长春市2020届高三质量监测数学理科(20200712134651).pdf
- 格式:pdf
- 大小:195.53 KB
- 文档页数:9
长春市 2020 届高三质量监测(一) 理科数学一、选择题:本题共 12 小题,每小题 5 分,在每小题给出的四个选项中,只有一项是符 合题目要求的. 1. 已知集合{|||2}A x x =≥,2{|30}B x x x =-> ,则A B =IA. ∅B. {|3,x x >或x ≤2}-C. {|3,x x >或0}x <D. {|3,x x >或2}x ≤ 2. 复数252i +i z =的共轭复数z 在复平面上对应的点在A. 第一象限B. 第二象限C. 第三象限D. 第四象限3. 已知31()3a =,133b =,13log 3c =,则A. a b c <<B. c b a <<C. c a b <<D. b c a << 4. 已知直线0x y +=与圆22(1)()2x y b -+-=相切,则b = A. 3- B. 1 C. 3-或1 D.525. 2019年是新中国成立七十周年,新中国成立以来,我国文化事业得到了充分发展,尤其是党的十八大以来,文化事业发展更加迅速,下图是从2013 年到 2018 年六年间我国公共图书馆业机构数(个)与对应年份编号的散点图(为便于计算,将 2013 年编号为 1,2014 年编号为 2,…,2018年编号为 6,把每年的公共图书馆业机构个数作为因变量,把年份编号从 1 到 6 作为自变量进行回归分析),得到回归直线ˆ13.7433095.7yx =+,其相关指数2R 0.9817=,给出下列结论,其中正确的个数是①公共图书馆业机构数与年份的正相关性较强 ②公共图书馆业机构数平均每年增加 13.743 个③可预测 2019 年公共图书馆业机构数约为 3192 个A. 0B. 1C. 2D. 36. 中国传统扇文化有着极其深厚的底蕴. 一般情况下,折扇可看作是从一个圆面中剪下的扇形制作而成,设扇形的面积为1S ,圆面中剩余部分的面积为2S ,当1S 与2S 的比值为512-时,扇面看上去形状较为美观,那么此时扇形的圆心角的弧度数为A. (35)π-B. 51)πC. 51)πD. 52)π7. 已知,,a b c 为直线,,,αβγ平面,则下列说法正确的是 ① ,a b αα⊥⊥,则//a b ② ,αγβγ⊥⊥,则αβ⊥ ③ //,//a b αα,则//a b ④//,//αγβγ,则//αβA. ① ② ③B. ② ③ ④C. ① ③D. ① ④8. 已知数列{}n a 为等比数列,n S 为等差数列{}n b 的前n 项和,且21a =,1016a =,66a b = ,则11S = A. 44 B. 44- C. 88 D. 88-9. 把函数()y f x =图象上所有点的横坐标伸长到原来的2倍,得到2sin()y x ωϕ=+(0,||)2πωϕ><的图象(部分图象如图所示) ,则()y f x =的解析式为A. ()2sin(2)6f x x π=+ B. ()2sin()6f x x π=+C. ()2sin(4)6f x x π=+D. ()2sin()6f x x π=- 10. 已知函数()y f x =是定义在R 上的奇函数,且满足(2)()0f x f x ++=,当[2,0]x ∈-时,2()2f x x x =--,则当[4,6]x ∈时,()y f x =的最小值为A. 8-B. 1-C. 0D. 111. 已知椭圆22143x y +=的右焦点F 是抛物线22(0)y px p =>的焦点,则过F 作倾斜角为60︒的直线分别交抛物线于,A B (A 在x 轴上方)两点,则||||AF BF 的值为 A.3 B. 2 C. 3 D. 412. 已知函数21()(2)e x f x x x -=-,若当1x > 时,()10f x mx m -++≤有解,则m 的取值范围为A. m ≤1B. m <-1C. m >-1D. m ≥1 二、填空题:本题共4小题,每小题5分. 13. 381(2)x x-展开式中常数项为___________.14.边长为2正三角形ABC 中,点P 满足1()3AP AB AC =+u u u r u u u r u u u r,则BP BC ⋅=u u r u u u r _________.15.平行四边形ABCD 中,△ABD 是腰长为2的等腰直角三角形,90ABD ∠=︒,现将△ABD 沿BD 折起,使二面角A BD C --大小为23π,若,,,A B C D 四点在同一球面上,则该球的表面积为________. 16.已知数列{}n a 的前项n 和为n S ,满足112a =-,且1222n n a a n n++=+,则2n S = __________,n a =__________.三、解答题:共 70 分,解答应写出文字说明、证明过程或演算步骤. 第 17~21 题为必考 题,每个试题考生都必须作答. 第 22~23 题为选考题,考生根据要求作答. (一)必考题:共 60 分. 17.(本小题满分 12 分)△ABC 的内角,,A B C 的对边分别为,,a b c ,tan ()a b A a b => . (Ⅰ)求证:△ABC 是直角三角形;(Ⅱ)若10c =,求△ABC 的周长的取值范围. 18. (本小题满分 12 分)如图,在四棱锥P ABCD -中,PA ⊥底面ABCD ,//AB CD ,AD DC ⊥,22AB AD DC ===,E 为PB 中点.(Ⅰ)求证://CE 平面PAD ;(Ⅱ)若4PA =,求平面CDE 与平面ABCD 所成锐二面角的大小. 19.(本小题满分 12 分)某次数学测验共有 10 道选择题,每道题共有四个选项,且其中只有一个选项是正确 的,评分标准规定:每选对 1 道题得 5 分;不选或选错得 0 分. 某考生每道题都选并能确定其中有 6 道题能选对,其余 4 道题无法确定正确选项,但这 4 道题中有 2 道题能排除两个错误选项,另 2 道只能排除一个错误选项,于是该生做这 4 道题时每道题都从不能排除的选项中随机选一个选项作答,且各题作答互不影响.(Ⅰ)求该考生本次测验选择题得 50 分的概率;(Ⅱ)求该考生本次测验选择题所得分数的分布列和数学期望. 20.(本小题满分 12 分)已知点(1,0),(1,0)M N -若点(,)P x y 满足||||4PM PN +=. (Ⅰ)求点P 的轨迹方程;(Ⅱ)过点(3,0)Q 的直线l 与(Ⅰ)中曲线相交于,A B 两点,O 为坐标原点, 求△AOB 面积的最大值及此时直线l 的方程. 21.(本小题满分 12 分)已知函数()(1)ln f x x x =-,3()ln eg x x x =--. (Ⅰ)求函数()f x 的单调区间;(Ⅱ)令()()()(0)h x mf x g x m =+>两个零点1212,()x x x x < ,证明:121ex e x +>+. (二)选考题:共 10 分,请考生在 22、23 题中任选一题作答,如果多做则按所做的第一题计分. 22.(本小题满分 10 分)选修 4-4 坐标系与参数方程在平面直角坐标系xOy 中,直线l 的参数方程为212222x ty t ⎧=-⎪⎪⎨⎪=+⎪⎩(t 为参数),以坐标原点O 为极点,x 轴的正半轴为极轴建立极坐标系,圆C 的极坐标方程为24cos 3ρρθ-=.(Ⅰ)求直线l 的普通方程和圆C 的直角坐标方程;(Ⅱ)直线l 与圆C 交于,A B 两点,点(1,2)P ,求||||PA PB ⋅的值. 23. (本小题满分 10 分)选修 4-5 不等式选讲已知函数()|3||1|f x x x =+-- . (Ⅰ)解关于x 的不等式()1f x x +≥ ;(Ⅱ)若函数()f x 的最大值为M ,设0,0a b >>,且(1)(1)a b M ++=,求a b + 的最小值.长春市2020届高三质量监测(一) 数学(理科)试题参考答案及评分参考一、选择题(本大题共12小题,每小题5分,共60分) 1. B 【解析】{|||2}{|2,2}A x x x x x =≥=-或≤≥,2{|30}{|0,3}B x x x x x x =->=<>或,∴A B =I {|3,x x >或x ≤2}-2. C 【解析】252i +i 2i z ==-+,则z 2i =--,其对应点为(2,1)--,在第三象限3. C 【解析】01,1,0a b c <<><,∴c a b <<4. C 【解析】 由圆心到切线的距离等于半径,得22211=+∴|1|2b +=∴13b b ==-或5. D 【解析】由图知点散布在从左下角到右上角的区域内,所以为正相关,又2R 0.9817=趋近于1,所以相关性较强,故①正确;由回归方程知②正确;由回归方程,当7x =时,得估计值为3191.9≈3192,故③正确.6. A 【解析】1S 与2S 所在扇形圆心角的比即为它们的面积比,设1S 与2S 所在扇形圆心角分别为,αβ,则512αβ-=,又2αβπ+=,解得(35)απ=- 7. D 【解析】①正确; ② 错误;③错误;④正确8. A 【解析】 2210661164a a a a =⨯==∴,∴664b a ==,1161144S b ==9. C 【解析】由2sin(0)1ωϕϕ⋅+=π∴=6,由112sin()0212ωπϕω⋅+==∴即2sin(2)6y x π=+,横坐标缩短到原来的12倍,得2sin(4)6y x π=+,即为()f x 解析式.10. B 【解析】由(2)()0f x f x ++=得函数的周期为4,又当[2,0]x ∈-时,2()2f x x x =--,且()f x 是定义在R 上的奇函数∴[0,2]x ∈时,2()2f x x x =-,∴当[4,6]x ∈时,22()(4)(4)2(4)1024f x f x x x x x =-=---=-+此时()f x 的最小值为(5)1f =-.[法2:由周期为4,()f x 在[0,2]上的最小值即为()f x 在[4,6]上的最小值]11. C 【解析】椭圆的右焦点为(1,0),∴12p =∴2p =,||1cos60p AF =-︒,||1cos60pBF =+︒,∴||10.53||10.5AF BF +==-. 12. C 【解析】21()(2)ex f x x -'=-∴()f x 在(1,2)上递减,在(2,)+∞上递增,当2x >时,()0f x >,又(1)1f =-,(2)1f <-,(2)0f =∵(1)1f '=-∴m >-1二、填空题(本大题共4小题,每小题5分,16题第一空2分,第二空3分,共20分) 13. 112【解析】由3883(8)1881(2)()2(1)rrr r r r r r r T C x C x x----+=-=-有3(8)0r r --=得6r =∴6866782(1)112T C -=-=14. 2【解析】112(())()()()333BP BC AB AC AB AC AB AC AB AC AB ⋅=+-⋅-=-⋅-u u r u u u r u u u r u u u r u u u r u u u r u u u r u u ur u u u r u u u r u u u r221248122233332AC AB AC AB =+-⋅=+-⨯⨯=u u u r u u u r u u u r u u u r15. 20π【解析】取AD,BC 的中点分别为12,O O ,过1O 作面ABD 的垂线与过2O 作面BCD 的垂线,两垂线交点O 即为所求外接球的球心,取BD 中点E ,连结12,O E O E ,则12O EO ∠即为二面角A BD C --的平面角,121O E O E ==,连OE ,在Rt △1O OE 中,13OO =,在Rt △1O OA 中,12O A =得5OA =,即球半径为5,所以球面积为20π.16.221n n +,1(1)(1)n n n -++【解析】由1222n n a a n n ++=+得21222(21)2(21)n n a a n n -+=-+-211(21)(21)2121n n n n ==--+-+∴2nS =1113-+1135-+…+112121n n --+1121n =-+. 由111212a =-=-⨯递推得277623a ==⨯,311111234a =-=-⨯,421212045a ==⨯,归纳可得1(1)(1)n n n -++.【法2:】122111111=()()22112n n a a n n n n n n n n ++=-=-+-+++++∴11111()[()]112n n a a n n n n +--=---+++∴11{()}1n a n n --+为首项为1-,公比为1-的等比数列,11111()=(1)=(1)+()=(1)+11(1)n n n n n a a n n n n n n ------+++∴三、解答题17. (本小题满分12分)【命题意图】本题考查三角函数的相关知识,特别是三角函数中的取值范围问题. 【试题解析】解:(Ⅰ)由题可知sin sin sin cos AA B A=⋅,即sin cos B A =, 由a b >,可得2A B π+=,即ABC △是直角三角形.(6分)(Ⅱ)ABC ∆的周长1010sin 10cos L A A =++,10102)4L A π=++,由a b >可知,42A ππ<<2sin()14A π<+<,即2010102L <<+(12分) 18. (本小题满分12分)【命题意图】本题考查立体几何相关知识. 【试题解析】解:(Ⅰ)取PA 中点M ,连结EM 、DM ,//////EM CD CE DM CE PAD EM CD DM PAD ⎫⎫⇒⎬⎪⇒=⎬⎭⎪ ⊂⎭平面平面.(6分) (Ⅱ)以A 为原点,以AD 方面为x 轴,以AB 方向为y 轴,以AP 方向为z 轴, 建立坐标系.可得(2,0,0)D ,(2,1,0)C ,(0,0,4)P ,(0,2,0)B ,(0,1,2)E ,(0,1,0)CD =-u u u r ,(2,0,2)CE =-u u u r,平面CDE 的法向量为1(1,0,1)n =u r;平面ABCD 的法向量为2(0,0,1)n =u u r;因此1212||2cos ||||2n n n n θ⋅==⋅u r u u r. 即平面CDE 与平面ABCD 所成的锐二面角为4π.(12分)19. (本小题满分12分)【命题意图】本题考查概率的相关知识.【试题解析】解:(Ⅰ)该考生本次测验选择题得50分即为将其余4道题无法确定 正确选项的题目全部答对,其概率为11111(50)223336P X ==⋅⋅⋅=. (4分)(Ⅱ)设该考生本次测验选择题所得分数为X , 则X 的可能取值为30,35,40,45,50.11224(30)223336P X ==⋅⋅⋅=112211221112112112(35)223322332233223336P X ==⋅⋅⋅+⋅⋅⋅+⋅⋅⋅+⋅⋅⋅=11221112112111121121111113(40)22332233223322332233223336P X ==⋅⋅⋅+⋅⋅⋅+⋅⋅⋅+⋅⋅⋅+⋅⋅⋅+⋅⋅⋅=11111111112111126(45)223322332233223336P X ==⋅⋅⋅+⋅⋅⋅+⋅⋅⋅+⋅⋅⋅=11111(50)223336P X ==⋅⋅⋅=选择题所得分数为X 的数学期望为3EX =. (12分)20. (本小题满分12分)【命题意图】本小题考查圆锥曲线中的最值问题等知识. 【试题解析】解:(Ⅰ)由定义法可得,P 点的轨迹为椭圆且24a =,1c =.因此椭圆的方程为22143x y +=. (4分)(Ⅱ)设直线l 的方程为x ty =与椭圆22143x y +=交于点11(,)A x y ,22(,)B x y ,联立直线与椭圆的方程消去x 可得22(34)30t y +--=,即12y y+=,122334y y t -=+.AOB ∆面积可表示为1211||||2AOB S OQ y y =⋅-=△216234t==+u =,则1u ≥,上式可化为26633u u u u=++, 当且仅当u =3t =±时等号成立, 因此AOB ∆l 的方程为3x y =±. (12分) 21. (本小题满分12分)【命题意图】本小题考查函数与导数的相关知识.