2018年苏科版八年级数学初二下册 第十章《分式》检测卷及答案 (47)
- 格式:doc
- 大小:891.00 KB
- 文档页数:5
(新课标)苏科版2017-2018学年八年级下册第10章《分式》10.1~10.21. 有一段坡路,小明骑自行车上坡的速度为每小时1v km,下坡时的速度为每小时2v km ,则他在这段路上、下坡的平均速度是每小时( )。
A.122v v + km B. 12111v v + C. 12211v v +km D.无法确定 2. 已知分式2(1)(2)1x x x -+-的值为0,那么x 的值是( )。
A. -1B. -2C. 1D. 1或-2 3. 若代数式32x --的值为正,则x 的取值满足 。
4. 已知当2x =-时,分式x bx a-+无意义,且当4x =时,此分式的值为0,求a b +的值。
5. 当2x =时,分式413x x a+-没有意义,求a 的值。
6. 对分式1(0)a a >,有位同学认为“a 越大,1a的值越小”, 你认为这种说法正确吗?说明理由.若正确,请估计,当a 无限大时,1a接近什么数?7. 将3aa b-中的a b 、都扩大3倍,则分式的值( )。
A. 不变B. 扩大3倍C. 扩大9倍D. 扩大6倍 8. 分式22x -可变形为( )。
A.22x + B. 22x-+ C.22x - D.22x -- 9.计算242x x --,结果是()。
A. 2x - B. 2x + C.42x -D.2x x+ 10. 下列运算正确的是( )。
A. 54ab ab -=B.112a b a b+=+ C. 624a a a ÷= D. 2353()a b a b = 11. 化简:2422x x x+--= 。
12.若2a b =,则2222a ab b a b-++= 。
13. 已知4x y xy -=,求2322x xy yx xy y+---的值。
14. 先化简,再求值:(1)分式225210x x --,其中2x =-;(2)分式22244x y x xy y --+,其中1,3x y =-=。
苏科版八年级数学下册《第十单元分式》综合测试卷含答案一、选择题(母题2分,共20分)1.下列分式222222155()4253()22b c x y a b a b a b a y x a b a b b a-+----+--、、、、,其中最简分式的个数是 ( )A .1个B .2个C .3个D .4个2.下列分式约分正确的是 ( )A .632x x x =B .0x y x y +=+C .21x y x xy x+=+ D .222142xy x y = 3.若1,2x y =-=,则2221648x x y x y---的值等于 ( ) A .117-B .117C .116D .1154.当3a =时,代数式 213(1)24a a a --÷--的值为 ( )A .5B .一1C .5或一1D .05.计算2322()n a b - 与333()2n a b-的结果 ( ) A .相等 B .互为倒数 C .互为相反数 D .以上都不对6.无论x 取什么数,总是有意义的分式是 ( )A .221x x + B .21x x + C .331x x + D .25x x - 7.若不论x 取何实数时,分式22a x x a -+总有意义,则a 的取值范围是 ( )A .a ≥1B .a >1C .a ≤1D .a <18.下列各式的变形中,不正确的是 ( )A .a b a b c c ---=-B .b a a b c c --=-C .()a b a b c c -++=-D .a b a b c c--+=- 9.一水池有甲、乙两根进水管.两管同时开放6小时可以将水池注满水.如果单开甲管5小时后,两管同时开放,还需3小时才能注满水池,那么单独开放甲管注满水池需( )A .7.5小时B .10小时C .12.5小时D .15小时10.为保证某高速公路在2014年4月底全线顺利通车,某路段规定在若干天内完成修建任务.已知甲队单独完成这项任务比规定时间多用10天,乙队单独完成这项任务比规定时间多用40天,如果甲、乙两队合作,那么可比规定时间提前14天完成任务.若设规定时间为x 天,由题意列出的方程是 ( )A .111104014x x x +=--+B .111104014x x x +=++- C . 111104014x x x -=++- D .111101440x x x +=-+- 二、填空题(每题2分,共20分)11.下列各式中11152235a n a a b y m b zπ++-、、、、、中分式有 个. 12·当a 时,分式123a a -+有意义. 13.若分式33x x --的值为0,则x = . 14·若41(2)(1)21a m n a a a a -=++-+-,则m = ,n = . 15·若关于x 的分式方程2133m x x =+--有增根,则m = . 16·当x = 时,52343x x -+与的值互为倒数. 17.若a :b :c =1:2:3,则33a b c a b c +--+= . 18·已知0a b a b +=,则ab ab的值为 . 19.某同学从家去学校上学的速度为a ,放学回家时的速度是b ,则该同学上学、放学的平均速度为 .20.设A 、B 、C 为三个连续的正偶数,若A 的倒数与C 的倒数的2倍之和等于B 的倒数的3倍.设B 数为x ,则所列方程是 .三、解答题(共60分)21.(本题12分)计算.2421(1)422x x x ++-+-; (÷; 22(3)(1)b a a b a b ÷--+; 211(4)()1211x x x x x x ++÷--+-22.(本题8分)解下列方程.54410(1)1236x x x x -+=--- 2324(2)111x x x +=+--23.(本题6分)先化简,再求值:222412)4422a a a a a a--÷-+--,其中a 是方程23100x x +-= 的根24.(本题6分)有这样一道题:“计算2221112x x x x x x x-+-÷--+的值,其中x =2 014”·小明 把“x =2014,,错抄成“x =2410”,但他的计算结果也正确.你能说明这是为什么吗?25.(本题6分)已知2113 xx x =-+,求2421xx x++值.26.(本题10分)甲、乙两个工程队共同承担一项筑路任务,甲队单独施工完成此项任务比乙队单独施工完成此项任务多用10天,且甲队单独施工45天和乙队单独施工30 天的工作量相同.(1)甲、乙两队单独完成此项任务各需多少天?(2)若甲、乙两队共同工作了3天后,乙队因设备检修停止施工,由甲队继续施工,为了不影响工程进度,甲队的工作效率提高到原来的2倍,要使甲队总的工作量不少于乙队的工作量的2倍,那么甲队至少再单独施工多少天?27.(本题12分)某县向某贫困山区赠送一批计算机,首批270台将于近期起运.经与某物流公司联系,得知用A型汽车若干辆刚好装完,用B型汽车不仅可少用1辆,而且有一辆车还差30台才刚好装满.(1)已知每辆A型汽车所装计算机的台数是B型汽车的34,求A、B两种型号的汽车各能装计算机多少台?(2)在(1)中条件下,已知A型汽车的运费是每辆350元,B型汽车的运费是每辆400 元,若同时用这两种型号的汽车运送这批计算机,其中B型汽车比A型汽车多用1辆,并且刚好装满运完,按这种方案运输,则A、B两种型号的汽车各需多少辆? 总运费为多少元?参考答案—、1.A 2.C 3.D 4.B 5.C 6.A 7.B 8.A 9.B 10.B二、11.3 12.≠32-13.一3 14.3 1 15.2 16.3 17.一2 18.一1 19.2ab a b + 20.12322x x x+=-+ 三、21.(1)12x +(2)2x - (3)1a b- (4)1x x - 22.(1)2x =,为增根,原方程无解(2)1x =,为增根,原方程无解. 23.原式2(3)322a a a a ++==∵a 是方程23100x x +-=∴2310a a += ∴原式=1052= 24.原式=2(1)(1)0(1)(1)1x x x x x x x -+⨯-=+--, ∵原式化简以后的结果中不含有x ,∴结果与x 的值无关....小明虽然抄错了x 的值,但结果也正确.25.由2113x x x =-+得21x x x -+,进而14x x +=,求得22114x x+=,2421115x x x =++ 26.设乙队单独完成此项任务需要x 天,则甲队单独完成此项任务需要(x +10)天,由题意,得453010x x=+,解得:20x =.经检验,x =20是原方程的解,∴x +10=30(天) 答:甲队单独完成此项任务需要30天,乙队单独完成此项任务需要20天; (2)设甲队至少再单独施工a 天,由题意,得3232303020a +≥⨯,解得:a ≥3. 答:甲队至少再单独施工3天. 27.解:(1)设B 型汽车每辆可装计算机x 台,则A 型汽车每辆可装计算机34x 台.依题意得27027030134x x +=+解得:x =60. 经检验,x =60是原方程的解.则34x =45(台). 即A 型汽车每辆可装计算机45台,B 型汽车每辆可装计算机60台.(2)若同时用A 、B 两种型号的汽车运送,设需要用A 型汽车y 辆,则需B 型汽车(y+1)辆.根据题意,得45y+60(y+1)=270.解得y =2.所以需A 型汽车2辆,需B 型汽车3辆.此时总运费为350×2+400×3=1900(元).。
苏科新版八年级下学期《第10章分式》单元测试卷一.选择题(共21小题)1.下列各式中,分式的个数是().A.2B.3C.4D.52.使分式有意义的x的取值范围是()A.x≠1B.x≠2C.x≠1且x≠2D.x可为任何数3.若分式的值为0,则x的值是()A.±3B.﹣3C.3D.04.已知﹣=5,则分式的值为()A.1B.5C.D.5.一件工作,甲单独完成需要a天,乙单独完成需要b天,如果甲、乙二人合作,那么每天的工作效率是()A.a+b B.+C.D.6.不改变分式的值,使分子、分母的最高次项的系数都为正,正确的变形是()A.B.C.D.7.化简的结果是()A.1B.C.D.08.若=﹣,则a﹣2b的值是()A.﹣6B.6C.﹣2D.29.下列分式中,最简分式是()A.B.C.D.10.张萌将分式进行通分,则这两个分式的最简公分母为()A.2(x+y)(x﹣y)B.4(x+y)(x﹣y)C.(x+y)(x﹣y)D.4(x+y)211.计算(a2b)3•的结果是()A.a5b5B.a4b5C.ab5D.a5b612.已知,则的值为()A.1B.0C.﹣1D.﹣213.张阿姨,李阿姨到农贸市场买大米,第一次,张阿姨买了100千克大米,李阿姨买了100元的大米;第二次,张阿姨还是买了100千克大米,李阿姨还是买了100元的大米.下列说法正确的是()A.如果米价下降张阿姨买的合算B.如果米价上涨张阿姨买的合算C.无论米价怎样变化李阿姨买的合算D.无法判断谁买的合算14.已知+=3,则代数式的值为()A.3B.﹣2C.﹣D.﹣15.下列方程是分式方程的是()A.B.C.x2﹣1=3D.2x+1=3x 16.若关于x的分式方程无解,则m的值为()A.﹣1.5B.1C.﹣1.5或2D.﹣0.5或﹣1.5 17.方程=的解是()A.﹣B.C.﹣D.18.用换元法解方程,若设=y,则原方程可化为()A.y2﹣7y+6=0B.y2+6y﹣7=0C.6y2﹣7y+1=0D.6y2+7y+1=0 19.