量测不确定度评估8Steps
- 格式:doc
- 大小:108.00 KB
- 文档页数:3
文件制修订记录对公司在体系中的测量设备的计量确认过程和测量过程控制的测量不确定度进行评定,使之符合预期的不确定度要求,确保测量结果的正确。
2.0适用范围本程序适用于在进行计量确认过程和测量过程策划或实施测量过程,及在使用测量结果时对测量不确定度进行分析。
有关人员在选用测量设备和测量方法时也可参照本程序。
3.0定义3.1测量不确定度:表征合理地赋予被测量之值的分散性。
3.2标准不确定度:以标准差表示的测量不确定度。
3.3 A类标准不确定度:用对观测列进行统计分析的方法来评定不确定度。
3.4 B类标准不确定度:用不同于对观测列进行统计分析的方法来评定标准不确定度。
4.0职责4.1各单位负责本单位实施的测量过程的测量不确定度评定;4.2质检部负责监督、考核各单位测量不确定度的评定工作。
5.0工作流程5.1测量不确定度评定过程5.1.1过程识别:测量不确定度评定过程的输入是国家法规、规范、统计数据、测量设备的证书(或报告)、测量方法、测量环境条件、测量人员素质等;输出是测量不确定度报告;其活动是对测量不确定度分量的分析、合成及扩展不确定度计算。
5.1.2测量管理体系覆盖的计量确认过程、关键测量过程的测量不确定度评定,在测量管理体系的运行过程中应不断完善。
5.1.3各部门应记录测量不确定度的评价。
确定测量不确定度的记录时,可对类似形式的测量设备给予一个通用的陈述,并同时对每个独立的测量过程所特有的变化给出说明。
5.1.4测量不确定度分析应在测量设备和测量过程的确认有效前完成。
5.1.5根据测量过程的重要程度的不同,测量不确定度的评定可以采用不同的方法进行评定。
对于使用要求较低的测量设备,其测量结果的不确定度可采用简化方法进行评定。
5.1.6测量不确定度评定的基本方法执行《测量不确定度评定与表示》的有效版本。
5.1.6.1确定不确定度的来源,一般从五个方面来分析:➢试验人员的因素;➢测量仪器的因素;➢环境条件的因素;➢试验方法的因素;➢被测量本身的因素。
第一章入门1、测量1.1 什么是测量?测量告知我们关于某物的属性。
物体有多重,或有多热,或有多长。
测量赋予这种属性一个数。
测量总是用某种仪器来实现。
测量结果由部分组成:数,测量单位。
1.2什么不是测量有些过程看起来像是测量,然而并不是。
两根绳子作比较,不是测量。
计数通常也不认为是测量。
对于只回答“是或非”的答案,或者“合格或不合格”的结果的检测(test)往往不是测量。
2、测量不确定度1.1 什么是测量不确定度?测量不确定度是对任何测量的结果存有怀疑。
对每一次测量,即使是最仔细的,总是会有怀疑的余量。
可以表述为“出入”,例如一根绳子可能2米长,有1厘米“出入”。
2.2测量不确定度表述回答“余量有多大?”和“怀疑有多差?”定量给出不确定度,需要两个数。
余量(或称区间的宽度;置信概率,说明“真值”在该余量范围内有多大把握。
比如:棍子的长度测定为20厘米加或减1厘米,有95%置信概率。
写成:20cm±1cm,置信概率为95%。
表明棍子长度在19厘米到21厘米之间有95%的把握。
2.3 测量不确定度度重要性考虑测量不确定度更特殊的理由;校准——在证书上报告测量不确定度。
检测——不确定度来确定合格与否。
允差——不确定是否符合允差以前,你需要知道不确定度。
3、关于数字集合的基本统计学3.1操作误差“测量再而三,只为一剪子”,两、三次核对测量,减少出错的风险。
任何测量至少进行三次,防止出操作误差。
3.2基本统计计算两项最主要的统计计算,一组数值的平均值或算术平均值,以及它们的标准偏差。
3.3获得最佳估计值——取多次读数的平均值重复测量出不同结果的原因:进行的测量有自然变化;测量的器具没有工作在完全稳定状态;重复读数时读数有变化,最好多次读数并取平均值.平均值是“真值”的估计值。
3.4多少次读数求平均10次是普遍选择的.根据经验通常取4至10次读数就够了。
3.5分散范围—标准偏差重复测量给出不同结果时,要了解读数分散范围有多宽.量值的分散范围告诉测量不确定度的情况.对分散范围定量的常见形式是标准偏差。
不确定度评定方法
不确定度评定方法是一种通过测量、计算和分析来评定某个量测结果的准确度和可靠性的方法。