【试题解析】解:(Ⅰ)由题可知1()ln 1f x x x'=+-, ()f x '单调递增,且(1)0f '=,当01x <<时,()0f x '<,当1x ≥时,()0f x '≥;因此()f x 在(0,1)上单调递减,在[1,)+∞上单调递增. (4分)(Ⅱ)由3()(1)ln ln h x m x x x x e=-+--有两个零点可知由11()(1ln )1h x m x x x'=+-+-且0m >可知,当01x <<时,()0h x '<,当1x ≥时,()0h x '≥;即()h x 的最小值为3(1)10h e=-<,因此当1x e =时,1113(1)2()(1)(1)(1)0m e e h m e e e e e -+-=--+---=>, 可知()h x 在1(,1)e上存在一个零点;当x e =时,3()(1)10h e m e e e=-+-->,可知()h x 在(1,)e 上也存在一个零点;因此211x x e e -<-,即121x e x e+>+. (12分)22. (本小题满分10分)【命题意图】本小题主要考查极坐标与参数方程的相关知识. 【试题解析】解:(Ⅰ)直线l 的普通方程为30x y +-=, 圆C 的直角坐标方程为22430x y x +--=.(5分) (Ⅱ)联立直线l 的参数方程与圆C 的直角坐标方程可得22(1)(2)4(1)30222-++---=,化简可得220t +-=.则12||||||2PA PB t t ⋅==. (10分) 23. (本小题满分10分)【命题意图】本小题主要考查不等式的相关知识. 【试题解析】(Ⅰ)由题意 (3)(1),34,3()(3)(1),3122,31(3)(1),14,1x x x x f x x x x x x x x x x ---- <-- <-⎧⎧⎪⎪=+-- - =+ -⎨⎨⎪⎪+-- > >⎩⎩≤≤≤≤当3x <-时,41x -+≥,可得5x -≤,即5x -≤.当31x -≤≤时,221x x ++≥,可得1x -≥,即11x -≤≤. 当1x >时,41x +≥,可得3x ≤,即13x <≤.综上,不等式()1f x x +≥的解集为(,5][1,3]-∞--U .(5分)(Ⅱ)由(Ⅰ)可得函数)(x f 的最大值4M =,且14ab a b +++=,即23()()2a b a b ab +-+=≤,当且仅当a b =时“=”成立,可得2(2)16a b ++≥,即2a b +≥,因此b a +的最小值为2.(10分)。
理科数学试题 第1页(共14页)长春市普通高中2020届高三质量监测(二)理科数学本试卷共4页。
考试结束后,将答题卡交回。
注意事项: 1. 答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘 贴在考生信息条形码粘贴区。
2. 选择题必须使用2B 铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签 字笔书写,字体工整、笔迹清楚。
3. 请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写 的答案无效;在草稿纸、试卷上答题无效。
4. 作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。
5. 保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、 刮纸刀。
一、选择题:本题共12小题,每小题5分,共60分. 在每小题给出的四个选项中,只有一项是符合题目要求的.1. 已知集合{|(2)0}A x x x =-≤,{1,0,1,2,3}B =-,则A B = A. {1,3}- B. {0,1,2} C. {1,2} D. {0,1,23},2. 若1(1)i z a =+-(a ∈R ),||2z =,则a =A. 0或2B. 0C. 1或2D. 13. 下列与函数y x=定义域和单调性都相同的函数是A.2log 2xy = B.21log ()2x y = C. 21log y x=D.14y x =4. 已知等差数列{}n a 中,5732a a =,则此数列中一定为0的是 A.1aB. 3aC. 8aD. 10a5. 若单位向量1e ,2e 夹角为60︒,12λ=-a e e ,且||3=a ,则实数λ= A. 1- B. 2 C. 0或1- D. 2或1-6. 《普通高中数学课程标准(2017版)》提出了数学学科的六大核心素养. 为了比较甲、乙两名高二学生的数学核心素养水平,现以六大素养为指标对二人进行了测验,根据测验结果绘制了雷达图(如图,每项指标值满分为5分,分值高者为优),则下面叙述正确的是 A. 甲的数据分析素养高于乙 B. 甲的数学建模素养优于数学抽象素养 C. 乙的六大素养中逻辑推理最差 D. 乙的六大素养整体平均水平优于甲理科数学试题 第2页(共14页)7. 命题p :存在实数0x ,对任意实数x ,使得0sin()sin x x x +=-恒成立;:q 0a ∀>,()lna xf x a x+=-为奇函数,则下列命题是真命题的是 A.p q ∧ B. ()()p q ⌝∨⌝ C. ()p q ∧⌝ D. ()p q ⌝∧8. 在ABC △中,30C =,2cos 3A =-,2AC =,则AC 边上的高为A.B. 2C.D.9. 2020年是脱贫攻坚决战决胜之年,某市为早日实现目标,现将甲、乙、丙、丁4名干部派遣到A 、B 、C 三个贫困县扶贫,要求每个贫困县至少分到一人,则甲被派遣到A 县的分法有 A. 6种 B. 12种 C. 24种 D. 36种10. 在正方体1111-ABCD A B C D 中,点,,E F G 分别为棱11A D ,1D D ,11A B 的中点,给出下列命题:①1AC EG ⊥;②//GC ED ;③1B F ⊥平面1BGC ;④EF 和1BB 成角为4π. 正确命题的个数是 A. 0B. 1C. 2D. 311. 已知抛物线C :22y px =(0p >)的焦点为F ,01(,)2M y 为该抛物线上一点,以M 为圆心的圆与C 的准线相切于点A ,120AMF ∠=︒,则抛物线方程为A. 22y x =B. 24y x =C. 26y x =D. 28y x =12. 已知11()x xf x e e x --=-+,则不等式()(32)2f x f x +-≤的解集是 A. [1,)+∞ B. [0,)+∞ C. (,0]-∞ D. (,1]-∞(长春二模)理科数学试题 第3页(共14页)A CBA 1C 1B 1M NG二、填空题:本题共4小题,每小题5分,共20分.13. 若,x y 满足约束条件222022x y y x y +⎧⎪-⎨⎪-⎩≥≤≤,则z x y =+的最大值为____________.14. 若125()3a x dx -=⎰,则a =____________. 15. 已知函数()sin()6f x x πω=+(0ω>)在区间[,2)ππ上的值小于0恒成立,则ω的取值范围是________________.16. 三棱锥A BCD -的顶点都在同一个球面上,满足BD 过球心O ,且BD =,则三棱锥A BCD -体积的最大值为__________;三棱锥A BCD -体积最大时,平面ABC 截球所得的截面圆的面积为_____________. (本题第一空2分,第二空3分.)三、解答题:共70分,解答应写出文字说明、证明过程或演算步骤. 第17~21题为必考题,每个试题考生都必须作答. 第22~23题为选考题,考生根据要求作答. (一)必考题:共60分. 17. (12分)2019年入冬时节,长春市民为了迎接2022年北京冬奥会,增强身体素质,积极开展冰上体育锻炼. 现从速滑项目中随机选出100名参与者,并由专业的评估机构对他们的锻炼成果进行评估打分(满分为100分)并且认为评分不低于80分的参与者擅长冰上运动,得到如图所示的频率分布直方图: (Ⅰ)求m 的值;(Ⅱ)将选取的100名参与者的性别与是否擅长冰上运动进行统计,请将下列22⨯列联表补充完整,并判断能否在犯错误的概率在不超过0.01的前提下认为擅长冰上(2()()()()()n ad bc K a b c d a c b d -=++++,其中n a b c d =+++)18. (12分)如图,直三棱柱111ABC A B C -中,底面ABC 为等腰直角三角形,AB BC ⊥,124AA AB ==,M ,N 分别为1CC , 1BB 的中点,G 为棱1AA 上一点,若1A B ⊥平面MNG . (Ⅰ)求线段AG 的长;(Ⅱ)求二面角B MG N --的余弦值.)理科数学试题 第4页(共14页)19. (12分) 已知数列{}n a 满足,11a =,24a =,且21430n n n a a a ++-+=(*n ∈N ).(Ⅰ)求证:数列1{}n n a a +-为等比数列,并求出数列{}n a 的通项公式;(Ⅱ)设2n n b n a =⋅,求数列{}n b 的前n 项和n S .20. (12分) 已知椭圆C :22221(0)x y a b a b+=>>的左、右顶点分别为A 、B ,焦距为2,点P为椭圆上异于A 、B 的点,且直线PA 和PB 的斜率之积为34-.(Ⅰ)求C 的方程;(Ⅱ)设直线AP 与y 轴的交点为Q ,过坐标原点O 作//OM AP 交椭圆于点M ,试探究2||||||AP AQ OM ⋅是否为定值,若是,求出该定值;若不是,请说明理由.21. (12分) 已知函数()xf x e =.(Ⅰ)求曲线()y f x =在点(1,(1))f 处的切线方程;(Ⅱ)若对任意的m ∈R ,当0x >时,都有21(2())1m f x x+>-恒成立,求最大的整数k .(二)选考题:共10分,请考生在22、23题中任选一题作答,如果多做则按所做的第一题计分.22. [选修4-4 坐标系与参数方程](10分)已知曲线1C 的参数方程为22cos 2sin x y αα=+⎧⎨=⎩(α为参数),曲线2C 的参数方程为38cos 43sin 4x t y t ππ⎧=+⎪⎪⎨⎪=⎪⎩(t 为参数). (Ⅰ)求1C 和2C 的普通方程;(Ⅱ)过坐标原点O 作直线交曲线1C 于点M (M 异于O ),交曲线2C 于点N ,求||||ON OM 的最小值.23. [选修4-5 不等式选讲](10分) 已知函数()|1||1|f x ax x =++-. (Ⅰ)若2a =,解关于x 的不等式()9f x <;(Ⅱ)若当0x >时,()1f x >恒成立,求实数a 的取值范围.(长春二模)理科数学试题 第5页(共14页)长春市普通高中2020届高三质量监测(二) 数学(理科)试题参考答案及评分参考一、选择题(本大题共12小题,每小题5分,共60分)1. B2. A3. C4. A5. D6. D7. A8. C9. B 10. C 11. C 12. A 简答与提示:1. 【题 号】1【试题情境】本题是基础性题目,属于课程学习情境,具体是数学运算学习情境,以集合运算为载体考查一元二次不等式的解法.【必备知识】本题主要考查的知识是集合的交集运算和一元二次不等式的解法. 【关键能力】本题考查运算求解能力. 考生借助题目中的交集符号获取到需要进行集合的交集运算,能根据问题中“一元二次不等式”条件寻找与设计合理的算法. 【学科素养】本题考查的学科素养是数学探索. 本题通过计算一元二次不等式作为运算对象,掌握一元二次不等式求解运算法则,探究求集合交集的运算思路. 【题 眼】本题的题眼为一元二次不等式及交集运算.【解题思路】由题意得{|02},{0,1,2}A x x AB =≤≤=,故选B.【答 案】B2. 【题 号】2【试题情境】本题是基础性题目,属于课程学习情境,具体是数学运算学习情境,以复数为载体考查复数代数形式的基本运算.【必备知识】本题考查的知识是了解复数代数形式的加减乘运算.【关键能力】本题考查运算求解能力. 根据复数乘法的运算法则得出复数的代数形式.【学科素养】本题考查的学科素养是数学探索.【题 眼】本题的题眼是正确对复数进行代数运算.【解题思路】21(1)2,0,2a a a +-===,故选A.【答 案】A3. 【题 号】3【试题情境】本题是基础性题目,属于课程学习情境.【必备知识】本题考查的知识是函数的性质,能判断给定函数的定义域及单调性. 【关键能力】本题考查逻辑推理能力.【学科素养】本题考查的学科素养是数学探索.【题 眼】本题的题眼是根据函数的性质进行判断.理科数学试题 第6页(共14页)【解题思路】由函数性质可知21log y x=符合条件,故选C. 【答 案】C4. 【题 号】4【试题情境】本题是基础性题目,属于课程学习情境. 【必备知识】本题考查的知识是等差数列. 【关键能力】本题考查运算求解能力.【学科素养】本题考查的学科素养是数学探索. 【题 眼】本题的题眼是明确等差数列的基本量.【解题思路】由1113(4)2(6),0a d a d a +=+=,故选A. 【答 案】A5. 【题 号】5【试题情境】本题是基础性题目,属于课程学习情境. 【必备知识】本题考查的知识是平面向量的模的运算. 【关键能力】本题考查运算求解能力.【学科素养】本题考查的学科素养是数学探索.【题 眼】本题的题眼是平面向量模长的求解方法.【解题思路】222112232λλ=-⋅+e e e e ,解得1,2λλ=-=,故选D.【答 案】D6. 【题 号】6【试题情境】本题是应用性题目,属于生活实践情境,具体是数学数据分析情境. 【必备知识】本题考查的知识是统计的相关知识. 【关键能力】本题考查数学建模.【学科素养】本题考查的学科素养是数据分析素养. 【题 眼】本题的题眼是正确读懂表和图中的数据. 【解题思路】根据图与表可知D 是正确的,故选D. 【答 案】D7. 【题 号】7【试题情境】本题是综合性题目,属于课程学习情境. 【必备知识】本题考查的知识是命题、三角函数、函数等. 【关键能力】本题考查运算求解能力和逻辑推理能力. 【学科素养】本题考查的学科素养是数学探索.【题眼】本题的题眼是准确判断两个命题的真假.【解题思路】由条件可知,p q均为真命题,故p q∧为真,故选A.【答案】A8.【题号】8【试题情境】本题是基础性题目,属于课程学习情境.【必备知识】本题考查的知识是解三角形.【关键能力】本题考查运算求解能力和逻辑推理能力.【学科素养】本题考查的学科素养是数学探索.【题眼】本题的题眼是找到三角形中需求解的边长.【解题思路】有正弦定理,2)sinsinABC ACB=⋅==AC边上的高为12BC= C.【答案】C9.【题号】9【试题情境】本题是基础性题目,属于课程学习情境.【必备知识】本题考查的知识是排列组合.【关键能力】本题考查逻辑思维能力.【学科素养】本题考查的学科素养是数学探索.【题眼】本题的题眼为正确分类.【解题思路】甲被派到A县方法有2212323212C A C A+=,故选B.【答案】B10.【题号】10【试题情境】本题是综合性题目,属于课程学习情境.【必备知识】本题考查的知识是空间直线与平面的位置关系.【关键能力】本题考查空间想象能力和逻辑推理能力.【学科素养】本题考查的学科素养是数学探索.【题眼】本题的题眼是直线与平面的位置关系的判断.【解题思路】易知①④正确,故选C.【答案】C理科数学试题第7页(共14页)理科数学试题 第8页(共14页)11. 【题 号】11【试题情境】本题是综合性题目,属于课程学习情境. 【必备知识】本题考查的知识是抛物线.【关键能力】本题考查运算求解能力和逻辑推理能力. 【学科素养】本题考查的学科素养是数学探索.【题 眼】本题的题眼是找到图形中蕴含的三角形. 【解题思路】由图形可知,01(,),(,0),||||,||3|2222p p p A y F AM MF AF MF -==+=,又2y p =,有22(1)34p p p ++=⋅,得3p =,故选C.【答 案】C12. 【题 号】12【试题情境】本题是综合性题目,属于数学课程学习情境,具体是函数性质学习情境.【必备知识】本题考查的知识是函数的奇偶性、单调性、指数函数、幂函数的相关性质.【关键能力】本题考查运算求解能力和逻辑推理能力. 【学科素养】本题考查的学科素养是数学探索.【题 眼】本题的题眼是函数的单调性与奇偶性的综合运用.