若分式方程有增根,则a的值是()A.﹣2B.0C.2D.0或﹣2 20.小明坐滴滴打车前去火车高铁站,小明可以选择两条不同路线:路线A的全程是25千米,但交通比较拥堵,路线B的全程比路线A的全程多7千米,但平均车速比走路线A时能提高60%,若走路线B的全程能比走路线A少用15分钟.若设走路线A时的平均速度为x千米/小时,根据题意,可列分式方程()A.=15B.=15C.=D.21.甲志愿者计划用若干个工作日完成社区的某项工作,从第三个工作日起,乙志愿者加盟此项工作,且甲、乙两人工效相同,结果提前3天完成任务,则甲志愿者计划完成此项工作的天数是()A.8B.7C.6D.5二.解答题(共7小题)22.下面是售货员与小明的对话:根据对话内容解答下列问题:(1)A、B两种文具的单价各是多少元?(2)若购买A、B两种文具共20件,其中A种文具的数量少于B种文具的数量,且购买总费用不超过260元,共有几种购买方案.23.两列火车分别行驶在两平行的轨道上,其中快车车长100米,慢车车长150米,当两车相向而行时,快车驶过慢车某个窗口(快车车头到达窗口某一点至车尾离开这一点)所用的时间为5秒.(1)求两车的速度之和及两车相向而行时慢车驶过快车某个窗口(慢车车头到达窗口某一点至车尾离开这一点)所用的时间;(2)如果两车同向而行,慢车的速度不小于8米/秒,快车从后面追赶慢车,那么从快车的车头赶上慢车的车尾开始到快车的车尾离开慢车的车头所需时间至少为多少秒?24.某工厂计划生产一种创新产品,若生产一件这种产品需A种原料1.2千克、B种原料1千克.已知A种原料每千克的价格比B种原料每千克的价格多10元.(1)为使每件产品的成本价不超过34元,那么购入的B种原料每千克的价格最高不超过多少元?(2)将这种产品投放市场批发销售一段时间后,为拓展销路又开展了零售业务,每件产品的零售价比批发价多30元.现用10000元通过批发价购买该产品的件数与用16000元通过零售价购买该产品的件数相同,那么这种产品的批发价是多少元?25.济南在创建全国文明城市的进程中,高新区为美化城市环境,计划种植树木30000棵,由于志愿者的加入,实际每天植树比原计划多20%.结果提前10天完成任务,求原计划每天植树多少棵.26.在某校举办的2012年秋季运动会结束之后,学校需要为参加运动会的同学们发纪念品.小王负责到某商场买某种纪念品,该商场规定:一次性购买该纪念品200个以上可以按折扣价出售;购买200个以下(包括200个)只能按原价出售.小王若按照原计划的数量购买纪念品,只能按原价付款,共需要1050元;若多买35个,则按折扣价付款,恰好共需1050元.设小王按原计划购买纪念品x个.(1)求x的范围;(2)如果按原价购买5个纪念品与按打折价购买6个纪念品的钱数相同,那么小王原计划购买多少个纪念品?27.一项工程,甲队单独完成比乙队单独完成需少用9天,甲队单独做3天的工作乙队单独做需要4天,(1)甲、乙两队单独完成此项工程各需几天?(2)该项工程先由甲、乙两队合作,再由甲队单独完成,若完成此项工程不超过18天,甲乙两队至少合作几天?28.今年我区的葡萄喜获丰收,葡萄一上市,水果店的王老板用2400元购进一批葡萄,很快售完;老板又用5000元购进第二批葡萄,所购件数是第一批的2倍,但进价比第一批每件多了5元.(1)第一批葡萄每件进价多少元?(2)王老板以每件150元的价格销售第二批葡萄,售出80%后,为了尽快售完,决定打折促销,要使第二批葡萄的销售利润不少于640元,剩余的葡萄每件售价最少打几折?(利润=售价﹣进价)苏科新版八年级下学期《第10章分式》单元测试卷参考答案与试题解析一.选择题(共21小题)1.下列各式中,分式的个数是().A.2B.3C.4D.5【分析】判断分式的依据是看代数式的分母中是否含有字母,如果含有字母则是分式,如果不含有字母则不是分式.【解答】解:,的分母中均不含有字母,因此它们是整式,而不是分式;a+的分子不是整式,因此不是分式.,,的分母中含有字母,因此是分式.故选:B.【点评】本题考查了分式的定义:如果A、B表示两个整式,并且B中含有字母,那么式子叫做分式,A叫做分式的分子,B叫做分式的分母.注意π不是字母,是常数,所以不是分式,是整式.2.使分式有意义的x的取值范围是()A.x≠1B.x≠2C.x≠1且x≠2D.x可为任何数【分析】分式有意义的条件是分母≠0,即x2﹣3x+2≠0,解得x.【解答】解:∵x2﹣3x+2≠0即(x﹣1)(x﹣2)≠0,∴x﹣1≠0且x﹣2≠0,∴x≠1且x≠2.故选:C.【点评】本题考查的是分式有意义的条件:当分母不为0时,分式有意义.3.若分式的值为0,则x的值是()A.±3B.﹣3C.3D.0【分析】分式的值等于零,分子等于零,且分母不等于零.【解答】解:依题意,得x2﹣9=0且x+3≠0,解得,x=3.故选:C.【点评】本题考查了分式的值为零的条件.若分式的值为零,需同时具备两个条件:(1)分子为0;(2)分母不为0.这两个条件缺一不可.4.已知﹣=5,则分式的值为()A.1B.5C.D.【分析】已知等式左边通分并利用同分母分式的减法法则变形,整理后代入原式计算即可得到结果.【解答】解:已知等式整理得:=5,即x﹣y=﹣5xy,则原式===1,故选:A.【点评】此题考查了分式的值,熟练掌握运算法则是解本题的关键.5.一件工作,甲单独完成需要a天,乙单独完成需要b天,如果甲、乙二人合作,那么每天的工作效率是()A.a+b B.+C.D.【分析】合作的工作效率=甲的工作效率+乙的工作效率,据此可得.【解答】解:∵甲单独完成需要a天,乙单独完成需要b天,∴甲的工效为,乙的工效为,∴甲、乙二人合作每天的工作效率是+,故选:B.【点评】本题主要考查列代数式,解题的关键是熟练掌握工程问题中关于合作的工作效率的相等关系.6.不改变分式的值,使分子、分母的最高次项的系数都为正,正确的变形是()A.B.C.D.【分析】首先判断出分式的分子、分母的最高次项的系数分别为﹣1、﹣5,它们都是负数;然后根据分式的基本性质,把分式的分子、分母同时乘以﹣1,使分子、分母的最高次项的系数都为正即可.【解答】解:==∴不改变分式的值,使分子、分母的最高次项的系数都为正,正确的变形是.故选:C.【点评】此题主要考查了分式的基本性质的应用,要熟练掌握,解答此题的关键是要明确:分式的分子与分母同乘(或除以)一个不等于0的整式,分式的值不变.7.化简的结果是()A.1B.C.D.0【分析】将分子利用平方差公式分解因式,再进一步计算可得.【解答】解:原式=====1,故选:A.【点评】本题主要考查约分,解题的关键是掌握平方差公式分解因式和约分的定义.8.若=﹣,则a﹣2b的值是()A.﹣6B.6C.﹣2D.2【分析】先去分母,得4x=(a﹣b)x+(﹣2a﹣2b),再根据对应相等求出a、b 的值,代入计算即可.【解答】解:化简得,4x=(a﹣b)x+(﹣2a﹣2b),∴a﹣b=4,﹣2a﹣2b=0,解得a=2,b=﹣2,∴a﹣2b=2﹣2×(﹣2)=6,故选:B.【点评】本题考查了通分以及解二元一次方程组,是基础知识要熟练掌握.9.下列分式中,最简分式是()A.B.C.D.【分析】根据最简分式的定义对各选项逐一判断即可得.【解答】解:A、==,不符合题意;B、==,不符合题意;C、是最简分式,符合题意;D、==,不符合题意;故选:C.【点评】本题主要考查最简分式,解题的关键是掌握一个分式的分子与分母没有公因式时,叫最简分式.10.张萌将分式进行通分,则这两个分式的最简公分母为()A.2(x+y)(x﹣y)B.4(x+y)(x﹣y)C.(x+y)(x﹣y)D.4(x+y)2【分析】确定最简公分母的方法是:(1)取各分母系数的最小公倍数;(2)凡单独出现的字母连同它的指数作为最简公分母的一个因式;(3)同底数幂取次数最高的,得到的因式的积就是最简公分母.【解答】解:分式的分母分别是2x+2y=2(x+y)、4x﹣4y=4(x ﹣y),故最简公分母是4(x+y)(x﹣y).故选:B.【点评】本题考查了最简公分母的定义及求法.通常取各分母系数的最小公倍数与字母因式的最高次幂的积作公分母,这样的公分母叫做最简公分母.一般方法:①如果各分母都是单项式,那么最简公分母就是各系数的最小公倍数,相同字母的最高次幂,所有不同字母都写在积里.②如果各分母都是多项式,就可以将各个分母因式分解,取各分母数字系数的最小公倍数,凡出现的字母(或含字母的整式)为底数的幂的因式都要取最高次幂.11.计算(a2b)3•的结果是()A.a5b5B.a4b5C.ab5D.a5b6【分析】根据积的乘方等于乘方的积,分式的乘法,可得答案.【解答】解:原式=a6b3•=a5b5,故选:A.【点评】本题考查了分式的乘除法,熟记法则并根据法则计算是解题关键.12.已知,则的值为()A.1B.0C.﹣1D.﹣2【分析】解决本题首先将已知条件转化为最简形式,再把所求分式通分、代值即可.本题考查了分式的加减运算.【解答】解:把已知+=去分母,得(a+b)2=ab,即a2+b2=﹣ab∴+===﹣1.故选C.【点评】分式中的一些特殊求值题并非是一味的化简,代入,求值.许多问题还需运用到常见的数学思想,如化归思想(即转化)、整体思想等,了解这些数学解题思想对于解题技巧的丰富与提高有一定帮助.13.张阿姨,李阿姨到农贸市场买大米,第一次,张阿姨买了100千克大米,李阿姨买了100元的大米;第二次,张阿姨还是买了100千克大米,李阿姨还是买了100元的大米.下列说法正确的是()A.如果米价下降张阿姨买的合算B.如果米价上涨张阿姨买的合算C.无论米价怎样变化李阿姨买的合算D.无法判断谁买的合算【分析】先设第一次大米的单价为a,第二次大米的单价为b,分别计算两人两次所卖大米的平均单价,求出单价,再比较两者的差,根据结果来比较大小.【解答】解:设第一次大米的单价为a,第二次大米的单价为b,张阿姨两次购买的平均单价为,李阿姨两次购买的平均单价为则﹣=≥0.所以无论米价怎样变化都是李阿姨买的合算.故选:C.【点评】本题考查了分式的混合运算,解题的关键是求出两人两次所买大米的平均单价,再比较单价的大小.14.已知+=3,则代数式的值为()A.3B.﹣2C.﹣D.﹣【分析】已知等式左边通分并利用同分母分式的加法法则计算,整理得到a+2b =6ab,代入原式计算即可得到结果.【解答】解:+==3,即a+2b=6ab,则原式===﹣,故选:D.【点评】此题考查了分式的化简求值,熟练掌握运算法则是解本题的关键.15.下列方程是分式方程的是()A.B.C.x2﹣1=3D.2x+1=3x【分析】依据分式方程的定义进行判断即可.【解答】解:A、﹣=0是一元一次方程,故A错误;B、=﹣2是分式方程,故B正确;C、x2﹣1=3是一元二次方程,故C错误;D、2x+1=3x是一元一次方程,故D错误.故选:B.【点评】本题主要考查的是分式方程的定义,熟练掌握分式方程的定义是解题的关键.16.若关于x的分式方程无解,则m的值为()A.﹣1.5B.1C.﹣1.5或2D.﹣0.5或﹣1.5【分析】去分母得出方程①(2m+x)x﹣x(x﹣3)=2(x﹣3),分为两种情况:①根据方程无解得出x=0或x=3,分别把x=0或x=3代入方程①,求出m;②求出当2m+1=0时,方程也无解,即可得出答案.【解答】解:方程两边都乘以x(x﹣3)得:(2m+x)x﹣x(x﹣3)=2(x﹣3),即(2m+1)x=﹣6,分两种情况考虑:①∵当2m+1=0时,此方程无解,∴此时m=﹣0.5,②∵关于x的分式方程无解,∴x=0或x﹣3=0,即x=0,x=3,当x=0时,代入①得:(2m+0)×0﹣0×(0﹣3)=2(0﹣3),解得:此方程无解;当x=3时,代入①得:(2m+3)×3﹣3(3﹣3)=2(3﹣3),解得:m=﹣1.5,∴m的值是﹣0.5或﹣1.5,故选:D.