR(聚合酶链反应)来扩增。
首先,设计引物,
使其与目标DNA的两端末端相互互补。
然后,在PCR反应中,通过DNA聚
合酶的扩增作用,使目标DNA得以扩增。
PCR反应通常包括模板DNA、引物、核苷酸和聚合酶等成分。
3.目标DNA的插入:
将扩增后的目标DNA与酶切后的载体进行连接,利用DNA连接酶催化
目标DNA与载体之间的连接反应,生成重组的克隆载体。
连接后的载体含
有目标DNA的序列。
4.转化:
将克隆载体引入宿主细胞中进行复制。
这一步骤通常称为转化。
转化可以通过电击、热激、化学方法等方式进行。
宿主细胞通常是大肠杆菌等细菌。
5.筛选:
利用筛选方法来选择包含目标DNA的克隆。
常用的筛选方法包括抗生素筛选、报告基因筛选和限制性内切酶酶切筛选等。
抗生素筛选是将带有选择性抗生素耐受基因的克隆引入含有相应抗生素的培养基中,只有带有目标DNA的克隆才能生长。
报告基因筛选是通过将报告基因插入克隆载体中,使之与目标DNA一起被转录和翻译,从而表达报告基因的蛋白质,以此来筛选包含目标DNA的克隆。
限制性内切酶酶切筛选是通过限制性内切酶对重组载体和目标DNA进行酶切,并通过凝胶电泳的方法来分离并检测含有目标DNA的克隆。
以上就是分子克隆的详细步骤。
通过这些步骤,我们可以获得大量完全相同的DNA序列,并用于各类分子生物学研究和应用中。