【解题思路】由条件可知(1)(1)2f x f x -++=,且()f x 为增函数,有(2)()2f x f x -+=,所以原不等式等价于()(32)(2)()f x f x f x f x +--+≤,所以322,1x x x -≤-≥,故选A.【答 案】A二、填空题(本大题共4小题,每小题5分,16题第一空2分,第二空3分,共20分)13. 414. 215. 511(,]61216. 2433π, 简答与提示:13. 【题 号】13 【试题情境】本题是基础性题目,属于课程学习情境. 【必备知识】本题考查的知识是线性规划. 【关键能力】本题考查运算求解能力和数形结合思想.理科数学试题 第9页(共14页)【学科素养】本题考查的学科素养是数学探索.【题 眼】本题的题眼是找到可行域以及目标函数的几何意义.【解题思路】由题意作出可行域的图像,z 作为y 轴截距,可知最大值为4. 【答 案】414. 【题 号】14 【试题情境】本题是基础性题目,属于课程学习情境. 【必备知识】本题考查的知识是微积分基本定理. 【关键能力】本题考查运算求解能力. 【学科素养】本题考查的学科素养是数学探索. 【题 眼】本题的题眼是积分的运算——牛顿莱布尼兹公式.【解题思路】经计算3105()|33x ax -=,可知2a =.【答 案】215. 【题 号】15 【试题情境】本题是基础性题目,属于课程学习情境. 【必备知识】本题考查的知识是三角函数图像以及sin()y A x ωϕ=+中各量的作用. 【关键能力】本题考查运算求解能力. 【学科素养】本题考查的学科素养是数学探索. 【题 眼】本题的题眼是三角函数中控制量对三角函数的图像的影响.【解题思路】由题意可知()sin()6f x x π=+图像中,116π的位置将移至超过2π(含),而56π的位置将移至不得超过π(不含),故511(,]612ω∈.【答 案】511(,]61216. 【题 号】16 【试题情境】本题是综合性题目,属于探索创新情境. 【必备知识】本题考查的知识是球内几何体的最值问题以及截面问题. 【关键能力】本题考查空间想象能力、运算求解能力和逻辑推理能力. 【学科素养】本题考查的学科素养是数学探索. 【题 眼】本题的题眼是球体.【解题思路】由题意可知三棱锥A BCD -体积的最大值为3; 三棱锥A BCD -体积最大时,平面ABC 截球所得的截面圆的面积为43π. 【答案】433π, 三、解答题理科数学试题 第10页(共14页)17. (本小题满分12分) 【题 号】17 【试题情境】本题是关于概率统计的应用题,属于假设检验的问题情境,以统计学基本知识为载体,考查统计分析的基本过程. 【必备知识】本题主要考查的知识是频率分布直方图以及假设检验等知识. 【关键能力】本题考查数据分析能力以及运算求解能力. 【学科素养】本题考查的学科素养是数据分析,数据处理,数学运算. 【题 眼】本题的题眼为频率分布直方图的理解以及假设检验的计算. 【解题思路】(Ⅰ)先确定频率分布直方图中未知量的值;(Ⅱ)列出22⨯列联表,并计算能否在犯错误的概率不超过0.01的前提下认为擅长冰上运动与性别有关系. 【参考答案与评分细则】解:(Ⅰ)由题意0.025m =. (4分) (Ⅱ) 222()100(800300) 4.762()()()()50503070n ad bc K a b c d a c b d -⨯-==≈++++⨯⨯⨯.对照表格可知,4.762 6.635<, 不能在犯错误的概率不超过0.01的前提下认为擅长冰上运动与性别有关系. (12分) 18. (本小题满分12分) 【题 号】18 【试题情境】本题是常规问题,属于课程学习情境,具体是数学原理的习得情境,以空间几何体为载体考查空间几何体中的位置关系和二面角. 【必备知识】本题主要考查的知识是基本图形的位置关系和空间向量的应用. 【关键能力】本题考查逻辑思维能力、空间想象能力以及运算求解能力. 理清证明思路,并将图形语言转化为符号语言,同时体会向量方法在研究几何问题中的作用,从题干中提取所需要的点的坐标,并应用空间向量的数量积计算得到结果. 【学科素养】本题考查的学科素养是理性思维和数学探索. 本题的解题关键是定理的运用和空间向量的应用. 【题 眼】本题的题眼为空间几何体以及空间几何体的向量表达. 【解题思路】(Ⅰ)线面垂直的性质;(Ⅱ)利用空间向量解决线面角问题,再解决二面角问题.【参考答案与评分细则】解:(Ⅰ)由题意,11A B MNG A B GN GN MNG ⊥⎫⇒⊥⎬⊂⎭平面平面,设1A B 与GN 交于点E , 在BNE △中,可求得5BE =,则15A E =, 可求得13AG =,则1AG =.(6分)(Ⅱ)以1B 为原点,1B B 方向为x 轴,1B C 方向为y 轴,11B A 方向为z 轴, 建立空间直角坐标系.(4,0,0)B ,(2,2,0)M ,(3,0,2)G ,(2,0,0)N理科数学试题 第11页(共14页)(2,2,0)BM =-,(1,0,2)BG =-,1(2,2,1)n = (0,2,0)NM =,(1,0,2)NG =,2(2,0,1)n =-1212|||cos |||||3n n n n θ⋅===⋅⋅即二面角B MG N -- (12分)19. (本小题满分12分) 【题 号】19 【试题情境】本题是综合性题目,属于探索创新情境,具体是数学探究情境,利用数列中项与项之间的关系来探索通项公式并求和. 【必备知识】本题主要考查的知识是等比数列以及错位相减求和. 【关键能力】本题考查逻辑思维能力、运算求解能力. 考生依据所给、所求来确定解题方案,并用严谨的数学语言表达,计算得到结果. 【学科素养】本题考查的学科素养是理性思维和数学探索. 【题 眼】本题的题眼为等比数列以及错位相减求和. 【解题思路】(Ⅰ)先清晰化数列中项与项的关系,进而获得通项公式;(Ⅱ)错位相减求和. 【参考答案与评分细则】(Ⅰ)已知21430n n n a a a ++-+=, 则2113()n n n n a a a a +++-=-,且213a a -=,则1{}n n a a +-为以3为首相,3为公比的等比数列,所以13nn n a a +-=,11221131()()......()2n n n n n n a a a a a a a a ----=-+-++-+=.. (6分)(Ⅱ)由(Ⅰ)得:3nn b n n =⋅-,121323......3n n T n =⨯+⨯++⨯, ①23131323......(1)33n n n T n n +=⨯+⨯++-⨯+⨯, ②①-②可得1121133233 (3332)n nn n n T n n +++--=+++-⨯=-⨯, 则111333(21)33424n n n n n n T +++-⨯-⨯+=-+=即1(21)33(1)42n n n n n S +-⨯++=-.(12分)20. (本小题满分12分) 【题 号】20 【试题情境】本题是综合性题目,属于探索创新情境,具体是数学探究情境,以椭圆为载体,考察解析几何综合问题.理科数学试题 第12页(共14页)【必备知识】本题主要考查的知识是圆锥曲线的方程以及定值问题. 【关键能力】本题考查逻辑思维能力,数学建模能力,运算求解能力,考生首先要获取圆锥曲线的方程,建立代数表达式并求解,判断图形的性质,应用函数的思想方法解决问题,主要涉及椭圆的基本性质以及直线与椭圆的位置关系. 【学科素养】本题考查的学科素养是理性思维和数学探索,本题解题的关键是利用数字来表达图形的性质. 对学生分析问题和解决问题能力提出了较高要求,考察考生的抽象概括能力,分析综合能力等多方面的素质. 【题 眼】本题的题眼为椭圆的方程,直线与椭圆的位置关系. 【解题思路】(Ⅰ)根据已知条件解方程来获得椭圆的标准方程;(Ⅱ)表达所求的数值并通过计算确定定值. 【参考答案与评分细则】解:(Ⅰ)已知点P 在椭圆C :22221(0)x y a b a b+=>>上,可设00(,)P x y ,即2200221x y a b +=,又2200022200034AP BP y y y b k k x a x a x a a ⋅=⋅==-=-+--,且22c =,可得椭圆C 的方程为22143x y +=. (4分) (Ⅱ)设直线AP 的方程为:(2)y k x =+,则直线OM 的方程为y kx =.联立直线AP 与椭圆C 的方程可得:2222(34)1616120k x k x k +++-=, 由2A x =-,可得226834p k x k -=+,联立直线OM 与椭圆C 的方程可得:22(34)120k x +-=,即221234M x k =+,即222|||||||||2||02|2||||||P A Q A P M M x x x x AP AQ x OM x x -⋅-⋅+⋅+===. 即2||||||AP AQ OM ⋅为定值,且定值为2.(12分)21. (本小题满分12分) 【题 号】21 【试题情境】本题是综合性题目属于探索创新情境,具体是数学探究情境,以函数为载体,考察导数公式,研究函数图像的切线问题. 【必备知识】本题主要考查的知识是导数在函数中的应用. 【关键能力】本题考查逻辑思维能力和运算求解能力,考生函数表达式出发,获取函数的切线问题,对函数的最值有正确的认识,利用导数对原函数的性质进行刻画,从中体会导数的工具作用并熟练应用. 【学科素养】本题考查的学科素养是理性思维和数学探索,要求考生熟悉导数的基本公式和函数之间的关系;本题解题的关键是研究函数性质所需的导数的推理方法和规理科数学试题 第13页(共14页)律,对于更复杂的含参数问题,需要化复杂为具体,本题还考查化归与转化、分类讨论等数学思想,探索新途径解决问题. 【题 眼】本题的题眼为导数及其性质. 【解题思路】(Ⅰ)利用导数获取函数图形的切线;(Ⅱ)利用导数来刻画函数的性质. 【参考答案与评分细则】(Ⅰ)已知函数()xf x e =,则(1,(1))f 处即为(1,)e , 又()xf x e '=,(1)k f e '==,可知函数()xf x e =过点(1,(1))f 的切线为(1)y e e x -=-,即y ex =. (4分)(Ⅱ)不等式21(2())1m f x x+>-中, 当0m =时,显然成立;当0m ≠时,不等式可化为12()f x x +> 令11()2()2x h x f x e x x =+=+, 则21()2x h x e x'=-, 令00201()20xh x e x '=-=,解得0123x <<(此处可由验证得到).即()h x 的最小值为002000111()2xh x e x x x =+=+,令01t x =∈,则220011(3t t x x +=+∈,将()h x 的最小值设为a,则(3a ∈,因此原式需满足a >,即210am -+>在m ∈R 上恒成立, 又0a >,可知判别式840k a =-<即可,即2ak <,且(3a ∈k 可以取到的最大整数为2.(12分) 22. (本小题满分10分)【题 号】22【试题情境】本题是基础性题目,属于课程学习情境.【必备知识】本题主要考查的知识是参数方程的转化与应用. 【关键能力】本题考查运算求解能力与逻辑推理能力. 【学科素养】本题考查的学科素养是数学探索.【题 眼】本题的题眼为写出普通方程,并运用参数方程进行问题解决. 【解题思路】(Ⅰ)通过转化获得所求方程;(Ⅱ)表示长度并计算范围. 【参考答案与评分细则】(Ⅰ)曲线1C 的普通方程为:22(2)4x y -+=;曲线2C 的普通方程为:80x y +-=.(5分)理科数学试题 第14页(共14页)(Ⅱ)设过原点的直线为tan y x θ=(34πθ≠);在曲线1C 中,||4|cos |OM θ=.而O 到直线与曲线2C 的交点N 的距离为8||sin cos ON θθ=+,因此28||24sin cos ||4|cos ||sin cos cos ||)1|4ON OM θθπθθθθθ+===+++,即||||ON OM1)=. (10分)23. (本小题满分10分) 【题 号】23 【试题情境】本题是综合性题目,属于探索创新情景,具体是推演数学命题情境,以含绝对值不等式,为考查背景,考查不等式的求解问题. 【必备知识】本题主要考查的知识是含绝对值不等式的运算. 【关键能力】本题考查逻辑思维能力和运算求解能力. 【学科素养】本题考查的学科素养是理性思维和数学探索. 【题 眼】本题的题眼为含绝对值函数性质的探索. 【解题思路】(Ⅰ)含绝对值不等式的化简;(Ⅱ)参数对绝对值不等式的影响. 【参考答案与评分细则】(Ⅰ)当2a =时,3,11()|21||1|2,1213,2x x f x x x x x x x ⎧⎪ >⎪⎪=++-=+ -⎨⎪⎪- <-⎪⎩≤≤,由此可知,()9f x <的解集为{|33}x x -<< (5分)(Ⅱ)当0a >时,()f x 的最小值为(1)1f >; 当0a =时,()f x 的最小值为(1)1f =; 当0a <时,()f x 的最小值不恒大于1. 综上,(0,)a ∈+∞.(10分)。
长春市普通高中2020届高三质量监测(二) 数学理科一、选择题(本大题包括12小题,每小题5分,共60分,每小题给出的四个选项中,只有一项....是符合题目要求的) 1. 已知{|12}A x x =-<<,2{|20}B x x x =+<,则A B =A. (1,0)-B. (0,2)C. (2,0)-D. (2,2)- 2. 已知复数23()z m m mi m =-+∈R 为纯虚数,则m =A. 0B. 3C. 0或3D.43.设命题:(0,),ln 1p x x x ∀∈+∞-≤,则p ⌝是A. :(0,),ln 1p x x x ⌝∀∈+∞>-B. :(,0],ln 1p x x x ⌝∀∈-∞>-C. 000:(0,),ln 1p x x x ⌝∃∈+∞>-D. 000:(0,),ln 1p x x x ⌝∃∈+∞-≤ 4. 已知平面向量(1,3),(2,0)=-=-a b ,则|2|+=a bA. B. 3C. D. 55. 已知等比数列{}n a 的各项均为正数,前n 项和为n S ,若26442,S 6a S a =-=,则5a =A. 4B. 10C. 16D. 326. 已知动点(,)M x y 满足线性条件200580x y x y x y -+⎧⎪+⎨⎪+-⎩……≤,定点(3,1)N ,则直线MN 斜率的最大值为A. 1B. 2C. 3D. 47. 已知椭圆22143x y +=的左右焦点分别为12,F F ,过2F 且垂直于长轴的直线交椭圆于,A B 两点,则△1ABF 内切圆的半径为A. 43B. 1C. 45D. 348. 已知函数()2sin(2)(0)f x x ϕϕπ=+<<,若将函数()f x 的图象向右平移6π个单位后关于y轴对称,则下列结论中不正确...的是 A. 56πϕ=B. (,0)12π是()f x 图象的一个对称中心 C. ()2f ϕ=- D. 6x π=-是()f x 图象的一条对称轴9. 若向区域{}(,)|01,01x y x y Ω=≤≤≤≤内投点,则该点落在由直线y x =与曲线y =成区域内的概率为A.18 B. 16C.13 D. 1210. 如图,格纸上小正方形的边长为1,粗线条画出的是一个三棱锥的三视图,则该三棱锥中最长棱的长度为A. 2D. 311. 已知双曲线22221(0,0)x y a b a b-=>>的左、右焦点分别为12,F F ,点P 在双曲线的右支上,且12||4||PF PF =,则双曲线离心率的取值范围是A. 5(,2]3B. 5(1,]3C. (1,2]D. 5[,)3+∞12. 若关于x 的方程2(ln )ln x ax x x -=存在三个不等实根,则实数a 的取值范围是A. 1(,)e e -∞-B. 211(,0)e e -C. 211(,)e e -∞-D. 1(,0)e e-二、填空题(本大题包括4小题,每小题5分,共20分,把正确答案填在答题卡中的横线上). 13. 52)x x-(的展开式中含x 项的系数为___________.14. 更相减损术是出自《九章算术》的一种算法.如图所示的程序框图是根据更相减损术写出的,若输入91,39a b ==,则输出的值为_____.15. 底面是正多边形,顶点在底面的射影是底面中心的棱锥叫正棱锥.