【点评】本题考查了对分式方程的解的理解和运用,关键是求出分式方程无解时的x的值,题目比较好,难度也适中.17.方程=的解是()A.﹣B.C.﹣D.【分析】根据解分式方程的步骤:①去分母;②求出整式方程的解;③检验;④得出结论解答可得.【解答】解:两边都乘以2(x+2),得:2(2x﹣1)=x+2,解得:x=,当x=时,2(x+2)≠0,所以x=是分式方程的解,故选:D.【点评】本题主要考查解分式方程,解题的关键是掌握解分式方程的步骤:①去分母;②求出整式方程的解;③检验;④得出结论.18.用换元法解方程,若设=y,则原方程可化为()A.y2﹣7y+6=0B.y2+6y﹣7=0C.6y2﹣7y+1=0D.6y2+7y+1=0【分析】观察方程的两个分式具备的关系,若设=y,则原方程另一个分式为6×.可用换元法转化为关于y的方程.去分母、整理即可.【解答】解:把=y代入原方程得:y+6×=7,方程两边同乘以y整理得:y2﹣7y+6=0.故选:A.【点评】换元法解分式方程时常用方法之一,它能够把一些分式方程化繁为简,化难为易,对此应注意总结能用换元法解的分式方程的特点,寻找解题技巧.19.若分式方程有增根,则a的值是()A.﹣2B.0C.2D.0或﹣2【分析】增根是分式方程化为整式方程后产生的使分式方程的分母为0的根.把增根代入化为整式方程的方程即可求出未知字母的值.【解答】解:方程两边都乘(x+a)(x﹣2),得x+a+3(x﹣2)(x+a)=(a﹣x)(x﹣2),∵原方程有增根,∴最简公分母(a+x)(x﹣2)=0,∴增根是x=2或﹣a,当x=2时,方程化为:2+a=0,解得:a=﹣2;当x=﹣a时,方程化为﹣a+a=2a(﹣a﹣2),即a(a+2)=0,解得:a=0或﹣2.当a=﹣2时,原方程可化为+3=,化为整式方程得,1+3(x﹣2)=﹣x﹣2,即:x=,不存在增根,故不符合题意,当a=0时,原方程可化为,化为整式方程得,x+3x(x﹣2)=﹣x(x﹣2),解得x=或x=0,此时,有增根为x=0,∴a=0符合题意,故选:B.【点评】增根确定后可按如下步骤进行:①化分式方程为整式方程;②把增根代入整式方程即可求得相关字母的值.20.小明坐滴滴打车前去火车高铁站,小明可以选择两条不同路线:路线A的全程是25千米,但交通比较拥堵,路线B的全程比路线A的全程多7千米,但平均车速比走路线A时能提高60%,若走路线B的全程能比走路线A少用15分钟.若设走路线A时的平均速度为x千米/小时,根据题意,可列分式方程()A.=15B.=15C.=D.【分析】若设走路线A时的平均速度为x千米/小时,则走路线B时的平均速度为1.6x千米/小时,根据路线B的全程比路线A的全程多7千米,走路线B 的全程能比走路线A少用15分钟可列出方程.【解答】解:设走路线A时的平均速度为x千米/小时,根据题意,得﹣=.故选:D.【点评】本题考查了由实际问题抽象出分式方程,找到关键描述语,找到合适的等量关系是解决问题的关键.21.甲志愿者计划用若干个工作日完成社区的某项工作,从第三个工作日起,乙志愿者加盟此项工作,且甲、乙两人工效相同,结果提前3天完成任务,则甲志愿者计划完成此项工作的天数是()A.8B.7C.6D.5【分析】工效常用的等量关系是:工效×时间=工作总量,本题的等量关系为:甲工作量+乙工作量=1,根据从第三个工作日起,乙志愿者加盟此项工作,本题需注意甲比乙多做2天.【解答】解:方法1、设甲志愿者计划完成此项工作需x天,故甲的工效都为:,由于甲、乙两人工效相同,则乙的工效为甲前两个工作日完成了,剩余的工作量甲完成了,乙在甲工作两个工作日后完成了,则+=1,解得x=8,经检验,x=8是原方程的解.故选:A.方法2、设甲志愿者计划完成此项工作需a天,则一天完成工作总量的,由于甲、乙两人工效相同,则乙的一天完成工作总量的,甲实际工作了(a﹣3)天,乙比甲少工作两天,实际工作了(a﹣5)天,即用甲的工作量加乙的工作量=1,建立方程×(a﹣3)+×(a﹣5)=1,∴a=8,故选:A.【点评】本题主要考查分式方程的应用,还考查了工效×时间=工作总量这个等量关系.二.解答题(共7小题)22.下面是售货员与小明的对话:根据对话内容解答下列问题:(1)A、B两种文具的单价各是多少元?(2)若购买A、B两种文具共20件,其中A种文具的数量少于B种文具的数量,且购买总费用不超过260元,共有几种购买方案.【分析】(1)设A种文具的单价为x元,则B种文具单价为(25﹣x)元,根据用80元购买A种文具的数量是用120元购买B种文具的数量的2倍,列方程求解;(2)设学校购进A种文具a件,则购进B种文具(20﹣a)件,根据其中A种文具的数量少于B种文具的数量,且购买总费用不超过260元,列不等式求出a的取值范围,结合a为正整数,确定购买方案.【解答】解:(1)设A种文具的单价为x元,则B种文具单价为(25﹣x)元,由题意得,=,解得:x=10,经检验,x=10是分式方程的解,且符合题意,25﹣x=15答:种文具的单价为10元,则B种文具单价为15元;(2)设学校购进A种文具a件,则购进B种文具(20﹣a)件,由题意得,解得:8≤a<10,∵a是正整数,∴a为8或9∴共有两种购买方案.【点评】本题考查了分式方程和一元一次不等式的应用,解答本题的关键是读懂题意,设出未知数,找出合适的等量关系,列方程求解,注意检验.23.两列火车分别行驶在两平行的轨道上,其中快车车长100米,慢车车长150米,当两车相向而行时,快车驶过慢车某个窗口(快车车头到达窗口某一点至车尾离开这一点)所用的时间为5秒.(1)求两车的速度之和及两车相向而行时慢车驶过快车某个窗口(慢车车头到达窗口某一点至车尾离开这一点)所用的时间;(2)如果两车同向而行,慢车的速度不小于8米/秒,快车从后面追赶慢车,那么从快车的车头赶上慢车的车尾开始到快车的车尾离开慢车的车头所需时间至少为多少秒?【分析】(1)快车驶过慢车某个窗口等量关系为:两车的速度之和×所用时间=快车车长;慢车驶过快车某个窗口等量关系为:两车的速度之和×所用时间=慢车车长;(2)等量关系为:两车速度之差×时间=两车车长之和.【解答】解:(1)设快,慢车的速度分别为x米/秒,y米/秒.根据题意得x+y==20,即两车的速度之和为20米/秒;设慢车驶过快车某个窗口需用t1秒,根据题意得x+y=,∴t1=.即两车相向而行时,慢车驶过快车某个窗口所用时间为7.5秒.答:两车的速度之和为20米/秒,两车相向而行时,慢车驶过快车某个窗口所用时间为7.5秒;(2)所求的时间t2=,∴,依题意,当慢车的速度为8米/秒时,t2的值最小,t2=,∴t2的最小值为62.5秒.答:从快车的车头赶上慢车的车尾开始到快车的车尾离开慢车的车头所需时间至少为62.5秒.【点评】找到相应的等量关系是解决问题的关键;难点是得到相应的车速和路程.24.某工厂计划生产一种创新产品,若生产一件这种产品需A种原料1.2千克、B种原料1千克.已知A种原料每千克的价格比B种原料每千克的价格多10元.(1)为使每件产品的成本价不超过34元,那么购入的B种原料每千克的价格最高不超过多少元?(2)将这种产品投放市场批发销售一段时间后,为拓展销路又开展了零售业务,每件产品的零售价比批发价多30元.现用10000元通过批发价购买该产品的件数与用16000元通过零售价购买该产品的件数相同,那么这种产品的批发价是多少元?(1)设B种原料每千克的价格为x元,则A种原料每千克的价格为(x+10)【分析】元,根据每件产品的成本价不超过34元,即可得出关于x的一元一次不等式,解之取其中的最大值即可得出结论;(2)设这种产品的批发价为a元,则零售价为(a+30)元,根据数量=总价÷单价结合用10000元通过批发价购买该产品的件数与用16000元通过零售价购买该产品的件数相同,即可得出关于a的分式方程,解之经检验后即可得出结论.【解答】解:(1)设B种原料每千克的价格为x元,则A种原料每千克的价格为(x+10)元,根据题意得:1.2(x+10)+x≤34,解得:x≤10.答:购入B种原料每千克的价格最高不超过10元.(2)设这种产品的批发价为a元,则零售价为(a+30)元,根据题意得:=,解得:a=50,经检验,a=50是原方程的根,且符合实际.答:这种产品的批发价为50元.【点评】本题考查了分式方程的应用以及一元一次不等式的应用,解题的关键是:(1)根据各数量间的关系,正确列出一元一次不等式;(2)找准等量关系,正确列出分式方程.25.济南在创建全国文明城市的进程中,高新区为美化城市环境,计划种植树木30000棵,由于志愿者的加入,实际每天植树比原计划多20%.结果提前10天完成任务,求原计划每天植树多少棵.【分析】设原计划每天种树x棵,则实际每天栽树的棵数为(1+20%),根据题意可得,实际比计划少用10天,据此列方程求解.【解答】解:设原计划每天种树x棵,则实际每天栽树的棵数为(1+20%),由题意得,﹣=10,解得:x=500,经检验,x=500是原分式方程的解,且符合题意.答:原计划每天种树500棵.【点评】本题考查了分式方程的应用,解答本题的关键是读懂题意,设出未知数,找出合适的等量关系,列方程求解,注意检验.26.在某校举办的2012年秋季运动会结束之后,学校需要为参加运动会的同学们发纪念品.小王负责到某商场买某种纪念品,该商场规定:一次性购买该纪念品200个以上可以按折扣价出售;购买200个以下(包括200个)只能按原价出售.小王若按照原计划的数量购买纪念品,只能按原价付款,共需要1050元;若多买35个,则按折扣价付款,恰好共需1050元.设小王按原计划购买纪念品x个.(1)求x的范围;(2)如果按原价购买5个纪念品与按打折价购买6个纪念品的钱数相同,那么小王原计划购买多少个纪念品?【分析】(1)根据商场的规定确定出x的范围即可;(2)设小王原计划购买x个纪念品,根据按原价购买5个纪念品与按打折价购买6个纪念品的钱数相同列出分式方程,求出解即可得到结果.【解答】解:(1)根据题意得:0<x≤200,且x∈N;(2)设小王原计划购买x个纪念品,根据题意得:×5=×6,整理得:5x+175=6x,解得:x=175,经检验x=175是分式方程的解,且满足题意,则小王原计划购买175个纪念品.【点评】此题考查了分式方程的应用,弄清题中的等量关系“按原价购买5个纪念品与按打折价购买6个纪念品的钱数相同”是解本题的关键.27.一项工程,甲队单独完成比乙队单独完成需少用9天,甲队单独做3天的工作乙队单独做需要4天,(1)甲、乙两队单独完成此项工程各需几天?(2)该项工程先由甲、乙两队合作,再由甲队单独完成,若完成此项工程不超过18天,甲乙两队至少合作几天?【分析】(1)设甲队单独完成此项工程需x天,则乙队单独完成此项工程需(x+9)天,根据甲队单独做3天的工作乙队单独做需要4天,即可得出关于x的分式方程,解之经检验后即可得出结论;(2)设甲乙两队合作y天,根据完成此项工程不超过18天,即可得出关于y的一元一次不等式,解之即可得出y的取值范围,取其中的最小值即可得出结论.【解答】解:(1)设甲队单独完成此项工程需x天,则乙队单独完成此项工程需(x+9)天,根据题意得:=,解得:x=27,经检验,x=27是原方程的解,且符合题意,∴x+9=36.答:甲队单独完成此项工程需27天,乙队单独完成此项工程需36天.(2)设甲乙两队合作y天,根据题意得:+≥1,解得:y≥12.。