在实验中,由于各种因素的影响,量测结果会存在误差,而不确定度评定方法可以帮助我们了解这些误差的大小和来源,从而提高实验的准确性和可靠性。
一般来说,不确定度评定方法包括以下几个步骤:
1. 确定测量的对象和测量方法:首先需要确定所要测量的物理量和使用的测量方法,例如重力加速度的测量可以使用自由落体实验或摆锤实验等方法。
2. 确定影响测量结果的因素:在测量过程中,会有多种因素对测量结果产生影响,包括测量仪器的精度、环境条件的变化、实验者的技能水平等。
需要对这些因素进行分析和评估。
3. 评定各因素的不确定度:通过数据处理和统计分析等方法,可以确定每个因素对测量结果的影响程度,并计算出每个因素的不确定度。
4. 综合不确定度:在确定各因素的不确定度后,需要将其综合起来,计算出整个测量结果的不确定度。
这个过程需要考虑每个因素的权重和相关性等因素。
5. 表达不确定度:最后,需要将不确定度以数值或误差范围的形式表达出来,例如使用标准差、置信区间等指标来表示测量结果的不确定度。
需要注意的是,不确定度评定方法并不是一种万能的解决方案,
它只能帮助我们了解测量误差的大小和来源,而在实际应用中,需要根据具体情况选择合适的评定方法和技术手段。
同时,实验者也需要具备一定的理论知识和实践技能,才能正确地进行测量和不确定度评定。
测量不确定度评定方法与步骤一、测量不确定度评定资料名称资料名称为:XXXXX测量结果不确定度评定其中“ XXXXX表示被测量对象的名称(仪器的名称或参数的名称)。
如:被测量对象为普通压力表,测量方式为检定,则资料名称为:普通压力表检定结果不确定度评定;又如,被测量对象为光谱分析仪,测量方式为校准,则资料名称为:光谱分析仪校准结果不确定度评定;再如,被测量对象为XXX工件内尺寸,测量方式为直接测量,则资料名称为:XXX工件内尺寸测量结果不确定度评定。
二、评定步骤1测量方法与测量数学模型1.1测量方法当测量是按照相关的规程、规范或标准进行时,测量方法的描述为:依据XXX规程、规范或标准的规定进行测量;当测量无直接相关的规程、规范或标准作依据,即按相应的测量操作进行测量时,测量方法的描述应简述操作的方法。
1.2测量数学模型1.2.1直接测量数学模型当被测对象的量值即是测量仪器的读数的情况(直接绝对测量),测量数学模型为:y=x (y表示被测量值,x表示测量仪器的读数)当被测对象的是求取测量误差的情况(直接相对测量),测量数学模型为: e = x - x s (e表示示值误差,x表示被检定或校准的设备的读数,X s表示检定或校准所用的测量标准设备的读数。
一般检定或校准所用的测量标准设备的读数应在不改变的情况下进行比较测量)1.2.2间接测量数学模型当测量是按照相关的规程、规范或标准进行时,应原式引入规程、规范或标准上给出的被测量的计算公式;当测量无直接相关的规程、规范或标准作依据时,应使用相应的计算公式,如:长方形的面积A二a b ;电流强度i=UR2.最佳测量值最佳测量值即是将各输入分量的平均值带入测量数学模型后计算并修约得到的结果。
如测量数学模型:y二讯人山2,……,x N)先计算得到各个输入分量的平均值,X i = ?带入测量数学模型后计算得到:y二f (x「x2,……,x N)二?3.方差及灵敏系数3.1方差(依据测量数学模型写出方差)3.1.1当各输入量之间相互独立(即不相关的情况),对任意的测量数学模型,方差形式均为:u C(y) -7 ( —)2u2(x i) ( u C (y)表示被测量y的合成标准不确定度)cx i特别地,当测量数学模型形如y =CX1P1X『…x N N时,方差可写成相对合成式:W) = »[P i U i.rel (X i)]'U(Lel3.1.2当各输入量之间相互不独立(即不相关的情况) ,对任意的测量数学模型,方差(包含协方差)形式为:ufw) = ' ( f )2u2(X i)2 f f U(X i,X j)X i X i .X j其中:协方差u(x i,X j) = r(x i, X j )u(x i )u(x j) 式中r(X i,X j)为输入量X i 和X j 之间的相关系数,其绝对值小于或等于1。
测量不确定度的方法测量不确定度评定U,p,k,u代表什么?当测量不确定度用标准偏差σ表示时,称为标准不确定度,统一规定用小写拉丁字母“u”表示,这是测量不确定度的第一种表示方式。