已知同底的两个正四棱锥内接于同一个球,它们的底面边长为a ,球的半径为R ,设两个正四棱锥的侧面与底面所成的角分别为,αβ,则tan()αβ+= ___________.16.在数列{}n a 中,10a =,且对任意k *∈N ,21221,,k k k a a a -+成等差数列,其公差为2k ,则n a =________.三、解答题:共70分.解答应写出文字说明,证明过程或演算步骤.第17~21题为必考题,每个试题考生都必须作答.第22、23题为选考题,考生根据要求作答. (一)必考题:共60分. 17.(本小题满分12分)在△ABC 中,内角,,A B C 的对边分别为,,a b c ,其面积2sin S b A =.(1)求cb的值; =-ab(2) 设内角A 的平分线AD 交BC 于D ,AD =a = b .18. (本小题满分12分)某种植园在芒果临近成熟时,随机从一些芒果树上摘下100个芒果,其质量分别在[100,150),[150,200),[200,250),[250,300),[300,350),[350,400)(单位:克)中,经统计得频率分布直方图如图所示.(1) 现按分层抽样从质量为[250,300),[300,350)的芒果中随机抽取9个,再从这9个中随机抽取3个,记随机变量X 表示质量在[300,350)内的芒果个数,求X 的分布列及数学期望.(2)以各组数据的中间数代表这组数据的平均值,将频率视为概率,某经销商来收购芒果,该种植园中还未摘下的芒果大约还有10000个,经销商提出如下两种收购方案: A :所以芒果以10元/千克收购;B :对质量低于250克的芒果以2元/个收购,高于或等于250克的以3元/个收购. 通过计算确定种植园选择哪种方案获利更多? 19. (本小题满分12分)如图,在直四棱柱1111ABCD A B C D -中,底面ABCD 为等腰梯形,1224,23A DBC CD ===.(1)证明:11AD B D ⊥;(2)设E 是线段11A B 上的动点,是否存在这样的点E ,使得二面角1E BD A --的余弦值为7,如果存在,求出1B E 的长;如果不存在,请说明理由.20. (本小题满分12分)已知直线l 过抛物线C :22(0)x py p =>的焦点,且垂直于抛物线的对称轴,l 与抛物线两交点间的距离为2. (1)求抛物线C 的方程;(2)若点(2,2)P ,过点(2,4)-的直线与抛物线C 相交于A ,B 两点,设直线PA 与PB 的斜率分别为1k 和2k .求证:12k k 为定值,并求出此定值.21. (本小题满分12分)已知函数ln ()x xf x xe x=+. (1)求证:函数()f x 有唯一零点;(2)若对任意(0,)x ∈+∞,ln 1xxe x kx -+…恒成立,求实数k 的取值范围. (二)选考题:共10分.请考生在22、23题中任选一题作答.如果多做,则按所做的第一题记分.22. (本小题满分10分)选修4—4:坐标系与参数方程选讲.已知曲线1C 的参数方程为sin x y θθ⎧=⎪⎨=⎪⎩(θ为参数),以直角坐标系的原点O 为极点,x 轴的正半轴为极轴建立极坐标系,曲线2C 的极坐标方程为2sin 4cos ρθθ=. (1)求1C 的普通方程和2C 的直角坐标方程;(2)若过点(1,0)F 的直线l 与1C 交于A ,B 两点,与2C 交于,M N 两点,求||||||||FA FB FM FN 的取值范围.23.(本小题满分10分)选修4—5:不等式选讲.已知函数()|23||36|f x x x =-+-. (1)求()2f x <的解集;(2) 若()f x 的最小值为T ,正数,a b 满足12a b +=T .长春市普通高中2020届高三质量监测(二) 数学(理科)试题参考答案及评分标准一、选择题(本大题共12小题,每小题5分,共60分) 1. A 【命题意图】本题考查集合的运算. 【试题解析】A {|12},{|20},(A x xB x x A B =-<<=-<<=-.故选A. 2. B 【命题意图】本题考查复数的分类.【试题解析】B 3m =.故选B.3. C 【命题意图】本题考查含有一个量词的命题的否定.【试题解析】C 由含有一个量词的命题的否定. 故选C. 4. A 【命题意图】本题考查平面向量的坐标运算.【试题解析】A 由题意知,2(3,3)+=--a b ,所以|2|+=a b .故选A.5.C 【命题意图】本题主要考查等比数列知识.【试题解析】C 由6546a a a +=得260q q +-=,解得2q =,从而3522=16a a =⋅.故选C.6. C 【命题意图】本题主要考查线性规划的相关知识.【试题解析】C 根据可行域,当M 取(2,2)-时,直线MN 的斜率最大为3.故选 C. 7. D 【命题意图】本题考查椭圆的定义的应用.【试题解析】D 由题意知1ABF ∆的周长为8,面积为3,由内切圆的性质可知,其半径为34.故选D.8. C 【命题意图】本题考查三角函数的图象及性质.【试题解析】C 由题意可知5=6πϕ,故5()2sin(2)6f x x π=+,555()=2sin()2sin 2362f πππϕ+==.故选C. 9. B 【命题意图】本题主要考查定积分及几何概型的综合应用.【试题解析】B由直线y x =与曲线y =13122211)()326x dx x x=-=⎰,从而所求概率为16.故选B.10. D【命题意图】本题主要考查三视图问题.【试题解析】D 可在正方体中画出该三棱锥的直观图,进而算出其最长棱长为3.故选D. 11. B【命题意图】本题考查双曲线定义的相关知识.【试题解析】B由双曲线定义可知22||3aPF=,从而23ac a≥-,双曲线的离心率取值范围为5(1,]3.故选B.12. A【命题意图】本题是考查函数的性质及零点的相关知识.【试题解析】A由题意知2ln ln()10x a xx x--=,令ln xtx=,210t at--=的两根一正一负,由ln xtx=的图象可知,1e<<,解得1(,)a ee∈-∞-. 故选A.二、填空题(本大题共4小题,每小题5分,共20分)13. 40【命题意图】本题考查二项展开式系数的算法.【试题解析】由52()xx-可知含x的项为33252()40C x xx-=,因此x的系数为40.14. 13【命题意图】本题考查程序框图的相关知识.【试题解析】由输入91,39a b==,代入程序框图计算可得输出的a的值为13.15.4Ra-【命题意图】本题考查球的相关知识.【试题解析】设OP t=,则tan2R taα+=,tan2R taβ-=,代入24tan tantan()()()1tan tan14RaR t R taαβαβαβ++==+--⋅-,又2222)22aR t-==,即4tan()Raαβ+=-.16.22()21()2nnnann⎧⎪⎪=⎨-⎪⎪⎩为偶为奇【命题意图】本题考查数列通项公式的算法.【试题解析】由题意可知22()21()2nnnann⎧⎪⎪=⎨-⎪⎪⎩为偶为奇三、解答题17.(本小题满分12分)【命题意图】本题考查解三角形的基本方法.【试题解析】(1)21sin sin 2S bc A b A ==,可知2c b =,即2cb=. (6分)(2)由角平分线定理可知,3BD =,3CD =,在ABC △中,22cos B =,在ABD △中,2444cos b B +-=222444b +-1b =. (12分)18.(本小题满分12分)【命题意图】本小题主要考查学生对抽样的理解,以及分布列的相关知识,同时利用统计学中的决策方案考查学生的数据处理能力.【试题解析】解:(1)9个芒果中,质量在[250,300)和[300,350)内的分别有6个和3个.则X 的可能取值为0,1,2,3.363920(0)84C P X C ===,21633945(1)84C C P X C ===, 12633918(2)84C C P X C ===,33391(3)84C P X C ===X 的数学期望1810123184848484EX =⨯+⨯+⨯+⨯=.(6分)(2)方案A :(1250.0021750.0022250.0032750.0083250.0043750.001)5010000100.00125750⨯+⨯+⨯+⨯+⨯+⨯⨯⨯⨯⨯=元方案B :低于250克:(0.0020.0020.003)501000027000++⨯⨯⨯=元高于或等于250克(0.0080.0040.001)5010000319500++⨯⨯⨯=元总计70001950026500+=元由2575026500<,故B 方案获利更多,应选B 方案. (12分)19.(本小题满分12分)【命题意图】本小题以四棱柱为载体,考查立体几何的基础知识. 本题考查学生的空间想象能力、推理论证能力和运算求解能力.【试题解析】解:(1)连结BD ,11B D ,则由余弦定理可知11BD B D ⊥,由直棱柱1111ABCD A B C D -可知,11111111BB ABCD BB AB AB BDD B AB ABCD AB B D BD AB B D BDD B ⎫⎫⊥⎫⇒⊥⎪⎬⎪⇒⊥⊂⎬⎪⎭⇒⊥⎬⎪⊥⎭⎪⎪ ⊂⎭ 平面平面平面由余弦定理可知平面11BD B D ⎫⎪⎪⎪⎬⎪⎪⎪ ⊥⎭111111B D ABD AD B D AD ABD ⇒⊥⎫⇒⊥⎬ ⊂⎭平面平面(6分) (2)以B 为原点,以DB 方向为x 轴,以AB 方向为y 轴,以1BB 方向为z 轴,建立坐标系.(0,E m (0m <),(,0)B ,1(3,0,23)D -,(0,2,0)A -(0,BEm =,1(BD =-,1(,)n m m =-(0,2,0)BA =-,1(BD =-,2(1,0,1)n =cos 7θ==,又0m <,则1m =-,故1B E 长为1.(12分) 20.(本小题满分12分)【命题意图】本小题考查抛物线的标准方程及直线与抛物线的位置关系,考查学生的逻辑思维能力和运算求解能力.【试题解析】(1)由题意可知,22p =,抛物线的方程为22x y =.(4分)(2)已知点(2,2)P ,设直线l 的方程为:4(2)y k x -=+11(,)A x y ,22(,)B x y ,则111112(2)222y k x k x x -++==--,222222(2)222y k x k x x -++==--,21212121212121212[(2)2][(2)2][2()4]2(4)4(2)(2)2()4k x k x k x x x x k x x k k x x x x x x +++++++++++==---++ 联立抛物线22x y =与直线4(2)y k x -=+的方程消去y 得22480x kx k ---= 可得122x x k +=,1248x x k =--,代入12k k 可得121k k =-. 因此12k k 可以为定值,且该定值为1-.(12分)21. (本小题满分12分)【命题意图】本小题主要考查函数与导数的相关知识,以导数为工具研究函数的方法,考查学生解决问题的综合能力.【试题解析】(1)21ln '()(1)xxf x x e x-=++, 易知'()f x 在(0,)e 上为正,因此()f x 在区间(0,1)上为增函数,又121()0ee ef e e-=<,(1)0f e =>因此1()(1)0f f e<,即()f x 在区间(0,1)上恰有一个零点,由题可知()0f x >在(1,)+∞上恒成立,即在(1,)+∞上无零点,则()f x 在(0,)+∞上存在唯一零点.(4分)(2)设()f x 的零点为0x ,即000ln 0xx x e x +=. 原不等式可化为ln 1x xe x k x--≥,令ln 1()x xe x g x x --=,则ln '()x xxe x g x x+=,由(1)可知()g x 在0(0,)x 上单调递减,在0()x +∞,上单调递增,故只求0()g x , 下面分析0000ln 0x x x e x +=,设00x x e t =,则0ln x t x =-, 可得0000ln ln ln x tx x x t=-⎧⎨+=⎩,即0(1)ln x t t -=若1t >,等式左负右正不相等,若1t <,等式左正右负不相等,只能1t =.因此0000000ln 1ln ()1x x e x x g x x x --==-=,即1k …求所求. (12分)22. (本小题满分10分)【命题意图】本小题主要考查极坐标系与参数方程的相关知识,具体涉及到参数方程与普通方程的互化、极坐标方程与直角坐标方程的转化、直线的参数方程的几何意义等内容. 本小题考查考生的方程思想与数形结合思想,对运算求解能力有一定要求.【试题解析】 (1)曲线1C 的普通方程为2212x y +=,曲线2C 的直角坐标方程为24y x =;(5分)(2)设直线l 的参数方程为1cos sin x t y t αα=+⎧⎨=⎩(t 为参数)又直线l 与曲线2C :24y x =存在两个交点,因此sin 0α≠.联立直线l 与曲线1C :2212x y +=可得22(1sin )2cos 10t t αα++-=则1221||||||1sin FA FB t t α⋅==+ 联立直线l 与曲线2C :24y x =可得22sin 4cos 40t t αα--=,则1224||||||sin FM FN t t α⋅==即222221||||1sin 1111sin (0,]41||||41sin 481sin sin FA FB FM FN ααααα⋅+==⋅=⋅∈⋅++. (10分) 23.(本小题满分10分)【命题意图】本小题主要考查不等式的相关知识,具体涉及到绝对值不等式解法等内容. 本小题重点考查化归与转化思想.【试题解析】(1)333263()59()2233()|23||36|2363(2)3(2)222336(2)59(2)x x x x x f x x x x x x x x x x x x x ⎧⎧-+- <-+ <⎪⎪⎪⎪⎪⎪=-+-=-+- =-+ ⎨⎨⎪⎪-+- >- >⎪⎪⎪⎪⎩⎩≤≤≤≤由图像可知:()2f x <的解集为711(,)55.(5分)(2)图像可知()f x 的最小值为1,12=,当且仅当a b =时,“=1T =. (10分)。