《第10章分式》一、选择题1.下列各式①,②,③,④(此处π为常数)中,是分式的有()A.①②B.③④C.①③D.①②③④2.当x为任意实数时,下列各式中一定有意义的是()A.B.C.D.3.将分式中的m、n都扩大为原来的3倍,则分式的值()A.不变B.扩大3倍C.扩大6倍D.扩大9倍4.使式子从左到右变形成立,应满足的条件是()A.x+2>0 B.x+2=0 C.x+2<0 D.x+2≠05.把分式中x的值变为原来的2倍,而y的值缩小到原来的一半,则分式的值()A.不变B.为原来的2倍C.为原来的4倍D.为原来的一半6.不改变分式的值,使的分子和分母中x的最高次项的系数都是正数,应该是()A.B.C.D.二、填空题7.小明th走了skm的路,则小明走路的速度是km/h.8.akg盐溶于bkg水,所得盐水含盐的百分比是.9.某食堂有煤mt,原计划每天烧煤at,现每天节约用煤b(b<a)t,则这批煤可比原计划多烧天.10.小华参加飞镖比赛,a次投了m环,b次投了n环,则小华此次比赛的平均成绩是环.11.将(3﹣m)÷(m+2)写成分式为,当m=2时,该分式的值为;当m= 时,该分式的值为0.12.在①﹣3x 、②、③x 2y ﹣7xy 2、④﹣x 、⑤、⑥、⑦其中,整式有 ,分式有 (填序号).13.分式所表示的实际意义可以是 .14.已知分式的值为0,则x 的值是 .15.若分式的值为负数,则x 的取值范围是 .16.已知当x=﹣2时,分式无意义;当x=4时,分式的值为0.则a+b= .17.用分式的基本性质填空:(1)=(b ≠0);(2)=;(3)=3a ﹣b .18.在括号内填上适当的整式,使下列等式成立:(1)=;(2)=.19.填空:=﹣=﹣=,﹣===﹣;(2)填空:﹣ = = = ,﹣ = = = ;(3)由(1)和(2),你对于分式的分子、分母和分式本身三个位置的符号变化有怎样的猜想?写出来,与同学交流.三、判断正误(正确的打“√”,错误的打“×”)20.=; .(判断对错)21.==; .(判断对错)22.3x﹣2=..(判断对错)四、解答题23.当x分别取何值时,下列分式无意义、有意义、值为0?(1);(2).24.求下列分式的值:(1),其中a=﹣2;(2),其中x=﹣2,y=2.25.当a取什么值时,分式的值是正数?26.不改变分式的值,使下列分式的分子与分母的最高次项的系数是正数.(1);(2).27.不改变分式的值,把下列各分式的分子和分母中各项的系数化为整数.(1);(2).28.不改变分式的值,把下列各分式的分子和分母中各项的系数化为整数:(1);(2).《第10章分式》参考答案与试题解析一、选择题1.下列各式①,②,③,④(此处π为常数)中,是分式的有()A.①②B.③④C.①③D.①②③④【考点】分式的定义.【分析】根据分式的定义对上式逐个进行判断,得出正确答案.【解答】解:①,③这2个式子分母中含有字母,因此是分式.其它式子分母中均不含有字母,是整式,而不是分式.故选C.【点评】本题主要考查分式的概念,分式与整式的区别主要在于:分母中是否含有字母.2.当x为任意实数时,下列各式中一定有意义的是()A.B.C.D.【考点】分式有意义的条件.【专题】计算题.【分析】这几个式子有意义的条件是分式有意义,即分母一定不等于零.【解答】解:A、当x=0时,分母为零,分式没有意义,故选项错误;B、当x=±1时,分母为零,分式没有意义,故选项错误;C、无论x为何值,分母都不为零,分式有意义,故选项正确;D、当x=﹣1时,分母为零,分式没有意义,故选项错误.故选C.【点评】本题考查了分式有意义的条件:分母不为零,分式有意义.3.将分式中的m、n都扩大为原来的3倍,则分式的值()A.不变B.扩大3倍C.扩大6倍D.扩大9倍【考点】分式的基本性质.【分析】根据分式的基本性质进行解答即可.【解答】解:将分式中的m 、n 都扩大为原来的3倍可变为==.故选A .【点评】本题考查的是分式的基本性质,熟知分式的基本性质3是解答此题的关键. 4.使式子从左到右变形成立,应满足的条件是( )A .x+2>0B .x+2=0C .x+2<0D .x+2≠0 【考点】分式的基本性质.【分析】把等式右边的式子与左边相比较即可得出结论.【解答】解:∵等式的左边=,右边=,∴x+2≠0. 故选D .【点评】本题考查的是分式的基本性质,熟知分式的分子、分母同时乘以一个不为0的数,分式的值不变是解答此题的关键.5.把分式中x 的值变为原来的2倍,而y 的值缩小到原来的一半,则分式的值( ) A .不变 B .为原来的2倍 C .为原来的4倍 D .为原来的一半 【考点】分式的基本性质.【分析】把x ,y 换为2x , y 代入所给分式化简后和原来分式比较即可.【解答】解:新分式为: ==4•, ∴分式的值是原来的4倍. 故选C .【点评】本题考查了分式的基本性质的应用,解决本题的关键是得到把相应字母的值扩大或缩小后新分式的值.6.不改变分式的值,使的分子和分母中x的最高次项的系数都是正数,应该是()A.B.C.D.【考点】分式的基本性质.【分析】要不改变分式的值,将分子分母中x的最高次项的系数变为正数,即要上下同乘﹣1.【解答】解:依题意得:原式=,故选D.【点评】此题利用分式的性质变形时必须注意所乘的(或所除的)整式上下相同,且不为0.二、填空题7.小明th走了skm的路,则小明走路的速度是km/h.【考点】列代数式(分式).【分析】根据题意利用路程÷时间=速度进而得出答案.【解答】解:∵小明th走了skm的路,∴小明走路的速度是: km/h.故答案为:.【点评】此题主要考查了列代数式,根据路程与速度和时间直接的关系得出是解题关键.8.akg盐溶于bkg水,所得盐水含盐的百分比是.【考点】列代数式(分式).【分析】利用盐的质量÷(盐+水)的质量可得答案.【解答】解:由题意得:×100%=,故答案为:.【点评】此题主要考查了由实际问题列出代数式,关键是正确理解题意.9.(2016春•泰兴市校级期中)某食堂有煤mt,原计划每天烧煤at,现每天节约用煤b(b<a)t,则这批煤可比原计划多烧(﹣)天.【考点】列代数式(分式).【分析】根据“多用的天数=节约后用的天数﹣原计划用的天数”列式整理即可.【解答】解:这些煤可比原计划多用的天数=实际所烧天数﹣原计划所烧天数=(﹣)天.故答案为:(﹣).【点评】此题主要考查了列代数式,解决问题的关键是读懂题意,找到所求的量的等量关系.本题的等量关系为:多用的天数=后来可用的天数﹣原计划用的天数.10.小华参加飞镖比赛,a次投了m环,b次投了n环,则小华此次比赛的平均成绩是环.【考点】列代数式(分式);加权平均数.【分析】首先根据题意得出总环数除以总次数得出即可.【解答】解:∵a次投了m环,b次投了n环,∴则小华此次比赛的平均成绩是:.故答案为:.【点评】此题主要考查了列代数式以及加权平均数,正确利用加权平均数得出是解题关键.11.将(3﹣m)÷(m+2)写成分式为,当m=2时,该分式的值为;当m= 3 时,该分式的值为0.【考点】分式的值;分式的定义;分式的值为零的条件.【分析】除法运算中,被除式为分子,除式为分母,即可写成分式的形式,要使分式的值为0,分式的分子为0,分母不能为0.【解答】解:将(3﹣m)÷(m+2)写成分式为,当m=2时,该分式的值为==;当3﹣m=0且m+2≠0,即m=3时,该分式的值为0.故答案为:,;3.【点评】考查了分式的值,分式的值为零的条件.分式值为零的条件是分子等于零且分母不等于零.注意:“分母不为零”这个条件不能少.12.在①﹣3x、②、③x2y﹣7xy2、④﹣x、⑤、⑥、⑦其中,整式有①③④⑥⑦,分式有②⑤(填序号).【考点】分式的定义;整式.【分析】判断分式的依据是看分母中是否含有字母,如果含有字母则是分式,如果不含有字母则不是分式.【解答】解:在式子:①﹣3x;②;③ x y﹣7xy;④﹣ x;⑤;⑥;⑦中,整式有①③④⑥⑦,分式有②⑤.故答案为:①③④⑥⑦;②⑤.【点评】本题考查整式、分式的概念,要熟记这些概念.13.分式所表示的实际意义可以是如果用a+20(元)表示购买笔记本的钱数,b(元)表示每本笔记本的售价,那么就表示a+20(元)可购得笔记本的本数.【考点】分式的定义.【专题】开放型.【分析】根据分式的意义进行解答即可.【解答】解:本题答案不唯一,如:如果用a+20(元)表示购买笔记本的钱数,b(元)表示每本笔记本的售价,那么就表示a+20(元)可购得笔记本的本数.【点评】考查了分式的定义,本题属开放性题目,答案不唯一,只要写出的题目符合此分式即可.14.已知分式的值为0,则x的值是﹣1 .【考点】分式的值为零的条件.【分析】分式等于零时:分子等于零,且分母不等于零.【解答】解:由分式的值为零的条件得|x|﹣1=0且x2+x﹣2≠0,由|x|﹣1=0,得x=﹣1或x=1,由x2+x﹣2≠0,得x≠﹣2或x≠1,综上所述,分式的值为0,x的值是﹣1.故答案为:﹣1.【点评】考查了分式的值为零的条件,若分式的值为零,需同时具备两个条件:(1)分子为0;(2)分母不为0.这两个条件缺一不可.15.若分式的值为负数,则x的取值范围是x>1.5 .【考点】分式的值.【分析】因为分子大于0,整个分式的值为负数,所以让分母小于0列式求值即可.【解答】解:由题意得:3﹣2x<0,解得:x>1.5.故答案为:x>1.5.【点评】考查了分式的值,分式的值为负数,则分式的分子分母异号.16.已知当x=﹣2时,分式无意义;当x=4时,分式的值为0.则a+b= 6 .【考点】分式的值为零的条件;分式有意义的条件.【专题】计算题.【分析】根据分式无意义可以求出a,分式值为0求出b,进而求出a+b.【解答】解:当x=﹣2时,分式无意义,即﹣2+a=0,a=2;当x=4时,分式的值为0,即b=4.则a+b=6.故当x=﹣2时,分式无意义;当x=4时,分式的值为0.则a+b=6.故答案为6.【点评】分式有意义分母不为0,分式值为0,分子为0,分母不为0.17.用分式的基本性质填空:(1)=(b≠0);(2)=;(3)=3a﹣b.【考点】分式的基本性质.【分析】(1)分式的分子、分母同乘以2b;(2)分子、分母同时乘以(x﹣2y);(3)分子、分母同时除以2a.【解答】解:(1)==.故答案是:2(a+b)b;(2)==.故答案是:(x﹣2y);(3)=3a﹣b.故答案是:2a.【点评】本题考查了分式的基本性质.分式的分子与分母同乘(或除以)一个不等于0的整式,分式的值不变.18.在括号内填上适当的整式,使下列等式成立:(1)=;(2)=.【考点】分式的基本性质.【分析】(1)根据分式的性质,分母的变化,可得分子;(2)根据分式的分子分母都乘以或除以同一个不为0 的整式,分式的值不变,分母的变化,可得分子.【解答】解:(1);(2);故答案为:a2+ab,x+y.【点评】本题考查了分式的基本性质,分式的分子分母都乘以或除以同一个不为0 的整式,分式的值不变.19.填空: =﹣=﹣=,﹣ ===﹣;(2)填空:﹣ = = = ﹣,﹣ = = ﹣= ;(3)由(1)和(2),你对于分式的分子、分母和分式本身三个位置的符号变化有怎样的猜想?写出来,与同学交流.【考点】分式的基本性质.【分析】根据分式的性质,可得分式的负号、分子的符号、分母的符号任意改变两个,分式的值不变.【解答】解:(2):﹣===﹣,﹣ ==﹣=;(3)分式的负号、分子的符号、分母的符号任意改变两个,分式的值不变.【点评】本题考查了分式的性质,分式的负号、分子的符号、分母的符号任意改变两个,分式的值不变.三、判断正误(正确的打“√”,错误的打“×”)20.