但由于标准偏差所对应的置信水准(也称为置信概率)通常还不够高,在正态分布情况下仅为68.27%,因此还规定测量不确定度也可以用第二种方式来表示,即可以用标准偏差的倍数kσ来表示。
这种不确定度称为扩展不确定度,统一规定用大写拉丁字母U表示。
于是可得标准不确定度和扩展不确定度之间的关系:U=kσ=ku式中k为包含因子。
扩展不确定度U表示具有较大置信水准区间的半宽度。
包含因子有时也写成kp的形式,它与合成标准不确定度uc(y)相乘后,得到对应于置信水准为p的扩展不确定度Up=kpuc(y)。
在不确定度评定中,有关各种不确定度的符号均是统一规定的,为避免他人的误解,一般不要自行随便更改。
在实际使用中,往往希望知道测量结果的置信区间,因此还规定测量不确定度也可以用第三种表示方式,即说明了置信水准的区间的半宽度a来表示。
实际上它也是一种扩展不确定度,当规定的置信水准为p时,扩展不确定度可以用符号Up表示。
测量不确定度评定步骤?评定与表示测量不确定度的步骤可归纳为1)分析测量不确定度的来源,列出对测量结果影响显著的不确定度分量。
2)评定标注不确定度分量,并给出其数值ui和自由度vi。
3)分析所有不确定度分量的相关性,确定各相关系数ρij。
4)求测量结果的合成标准不确定度,则将合成标准不确定度uc 及自由度v .5)若需要给出展伸不确定度,则将合成标准不确定度uc乘以包含因子k,得展伸不确定度U=kuc。
6)给出不确定度的最后报告,以规定的方式报告被测量的估计值y及合成标准不确定度uc或展伸不确定度U,并说明获得它们的细节。
根据以上测量不确定度计算步骤,下面通过实例说明不确定度评定方法的应用。
我们单位的不确定度都是我写,其实计算不确定度,并写出报告,整体来说也就分几个步骤,一、概述二、数学模型三、输入量的标准不确定度评定这里面就包括数学模型里所有影响结果的参量,找出所有影响因素,计算各个影响量的标准不确定度,其中又分为A类评定和B类评定这个按B类评定进行计算,影响万用表的因素也很多,比如万用表的仪器设备检定证书中如果有不确定度,可以直接用,如果没有,就看给出的允许误是多少,用这个数字除以根号3,得出误差的标准不确定度。
实验误差与不确定度的评估方法实验误差与不确定度是科学实验中常常需要进行评估和控制的重要指标。
实验误差是指测量结果与真实值之间的差异,而不确定度则是对测量结果的不确定性的度量。
准确评估实验误差和不确定度可以提高实验结果的可靠性和可信度。
本文将介绍几种常用的实验误差与不确定度的评估方法。
一、重复测量法重复测量法是最常见和直观的评估实验误差和不确定度的方法之一。
该方法要求对同一样本或物体进行多次测量,然后计算这些测量结果的平均值和标准偏差。
平均值反映了测量结果的趋势,而标准偏差则表示了各次测量结果之间的离散程度,即实验误差。
通过计算标准偏差的方法,可以得到不确定度的估计。
二、直接测量法直接测量法是通过直接测量物理量来评估实验误差和不确定度的方法。
对于一些简单的物理量,可以使用直尺、量杯等工具进行直接测量。
然而,由于仪器的精度和测量条件的不完善,直接测量往往会引入一定的误差。
因此,在直接测量时应考虑仪器的精确度,以及环境条件的稳定性。
三、回归分析法回归分析法是一种统计分析方法,广泛应用于实验数据的处理和实验误差的评估。
通过建立一个数学模型,将自变量与因变量之间的关系进行拟合,并得到回归方程。
根据回归方程,可以计算得到实验结果的预测值和残差。
残差表示实验数据与回归模型之间的差异,即实验误差。
利用残差的统计特性,可以计算得到不确定度的估计。
四、不确定度的传递法不确定度的传递法是用于计算复杂测量结果不确定度的方法。
在实验中,往往需要通过一系列测量来得到希望获得的物理量。
不确定度的传递法基于不确定度的传递规律,将各个测量结果的不确定度进行求和,最终得到所求物理量的不确定度。
这种方法适用于各种复杂的测量情况,可以提供对测量结果全面的不确定度评估。
五、统计方法统计方法是一种基于概率统计理论的实验误差和不确定度评估方法。
通过对大量样本进行测量,并进行统计分析,可以得到实验结果的统计规律。
常见的统计方法包括频率分布分析、置信区间估计、假设检验等。
三、检测和校准实验室不确定度评估的基本方法1、测量过程描述:通过对测量过程的描述,找出不确定度的来源。
内容包括:测量内容;测量环境条件;测量标准;被测对象;测量方法;评定结果的使用。