长春市2020届高三质量监测(一) 数学(理科)试题参考答案及评分参考一、选择题(本大题共12小题,每小题5分,共60分)1. B2. C3. C4. C5. D6. A7. D8. A9. C 10. B 11. C 12. C二、填空题(本大题共4小题,每小题5分,16题第一空2分,第二空3分,共20分)13. 112 14. 215. 20π16.221n n +,1(1)(1)nn n -++三、解答题17. (本小题满分12分)【命题意图】本题考查三角函数的相关知识,特别是三角函数中的取值范围问题. 【试题解析】解:(Ⅰ)由题可知sin sin sin cos AA B A=⋅,即sin cos B A =, 由a b >,可得2A B π+=,即ABC △是直角三角形.(6分)(Ⅱ)ABC ∆的周长1010sin 10cos L A A =++,10)4L A π=++,由a b >可知,42A ππ<<sin()14A π<+<,即2010S <<+(12分)18. (本小题满分12分)【命题意图】本题考查立体几何相关知识. 【试题解析】解:(Ⅰ)取PA 中点M ,连结EM 、DM ,//////EM CD CE DM CE PAD EM CD DM PAD ⎫⎫⇒⎬⎪⇒=⎬⎭⎪ ⊂⎭平面平面.(6分) (Ⅱ)以A 为原点,以AD 方面为x 轴,以AB 方向为y 轴,以AP 方向为z 轴,建立坐标系.可得(2,0,0)D ,(2,1,0)C ,(0,0,4)P ,(0,2,0)B ,(0,1,2)E ,(0,1,0)CD =-,(2,0,2)CE =-,平面CDE 的法向量为1(1,0,1)n =; 平面ABCD 的法向量为2(0,0,1)n =;因此1212||cos ||||n n n n θ⋅==⋅ 即平面CDE 与平面ABCD 所成的锐二面角为4π. (12分)19. (本小题满分12分)【命题意图】本题考查概率的相关知识.【试题解析】解:(Ⅰ)该考生本次测验选择题得50分即为将其余4道题无法确定 正确选项的题目全部答对,其概率为11111(50)223336P X ==⋅⋅⋅=. (4分)(Ⅱ)设该考生本次测验选择题所得分数为X , 则X 的可能取值为30,35,40,45,50.11224(30)223336P X ==⋅⋅⋅=112211221112112112(35)223322332233223336P X ==⋅⋅⋅+⋅⋅⋅+⋅⋅⋅+⋅⋅⋅=11221112112111121121111113(40)22332233223322332233223336P X ==⋅⋅⋅+⋅⋅⋅+⋅⋅⋅+⋅⋅⋅+⋅⋅⋅+⋅⋅⋅=11111111112111126(45)223322332233223336P X ==⋅⋅⋅+⋅⋅⋅+⋅⋅⋅+⋅⋅⋅=11111(50)223336P X ==⋅⋅⋅=选择题所得分数为X 的数学期望为3EX =. (12分)20. (本小题满分12分)【命题意图】本小题考查圆锥曲线中的最值问题等知识. 【试题解析】解:(Ⅰ)由定义法可得,P 点的轨迹为椭圆且24a =,1c =.因此椭圆的方程为22143x y +=. (4分)(Ⅱ)设直线l 的方程为x ty =-与椭圆22143x y +=交于点11(,)A x y ,22(,)B x y ,联立直线与椭圆的方程消去x 可得 22(34)30t y +--=,即12y y+=,122334y y t -=+. AOB ∆面积可表示为1211||||2AOB S OQ y y =⋅-=△216234t ==+u =,则1u ≥,上式可化为26633u u u u=++当且仅当u =3t =±因此AOB ∆l 的方程为3x y =±. (12分)21. (本小题满分12分)【命题意图】本小题考查函数与导数的相关知识. 【试题解析】解:(Ⅰ)由题可知1()ln 1f x x x'=+-, ()f x '单调递增,且(1)0f '=,当01x <<时,()0f x '<,当1x ≥时,()0f x '≥;因此()f x 在(0,1)上单调递减,在[1,)+∞上单调递增. (4分)(Ⅱ)由3()(1)ln ln h x m x x x x e=-+--有两个零点可知由11()(1ln )1h x m x x x'=+-+-且0m >可知,当01x <<时,()0h x '<,当1x ≥时,()0h x '≥;即()h x 的最小值为3(1)10h e=-<,因此当1x e =时,1113(1)2()(1)(1)(1)0m e e h m e e e e e -+-=--+---=>, 可知()h x 在1(,1)e上存在一个零点;当x e =时,3()(1)10h e m e e e=-+-->,可知()h x 在(1,)e 上也存在一个零点;因此211x x e e -<-,即121x e x e+>+. (12分)22. (本小题满分10分)【命题意图】本小题主要考查极坐标与参数方程的相关知识. 【试题解析】解:(Ⅰ)直线l 的普通方程为30x y +-=, 圆C 的直角坐标方程为22430x y x +--=.(5分) (Ⅱ)联立直线l 的参数方程与圆C 的直角坐标方程可得22(1)(2)4(1)30222-++---=,化简可得220t +-=. 则12||||||2PA PB t t ⋅==. (10分)23. (本小题满分10分)【命题意图】本小题主要考查不等式的相关知识. 【试题解析】(Ⅰ)由题意 (3)(1),34,3()(3)(1),3122,31(3)(1),14,1x x x x f x x x x x x x x x x ---- <-- <-⎧⎧⎪⎪=+-- - =+ -⎨⎨⎪⎪+-- > >⎩⎩≤≤≤≤当3x <-时,41x -+≥,可得5x -≤,即5x -≤.当31x -≤≤时,221x x ++≥,可得1x -≥,即11x -≤≤. 当1x >时,41x +≥,可得3x ≤,即13x <≤.综上,不等式()1f x x +≥的解集为(,5][1,3]-∞--. (5分) (Ⅱ)由(Ⅰ)可得函数)(x f 的最大值4M =,且14ab a b +++=,即23()()2a b a b ab +-+=≤,当且仅当a b =时“=”成立,可得2(2)16a b ++≥,即2a b +≥,因此b a +的最小值为2. (10分)。
长春市2020届高三质量监测(三)理科数学一、选择题:本题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的. 1.设集合2{|4}A x Z x =∈…,{|42}B x x =-<< ,则A B =I ( )A.{|22}x x -<≤ B. {|42}x x -<≤C.{2,1,0,1,2}--D.{2,1,0,1}--【答案】D 【分析】根据集合的交运算,即可容易求得结果. 【详解】{|22}{2,1,0,1,2}A x Z x =∈-=--≤≤故可得{}2,1,0,1A B ⋂=--故选:D .【点睛】本题考查集合的交运算,属基础题. 2.已知复数()(12) ()z a i i a R =+-∈的实部为3,其中i 为虚数单位,则复数z 的虚部为( )A.1-B.-iC. 1D. i【答案】A 【分析】根据复数的乘法运算化简复数z ,由其实部即可求得参数a . 【详解】()(12)2(12)za i i a a i =+-=++-,231a a +=∴=∴121a -=-. 故选:A .【点睛】本题考查复数的乘法运算,实部和虚部的辨识,属基础题.3.已知向量(1,2)=-r a ,(3,3)b =-r ,(1,)c t r =,若向量a r 与向量b c +r r共线,则实数t =( )A.5B. 5-C. 1D.1-【答案】B 【分析】根据向量的加法运算,求得b c +r r的坐标,由向量共线的坐标公式,即可容易求得结果.【详解】因为b c +r r ()4,3t =-,又a r 与向量b c +r r共线故可得38t -=-,解得5t =-.故选:B .【点睛】本题考查向量共线的坐标公式,涉及向量的坐标运算,属基础题. 4.已知函数()cos 3sin 22x xf x =-的图象为C ,为了得到关于原点对称的图象,只要把C 上所有的点( )A. 向左平移3π个单位B. 向左平移23π个单位C. 向右平移3π个单位D. 向右平移23π个单位【答案】A 【分析】利用辅助角公式化简()f x ,再根据三角函数的奇偶性,即可求得结果.【详解】由()cos 3sin 2cos()()2cos()2223223x x x x f x f x πϕπϕ=-=+⇒+=++为奇函数,得+=+=+22323k k Z k ϕππππϕπ∈∴,当0k =时,3πϕ=.故为得到关于原点对称的图像,只要把C 向左平移3π个单位即可. 故选:A【点睛】本题考查辅助角公式,函数图像的平移,以及余弦型函数的奇偶性,属综合中档题.5.函数3()x xx f x e e-=-的图象大致为( ) A. B.C. D.【答案】B 【分析】根据解析式求得函数奇偶性,以及()1f 即可容易求得结果.【详解】因为()f x 的定义域为()(),00,-∞⋃+∞,且()()3x xx f x f x e e--==-,故()f x 为偶函数, 排除C ,D ,验算特值11(1)=0f e e-<-,排除A, 故选:B【点睛】本题考查函数图像的辨识,涉及函数奇偶性的判断和指数运算,属基础题. 6.在521()x x+的展开式中,一定含有( ) A. 常数项 B. x 项C. 1x -项D. 3x 项【答案】C 【分析】利用二项式的通项公式,即可容易求得结果. 【详解】由通项公式5521()r rr C xx-535r rC x -=代入0,1,2,3r =验证, 当0r =时,可得其含有5x 项;当1r =,可得其含有2x 项;当2r =时,可得其含有1x -项; 故选:C . 【点睛】本题考查二项式的通项公式,属基础题.7.已知直线,m n 和平面,,αβγ,有如下四个命题:①若,//m m αβ⊥,则αβ⊥;②若,//,m m n n αβ⊥⊂,则αβ⊥;③若,,n n m αβα⊥⊥⊥,则m β⊥;④若,m m n α⊥⊥,则//n α.其中真命题的个数是( )A. 1B.2C.3D.4【答案】C 【分析】根据面面垂直,线面垂直以及线面平行的判定,即可容易判断. 【详解】①若,//m m αβ⊥,则一定有αβ⊥,故①正确;②若,//,m m n n αβ⊥⊂,则n α⊥,又因为n β⊂,故可得αβ⊥,故②正确; ③若,n n αβ⊥⊥,故可得α//β,又因为m α⊥,故可得m β⊥,故③正确; ④若,m m n α⊥⊥,则//n α或n α⊂,故④错误; 综上所述,正确的有①②③. 故选:C【点睛】本题考查线面垂直,面面垂直的判定以及线面平行的判定,属综合基础题.8.风雨桥是侗族最具特色的建筑之一,风雨桥由桥、塔、亭组成,其塔俯视图通常是正方形、正六边形和正八边形.下图是风雨桥中塔的俯视图.该塔共5层,若011223340.5m B B B B B B B B ====,008m A B =,则五层正六边形的周长和为( )A. 35mB.45mC.210m D. 270m【答案】C 【分析】根据题意,构造等差数列,即可由等差数列的前n 项和进行求解. 【详解】根据题意,设正六边形的中心为O ,容易知4433221100,,,,OA B OA B OA B OA B OA B n n n n n 均为等边三角形, 故4433221100,,,,A B A B A B A B A B 长度构成依次为6,6.5,7,7.5,8的等差数列 ∴周长总和为(68)562102+⋅⋅=, 故选:C【点睛】本题考查等差数列的前n 项和的求解,属基础题.9.已知圆E 的圆心在y 轴上,且与圆2220x y x +-=的公共弦所在直线的方程为30x -=,则圆E 的方程为( )A .22(3)2x y+-= B. 22(3)2x y ++= C. 22(3)3x y +-= D. 22(3)3x y ++=【答案】C 【分析】根据圆心的连线与公共弦所在直线垂直,即可求得圆心;再结合弦长公式,即可容易求得半径. 【详解】两圆圆心连线与公共弦垂直,不妨设所求圆心的坐标为()0,a ,又圆2220x y x +-=的圆心为()1,0,半径为1,故113a ⨯=--,解得3a =.故所求圆心为()0,3. 直线30x y -=截得2220x y x +-=所成弦长212134-=, 圆心()0,3到直线30x y -=的距离为32, 所以直线30x y -=截得所求圆的弦长223232r ⎛⎫-= ⎪⎝⎭, 解得3r =.故圆心坐标为(0,3),半径为3, 故选:C .【点睛】本题考查圆方程的求解,涉及两圆位置关系,属综合基础题.10.某项针对我国《义务教育数学课程标准》的研究中,列出各个学段每个主题所包含的条目数(如下表),下图是统计表的条目数转化为百分比,按各学段绘制的等高条形图,由图表分析得出以下四个结论,其中错误的是( )A. 除了“综合实践”外,其它三个领域的条目数都随着学段的升高而增加,尤其“图象几何” 在第三学段增加较多,约是第二学段的3.5倍.B. 所有主题中,三个学段的总和“图形几何”条目数最多,占50%,综合实践最少,约占4% .C. 第一、二学段“数与代数”条目数最多,第三学段“图形几何”条目数最多.D. “数与代数”条目数虽然随着学段的增长而增长,而其百分比却一直在减少.“图形几何”条目数,百分比都随学段的增长而增长. 【答案】D 【分析】根据统计图表,结合每个选项即可容易求得结果. 【详解】结合统计图表可知,除了“综合实践”外,其它三个领域的条目数都随着学段的升高而增加, 尤其“图象几何” 在第三学段增加较多,约是第二学段的3.5倍,故A 正确; 所有主题中,三个学段的总和“图形几何”条目数最多,占50%, 综合实践最少,约占4% ,故B 正确;第一、二学段“数与代数”条目数最多,第三学段“图形几何”条目数最多,故C 正确; 对D 中,显然“数与代数”条目数虽然随着学段的增长而增长, 而其百分比却一直在减少;而“图形几何”条目数, 百分比随着学段数先减后增,故D 错误; 故选:D【点睛】本题考查统计图表的辨识和应用,属基础题.11.已知数列{}n a 的各项均为正数,其前n 项和n S 满足2*42 ()n n n S a a n N =+∈,设1(1)nn n n b a a +=-⋅,n T 为数列{}n b 的前n 项和,则20T =( )A. 110B. 220C.440 D. 880【答案】D 【分析】利用,n n a S 之间的关系,即可容易求得n a ,则n b 得解,再用并项求和法即可求得结果.【详解】由242 n n n S a a =+得211142 (2)n n n S a a n ---=+…,作差可得: 1 2n n a a --=,又1=2 a 得2n a n =,则(1)22(1)4(1)(1)nnn b n n n n =-⋅⋅+=-⋅+所以12+b b =4[(1)1223]82-⋅⋅+⋅=⋅,34+4[(1)3445]84,b b =-⋅⋅+⋅=⋅56+4[(1)5667]86,b b =-⋅⋅+⋅=⋅…,1920+4[(1)19202021]820,b b =-⋅⋅+⋅=⋅所以20(220)1088802T +⋅=⋅=.故选:D .【点睛】本题考查利用,n n a S 的关系求数列的通项公式,涉及等差数列前n 项和的求解,属综合中档题. 12.设椭圆C 的左右焦点为12,F F ,焦距为2c ,过点1F 的直线与椭圆C 交于点,P Q ,若2||2PF c =,且114||||3PF QF =,则椭圆C 的离心率为( ) A.12B.34C.57D.23【答案】C 【分析】根据题意,求得112,,PF F Q F Q ,结合余弦定理,即可求得,a c 的齐次式,据此即可求得结果. 【详解】根据题意,作图如下:由2||2PF c =得1||22PF a c =-,13377||,||=22a c a c QF PQ --=,23||2a cQF +=由221cos cos F PQ F PF ∠=∠即22222222211222122PF PQ F QPF PF F F PF PQPF PF +-+-=,整理得2271250c ac a -+=, 则()()570a c a c --=,得57e =故选:C .【点睛】本题考查椭圆离心率的求解,涉及椭圆的定义,属中档题.二、填空题:本题共4小题,每小题5分.13.一名信息员维护甲乙两公司的5G 网络,一天内甲公司需要维护和乙公司需要维护相互独立,它们需要维护的概率分别为0.4和0.3,则至少有一个公司不需要维护的概率为________ 【答案】0.88 【分析】根据相互独立事件概率计算公式和对立事件的概率计算公式直接求解即可. 【详解】"至少有一个公司不需要维护"的对立事件是"两公司都需要维护", 所以至少有一个公司不需要维护的概率为10.30.40.88p =-⨯=, 故答案为0.88.【点睛】本题主要考查概率的求法以及相互独立事件概率计算公式和对立事件的概率计算公式的应用. 14.等差数列{}n a 中,11a =,公差2[]1,d ∈,且391515a a a λ++=,则实数λ的最大值为_________.【答案】13- 【分析】根据等差数列的基本量,用d 表示出λ,分离参数求得函数的值域,即可容易求得结果. 【详解】由391515a a a λ++=得()()121811415d d d λ+++++=,整理得()181316d d λ+=-,又2[]1,d ∈,故1316151912[,]1818173d d d λ-==-+∈--++.故实数λ的最大值为13-.故答案为:13-.【点睛】本题考查等差数列基本量的求解,涉及分式函数值域的求解,属综合中档题. 15.若12,x x 是函数2()74ln f x x x x =-+的两个极值点,则12x x =____,12()()f x f x +=____.【答案】 (1). 2 (2). 654ln 24-【分析】根据极值点的定义,即可由方程的根与系数之间的关系,即可求得12x x 以及12x x +,再结合对数运算即可容易求得结果. 