=;×.(判断对错)【考点】分式的基本性质.【分析】根据分式的基本性质进行判断.【解答】解:分式的分子、分母同时乘以x(x≠0)可以得到.故答案应为“×”.【点评】本题考查了分式的基本性质.分式的分子与分母同乘(或除以)一个不等于0的整式,分式的值不变.21.==;×.(判断对错)【考点】分式的基本性质.【分析】根据分式的基本性质进行判断即可.【解答】解:根据分式的基本性质得出:原式不正确,即==错误,故答案为:×.【点评】本题考查了分式的基本性质的应用,主要考查学生的理解能力和辨析能力.22.3x﹣2=.×.(判断对错)【考点】约分.【分析】根据分式有意义的条件进而得出.【解答】解:当3x+2≠0时,3x﹣2=,∴原式错误.故答案为:×.【点评】此题主要考查了分式的基本性质,熟练根据分式性质得出是解题关键.四、解答题23.当x分别取何值时,下列分式无意义、有意义、值为0?(1);(2).【考点】分式的值为零的条件;分式有意义的条件.【分析】分式无意义时:分母等于零;分式有意义时:分母不等于零;分式等于零时:分子等于零,且分母不等于零.【解答】解:(1)当分母x=0时,分式无意义;当分母x≠0时,分式有意义;当分子x+1=0,且分母x≠0时,分式值为0;(2)当分母x﹣1=0,即x=1时,分式无意义;当分母x﹣1≠0,即x≠1时,分式有意义;当分子x+3=0且分母x﹣1≠0,即x=﹣3时,分式值为0.【点评】本题考查了分式的值为零的条件、分式有意义的条件.注意:若分式的值为零,需同时具备两个条件:(1)分子为0;(2)分母不为0.这两个条件缺一不可.24.求下列分式的值:(1),其中a=﹣2;(2),其中x=﹣2,y=2.【考点】分式的值.【分析】(1)将a=﹣2代入,列式计算即可求解;(2)先化简,再将x=﹣2,y=2代入化简后的式子,列式计算即可求解.【解答】解:(1)∵a=﹣2,∴==﹣8;(2)==﹣,∵x=﹣2,y=2,∴原式=1.【点评】本题考查了分式的值,约分.分式求值历来是各级考试中出现频率较高的题型,而条件分式求值是较难的一种题型,在解答时应从已知条件和所求问题的特点出发,通过适当的变形、转化,才能发现解题的捷径.25.当a取什么值时,分式的值是正数?【考点】分式的值.【分析】根据分式的值是正数得出不等式组,进而得出x的取值范围.【解答】解:∵分式的值是正数,∴或,解得a<﹣1或a>3.故当a<﹣1或a>3时,分式的值是正数.【点评】此题主要考查了分式的值以及不等式组的解法,得出分子与分母的符号是解题关键.26.不改变分式的值,使下列分式的分子与分母的最高次项的系数是正数.(1);(2).【考点】分式的基本性质.【分析】(1)先将分母按字母a进行降幂排列,添上带负号的括号,再根据分式的符号法则,将分母的负号提到分式本身的前边;(2)先将分子、分母均按字母y进行降幂排列,并且都添上带负号的括号,再根据分式的基本性质,将分子、分母都乘以﹣1.【解答】解:(1)==;(2)==.【点评】本题考查了分式的基本性质及分式的符号法则,解题的关键是正确运用分式的基本性质.规律总结:(1)同类分式中操作可总结成口诀:“一排二添三变”,“一排”即按同一个字母的降幂排列;“二添”是把第一项系数为负号的分子或分母添上带负号的括号;“三变”是按分式符号法则把分子与分母的负号提到分式本身的前边.(2)分式的分子、分母及本身的符号,任意改变其中的两个,分式的值不变.27.不改变分式的值,把下列各分式的分子和分母中各项的系数化为整数.(1);(2).【考点】分式的基本性质.【分析】(1)先找出各式分子与分母的分母的公因式,再根据分式的基本性质进行解答即可;(2)把分子与分母同时乘以100即可得出结论.【解答】解:(1)分式的分子与分母同时乘以6得,原式=.(2)分式的分子与分母同时乘以100得,原式=.【点评】本题考查的是分式的基本性质,即分式的分子与分母同乘(或除以)一个不等于0的数(或整式),分式的值不变.28.不改变分式的值,把下列各分式的分子和分母中各项的系数化为整数:(1);(2).【考点】分式的基本性质.【分析】(1)把分式的分子、分母同时乘以10即可得出结论;(2)把分式的分子、分母同时乘以100,再同时除以5即可.【解答】解:(1)分式的分子、分母同时乘以10得, =;(2)分式的分子、分母同时乘以100得, ==.【点评】本题考查的是分式的基本性质,熟知分式的分子、分母同时乘以一个不为0的数,分式的值不变是解答此题的关键.。
(新课标)苏科版2017-2018学年八年级下册第10章 分式检测题【本检测题满分:100分,时间:90分钟】一、选择题(每小题3分,共30分)1.下列各式中,分式的个数为( )3x y -,21a x -,π1x +错误!未找到引用源。
,3a b -,12x y +,12x y +,2123x x =-+. A.5 B.4 C.3 D.2 2.下列各式正确的是( )A.c c a b a b =----B.c c a b a b =---+C.c c a b a b =--++D.c c a b a b -=----3.下列分式是最简分式的是( )A.11m m --B.3xy y xy -C.22x y x y -+ D.6132mm - 4.将分式2x x y+中x 、y 的值同时扩大到原来的2倍,则分式的值( )A.扩大到原来的2倍B.缩小到原来的12C.保持不变D.无法确定 5.若分式211x x -+的值为零,则x 的值为( )A.-1或1B.0C.1D.-16.(2013•南京中考)计算231•a a ⎛⎫⎪⎝⎭的结果是( )A.aB.3aC.6aD.9a7.对于下列说法,错误的个数是( )①2πx y -错误!未找到引用源。
是分式;②当1x ≠时,2111x x x -=+-成立;③当3x =-错误!未找到引用源。
时,分式33x x +-的值是零;④11a b a a b ÷⨯=÷=;⑤2a a a x y x y +=+;⑥3232x x-=-•. A.6 B.5 C.4 D.3 8.计算2111111x x ⎛⎫⎛⎫+÷+ ⎪ ⎪--⎝⎭⎝⎭的结果是( )A.1B.1x +错误!未找到引用源。
C.1x x+ D.1x x + 9.下列各式变形正确的是( )A.x y x y x y x y -++=---B.22a b a b c d c d--=++ C.0.20.03230.40.0545a b a b c d c d --=++ D.a b b ab c c b--=--10.(2013•辽宁锦州中考)为了帮助遭受自然灾害的地区重建家园,某学校号召同学们自愿捐款.已知第一次捐款总额为4 800元,第二次捐款总额为5 000元,第二次捐款人数比第一次多20人,而且两次人均捐款额恰好相等,如果设第一次捐款人数是x 人,那么x 满足的方程是( ) A.4 800 5 00020x x -= B.4 800 5 00020x x += C.4 800 5 00020x x -= D.4 800 5 00020x x+=二、填空题(每小题3分,共24分)11.(2013•江苏盐城中考)使分式121x x +-的值为零的条件是x = . 12.将下列分式约分:(1)528x x =错误!未找到引用源。
苏科版数学八年级下《第10章分式》测试题含答案(班级: 姓名: 得分: )一、选择题(每小题3分,共24分)一、选择题(每小题3分,共30分)1.下列各式:51(1 – x ),34-πx,222y x -,x x 25,其中分式有( )A .1个B .2个C .3个D .4个2.如果分式13-x 有意义,则x 的取值范围是( ) A .全体实数 B .x ≠1 C .x =1 D .x >1 3.下列约分正确的是( ) A .313mm m +=+ B .212yx y x -=-+ C .123369+=+a ba bD .yxa b y b a x =--)()(4.若x ,y 的值均扩大为原来的2倍,则下列分式的值保持不变的是( )A .yx 23B . 223yxC .y x 232D .2323y x5.计算xx -++1111的正确结果是( ) A .0B .212x x- C .212x- D .122-x 6.在一段坡路,小明骑自行车上坡时的速度为v 1千米/时,下坡时的速度为v 2千米/时,则他在这段坡路上、下坡的平均速度是( ) A .221v v +千米/时 B .2121v v v v +千米/时 C .21212v v v v +千米/时 D .无法确定7.若关于x 的方程xmx m x -+-+333=3的解为正数,则m 的取值范围是( ) A .m <29 B .m <29且m ≠23 C .m >49- D .m >49-且m ≠43-8.某厂接到加工720件衣服的订单,预计每天做48件,正好按时完成,后因客户要求提前5天交货,每天多做x 件才能按时交货,则x 满足的方程为( )A .54872048720=-+xB .x +=+48720548720C .572048720=-xD .54872048720=+-x9.对于实数a ,b ,定义一种新运算“⊗”为:a ⊗b=21a b -,这里等式右边是通常的实数运算.例如:81311312-=-=⊗.则方程142)2(--=-⊗x x 的解是( )A .x=4B .x=5C .x=6D .x=7 10.张华在一次数学活动中,利用“在面积一定的长方形中,正方形的周长最短”的结论,推导出“式子x +x1(x >0)的最小值是2”.其推导方法如下:在面积是1的长方形中,设长方形的一边长为x ,则另一边长是x 1,长方形的周长是2(x +x 1);当长方形成为正方形时,就有x =x1(x>0),解得x =1,这时长方形的周长2(x +x 1)= 4最小,因此x +x1(x >0)的最小值是2.模仿张华的推导,你求得式子xx 92+(x >0)的最小值是( )A .1B .2C .6D .10 二、填空题(每小题4分,共32分) 11.分式x 21,221y,xy 51-的最简公分母为____________. 12.约分:①ba ab2205=____________,②96922+--x x x =____________.13.用科学记数法表示:0.000 002 016=____________. 14.要使15-x 与24-x 的值相等,则x =____________. 15.计算:(a 2b )-2(a -1b -2)-3=____________. 16.若关于x 的方程12123++=+-x mx x 无解,则m 的值为____________. 17.已知1424122-+-+=-y y y y x x ,则y 2+ 4y + x 的值为____________. 18.如果记 221x y x =+ = f (x ),并且f (1)表示当x =1时y 的值,即f (1)=2211211=+;f (12)表示当x =12时y 的值,即f (12)=221()12151()2=+;那么f (1)+ f (2)+f (12)+f (3)+f (13)+…+ f(n )+f (1n)= ____________.(结果用含n 的式子表示) 三、解答题(共58分)19.(每小题6分,共12分)计算:(1)224816x x x x --+; (2)2m n m nn m m n n m -++---. 20.(每小题6分,共12分)解下列方程: (1)1123x x =-; (2)2124111x x x +=+--.21.