不确定度来源:● 对被测量的定义不完整; ● 实现被测量的测量方法不理想;● 抽样的代表性不够,即被测样本不能代表所定义的被测量;● 对测量过程受环境影响的认识不周全,或对环境的测量与控制不完善; ● 对模拟式仪器的读数存在人为偏移;● 测量仪器的计量性能(如灵敏度、鉴别力、分辨力、死区及稳定性等)的局限性; ● 测量标准或标准物质的不确定度;● 引用的数据或其他参量(常量)的不确定度; ● 测量方法和测量程序的近似性和假设性; ● 在相同条件下被测量在重复观测中的变化。
2、建立数学模型:建立数学模型也称为测量模型化,根据被测量的定义和测量方案,确立被测量与有关量之间的函数关系。
● 被测量Y 和所有个影响量i X ),2,1(n i ,⋯=间的函数关系,一般可写为),2,1(nX X X f Y ,⋯=。
● 若被测量Y 的估计值为y ,输入量i X 的估计值为i x ,则有),x ,,x f(x y n ⋯=21。
有时为简化起见,常直接将该式作为数学模型,用输入量的估计值和输出量的估计值代替输入量和输出量。
● 建立数学模型时,应说明数学模型中各个量的含义。
● 当测量过程复杂,测量步骤和影响因素较多,不容易写成一个完整的数学模型时,可以分步评定。
● 数学模型应满足以下条件:1) 数学模型应包含对测量不确定度有显著影响的全部输入量,做到不遗漏。
2) 不重复计算不确定度分量。
3) 选取合适的输入量,以避免处理较麻烦的相关性。
● 一般根据测量原理导出初步的数学模型,然后将遗漏的输入量补充,逐步完善。
3、不确定度的A 类评定:(1)基本方法——贝塞尔公式(实验标准差)方法在重复性条件下对被测量X 做n 次独立重复测量,得到的测量结果为i x ),2,1(n i ,⋯=。
量測不確定度評估8 Steps
量測不確定度評估模式:量測方程式之建立
s
tep1:以數學式表示受測量Y與輸入量X
i
之關係
NXXXfY‧‧‧,21
Step2:決定輸入量Xi的估計值xi
Nxxxfy‧‧‧,21
估計值可為「依據一系列觀測之統計分析結果所得的量,即在量測過程中直接確定
的量」
‧這些值可根據重複觀測而到,此類估計值的「標準不確定度」採A類評估方式。
‧估計值亦可為由其他方法所取得的量,此類估計值的「標準不確定度」採B類評估方
式。
Step3-1:估計值之標準不確定度---A類評估方式由重複觀察求得:
n
S
SXuxkxnSkknxxXxnkiinkii
121
1
1
1
1
1
,
,
‧自由度v=n-1(n=樣本數)
Step3-2:估計值之標準不確定度---B類評估方式
‧由校正報告,或對相關儀器特性的經驗,規格提供等。
(1)矩形分布 (2)三角形分布 (3)梯形分布
3axui
6
a
xui
6
612a
xu
i
(4)常能分布 (5)U形分布
3
a
xui
2
a
xui
‧自由度
221
iixux
v
量測不確定度評估8 Steps
Step4:評估各估計值ix之間的共變數jixxu,
jijiji
xxrxuxuxxu,,
其中
ji
xxr,
為相關係數
1111221jinknkjjiinkjjiijixxr
xkxxkx
xkxxkx
xxr
,
,,
,,
,
Step5:計算受測量Y的估計值y及靈敏係數iC
‧由各輸入量
iX的估計值i
x
,以函數關係f計算受測量Y的估計值y
即
Nxxxfy‧‧‧,21
‧利用偏微分求靈敏係數
i
C
i
i
xfC
量測不確定度評估 8 Steps
Step6: 組合標準不確定度yuc
‧相關輸入量
i
i
xfC
‧非相關輸入量,即
0
ji
xxr,
‧‧‧‧‧‧‧‧‧‧‧‧,22222212222221212212)(xuxfxuxfu
xuxfxuxfu
xuCyuixfC
yuxuCyu
ic
ic
iiii
NiiN
i
ii
c
‧有效自由度
Niiicyuyuveff1
4
4
Step7:選定擴充係數k
依據有效自由度eff及信賴水準95% 分布表選定擴充係數k=t
95
()
Step8:擴充不確定度
擴充不確定度係提供一個區間y-u至y+u,期待合理賦予受測量Y之值的高涵蓋
比例分布範圍。
U=kuc(y)
相對擴充不確定度
0≠yyU,其中
量測結果表示方法:
Y=y+U
Y:受測量 y:受測量之估計值 U:擴充不確定度