【详解】2121247()2702740,22f x x x x x x x x x '=-+=⇒-+=⇒+==,2212111222()()74ln 74ln f x f x x x x x x x +=-++-+21212121265()27()4ln()4ln 24x x x x x x x x =+--++=-. 故答案为:2;654ln 24-. 【点睛】本题考查利用导数求函数的极值点,涉及对数运算,属综合基础题.16.现有一批大小不同的球体原材料,某工厂要加工出一个四棱锥零件,要求零件底面ABCD 为正方形,2AB =,侧面PAD 为等边三角形,线段BC 的中点为E ,若1PE =.则所需球体原材料的最小体积为___________. 【答案】82π 【分析】根据题意,讨论球体体积最小时的状态,求得此时的球半径,则问题得解.【详解】根据题意,取AD 中点为F ,连接EF ,取EF 中点为O ,连接PO ,如下所示:因为PAD n为边长为2的等边三角形,故可得3PF =又因为1,2PE EF ==,满足勾股定理, 故可得PE PF ⊥,则EPF n 为直角三角形,则111222PO EF BD ==<=若要满足题意,只需满足ABCD 在球大圆上时,点P 在球内部即可, 此时球半径最小为282π故答案为:823π. 【点睛】本题考查棱锥外接球问题,涉及棱锥体积的求解,属综合中档题.三、解答题:共70 分,解答应写出文字说明、证明过程或演算步骤.第17~21 题为必考题,每个试题考生都必须作答.第22~23 题为选考题,考生根据要求作答.(一)必考题:共60分.17.笔、墨、纸、砚是中国独有的文书工具,即“文房四宝”.笔、墨、纸、砚之名,起源于南北朝时期,其中的“纸”指的是宣纸,宣纸“始于唐代,产于泾县”,而唐代泾县隶属于宣州府管辖,故因地而得名“宣纸”,宣纸按质量等级,可分为正牌和副牌(优等品和合格品),某公司年产宣纸10000刀(每刀100张),公司按照某种质量标准值X给宣纸确定质量等级,如下表所示:公式在所生产的宣纸中随机抽取了一刀(100张)进行检验,得到频率分布直方图如图所示,已知每张正牌纸的利润是10元,副牌纸的利润是5元,废品亏损10元.(1)估计该公式生产宣纸的年利润(单位:万元);(2)该公司预备购买一种售价为100万元的机器改进生产工艺,这种机器的使用寿命是一年,只能提高宣纸的质量,不影响产量,这种机器生产的宣纸的质量标准值X的频率,如下表所示:其中X为改进工艺前质量标准值X的平均值,改进工艺后,每张正牌和副牌宣纸的利润都下降2元,请判断该公司是否应该购买这种机器,并说明理由.【答案】(1)400万元;(2)应该购买,理由见解析【分析】(1)由频率分布直方图求得100张宣纸中各类宣纸的数量,结合每种宣纸的盈亏即可容易求得结果;(2)由频率分布直方图求得X,即可求得各区间的频率分布,据此即可求得结果.【详解】(1)由频率分布直方图可知,一刀(100张)宣纸中有正牌宣纸100×0.1×4=40张,有副牌宣纸100×0.05×4×2=40张,有废品100×0.025×4×2=20张,所以该公司一刀宣纸的年利润为40×10+40×5+20×(-10)=400元,所以估计该公式生产宣纸的年利润为400万元;(2) 由频率分布直方图可得4(420.025460.05500.1540.05580.025)50X =⨯⨯+⨯+⨯+⨯+⨯=这种机器生产的宣纸质量指标X 的频率如下表所示:(48,52](44,56]0.68260.9544X频率则一刀宣纸中正牌的张数为100×0.6826=68.26张, 副牌的张数约为100×(0.9544-0.6826)=27.18张,废品的张数约为100×(1-0.9544)=4.56张,估计一刀宣纸的利润为:68.26×(10-2)+27.18×(5-2)+4.56×9(-10)=582.02, 因此改进工艺后生产宣纸的利润为582.02-100=482.02元,因为482.02>400,所以该公式应该购买这种设备.【点睛】本题考查由频率分布直方图计算概率以及平均数,涉及由样本估计总体,属综合基础题.18.在△ABC 中, 角,,A B C 所对的边分别为,,a b c ,且4cos a c B = .(1)求证:sin cos 3sin cos B C C B =;(2)求B C -的最大值.【答案】(1)证明见解析;(2)6π 【分析】(1)利用正弦定理将边化角,结合()sin sinA B C =+,即可容易求得;(2)根据(1)中所求得到,tanB tanC 之间的关系,再将()tanB C -转化为关于tanC 的函数,利用均值不等式求得函数的最值,则B C -的最值得解.【详解】(1)在ABC ∆中,由4cos a c B =及正弦定理,得sin 4sin cos sin()4sin cos A C B B C C B =⇒+=则4sinBcosC cosBsinC sinCcosB +=,sin cos 3sin cos B C C B ⇒=.(2)由(1)知sin cos 3sin cos tan 3tan B C C B B C =⇒=,2tan tan 2tan 2tan()=11+tan tan 1+3tan+3tan tan B C C B C B C C C C--== 又因为3tanB tanC =,故可得0tanC >,由均值不等式可得2313+3tan tan C C ≤,当且仅当3tan =3C 时等号成立 因此23tan()=123+3tan tan B C C C-=… , 即B C -的最大值为6π . 【点睛】本题考查利用正弦定理解三角形,涉及均值不等式求和的最小值,以及正切的差角公式,属综合中档题. 19.四棱锥-P ABCD 中,底面ABCD 为直角梯形,//BC AD ,AD DC ⊥,1BC CD ==,2AD =,PA PD =,E 为PC 的中点,平面PAD ⊥平面ABCD ,F 为AD 上一点,//PA 平面BEF .(1)求证:平面BEF ⊥平面PAD ;(2)若PC 与底面ABCD 所成的角为60︒,求二面角E BF A --的余弦值.【答案】(1)证明见解析;(2)77-【分析】(1)通过线面平行,推证出点F 的位置,再结合面面垂直,推证出BF⊥平面PAD ,即可由线面垂直推证面面垂直;(2)以F 点为坐标原点建立空间直角坐标系,由线面角求得PF 长度,进而再由向量法求得二面角的大小即可.【详解】(1)连AC 交BF 于G ,连EG ,如下图所示:因为//PA 平面BEF ,PA ⊂平面PAC ,平面PAC I 平面BEFEG =, 所以//PA EG ,又E 为PC 中点,所以G 为AC 中点,由AFG ∆≌BCG ∆, ∴112AF BC AD === ∴F 为AD 中点,∵//BC FD ,且BC FD =,则DCBF 为平行四边形,∵AD DC ⊥∴BF AD ⊥,又BF ⊂平面ABCD ,平面PAD ⊥平面ABCD ,平面PAD ∩平面ABCD AD =, 故BF ⊥平面PAD ,又BF ⊂平面BEF ,所以平面BEF ⊥平面PAD .即证.(2)连接PF ,∵PA PD =,F 为AD 的中点,∴PFAD ⊥, 又PF⊂平面PAD ,平面PAD ⊥平面ABCD ,平面PAD ∩平面ABCD AD =, ∴PF ⊥底面ABCD ,又PF AD ⊥,以,,FA FB FC 分别为,,x y z 轴建立空间直角坐标系.设(0,0,),(1,1,0)P t C -,取平面ABCD 的法向量()10,0,1n =u r ,又(1,1,)PC t =--u u u r,(0,1,0)B ∴1213sin ||632||||2n PC t n PC t π⋅=⇒=⇒=⋅+u r uu u r u r uu u r ∴6)P ,116(,22E - 设平面EBF 的法向量2(,,)n x y z =u u r 所以2200n FE n FB ⎧⋅=⎪⎨⋅=⎪⎩u u r u u u r u u r u u u r 即可得11602220x y z y ⎧-++=⎪⎨⎪=⎩令21,6,(6,0,1)z x n =∴==u u r设二面角--E BF A 的平面角为θ ∴1212||||7|cos |7||||n n n n θ⋅==⋅u r u u r u r u u r ,又θ为钝角 ∴7cos 7θ=- , 所以二面角E BF A --的余弦值为7. 【点睛】本题考查由线面垂直推证面面垂直,由线面角求线段长,以及用向量法求二面角的大小,属综合中档题. 20.已知点(0,1)A ,点B 在y 轴负半轴上,以AB 为边做菱形ABCD ,且菱形ABCD 对角线的交点在x 轴上,设点D 的轨迹为曲线E .(1)求曲线E 的方程;(2)过点(,0)M m ,其中14m <<,作曲线E 的切线,设切点为N ,求AMN V 面积的取值范围.【答案】(1)24(0)xy x =≠;(2)(1,34) 【分析】(1)根据题意,求得菱形中心的坐标,进而由中心为,B D 中点,求得D 点坐标的参数形式,即可消参求得点D 的轨迹方程;(2)利用导数几何意义求得N 点处的切线方程,从而求得M 点坐标,据此求得,m a 之间的关系,再结合1MN AM k k ⋅=-,即可表示出面积,将其转化为关于a 的函数,利用函数单调性求函数值域即可.【详解】(1)设(0,)B t -,菱形ABCD 的中心设为Q 点,且x 在轴上,由题意可得2||||||OQ OA OB =则Q 又Q 为,B D 的中点,因此点)D t ,即点D 的轨迹为x y t⎧=⎪⎨=⎪⎩t 为参数且0t ≠) 化为标准方程为24(0)x y x =≠.(2)设点2(,)4a N a ,则点N 的切线方程为2()422a a a y x -=-. 可得(,0)2a M 因此2a m =由14m <<,可得28a << 又2,2MN AM a k k a ==-则1MN AM k k ⋅=- 即MN AM ⊥因此21(4)|||216a a S MN AM +=⋅= 令34y a a =+,则2340y a '=+>,故34y a a =+为单调增函数,故可知当(2,8)a ∈时,S 为关于a 的增函数,又当2a =时,1S =;当8a =时,34S =.因此S 的取值范围是(1,34).【点睛】本题考查抛物线轨迹方程的求解,以及抛物线中三角形面积的范围问题,涉及导数的几何意义,以及利用导数判断函数的单调性,属综合中档题.21.已知函数1()ln , () (0)x f x m x g x x x-==>. (1)讨论函数()()()F x f x g x =-在(0,+)∞上的单调性;(2)是否存在正实数m ,使()y f x =与g()y x =的图象有唯一一条公切线,若存在,求出m 的值,若不存在,请说明理由.【答案】(1)当0m ≤时,()F x 区间()0,+∞上单调递减;当0m >时,()F x 在10,m ⎛⎫ ⎪⎝⎭上单调递减;在1,m ⎛⎫+∞ ⎪⎝⎭上单调递增;(2)存在,1m = 【分析】(1)对函数进行求导,对参数进行分类讨论,即可容易求得函数的单调性;(2)利用导数的几何意义求得()(),f x g x 在任意一点处的切线方程,求得方程组,根据方程有唯一解,利用导数根据函数单调性,即可求得.【详解】(1)22111()()()ln ,()x m mx F x f x g x m x F x x x x x --'=-=-=-=, 当0m …时,()0F x '<,所以,函数()F x 在(0,)+∞上单调递减;当0m >时,由()0F x '<得10x m <<,由()0F x '>得1x m >, 所以,函数()F x 在1(0,)m 上单调递减;函数()F x 在1(,)m +∞上单调递增.(2)函数()=ln f x m x 在点(,ln )a m a 处的切线方程为ln ()m y m a x a a -=-,即ln m y x m a m a=+-; 函数1()x g x x -=在点1(,1)b b-处的切线方程为 211(1)()y x b b b --=-,即2121y x b b =-+ 由()y f x =与()y g x =的图象有唯一一条公切线,∴21 2ln 1?m a b m a m b ⎧=⎪⎪⎨⎪-=-⎪⎩①②,由①得2a m b =代入②消去m , 整理得22ln 0b b a a a --+= ③则此关于(0)b b >的方程③有唯一解,令22()2ln (1)ln 1g b b b a a a b a a a =--+=--+-,令()ln 1h a a a a =-+-,()ln h a a '=-由()0'>h a 得01a <<;由()0h a '<得1a >所以,函数()h a 在(0,1)上单调递增,在(1,)+∞上单调递减, 则()(1)0h a h =≤,(i )当()0h a <时,二次函数2()(1)ln 1g b b a a a =--+-在(1,)b ∈+∞上显然有一个零点,(0,1)b ∈时,由方程2ln 1m a m b-=-可得 2(ln 1)0b m a b--=< 而0m >所以ln 10a -<则(0)ln (ln 1)0g a a a a a =-+=-->所以二次函数2()(1)ln 1g b b a a a =--+-在(0,1)b ∈上也有一个零点,不合题意.综上,1m =.所以存在正实数1m =,使()y f x =与()y g x =的图象有唯一一条公切线.【点睛】本题考查利用导数对含参函数单调性进行讨论,利用导数由方程根个数求参数范围,涉及导数的几何意义,属压轴题.(二)选考题:共10分,请考生在22、23题中任选一题作答,如果多做则按所做的第一题计分.22.以直角坐标系的原点为极点,x 轴的非负半轴为极轴建立极坐标系,曲线C 的极坐标方程为22120,3sin 2πρθθ⎛⎫⎡⎤=∈ ⎪⎢⎥+⎣⎦⎝⎭,直线l的参数方程为23x y ⎧=-⎪⎪⎨⎪=+⎪⎩(t 为参数). (1)求曲线C 的参数方程与直线l 的普通方程;(2)设点过P 为曲线C 上的动点,点M 和点N 为直线l 上的点,且满足PMN V 为等边三角形,求PMN V 边长的取值范围.【答案】(1)C:2cos x y αα=⎧⎪⎨=⎪⎩(α为参数,02πα≤≤),l :280x y +-=;(2)1515⎡⎢⎣⎦ 【分析】(1)利用公式即可容易化简曲线C 的方程为直角坐标方程,再写出其参数方程即可;利用消参即可容易求得直线的普通方程;(2)设出P 的坐标的参数形式,将问题转化为求点P 到直线距离的范围问题,利用三角函数的值域求解即可容易求得结果.【详解】(1)曲线C 的极坐标方程为22120,3sin 2πρθθ⎛⎫⎡⎤=∈ ⎪⎢⎥+⎣⎦⎝⎭, 故可得2223sin 12ρρθ+=,则()222312x y y ++=,整理得223412x y +=,也即22143x y +=, 由0,2πθ⎡⎤∈⎢⎥⎣⎦,则可得0,0x y ≥≥,故其参数方程为2cos x y αα=⎧⎪⎨=⎪⎩(α为参数,02πα≤≤);又直线的参数方程为235x y t ⎧=⎪⎪⎨⎪=+⎪⎩,故可得其普通方程为280x y +-=.(2)不妨设点P的坐标为()2cos αα, 则点P 到直线280x y +-=的距离d ==0,2πα⎡⎤∈⎢⎥⎣⎦, 容易知4sin 86y πα⎛⎫=+- ⎪⎝⎭在区间0,2π⎡⎤⎢⎥⎣⎦的值域为[]6,4--,故可得55d ⎡∈⎢⎣⎦.则三角形PMN 的边长为3d ,故其范围为⎣⎦. 【点睛】本题考查极坐标方程、参数方程和直角坐标方程之间的相互转化,涉及利用参数求点到直线的距离的范围,属综合中档题.23.已知函数()2f x m x =--,m ∈R ,() 3g x x =+.(Ⅰ)当x ∈R 时,有()()f x g x ≤,求实数m 的取值范围. (Ⅱ)若不等式()0f x ≥的解集为[]1,3,正数a ,b 满足231ab a b m --=-,求+a b 的最小值. 【答案】(Ⅰ)(],5m ∈-∞(Ⅱ)()min 7a b +=【分析】 (I)根据不等式恒成立的等价不等式,可转化为求含两个绝对值的最值,利用绝对值的三角不等式求最值即可; (II)由不等式()0f x ≥的解集为[]1,3可求出m 的值,代入231ab a b m --=-并用a 表示b ,再把b 代入a b +利用基本不等式求出最小值.【详解】解:(Ⅰ)由题意得:()()f x g x ≤Q 在x R ∈上恒成立,23m x x ∴--≤+在x R ∈上恒成立.()min 32m x x ∴≤++-, 又()()32235x x x x ++-≥--+=Q ,当且仅当()()230x x -+≤,即[]3,2x ∈-时等号成立.5m ∴≤,即(],5m ∈-∞.(Ⅱ)令()0f x ≥,2x m ∴-≤,若0m ≤时,∴解集为∅,不合题意;若0m >时,2m x m ∴-≤-≤,[]2,2x m m ∴∈-+,又[]1,3x ∈Q ,1m ∴=,∴综上所述:1m =,22ab a b ∴--=,221a b a +∴=-00a b >⎧⎨>⎩Q ,∴解得1a >,2241311a a b a a a a +∴+=+=-++--,37a b ∴+≥=,当且仅当411a a -=-,即3a =时等号成立, 此时2241a b a +==-.∴当3a =,4b =时,()min 7a b +=. 【点睛】本题考查了绝对值的三角不等式,以及利用基本不等式求最值,属于一般题.。