(10分)先化简,再求值:2222a a a b a ab b ⎛⎫- ⎪--+⎝⎭÷222a a ab a b ⎛⎫- ⎪+-⎝⎭+1,其中a=23,b = –3.22.(10分)已知x 为整数,且222218339x x x x ++++--为整数,求所有符合条件的x 的值.23.(14分)甲、乙两同学的家与学校的距离均为3000米.甲同学先步行600米,然后乘公交车去学校,乙同学骑自行车去学校.已知甲步行的速度是乙骑自行车速度的21,公交车的速度是乙骑自行车速度的2倍.甲、乙两同学同时从家出发去学校,结果甲同学比乙同学早到2分钟. (1)求乙骑自行车的速度;(2)当甲到达学校时,乙同学离学校还有多远?附加题(15分,不计入总分) 24.一列按一定顺序和规律排列的数: 第1个数是112⨯; 第2个数是123⨯; 第3个数是134⨯; ……对任何正整数n ,第n 个数与第(n +1)个数的和等于2(2)n n +.(1)经过探究,我们发现:112⨯=1112-,123⨯=1123-,134⨯=1134-, 设这列数的第5个数为a ,那么a >1156-,a =1156-,a <1156-,哪个正确?请你直接写出正确的结论;(2)请你观察第1个数、第2个数、第3个数,猜想这列数的第n 个数(即用正整数n 表示第n 个数),并且证明你的猜想满足“第n 个数与第(n+1)个数的和等于2(2)n n +”;(3)设M 表示211,212,213,…,212016这2016个数的和,即M =211+212+213+…+212016, 求证:2016403120172016M <<.参考答案一、1. A 2. B 3. C 4. A 5. C 6. C 7. B 8.D 9. B 10.C二、11. 10xy 212.①a 41 ②33-+x x 13.2.016×10-614.6 15.4b a16. -5 17. 2 18. 21-n三、19.解:(1)224816x xx x --+=2(4)(4)4x x x x x -=--; (2)2m n m n n m m n n m -++---=2m n m n mn m n m n m n m --+=----. 20.解:(1)方程两边乘3x (x -2),得3x =x -2. 解得x =-1.检验:当x =-1时,3x (x -2)≠0. 所以,原分式方程的解为x =-1.(2)方程两边乘(x +1)(x -1),得x -1+2(x +1)=4. 解得x =1.检验:当x =1时,(x +1)(x -1)=0,因此x =1不是原分式方程的解. 所以,原分式方程无解.21.解:原式=2()()1()ab a b a b a b ab -+-⋅+--=1a b a b ++-=2aa b -. 当a=23,b =-3时,原式=411. 22.解:原式=2(3)2(3)2182(3)(3)(3)(3)(3)x x x x x x x x --++++=+-+-=23x -. ∵x 为整数,且23x -为整数, ∴x -3=±2或x -3=±1,解得x =1或x=2或x=4或x=5. ∴所有符合条件的x 的值为1、2、4、5. 23.解:(1)设乙骑自行车的速度为x 米/分,则甲步行的速度是12x 米/分,公交车的速度是2x 米/分,根据题意,得60012x +30006002x -=3000x -2. 解得x =300.经检验,x =300是原方程的解.答:乙骑自行车的速度为300米/分. (2)300×2=600(米).答:当甲到达学校时,乙同学离学校还有600米. 24.解:(1)由题意知第5个数a=156⨯=1156-. (2)∵第n 个数为1(1)n n +,第(n+1)个数为1(1)(2)n n ++,∴1(1)n n ++1(1)(2)n n ++=2(1)(2)n nn n n ++++=()()()2112n n n n +++=2(2)n n +,即第n 个数与第(n+1)个数的和等于2(2)n n +.(3)∵112-=112⨯<211=1,12-13=123⨯<212<112⨯=1-12,13-14=134⨯<213<123⨯=12-13,…,12015-12016=120152016⨯<212015<120142015⨯=12014-12015, 12016-12017=120162017⨯<212016<120152016⨯=12015-12016, ∴1-12017<211+212+213+…+212015+212016<122016-,即20162017<211+212+213+…+212015+212016<40312016. ∴20162017<M<40312016.。
苏科版八年级下册数学第10章分式含答案一、单选题(共15题,共计45分)1、分式有意义,则x的取值范围为()A. B. C. D.2、解分式方程,去分母得( )A.1-x-1=2B.1-x+1=2C.1-x-1=-2D.1-x+1=-23、下列式子成立的是()A. B. C. D.4、若分式的值为0,则x的值为()A.0B.2C.﹣2D.2或﹣25、计算()•()÷(﹣)的结果是()A. B.﹣ C. D.﹣6、若代数式的值为0,则x等于()A.2B.-2C.0D.2,﹣27、解分式方程=3时,去分母后变形为()A.2+( x+2)=3( x−1)B.2− x+2=3( x−1)C.2−( x+2)=3(1− x)D.2−(x+2)=3(x−1)8、下列结论正确是()A.x 4·x 4=x 16B.当x<5时,分式的值为负数C.若x,y的值均扩大为原来的3倍,则分式的值保持不变D.(a 6) 2÷(a 4) 3=1 9、从﹣2,0,1,2,3中任取一个数作为a,既要使关于x一元二次方程ax2+(2a﹣4)x+a﹣8=0有实数解,又要使关于x的分式方程=3有正数解,则符合条件的概率是()A. B. C. D.10、函数的自变量x的取值范围是()A.x≠0B.x>3C.x≠-3D.x≠311、计算的结果为( )A.1B.C.a+bD.12、若分式的值为0,则的值为()A. B. C. D.13、、两地相距米,通讯员原计划用时从地到达地,现需提前小时到达,则每小时要多走()A. 米B. 米C. 米D. 米14、下列各式中,分式的个数有()、、、﹣、、2﹣.A.2个B.3个C.4个D.5个15、在等式中,若m=5,n=2,则q等于()A. B. C. D.二、填空题(共10题,共计30分)16、=________17、若分式的值为零,则x的值为________.18、已知关于x的分式方程﹣=1的解为负数,则k的取值范围是________.19、计算:=________.20、若a2﹣5ab﹣b2=0,则的值为________.21、若分式方程:2+=有增根,则k=________22、÷的运算结果是________.23、在代数式,,,,中,是分式的有________个.24、化简:=________.25、若分式的值为0,则x的值为________.三、解答题(共5题,共计25分)26、先化简,再求代数式的值,其中x=2+tan60°,y=4sin30°.27、某县为落实“精准扶贫惠民政策",计划将某村的居民自来水管道进行改造该工程若由甲队单独施工,则恰好在规定时间内完成;若由乙队单独施工,则完成工程所需天数是规定时间的1.5倍;若由甲、乙两队先合作施工15天,则余下的工程由甲队单独完成还需5天这项工程的规定时间是多少天?28、先化简:,再选择一个恰当的x值代入并求值.29、本学期开学前夕,苏州某文具店用4000元购进若干书包,很快售完,接着又用4500元购进第二批书包,已知第二批所购进书包的只数是第一批所购进书包的只数的1.5倍,且每只书包的进价比第一批的进价少5元,求第一批书包每只的进价是多少?30、为厉行节能减排,倡导绿色出行,今年3月以来.“共享单车”(俗称“小黄车”)公益活动登陆我市中心城区,某公司拟在甲、乙两个街道社区投放一批“小黄车”,这批自行车包括A、B两种不同款型,请回答下列问题:问题1:单价该公司早期在甲街区进行了试点投放,共投放A、B两型自行车各50辆,投放成本共计7500元,其中B型车的成本单价比A型车高10元,A、B两型自行车的单价各是多少?问题2:投放方式该公司决定采取如下投放方式:甲街区每1000人投放a辆“小黄车”,乙街区每1000人投放辆“小黄车”,按照这种投放方式,甲街区共投放1500辆,乙街区共投放1200辆,如果两个街区共有15万人,试求a的值.参考答案一、单选题(共15题,共计45分)1、C2、D3、D4、B5、B6、A7、D8、D9、B10、D11、D12、B13、D14、C15、B二、填空题(共10题,共计30分)17、18、19、20、21、22、23、24、25、三、解答题(共5题,共计25分)26、28、29、。
第10章 分式 测试题(时间: 满分:120分)(班级: 姓名: 得分: )一、选择题(每小题3分,共24分) 一、选择题(每小题3分,共30分)1.下列各式:51(1 – x ),34-πx,222y x -,x x 25,其中分式有( )A .1个B .2个C .3个D .4个2.如果分式13-x 有意义,则x 的取值范围是( ) A .全体实数 B .x ≠1 C .x =1 D .x >1 3.下列约分正确的是( ) A .313m m m +=+ B .212yx y x -=-+ C .123369+=+a ba b D .yxa b y b a x =--)()(4.若x ,y 的值均扩大为原来的2倍,则下列分式的值保持不变的是( )A .yx 23B .223y x C .y x 232D .2323yx 5.计算xx -++1111的正确结果是( ) A .0B .212x x- C .212x - D .122-x 6.在一段坡路,小明骑自行车上坡时的速度为v 1千米/时,下坡时的速度为v 2千米/时,则他在这段坡路上、下坡的平均速度是( ) A .221v v +千米/时 B .2121v v v v +千米/时 C .21212v v vv +千米/时 D .无法确定 7.若关于x 的方程xmx m x -+-+333=3的解为正数,则m 的取值范围是( ) A .m <29 B .m <29且m ≠23 C .m >49- D .m >49-且m ≠43-8.某厂接到加工720件衣服的订单,预计每天做48件,正好按时完成,后因客户要求提前5天交货,每天多做x 件才能按时交货,则x 满足的方程为( ) A .54872048720=-+x B .x+=+48720548720C .572048720=-xD .54872048720=+-x9.对于实数a ,b ,定义一种新运算“⊗”为:a ⊗b=21a b -,这里等式右边是通常的实数运算.例如:81311312-=-=⊗.则方程142)2(--=-⊗x x 的解是( ) A .x=4B .x=5C .x=6D .x=710.张华在一次数学活动中,利用“在面积一定的长方形中,正方形的周长最短”的结论,推导出“式子x +x1(x >0)的最小值是2”.其推导方法如下:在面积是1的长方形中,设长方形的一边长为x ,则另一边长是x 1,长方形的周长是2(x +x1);当长方形成为正方形时,就有x =x 1(x >0),解得x =1,这时长方形的周长2(x +x 1)= 4最小,因此x +x1(x >0)的最小值是2.