2020年吉林省长春市高考数学三模试卷(理科)1.已知集合A={x∈Z|x2≤4},B={x|−4<x<2},则A∩B=()A. B={x|−2≤x<2}B. B={x|−4<x≤2}C. {−2,−1,0,1,2}D. {−2,−1,0,1}2.已知复数z=(a+i)(1−2i)(a∈R)的实部为3,其中i为虚数单位,则复数z的虚部为()A. −1B. −iC. 1D. i3.已知向量a⃗=(1,−2),b⃗ =(3,−3),c⃗=(1,t),若向量a⃗与向量b⃗ +c⃗共线,则实数t=()A. 5B. −5C. 1D. −14.已知函数f(x)=cos x2−√3sin x2的图象为C,为了得到关于原点对称的图象,只要把C上所有的点()A. 向左平移π3个单位 B. 向左平移2π3个单位C. 向右平移π3个单位 D. 向右平移2π3个单位5.函数f(x)=x3e−x−e x的图象大致为()A. B.C. D.6.在(x+1x2)5的展开式中,一定含有()A. 常数项B. x项C. x−1项D. x3项7.已知直线m,n和平面α,β,γ,有如下四个命题:①若m⊥α,m//β,则α⊥β;②若m⊥α,m//n,n⊂β,则α⊥β;③若n⊥α,n⊥β,m⊥α,则m⊥β;④若m⊥α,m⊥n,则n//α.其中真命题的个数是()A. 1B. 2C. 3D. 48.风雨桥是侗族最具特色的建筑之一,风雨桥由桥、塔、亭组成,其塔俯视图通常是正方形、正六边形和正八边形.右下图是风雨桥中塔的俯视图.该塔共5层,若B0B1=B1B2=B2B3=B3B4=0.5m,A0B0=8m.这五层正六边形的周长总和为()A. 35mB. 45mC. 210mD. 270m9.已知圆E的圆心在y轴上,且与圆C:x2+y2−2x=0的公共弦所在直线的方程为x−√3y=0,则圆E的方程为()A. x2+(y−√3)2=2B. x2+(y+√3)2=2C. x2+(y−√3)2=3D. x2+(y+√3)2=310.某项针对我国《义务教育数学课程标准》的研究中,列出各个学段每个主题所包含的条目数(如表),如图是将统计表的条目数转化为百分比,按各学段绘制的等高条形图,由图表分析得出以下四个结论,其中错误的是()学段主题第一学段(1−3年级)第二阶段(4−6年级)第三学段(7−9年级)合计数与代数21284998图形几何182587130统计概率381122综合实践34310合计4565150260A. 除了“综合与实践”外,其它三个领域的条目数都随着学段的升高而增加,尤其“图形与几何”在第三学段增加较多,约是第二学段的3.5倍B. 所有主题中,三个学段的总和“图形与几何”条目数最多,占50%,综合与实践最少,约占4%C. 第一、二学段“数与代数”条目数最多,第三学段“图形与几何”条目数最多D. “数与代数”条目数虽然随着学段的增长而增长,而其百分比却一直在减少,“图形与几何”条目数,百分比都随学段的增长而增长.11.已知数列{a n}的各项均为正数,其前n项和S n满足4S n=a n2+2a n,(n∈N∗),设b n=(−1)n⋅a n a n+1,T n为数列{b n}的前n项和,则T20=()A. 110B. 220C. 440D. 88012.设椭圆的左右焦点为F1,F2,焦距为2c,过点F1的直线与椭圆C交于点P,Q,若|PF2|=2c,且|PF1|=43|QF1|,则椭圆C的离心率为()A. 12B. 34C. 57D. 2313.一名信息员维护甲乙两公司的5G网络,一天内甲公司需要维护和乙公司需要维护相互独立,它们需要维护的概率分别为0.4和0.3,则至少有一个公司不需要维护的概率为______14.等差数列{a n}中,a1=1,公差d∈[1,2],且a3+λa9+a15=15,则实数λ的最大值为______.15.若x1,x2是函数f(x)=x2−7x+4lnx的两个极值点,则x1x2=;f(x1)+f(x2)=.16.现有一批大小不同的球体原材料,某工厂要加工出一个四棱锥零件,要求零件底面ABCD为正方形,AB=2,侧面△PAD为等边三角形,线段BC的中点为E,若PE=1.则所需球体原材料的最小体积为______.17.笔、墨、纸、砚是中国独有的文书工具,即“文房四宝”.笔、墨、纸、砚之名,起源于南北朝时期,其中的“纸”指的是宣纸,宣纸“始于唐代,产于泾县”,而唐代泾县隶属于宣州府管辖,故因地而得名“宣纸”,宣纸按质量等级,可分为正牌和副牌(优等品和合格品),某公司年产宣纸10000刀(每刀100张),公司按照某种质量标准值x给宣纸确定质量等级,如表所示:x(48,52](44,48]∪(52,56](0,44]∪(56,100]质量等级正牌副牌废品公司在所生产的宣纸中随机抽取了一刀(100张)进行检验,得到频率分布直方图如图所示,已知每张正牌纸的利润是10元,副牌纸的利润是5元,废品亏损10元.(Ⅰ)估计该公司生产宣纸的年利润(单位:万元);(Ⅱ)该公司预备购买一种售价为100万元的机器改进生产工艺,这种机器的使用寿命是一年,只能提高宣纸的质量,不影响产量,这种机器生产的宣纸的质量标准值x的频率,如表所示:X(x−−2,x−+2](x−−6,x−+6]频率0.68260.9544其中x−为改进工艺前质量标准值x的平均值,改进工艺后,每张正牌和副牌宣纸的利润都下降2元,请判断该公司是否应该购买这种机器,并说明理由.18.在△ABC中,角A,B,C所对的边分别为a,b,c,且a=4ccosB.(Ⅰ)求证:sinBcosC=3sinCcosB;(Ⅱ)求B−C的最大值.19.四棱锥P−ABCD中,ABCD为直角梯形,BC//AD,AD⊥DC,BC=CD=1,AD=2,PA=PD,E为PC中点,平面PAD⊥平面ABCD,F为AD上一点,PA//平面BEF.(Ⅰ)求证:平面BEF⊥平面PAD;(Ⅱ)若PC与底面ABCD所成的角为60°.求二面角E−BF−A的余弦值.20.已知点A(0,1),点B在y轴负半轴上,以AB为边做菱形ABCD,且菱形ABCD对角线的交点在x轴上,设点D的轨迹为曲线E.(Ⅰ)求曲线E的方程;(Ⅱ)过点M(m,0),其中1<m<4,作曲线E的切线,设切点为N,求△AMN面积的取值范围.21.已知函数f(x)=mlnx,g(x)=x−1x(x>0).(Ⅰ)讨论函数F(x)=f(x)−g(x)在(0,+∞)上的单调性;(Ⅱ)是否存在正实数m,使y=f(x)与y=g(x)的图象有唯一一条公切线,若存在,求出m的值,若不存在,请说明理由.22.以直角坐标系的原点为极点,x轴的非负半轴为极轴建立极坐标系,曲线C的极坐标方程为ρ2=123+sin2θ(θ∈[0,π2]),直线1的参数方程为{x=2−2√55ty=3+√55t(t为参数).(Ⅰ)求曲线C的参数方程与直线l的普通方程;(Ⅱ)设点P为曲线C上的动点,点M和点N为直线l上的点,且满足△PMN为等边三角形,求△PMN边长的取值范围.23.已知函数f(x)=m−|x−2|,m∈R,g(x)=|x+3|.(Ⅰ)当x∈R时,有f(x)≤g(x),求实数m的取值范围.(Ⅱ)若不等式f(x)≥0的解集为[1,3],正数a,b满足ab−2a−b=3m−1,求a+b 的最小值.答案和解析1.【答案】D【解析】解:集合A={x∈Z|x2≤4}={−2,−1,0,1,2},∴A∩B={−2,−1,0,1},故选:D.先求出集合A,再利用集合交集的运算即可算出结果.本题考查了交集及其运算,熟练掌握交集的定义是解本题的关键,属于基础题.2.【答案】A【解析】解:因为复数z=(a+i)(1−2i)=(a+2)+(1−2a)i;∴a+2=3⇒a=1;∴z的虚部为:1−2a=−1.故选:A.利用复数的运算法则、实部与虚部的定义即可得出.本题考查了复数的运算法则、实部与虚部的定义,考查了推理能力与计算能力,属于基础题.3.【答案】B【解析】【分析】因为向量a⃗与向量b⃗ +c⃗共线,即两向量平行,根据两向量平行的坐标表示求解即可.本题主要考查平面向量共线的坐标表示,属于基础题.【解答】解:由题,a⃗=(1,−2),b⃗ =(3,−3),c⃗=(1,t),∴b⃗ +c⃗=(4,t−3),∵向量a⃗与向量b⃗ +c⃗共线,即a⃗//(b⃗ +c⃗ ),则1×(t−3)=−2×4,解得t=−5.故选:B.4.【答案】A【解析】解:函数f(x)=cos x2−√3sin x2=2cos(x2+π3)的图象为C,为了得到关于原点对称的图象,只要把C上所有的点向左平移π3个单位,可得y=2cos(x2+π6+π3)=sin x2的图象,显然,y=sin x2的图象关于原点对称,故选:A.由题意利用函数y=Asin(ωx+φ)的图象变换规律,三角函数的图象的对称性,得出结论.本题主要考查函数y=Asin(ωx+φ)的图象变换规律,三角函数的图象的对称性,属于基础题.5.【答案】B【解析】解:函数的定义域为{x|x≠0},f(−x)=(−x)3e x−e−x =x3e−x−e x=f(x),即函数f(x)为偶函数,其图象关于y轴对称,可排除CD;又f(1)=1e−1−e<0,可排除A;故选:B.先判断函数f(x)的奇偶性,可排除选项CD,再由f(1)<0,可排除选项A,进而得出正确选项.本题考查利用函数性质确定函数图象,考查数形结合思想,属于基础题.6.【答案】C【解析】解:在(x+1x2)5的展开式中,通项公式为T r+1=C5r⋅x5−3r,r=0,1,2,3,4,5,故5−3r不会等于0,不会等于1,不会等于3,故排除A、B、D,令5−3r=−1,可得r=2,故它的展开式中一定含有x−1项,故选:C.)5的通项公式,得出结论.由题意根据(x+1x2本题主要考查二项式定理的应用,二项式系数的性质,二项式展开式的通项公式,属于基础题.7.【答案】C【解析】【分析】本题考查的知识要点:线面垂直的判定和性质的应用,线面平行的判定和性质的应用,主要考查学生的运算能力和转换能力及空间思维能力,属于基础题型.直接利用线面垂直的判定和性质的应用,线面平行的判定和性质的应用求出正确的结果.【解答】解:已知直线m,n和平面α,β,γ,有如下四个命题:①若m⊥α,m//β,则在β内,作n//m,所以n⊥α,由于n⊂α,则α⊥β,故正确;②若m⊥α,m//n,所以n⊥α,由于n⊂β,则α⊥β;故正确.③若n⊥α,n⊥β,所以α//β,由于m⊥α,则m⊥β;故正确.④若m⊥α,m⊥n,则n//α也可能n⊂α内,故错误.故选:C.8.【答案】C【解析】解:B0B1=B1B2=B2B3=B3B4=0.5m,A0B0=8m.利用等边三角形的性质可得:B1A1=7.5,B2A2=7,B3A3=6.5,B4A4=6.这五层正六边形的周长总和=6×(8+7.5+7+6.5+6)=210m.故选:C.利用正六边形与等边三角形的性质即可得出.本题考查了正六边形与等边三角形的性质、等差数列的通项公式求和公式,考查了推理能力与计算能力,属于基础题.9.【答案】C【解析】解:∵圆E的圆心在y轴上,∴设圆心E的坐标为(0,b),设半径为r,则圆E的方程为:x2+(y−b)2=r2,即x2+y2−2by+b2−r2=0,又∵圆C的方程为:x2+y2−2x=0,两圆方程相加得公共弦所在直线的方程为:x−by+b2−r22=0,又∵公共弦所在直线的方程为x−√3y=0,∴{b=√3b2−r22=0,解得{b=√3r=√3,∴圆E的方程为:x2+(y−√3)2=3,故选:C.设圆心E的坐标为(0,b),设半径为r,则圆E的方程为:x2+(y−b)2=r2,两圆方程相加得公共弦所在直线的方程为:x−by+b2−r22=0,又公共弦所在直线的方程为x−√3y=0,从而求出b,r的值,得到圆E的方程.本题主要考查了圆的方程,以及两圆的公共弦所在直线的方程,是中档题.10.【答案】D【解析】解:由图可知图形与几何第一、二学段百分比依次为40%,38.5%,可知降低了,则D错,故选:D.根据表格和条形图分别判断选项,可判断.本题考查对表格,条形图的数据提取能力,属于基础题.11.【答案】D【解析】解:由题意,当n=1时,4a1=4S1=a12+2a1,整理,得a12−2a1=0,解得a1=0,或a1=2,∵a n>0,n∈N∗,∴a1=2,当n≥2时,由4S n=a n2+2a n,可得:4S n−1=a n−12+2a n−1,两式相减,可得4a n=a n2+2a n−a n−12−2a n−1,整理,得(a n+a n−1)(a n−a n−1−2)=0,∵a n +a n−1>0,∴a n −a n−1−2=0,即a n −a n−1=2, ∴数列{a n }是以2为首项,2为公差的等差数列, ∴a n =2+2(n −1)=2n ,n ∈N ∗, ∴b n =(−1)n ⋅a n a n+1=(−1)n ⋅4n(n +1), 则T 20=b 1+b 2+b 3+b 4+⋯+b 19+b 20=−4×1×2+4×2×3−4×3×4+4×4×5−⋯−4×19×20+4×20×21 =(−4×1×2+4×2×3)+(−4×3×4+4×4×5)+⋯+(−4×19×20+4×20×21)=4×2×(3−1)+4×4×(5−3)+⋯+4×20×(21−19) =4×2×2+4×4×2+⋯+4×20×2 =16×(1+2+⋯+10) =16×55 =880. 故选:D .本题先根据公式a n ={S 1,n =1S n −S n−1,n ≥2并结合题干进行计算可判别出数列{a n }是以2为首项,2为公差的等差数列,即可计算出数列{a n }的通项公式,进一步计算出数列{b n }的通项公式,然后运用分组求和可计算出T 20的值.本题主要考查数列求通项公式,以及运用分组求和求前n 项和问题.考查了转化与化归思想,分类讨论法,逻辑推理能力和数学运算能力.本题属中档题.12.【答案】C【解析】解:不妨设椭圆的焦点在x 轴上,如图所示, ∵|PF 2|=2c ,则|PF 1|=2a −2c . ∵|PF 1|=43|QF 1|,∴|QF 1|=34(2a −2c)=32(a −c), 则|QF 2|=2a −32(a −c)⋅a 2+32, 在等腰△PF 1F 2中,可得cos∠PF 1F 2=12|PF 1||F 1F 2|a−c2c.在△QF 1F 2中,由余弦定理可得cos∠QF 1F 2=94(a−c)2+4c 2−14(a+3c)22×2c×32(a−c),由cos∠PF1F2+cos∠QF1F2=0,得a−c2c +94(a−c)2+4c2−14(a+3c)22×2c×32(a−c)=0,整理得:5a−7c6c=0,∴5a=7c,∴e=ca =57.故选:C.由题意画出图形,由|PF2|=2c,|PF1|=43|QF1|,利用椭圆的定义可得:|PF1|=2a−2c,进一步求出|QF1|,|QF2|,在等腰△PF1F2中,求得得cos∠PF1F2.在△QF1F2中,由余弦定理可得cos∠QF1F2,利用cos∠PF1F2+cos∠QF1F2=0,化简求得5a=7c,则答案可求.本题考查椭圆的简单性质,考查三角形中余弦定理的应用,考查了推理能力与计算能力,属于中档题.13.【答案】0.88【解析】解:一名信息员维护甲乙两公司的5G网络,一天内甲公司需要维护和乙公司需要维护相互独立,它们需要维护的概率分别为0.4和0.3,至少有一个公司不需要维护的概率为:P=1−0.4×0.3=0.88.故答案为:0.88.利用相互独立事件概率计算公式和对立事件概率计算公式直接求解.