模仿张华的推导,你求得式子xx 92+(x >0)的最小值是( )A .1B .2C .6D .10 二、填空题(每小题4分,共32分) 11.分式x21,221y ,xy 51-的最简公分母为____________.12.约分:①ba ab2205=____________,②96922+--x x x =____________. 13.用科学记数法表示:0.000 002 016=____________. 14.要使15-x 与24-x 的值相等,则x =____________. 15.计算:(a 2b )-2(a -1b -2)-3=____________. 16.若关于x 的方程12123++=+-x mx x 无解,则m 的值为____________. 17.已知1424122-+-+=-y y y y x x ,则y 2+ 4y + x 的值为____________. 18.如果记 221x y x =+ = f (x ),并且f (1)表示当x =1时y的值,即f (1)=2211211=+;f (12)表示当x =12时y 的值,即f (12)=221()12151()2=+;那么f (1)+ f (2)+f (12)+f (3)+f (13)+…+ f (n )+f (1n)= ____________.(结果用含n 的式子表示) 三、解答题(共58分)19.(每小题6分,共12分)计算:(1)224816x x x x --+; (2)2m n m n n m m n n m-++---. 20.(每小题6分,共12分)解下列方程: (1)1123x x =-; (2)2124111x x x +=+--. 21.(10分)先化简,再求值:2222a a a b a ab b ⎛⎫- ⎪--+⎝⎭÷222a a a b a b ⎛⎫- ⎪+-⎝⎭+1,其中a=23,b = –3.22.(10分)已知x 为整数,且222218339x x x x ++++--为整数,求所有符合条件的x 的值.23.(14分)甲、乙两同学的家与学校的距离均为3000米.甲同学先步行600米,然后乘公交车去学校,乙同学骑自行车去学校.已知甲步行的速度是乙骑自行车速度的21,公交车的速度是乙骑自行车速度的2倍.甲、乙两同学同时从家出发去学校,结果甲同学比乙同学早到2分钟.(1)求乙骑自行车的速度;(2)当甲到达学校时,乙同学离学校还有多远?附加题(15分,不计入总分) 24.一列按一定顺序和规律排列的数: 第1个数是112⨯; 第2个数是123⨯; 第3个数是134⨯; ……对任何正整数n ,第n 个数与第(n +1)个数的和等于2(2)n n +.(1)经过探究,我们发现:112⨯=1112-,123⨯=1123-,134⨯=1134-,设这列数的第5个数为a ,那么a >1156-,a =1156-,a <1156-,哪个正确? 请你直接写出正确的结论;(2)请你观察第1个数、第2个数、第3个数,猜想这列数的第n 个数(即用正整数n 表示第n 个数),并且证明你的猜想满足“第n 个数与第(n+1)个数的和等于2(2)n n +”;(3)设M 表示211,212,213,…,212016这2016个数的和,即M =211+212+213+ (212016)求证:2016403120172016M <<.参考答案一、1. A 2. B 3. C 4. A 5. C 6. C 7. B 8.D 9. B 10.C 二、11. 10xy212.①a 41 ②33-+x x 13.2.016×10-614.6 15.4b a16. -5 17. 2 18. 21-n 三、19.解:(1)224816x xx x --+=2(4)(4)4x x x x x -=--; (2)2m n m n n m m n n m -++---=2m n m n m n m n m n m n m--+=----. 20.解:(1)方程两边乘3x (x -2),得3x =x -2. 解得x =-1.检验:当x =-1时,3x (x -2)≠0. 所以,原分式方程的解为x =-1.(2)方程两边乘(x +1)(x -1),得x -1+2(x +1)=4. 解得x =1.检验:当x =1时,(x +1)(x -1)=0,因此x =1不是原分式方程的解. 所以,原分式方程无解. 21.解:原式=2()()1()ab a b a b a b ab -+-⋅+--=1a b a b ++-=2aa b-. 当a=23,b =-3时,原式=411.22.解:原式=2(3)2(3)2182(3)(3)(3)(3)(3)x x x x x x x x --++++=+-+-=23x -. ∵x 为整数,且23x -为整数, ∴x -3=±2或x -3=±1,解得x =1或x=2或x=4或x=5. ∴所有符合条件的x 的值为1、2、4、5.23.解:(1)设乙骑自行车的速度为x 米/分,则甲步行的速度是12x 米/分,公交车的速度是2x 米/分,根据题意,得60012x +30006002x -=3000x -2. 解得x =300.经检验,x =300是原方程的解. 答:乙骑自行车的速度为300米/分. (2)300×2=600(米).答:当甲到达学校时,乙同学离学校还有600米. 24.解:(1)由题意知第5个数a=156⨯=1156-. (2)∵第n 个数为1(1)n n +,第(n+1)个数为1(1)(2)n n ++,∴1(1)n n ++1(1)(2)n n ++=2(1)(2)n nn n n ++++=()()()2112n n n n +++=2(2)n n +,即第n 个数与第(n+1)个数的和等于2(2)n n +. (3)∵112-=112⨯<211=1,12-13=123⨯<212<112⨯=1-12,13-14=134⨯<213<123⨯=12-13,…,12015-12016=120152016⨯<212015<120142015⨯=12014-12015, 12016-12017=120162017⨯<212016<120152016⨯=12015-12016, ∴1-12017<211+212+213+…+212015+212016<122016-,即20162017<211+212+213+…+212015+212016<40312016. ∴20162017<M<40312016.。
第10章分式综合素质评价一、选择题(每题2分,共16分)1.代数式25x,1π,2x2+4,x2-23,1x,x+1x+2中,属于分式的有( )A.2个B.3个C.4个D.5个2.使分式2x-4有意义的x的取值范围是( )A.x≤4B.x≥4C.x≠4D.x=43.分式①a+2a2+3,②a-ba2-b2,③4a12(a-b),④1x-2中,最简分式有( )A.1个B.2个C.3个D.4个4.解分式方程2x-1-2xx-1=1,可知方程的解为( )A.x=1 B.x=3 C.x=12D.无解5.《九章算术》之“粟米篇”中记载了中国古代的“粟米之法”:“粟率五十,粝米三十…”(粟指带壳的谷子,粝米指糙米),其意为:“50单位的粟,可换得30单位的粝米…”.问题:有3斗粟(1斗=10升),若按照此“粟米之法”,则可以换得的粝米为( )A.1.8升B.16升C.18升D.50升6.计算m2m-1-2m-1m-1的结果是( )A.m+1 B.m-1 C.m-2 D.-m-27.对于非零的两个实数a,b,规定a*b=3b-2a,若5*(3x-1)=2,则x的值为( )A.56B.34C.23D.-168.若关于x 的分式方程3x -a x -3+x +13-x=1的解为正数,且关于y 的不等式组{y +9≤2(y +2),2y -a 3>1的解集为y ≥5,则所有满足条件的整数a 的值之和是( )A .13B .15C .18D .20二、填空题(每题2分,共20分)9.x 6ab 2与y9a 2bc 的最简公分母是________.10.计算:a 2a -b+b 2-2ab a -b=________.11.若x =1是分式方程a -2x -1x -2=0的根,则a =________.12.若关于x 的方程ax +1x -1-1=0无实数根,则a 的值为________.13.若关于x 的分式方程m x -1+31-x=1的解为正数,则m 的取值范围是________.14.小明同学在对分式方程2x x -2+3-m 2-x=1去分母时,方程右边的1没有乘x -2,若此时解得整式方程的解为x =2,则原方程的解为________.15.如图的解题过程中,第①步出现错误,但最后所求的值是正确的,则图中被盖住的x 的值是_______________.先化简,再求值:3-xx -4+1,其中x =★.解:原式=3-xx -4·(x -4)+(x -4)…①=3-x +x -4=-1.16.目前,步行已成为人们最喜爱的健身方法之一,通过手机可以计算行走的步数与相应的能量消耗.对比手机数据发现,小琼步行12 000步与小博步行9 000步消耗的能量相同.若小琼每消耗1千卡能量行走的步数比小博的多10步,则小博每消耗1千卡能量需要行走________步.17.若mn =n -m ≠0,则3n -3m的值为 ________.18.“绿水青山就是金山银山”.某地为美化环境,计划种植树木6 000棵.由于志愿者的加入,实际每天植树的棵数比原计划增加了25%,结果提前3天完成任务,则实际每天植树________棵.三、解答题(19~21题每题6分,22~23题每题8分,24~26题每题10分,共64分)19.计算:(1)2aa 2-9-1a -3;(2)(1+2a +1a 2)÷a +1a.20.先化简,再求值:(1)(1+1m -1)·m 2-1m,其中m =2.(2)a 2-6ab +9b 2a 2-2ab ÷a -3b a -2b -1a,其中a =4,b =1.21.解分式方程:(1)x 2x -3+53-2x=4.(2)x -2x +2-1=16x 2-4.22.已知M=2xyx2-y2,N=x2+y2x2-y2,用“+”或“-”连接M,N,有三种不同的形式:M+N,M-N,N-M,任选其中一种进行计算,并化简求值,其中x:y=5:2.23.已知关于x的方程mx+3-13-x=m+4x2-9.(1)若m=-3,解这个方程;(2)若原方程无解,求m的值.24.为保障新冠病毒疫苗接种需求,某生物科技公司开启“加速”模式,生产效率比原先提高了20%,现在生产240万剂疫苗所用的时间比原先生产220万剂疫苗所用的时间少0.5天.问原先每天生产多少万剂疫苗?25.小张去离家2 520 m的奥体中心看演唱会,到奥体中心后,发现演唱会门票忘带了,此时离演唱会开始还有23 min,于是他跑步回家,拿到门票后立刻找到一辆共享单车原路赶回奥体中心,已知小张骑车的时间比跑步的时间少用了4 min,且骑车的平均速度是跑步的平均速度的1.5倍.(1)求小张跑步的平均速度.(2)如果小张在家取票和寻找共享单车共用了5 min ,他能否在演唱会开始前赶到奥体中心?并说明理由.26.阅读下面材料,解答后面的问题.解方程:x -1x -4xx -1=0.解:设y =x -1x ,则原方程可化为y -4y =0,方程两边同时乘y ,得y 2-4=0,解得y =±2.经检验,y =2和y =-2都是方程y -4y =0的解.当y =2时,x -1x =2,解得x =-1;当y =-2时,x -1x =-2,解得x =13. 经检验,x =-1和x =13都是原分式方程的解.∴原分式方程的解为x =-1或x =13.上述这种解分式方程的方法称为换元法.(1)若在方程x -14x -xx -1=0中,设y =x -1x ,则原方程可化为________________;(2)若在方程x -1x +1-4x +4x -1=0中,设y =x -1x +1,则原方程可化为_______________;(3)模仿上述换元法解方程:x -1x +2-3x -1-1=0.答案一、1.B 2.C 3.B 4.D 5.C 6.B 7.B8.A 点拨:解分式方程得x =a -2,∵x >0且x ≠3,∴a -2>0且a -2≠3,∴a >2且a ≠5.解不等式组得{y ≥5,y >a +32,∵不等式组的解集为y ≥5,∴a +32<5,∴a <7.∴2<a <7且a ≠5,∴所有满足条件的整数a 的值之和为3+4+6=13.二、9.18a 2b 2c 10.a -b 11.1 12.1或-113.m >2且m ≠314.x =1 点拨:小明去分母得到的整式方程是2x -(3-m )=1,把x =2代入,得4-(3-m )=1,解得m =0.故原分式方程为2xx -2+32-x =1,解得x =1,经检验,x =1是原分式方程的解.15.5 点拨:3-x x -4+1=3-x +x -4x -4=14-x ,当14-x=-1时,可得x =5,检验:当x =5时,4-x ≠0,∴题图中被盖住的x 的值是5.16.30 点拨:设小博每消耗1千卡能量需要行走x 步,则小琼每消耗1千卡能量需要行走(x +10)步,根据题意得12 000x +10=9 000x ,解得x =30,经检验,x =30是原方程的解,且符合题意.故小博每消耗1千卡能量需要行走30步.17.-3 点拨:原式=3m mn -3nmn =3(m -n )mn.∵mn =n -m ,∴原式=-3mn mn=-3.18.500三、19.解:(1)原式=2a (a +3)(a -3)-a +3(a +3)(a -3)=a-3(a+3)(a-3)=1a+3.(2)原式=a2+2a+1a2÷a+1a=(a+1)2a2·aa+1=a+1a.20.解:(1)原式=(m-1m-1+1m-1)·(m+1)(m-1)m=mm-1·(m+1)(m-1)m=m+1,当m=2时,原式=m+1=2+1=3.(2)a2-6ab+9b2a2-2ab÷a-3ba-2b-1a=(a-3b)2a(a-2b)·a-2ba-3b-1a=a-3ba-1a=a-3b-1a,当a=4,b=1时,原式=4-3×1-14=0.21.解:(1)方程两边同乘2x-3,得x-5=4(2x-3),解得x=1,检验:当x=1时,2x-3≠0,所以x=1是原分式方程的解.(2)方程两边同乘(x+2)(x-2),得x2-4x+4-x2+4=16,解得x=-2.检验:当x=-2时,(x+2)(x-2)=0,所以x=-2是增根,原分式方程无解.22.解:选择一,M+N=2xyx2-y2+x2+y2x2-y2=(x+y)2(x+y)(x-y)=x+yx-y.当x:y=5:2时,x=5 2y,∴原式=52y+y52y-y=73;选择二,M -N =2xyx 2-y 2-x 2+y 2x 2-y 2=-(x -y )2(x +y )(x -y )=y -xx +y.当x :y =5:2时,x =52y ,∴原式=y -52y 52y +y =-37;选择三,N -M =x 2+y 2x 2-y 2-2xyx 2-y 2=(x -y )2(x +y )(x -y )=x -y x +y .当x :y =5:2时,x =52y ,∴原式=52y -y 52y +y =37.点拨:任选一种即可.23.解:(1)把m =-3代入原方程得-3x +3-13-x =-3+4x 2-9.方程两边同乘(x -3)(x +3),得-3(x -3)+(x +3)=1.解这个一元一次方程,得x =5.5.检验:当x =5.5时,(x +3)(x -3)≠0,∴x =5.5是原方程的解.(2)当(x +3)(x -3)=0时,x =3或-3.方程两边同乘(x -3)(x +3),得m (x -3)+(x +3)=m +4,整理,得(m +1)x =1+4m ,当m +1=0时,1+4m ≠0,方程无解,此时m =-1.当m +1≠0时,x =1+4m m +1,当x =3时,(x -3)(x +3)=0,方程无解,即1+4m m +1=3,解得m =2,经检验,m =2是方程1+4m m +1=3的解.当x =-3时,(x -3)(x +3)=0,方程无解,即1+4m m +1=-3,解得m =-47,经检验,m =-47是方程1+4mm +1=-3的解.综上,若原方程无解,则m =-1或2或-47.24.解:设原先每天生产x 万剂疫苗,由题意可得240(1+20%)x +0.5=220x ,解得x =40,经检验,x =40是原方程的解,且符合题意.答:原先每天生产40万剂疫苗.25.解:(1)设小张跑步的平均速度为x m/min ,则小张骑车的平均速度为1.5x m/min ,根据题意,得2 520x -2 5201.5x=4,解得x =210.经检验,x =210是原方程的解,且符合题意.答:小张跑步的平均速度为210 m/min.(2)不能.理由:小张跑步到家所用时间为2 520÷210=12(min),小张骑车赶回奥体中心所用时间为12-4=8(min),小张从开始跑步回家到赶回奥体中心所用时间为12+8+5=25(min),∵25>23,∴小张不能在演唱会开始前赶到奥体中心.26.解:(1)y 4-1y =0 (2)y -4y=0(3)原方程可化为x -1x +2-x +2x -1=0,设y =x -1x +2,则原方程可化为y -1y =0,方程两边同时乘y ,得y 2-1=0,解得y =±1.经检验,y =1和y =-1都是方程y -1y =0的解.当y =1时,x -1x +2=1,该方程无解;当y =-1时,x -1x +2=-1,解得x =-12.经检验,x =-12是原分式方程的解.∴原分式方程的解为x =-12.。
1
第7章 平面图形的认识(二) 单元检测卷
一、选择题(每题3分,共21分)
1.下列图案中,只要用其中一部分平移一次就可以得到的是 ( )
2.如图,在所标记的角中,是同旁内角的有 ( )
A .∠1和∠2
B .∠1和∠4
C .∠3和∠4
D .∠2和∠3
3.如图,为了估计池塘两岸A 、B 间的距离,杨阳在池塘的一侧选到了一点,测得PA=16 m ,
PB=12 m ,那么AB 间的距离不可能是 ( )
A .5 m
B .15 m
C .20 m
D .28 m
4.如图,.AB ∥CD ,AC ⊥BC ,图中与 ∠CAB 互余的角有 ( )
A .1个
B .2个
C .3个
D .4个
5.一个正方形和两个等边三角形的位置如图所示,若∠3=50。
,则∠1+∠2的度数为( )
A .90︒
B .100︒
C .130︒
D .180︒
2
6.已知一个多边形的最小的外角是60︒,其余外角依次增加20︒,则这个多边形的边数为
( )
A .6
B .5
C .4
D .3
7.如图,在△ABC 中,ZA=96。
,延长BC 到D ,∠ABC 与∠ACD 的
平分线相交于点A 。
.∠A 1BC 与∠A 1CD 的平分线相交于点A 2,依此
类推,∠A 4BC 与∠A 4CD 的平分线相交于点A 5,则∠A 5的度数为 ( )
A .19.2︒
B .8︒
C .6︒
D .3︒
二、填空题。
(每空3分,共21分)
8.如图,AB ∥CD ,∠C=25︒,∠E=30︒,则∠A= .
9.在△ABC 中,三个内角∠A 、∠B 、∠C 满足∠B 一∠A=∠C 一∠B ,
则∠B= .
10.已知一个多边形的每一个内角都等于140︒,则这个多边形的边数是 .
11.已知三角形的边长分别为4、a 、8,则a 的取值范围是 ;如果这个三角形中有两条边相等,那么它的周长为 .
12.如图是一块从一个边长为50 cm 的正方形材料中剪出的垫片,现测得FG=8 cm ,则这个剪出的图形的周长是 cm .
13.在如图所示的4×4正方形网格中,∠1+∠2+∠3+∠4+∠5+∠6+∠7= .
14.如图,∠A=10︒,∠ABC=90︒,∠ACB=∠DCE ,∠ADC=∠EDF ,∠CED=∠FEG ,则∠AFE= .
三、解答题。
(共58分
)
3
15.(9分)画图题:
(1)画出图中△ABC的高AD(标出点D的位置);
(2)画出把△ABC沿射线AD方向平移2 cm后得到的△A1B1C1;
(3)根据“图形平移”的性质,得BB1= ,AC与A1C1的位置关系是.
16.(8分)如图,EP∥AB,PF∥CD,∠B=100︒,∠C=120︒,求∠EPF的度数.
17.(10分)一个行边形除了一个内角之外,其余各内角之和为1 780︒,求这个多边形的边数以n的值.
18.(9分)如图,BD是AABC的角平分线,ED∥BC,交AB于点E,∠A=45︒,∠BDC=60︒。
求∠BED的度数.
4
19.(10分)如图,∠ABC中,AD平分∠BAC,BE⊥AC于点E,交AD于点F.
求证:∠2=1
2
(∠ABC+∠C).
20.(12分)BC∥OA,∠B=∠A=100︒,试回答下列问题:
(1)如图,求证:OB∥AC;
(2)如图,若点E、F在BC上,且满足∠FOC=∠AOC,并且OE平分∠BOF
①∠EOC的度数;
②求∠OCB:∠0FB的值;
③如图,若∠OEB=∠OCA,此时∠OCA= (在横线上填上答案即可).
参考答案
1.B 2.B 3.D 4.C 5.B 6.C 7.D
8.55°9.60°10.9 11.4<a<12,20
12.216 13.315° 14.50°
15.(1)略(2)略(3)2cm,AC∥
11
AC
16.∠EPF=40°17.12
18.∵∠BDC=60°,∠A=45°,∴∠ABD=∠BDCI一∠A=60°-45°=15°∴BD是△ABC的角平分线∴∠ABC=2∠ABD=30°∵ED∥BD ∴∠BED+∠ABC=180°∴∠BED=180°-30°=150°
19.∠2=90°-∠1=1
2
(180°-2∠1)=
1
2
(180°-∠BAC)=
1
2
( ∠BAC+∠C)
20.(1)证明:∵BC∥OA ∴∠B+∠0=180°.∵∠A=∠B.∴∠A+∠O=180°.∴OB∥AC.
(2)①∠A=∠B=:100°,由(1)得∠BOA=180°-∠B=80°.
∵∠FOC=∠AOC,并且OE平分∠BOF,BC∥OA,
∴∠FOC=1
2
∠FOA,∠EOF=
1
2
∠BOF.
∴∠EOC=∠EOF+∠FOC=1
2
(∠BOF+∠FOA)=
1
2
∠BOA=40°.
②∵BC∥OA,∴∠FCO=∠COA.
又∵∠FOC=,∠AOC,.∴∠FOC=∠FCO.
∵∠FOC+∠FCO=180°-∠OFC,且∠BFO=180°-∠0FC,
∴∠OFB=∠FOC+∠FCO=2∠OCB.
∴∠0CB:∠0FB=1:2.
③由(1)知OB∥AC,∴∠OCA=∠BOC.
由(2)可以设∠B0E=∠E0F=a,∠FOC=∠COA=β,∴∠OCA=∠BOC=2a+β∵∠ECO+∠EOC=180°-∠OEC,且∠OEB=180°-∠OEC,
即∠OEB=∠EOC+∠ECO=a+β+β=a+2β
∵∠OEB=∠OCA.∴2a+β=a+2β·即a=β
∵∠AOB=80°,∴a=β=20°.
∴∠OCA=2a+β=40°+20°=60°
5。