本题考查概率的求法,考查相互独立事件概率计算公式和对立事件概率计算公式等基础知识,考查运算求解能力,是基础题.14.【答案】−13【解析】解:∵a3+λa9+a15=15=(2+λ)a9=(2+λ)(1+8d),∴λ=151+8d−2,又∵公差d∈[1,2],∴λmax=151+8−2=−13.故填:−13.由a 3+λa 9+a 15=15得出λ与d 之间的关系式,然后求λ的最大值.本题主要考查等差数列的性质和通项公式及衍生出的最值问题,属于基础题.15.【答案】24ln2−654【解析】 【分析】本题主要考查了利用导数研究函数的极值,是中档题.先求出导函数f′(x),由题意可得x 1,x 2是方程2x 2−7x +4=0 的两个根,可得x 1+x 2=72,x 1x 2=2,代入f(x 1)+f(x 2)即可求得结果.【解答】解:∵函数f(x)=x 2−7x +4lnx ,x ∈(0,+∞), ∴f′(x)=2x −7+4x =2x 2−7x+4x,令f′(x)=0得:2x 2−7x +4=0, ∴x 1,x 2是方程2x 2−7x +4=0 的两个根, ∴x 1+x 2=72,x 1x 2=2,∴f(x 1)+f(x 2)=x 12−7x 1+4lnx 1+x 22−7x 2+4lnx 2=(x 1+x 2)2−2x 1x 2−7(x 1+x 2)+4ln(x 1 x 2) =(72)2−2×2−7×72+4ln2=4ln2−654,故答案为:2,4ln2−654.16.【答案】28√2127π【解析】解:所需原材料体积最小的球体即为四棱锥P −ABCD 的外接球,如图,设F 为AD 中点,G 为正方形ABCD 中心,∵△PAD为边长为2的等边三角形,∴PF=√3,又PE=1,EF=2,∴∠PEF=60°∵PE=EB=EC=1,∴E是△PBC的外心,过E作面PBC的垂线与过G与面ABCD的垂线交于O,则O为四棱锥P−ABCD外接球的球心.∵∠OEG=∠OEP−∠FEP=90°−60°=30°,又GE=2,∴在直角三角形OGE中求出OG=√33,又直角△OAG中,AG=√2,∴OA=√213,即球半径R=√213,∴V球=43πR3=28√2127π.故答案为:28√2127π首先判断原材料体积最小的球体即为四棱锥P−ABCD的外接球,∵E是直角△PBC的外心,∴过E作面PBC的垂线与过正方形ABCD的中心G与面ABCD的垂线交于O,则O为四棱锥P−ABCD外接球的球心.再利用题中所给长度大小关系,可求球半径,求球体积.本题考查四棱锥的外接球问题,通过找球心,考查空间中线线、线面、面面间的位置关系等基础知识,考查运算求解能力,是中档题.17.【答案】解:(Ⅰ)由频率分布直方图得:一刀(100张)宣纸中有正牌宣纸100×0.1×4=40张,有副牌宣纸100×0.05×4×2=40张,有废品100×0.025×4×2=20张,∴该公司一刀宣纸的利润为:40×10+40×5+20×(−10)=400元,∴估计该公司生产宣纸的年利润为:400万元.(Ⅱ)由频率分布直方图得:x−=4×(42×0.025+46×0.05+50×0.1+54×0.05+58×0.025)=50,这种机器生产的宣纸质量指标x的频率如下表所示:则一刀(100张)宣纸中正牌的张数约为100×0.6826=68.26张,副牌的张数约为100×(0.9544−0.6826)=27.18张,废品的张数约为100×(1−0.9544)=4.56张,估计一刀宣纸(100张)的利润为:68.26×(10−2)+27.18×(5−2)+4.56×(−10)=582.02元.∴改进工艺后生产宣纸的利润为582.02−100=482.02元,∴482.2>400,∴该公司应生产这种设备.【解析】(Ⅰ)由频率分布直方图求出一刀(100张)宣纸中有正牌宣纸40张,有副牌宣纸40张,有废品20张,由此能求出该公司一刀宣纸的利润为400元,由此能求出估计该公司生产宣纸的年利润.(Ⅱ)由频率分布直方图得x−=4×(42×0.025+46×0.05+50×0.1+54×0.05+58×0.025)=50,求出这种机器生产的宣纸质量指标x的频率,则一刀(100张)宣纸中正牌的张数约为100×0.6826=68.26张,副牌的张数约为100×(0.9544−0.6826)= 27.18张,废品的张数约为100×(1−0.9544)=4.56张,估计一刀宣纸(100张)的利润为582.02元.从而改进工艺后生产宣纸的利润为582.02−100=482.02元,由此该公司应生产这种设备.本题考查利润的求法及应用,考查平均数、频率分布直方图的性质等基础知识,考查数据分析能力、运算求解能力,是基础题.18.【答案】证明:(Ⅰ)a=4ccosB,∴sinA=4sinCcosB,∴sin(B+C)=4sinCcosB,∴sinBcosC+sinCcosB=4sinCcosB,∴sinBcosC=3sinCcosB;解:(Ⅱ)由(Ⅰ)可知sinBcosC=3sinCcosB,则tanB=3tanC,∴tan(B−C)=tanB−tanC1+tanBtanC =3tanC−tanC1+3tan2C=2tanC1+3tan2C=21tanC+3tanC≤2√1tanC⋅3tanC=√33,当且仅当1tanC =3tanC,即tanC=√33时取等号,∴B−C≤π6,即B−C的最大值为π6.【解析】(Ⅰ利用正弦定理将边化为角即可证明,(Ⅱ)由(Ⅰ)化简得出tanB和tanC的关系,再代入两角差的正切公式,利用基本不等式求出最大值.本题考查了三角函数的恒等变换和正弦定理的应用问题,属于中档题.19.【答案】(Ⅰ)证明:连接AC 交BE 与G ,连接EG ,∵PA//平面BEF ,PA ⊂平面PAC ,平面PAC ∩平面BEF =EG ,∴PA//EG ,又E 为PC 的中点,∴G 为AC 的中点,则△AFG≌△BCG , 得AF =BC =12AD =1. ∴F 为AD 的中点,∵BC//FD ,且BC =FD ,∴四边形DCBF 为平行四边形,∵AD ⊥DC ,∴BF ⊥AD ,又BF ⊂平面ABCD ,平面PAD ⊥平面ABCD ,平面PAD ∩平面ABCD =AD , ∴BF ⊥平面PAD ,又BF ⊂平面BEF , ∴平面BEF ⊥平面PAD ;(Ⅱ)解:连接PF ,∵PA =PD ,F 为AD 的中点,∴PF ⊥AD ,又PF ⊂平面PAD ,平面PAD ⊥平面ABCD ,平面PAD ∩平面ABCD =AD , ∴PF ⊥底面ABCD ,又BF ⊥AD ,以F 为坐标原点,分别以FA ,FB ,FP 所在直线为x ,y ,z 轴建立空间直角坐标系, 设P(0,0,t),C(−1,1,0),取平面ABCD 的法向量n 1⃗⃗⃗⃗ =(0,0,1),PC ⃗⃗⃗⃗⃗ =(−1,1,−t),B(0,1,0), ∴sin60°=|n 1⃗⃗⃗⃗⃗ ⋅PC⃗⃗⃗⃗⃗ |n1⃗⃗⃗⃗⃗ |⋅|PC⃗⃗⃗⃗⃗ |,即t√t 2+2=√32,解得t =√6.设平面EBF 的法向量为n 2⃗⃗⃗⃗ =(x,y,z), 由{n 2⃗⃗⃗⃗ ⋅FE ⃗⃗⃗⃗⃗ =−12x +12y +√62z =0n 2⃗⃗⃗⃗ ⋅FB ⃗⃗⃗⃗⃗ =y =0,令z =1,得n 2⃗⃗⃗⃗ =(√6,0,1).设二面角E −BF −A 的平面角为θ,则|cosθ|=|n 1⃗⃗⃗⃗⃗ ⋅n 2⃗⃗⃗⃗⃗ ||n 1⃗⃗⃗⃗⃗ |⋅|n 2⃗⃗⃗⃗⃗ |=√77, 又θ为钝角,∴cosθ=−√77.即二面角E −BF −A 的余弦值为−√77.【解析】(Ⅰ)连接AC 交BE 与G ,连接EG ,由已知结合线面平行的性质可得PA//EG ,再由E 为PC 的中点,得G 为AC 的中点,则△AFG≌△BCG ,得到AF =BC =12AD =1,即F 为AD 的中点,可得四边形DCBF 为平行四边形,再由AD ⊥DC ,得BF ⊥AD ,可得BF ⊥平面PAD ,进一步得到平面BEF ⊥平面PAD ;(Ⅱ)连接PF ,证明PF ⊥底面ABCD ,又BF ⊥AD ,以F 为坐标原点,分别以FA ,FB ,FP 所在直线为x ,y ,z 轴建立空间直角坐标系,设P(0,0,t),由PC 与底面ABCD 所成的角为60°求解t ,然后分别求出平面ABF 与EBF 的一个法向量,由两法向量所成角的余弦值可得二面角E −BF −A 的余弦值.本题考查平面与平面垂直的判定,考查空间想象能力与思维能力,训练了利用空间向量求解空间角,是中档题.20.【答案】解:(Ⅰ)设B(0,−t)(t >0),菱形ABCD 的中心在x 轴上,设为Q 点.由题意可知,∣OQ ∣2=∣OA ∣∣OB ∣,则Q(√t,0),又Q 为BD 的中点,因此点D(2√t,t) 即点D 的轨迹为{x =2√ty =t (t 为参数且t ≠0), 化为标准方程x 2=4y(x ≠0).(Ⅱ)设点N(a,a 24),过点N 的切线方程为:y −a 24=a2(x −a),点M(m,0)在该切线方程上,∴M(a2,0), 即m =a2,由1<m <4,可得2<a <8,又k MN =a2,k AM =−2a ,则k MN k AM =−1,即NM ⊥AM , ∴S =12∣MN ∣∣AM ∣=12√(a2)2+(a 24)2⋅√1+(a2)2=a(4+a 2)16,可知当2<a <8时,S 为关于a 的增函数,因此S 的取值范围是(1,34).【解析】(Ⅰ)设B(0,−t)(t >0),因为菱形ABCD 对角线的交点Q 在x 轴上,根据射影定理,得∣OQ ∣2=∣OA ∣∣OB ∣,求得Q 点坐标,进而求得D 点坐标,去掉参数,求得D 的轨迹曲线E ;(Ⅱ)设点N(a,a 24),可列出该点处的切线方程,将M 点代入,由1<m <4,求得a 的取值范围,易推得NM ⊥AM ,则S =12∣MN ∣∣AM ∣用a 表示出△AMN 面积,根据a 的取值范围进而求得△AMN 面积的取值范围.本题考查了曲线与方程,考查了利用导数求曲线上某点的切线方程,考查了两直线垂直斜率乘积为−1,属于中档题.21.【答案】解:(Ⅰ)F(x)=f(x)−g(x)=mlnx −x−1x,F′(x)=m x−1x 2=mx−1x 2,当m ≤0时,F′(x)<0,则F(x)在(0,+∞)上单调递减;当m >0时,由F′(x)<0得0<x <1m ,由F′(x)>0得x >1m , ∴函数F(x)在(0,1m )上单调递减,在(1m ,+∞)上单调递增; (Ⅱ)函数f(x)=mlnx 在点(a,mlna)处的切线方程为y −mlna =m a(x −a),即y =m ax +mlna −m , 函数g(x)=x−1x在点(b,1−1b )处的切线方程为y −(1−1b )=1b 2(x −b),即y =1b 2x −2b +1,又y =f(x)与y =g(x)的图象有唯一一条公切线,故{ma =1b 2①mlna −m =1−2b ②, 由①得,m =ab 2代入②消去m ,整理得b 2−2b −alna +a =0③,则此关于b(b >0)的方程③有唯一解,令g(b)=b 2−2b −alna +a =(b −1)2−alna +a −1,令ℎ(a)=−alna +a −1,ℎ′(a)=−lna ,由ℎ′(a)>0得0<a <1,由ℎ′(a)<0得a >1,∴函数ℎ(a)在(0,1)上单调递增,在(1,+∞)上单调递减,则ℎ(a)≤ℎ(1)=0, (i)当ℎ(a)=0时,方程③有唯一解b =1,由ℎ(a)=−alna +a −1=0得a =1,此时m =a b 2=1;(ii)当ℎ(a)<0时,二次函数g(b)=(b −1)2−alna +a −1在b ∈(1,+∞)上显然有一个零点,b ∈(0,1)时,由方程②mlna −m =1−2b ,可得m(lna −1)=b−2b<0,而m >0,则lna −1<0,则g(0)=−alna +a =−a(lna −1)>0,∴二次函数g(b)=(b −1)2−alna +a −1在b ∈(0,1)上也有一个零点,不合题意; 综上,m =1.【解析】(Ⅰ)求得F(x),并求导,然后分m ≤0及m >0讨论即可得出单调性情况;(Ⅱ)根据题意,由导数的几何意义可得{ma =1b 2①mlna −m =1−2b ②,进而得到b 2−2b −alna +a =0③,则此关于b(b >0)的方程③有唯一解,令g(b)=b 2−2b −alna +a =(b −1)2−alna +a −1,ℎ(a)=−alna +a −1,ℎ′(a)=−lna ,则易知ℎ(a)≤ℎ(1)=0,然后分ℎ(a)=1及ℎ(a)<0讨论即可得出结论.本题考查函数与导数的综合运用,考查导数的几何意义以及利用导数研究函数的单调性,二次函数的零点等知识点,考查分类讨论思想,运算求解能力,属于较难题目.22.【答案】解:(Ⅰ)曲线C 的极坐标方程为ρ2=123+sin 2θ(θ∈[0,π2]),转换为直角坐标方程为x 24+y 23=1(0≤x ≤2,0≤y ≤√3),转换为参数方程为{x =2cosθy =√3sinθ(θ为参数,θ∈[0,π2]).直线1的参数方程为{x =2−2√55ty =3+√55t(t 为参数).转换为直角坐标方程为x +2y −8=0. (Ⅱ)设P(2cosθ,√3sinθ),θ∈[0,π2], 所以点P 到直线l 的距离d =√3sinθ−8|√5=4√55|sin(θ+π6)−2|,由于θ∈[0,π2],所以12≤sin(θ+π6)≤1, 所以4√55≤d ≤6√55, 故等边三角形的边长的取值范围:8√1515≤x ≤12√1515.【解析】(Ⅰ)直接利用转换关系的应用,把参数方程极坐标方程和直角坐标方程之间进行转换.(Ⅱ)利用点到直线的距离公式的应用和三角函数关系式的恒等变换及正弦型函数的性质的应用求出结果.本题考查的知识要点:三角函数关系式的恒等变换,正弦型函数的性质的应用,参数方程、极坐标方程和直角坐标方程之间的转换,点到直线的距离公式的应用,主要考查学生的运算能力和转换能力及思维能力,属于中档题型.23.【答案】解:(1)由题意得:∵f(x)≤g(x)在x ∈R 上恒成立,∴m ≤|x +3|+|x −2|恒成立, 即m ≤(|x +3|+|x −2|)min又∵|x +3|+|x −2|≥|(x +3)−(x −2)|=5 ∴m ≤5,即m ∈(−∞,5] (2)令f(x)≥0,∴m ≥|x −2| 若m ≤0,则解集为⌀,不合题意;若m>0,则有−m≤x−2≤m,即x∈[2−m,2+m]又∵解集为x∈[1,3],∴m=1∴ab−2a−b=2∴b=2a+2 a−1∵{a>0b>0,解得a>1∴a+b=a+2a+2a−1=a−1+4a−1+3∴a+b≥2√(a−1)(4a−1)+3=7当且仅当a−1=4a−1,即a=3时,等号成立,此时b=4∴a=3,b=4时a+b的最小值为7【解析】(1)利用绝对值三角不等式性质(2)利用绝对值不等式解法求出m,带入得到a,b等式,转化为只含有a的式子后利用基本不等式可以求解.本题考查绝对值三角不等式,以及基本不等式的应用,考查转化思想以及计算能力,是中档题第21页,共21页。
1
绝密★启用前
吉林省长春市普通高中 2020届高三毕业班质量监测(一)
数学(理)试题答案及评分参考
一、选择题(本大题共12小题,每小题5分,共60分)
1. B
2. C
3. C
4. C
5. D
6. A
7. D
8. A
9. C
10. B
11. C
12. C
二、填空题(本大题共4小题,每小题5分,16题第一空2分,第二空3分,共20分)
13. 112 14. 2
15. 20π
16.
221
n n +,1(1)(1)n
n n -++
三、解答题
17. (本小题满分12分)
【命题意图】本题考查三角函数的相关知识,特别是三角函数中的取值范围问题. 【试题解析】解:(Ⅰ)由题可知sin sin sin cos A
A B A
=⋅,即sin cos B A =, 由a b >,可得2
A B π
+=
,即ABC △是直角三角形.
(6分)
(Ⅱ)ABC ∆的周长1010sin 10cos L A A =++
,10)4
L A π
=++
,
由a b >可知,4
2
A π
π
<<
,
因此sin()124
A π
<+<,
即2010S <<+.
(12分)
18. (本小题满分12分)
【命题意图】本题考查立体几何相关知识.
【试题解析】解:(Ⅰ)取PA 中点M ,连结EM 、DM ,。