数学系 毕业论文:求一元函数极限的若干方法
- 格式:doc
- 大小:2.32 MB
- 文档页数:28
一元函数极限的求法一元函数的极限就是在函数定义域内某一点处接近这个点时,函数取值的趋势。
在数学分析中,极限是一个十分重要的概念,它用于定义连续性、收敛与发散、导数和积分等重要概念。
对于一元函数的极限的求法,我们可以通过直接代入法、极限的四则运算法则、夹挤定理以及极限的极限转换法等多种方法进行求解。
1. 直接代入法直接代入法是最基础的求解一元函数极限的方法,即将自变量的值逐渐逼近极点,观察函数在这个点附近的取值趋势,将自变量的取值代入函数中,求函数在该点的取值。
例如:求函数$f(x)=\dfrac{x-1}{x+3}$在$x=2$处的极限。
解:将$x=2$代入得$f(2)=\dfrac{1}{5}$,因此,$x=2$时$f(x)$的极限为$\dfrac{1}{5}$。
2. 极限的四则运算法则此法则是求解一元函数极限中的基本规则。
对于两个已知极限的函数进行加减、乘除运算时,可以直接套用极限的四则运算法则。
例如:求函数$f(x)=\dfrac{sinx}{x}$在$x=0$处的极限。
解:$lim_{x \to 0}\dfrac{sinx}{x}=lim_{x \to0}\dfrac{sinx}{x}\cdot\dfrac{1}{cosx}=lim_{x \to 0}\dfrac{sinx}{x}\cdot lim_{x \to 0}\dfrac{1}{cosx}=1$,因此,$x=0$时$f(x)$的极限为$1$。
3. 夹挤定理当我们需要求一个函数在某一点处的极限值时,有时我们并不知道函数在该点处是否存在极限,因此我们引入夹挤定理,即用两个已知的存在极限的函数挤压住需要求的函数,从而求出该函数的极限值。
例如:求函数$f(x)=x^2sin\dfrac{1}{x}$在$x=0$处的极限。
解:$\lim_{x \to 0}(-x^2) \leq \lim_{x \to 0} x^2sin\dfrac{1}{x} \leq \lim_{x \to 0} x^2$。
一元函数极限的求法可以利用洛必达法则求极限运用洛必达法则应注意以下几点首先要注意条件,也即是说,在没有化为时不可求导。
应用洛必达法则,要分别求分子分母的导数,而不是求整个分式的导数。
要及时化简极限符号后面的分式,在化简以后检查是否仍是未定式,若遇到不是未定式,应立即停止使用洛必达法则,否则会引起错误。
当不存在时,本法则失效,但并不是说极限不存在,此时求极限须用另外方法。
拓展:函数极限则有趋于无穷的定义:设f为定义在[a,+∞)上的函数,A为定数.若对任给的ε>0,存在正数M(≥a),使得当x>M时,有|f(x)-A|<ε,则称函数f当x 趋于+∞时以A为极限,记作:lim(x->+∞)f(x)=A. 对应的有趋于负无穷和趋于无穷的定义。
一元函数求极限的方法有:等价无穷小代换; 洛必达法则; 无穷小和有界函数的乘积仍为无穷小; 连续函数的极限值等于其函数值。
极限的定义:在数与数集之间,如果存在一个数使得这个数的所有有限次幂都小于或等于它自身,则称这个数为该数集的极限。
扩展资料:一元函数的定义域1. 一元函数是指只有自变量的连续变化过程而没有因变量变化的连续变化过程的集合。
例如直线上的点p1、p2、...、pn称为点1至点n关于直线l的一个端点组成的集合体——线段l1,l2,...,lm称为线段1的长度段L1,L2。
2. 点1至点n之间的长度关系是线段长度关系的特殊情况之一,因此我们说线段的长度关系中包含了点1至点和N的距离之间的关系——也就是包含了点1-N 的距离的关系。
3. 在平面直角坐标系中画一条水平线M1(m),将水平线上的所有点在M1(m)上标出后连成一条射线S1。
设S1=s0,S2=s1,S3=s2......Sn=s3,则M1(m)叫做点到线的距离单位A1。
浅析函数极限的求法摘要极限是数学分析的一个重要组成部分,它以各种形式出现且贯穿在全部容之中,因此,掌握好极限的求解方法是学习数学分析的关键,而函数极限的求法可谓是多种多样.首先本文先给出了函数极限的定义及其性质;其次归纳和总结了函数极限的若干求法,并举例分析;最后给出了求函数极限的流程图,也就是求函数极限的思路、步骤,使初学者能较快地掌握求函数极限方法.关键词:极限;导数;洛必达法则;泰勒公式RAMBLE ABOUT THE METHODS OF MATH LIMITABSTRACTMathematical analysis of the limit has been a focus of content, and runs through the entire contents in a variety of forms, therefore, how to grasp the solution to limit is the key to learning the mathematical analysis. The series of limit can be described as diverse, by concluded and induction, At first, this paper gives the definition of limit, by defining the to understand what is the limit of sequence and function; secondly by induction and summarization, this paper lists some common calculation methods, and analysis all kinds of method of limit. At last,given the procedure of the solution to function limit finally, i.e. the idea of solve function limit and the step of solve function limit, to make the beginning student can grasp the method of solve function limit fast]9[.Key words:limit; derivative; Variable substitution; L’hospital’s rule; McLaughLin formula; Taylar exhibition type目录1 前言 .................................................................. - 3 - 2函数极限的概念及性质................................................... - 4 -2.1函数极限的概念................................................... - 4 -2.2函数极限的性质................................................... - 5 - 3函数极限的求解方法..................................................... - 6 -3.1 利用两个准则求极限............................................... - 6 -3.2 利用极限的四则运算求极限......................................... - 7 -3.3 利用两个重要极限公式求极限....................................... - 9 -3.4 利用洛必达法则求极限............................................. - 9 -3.5 利用函数连续性求极限............................................ - 11 -3.6 通过等式变形化为已知极限........................................ - 11 -3.7 利用换元法求极限................................................ - 11 -3.23 利用自然对数法求极限....................................... - 12 -3.8 利用因式分解法求极限............................................ - 13 -3.14 利用压缩定理................................................... - 17 -4 求极限的一般流程...................................................... - 19 - 结论 ................................................................... - 23 - 参考文献................................................................ - 24 -致 ..................................................................... - 26 -1 前言极限研究的是变量在变化过程中的趋势问题.数学分析中所讨论的极限大体上分为两类:一类是数列的极限,一类是函数的极限.两类极限的本质上是相同的,在形式上数列界限是函数极限的特例.因此,本文只就函数极限进行讨论.函数极限运算是高等数学的一个重要的基本运算,一部分函数的极限可以通过直接或间接的运用“极限四则运算法则”来求解,而另一部分函数极限需要通过特殊方法解决.求函数极限的方法较多,但是每种方法都有其局限性,都不是万能的.对某个具体的求极限的问题,我们应该追求最简便的方法.在求极限的过程中,必然以相关的概念、定理以及公式为依据,并借助一些重要的方法和技巧.极限是数学分析中最基本的概念之一,用以描述变量在一定的变化过程中的终极状态]1[.早在中国古代,极限的朴素思想和应用就已在文献中有记载,例如,晋时期中国数学家徽的“割圆术”的数学思想,即用无限逼近的方式来研究数量的变化趋势的思想.在数学分析中的许多基本概念,都可以用极限来描述.如函数连续的定义,导数的定义,定积分、二重积分、三重积分的定义,级数收敛的定义,都是用极限来定义的.极限是研究数学分析的基本工具,极限是贯穿数学分析的一条主线.本文是在极限存在的条件下,对极限的常用求法进行综述,归纳出计算极限的一般流程.计算极限所用的方法,是致力于把所求极限简化为已知极限.求极限的方法远远不止本文所归纳的,故本文并不够完善,求极限的方法未能拓展,只限于数学分析.希望通过本文,大家在思想上能对求解极限的方法有一个高度的总括,计算极限时游刃有余.2函数极限的概念及性质2.1函数极限的概念定义1 设f 为定义在[),a +∞上的函数,A 为定数.若对任给的0ε>,存在正数M ()0a ≥,使得当x M >时有 ()f x A ε-<则称函数f 当x 趋于+∞时以A 为极限,记作()lim x f x A →+∞= 或 ()()f x A x →→+∞定义 2 (函数极限的εδ-定义) 设函数f 在点0x 的某个空心邻域()0'0;U x δ有定义,A 为定数.若对任给的0ε>,存在正数()'δδ<,使得00x x δ<-<时有()f x A ε-<则称函数f 当x 趋于0x 时以A 为极限,记作()0lim x x f x A →= 或 ()()0f x A x x →→定义3设函数f 在()0'0;U x δ+(或()0'0;U x δ-)有定义,A 为定数.若对任给的0ε>,存在正数()'δδ<,使得当00x x x δ<<+(或00x x x δ-<<)时有 ()f x A ε-<则称数A 为函数f 当x 趋于0x +(或0x -)时的右(左)极限,记作()0lim x x f x A +→= (()0lim x x f x A -→=) 或()()0f x A x x +→→ (()()0f x A x x -→→)右极限与左极限统称为单侧极限. f 在点0x 的右极限与左极限又分别记为()()000lim x x f x f x +→+= 与 ()()000lim x x f x f x -→-=.2.2函数极限的性质定理1(唯一性) 若极限()0lim x x f x →存在,则f 在0x 的某空心邻域()00U x 有界.定理2(局部保号性)若()0lim 0x x f x A →=> (或0<),则对任何正数r A <(或r A <-),存在()00U x ,使得对一切()00x U x ∈有()0f x r >>(或()0f x r <-<).定理3(保不等式性) 设()0lim x x f x → 与 ()0lim x x g x →都存在,且在某邻域()0'0;U x δ有()()f x g x ≤,则()()0lim lim x x x x f x g x →→≤定理 4 (迫敛性) 设()()0lim lim x x x x f x g x A →→==,且在某邻域()0'0;U x δ有()()()f x h x g x ≤≤,则()0lim x x h x A →=定理5(四则运算法则) 若极限()0lim x x f x →与()0lim x x g x →都存在,则函数f g ±,f g •当0x x →时极限也存在.3函数极限的求解方法3.1 利用两个准则求极限(1)极限的迫敛性[1](夹逼原理),对数列和函数同样适用:设A x g x f x x x x ==→→)(lim )(lim 0,且在某)';(00δx U 有)()()(x g x h x f ≤≤则A x h x x =→)(lim利用夹逼原理求极限,通常通过放大或缩小的方法找出两个有相同极限值的数列或函数, )()()(x g x h x f ≤≤. 例3.1求cos limx x xx→∞-解: 因为1cos 1x -≤≤,所以当x <0时 11cos 1111x x x x x x x x x+--+=≤≤=- 而11lim 1lim 11x x x x →∞→∞⎛⎫⎛⎫+=-= ⎪ ⎪⎝⎭⎝⎭由迫敛性定理得,cos lim x x xx→∞-=1例 3. 2 求2sin lim4x x x x →+∞-解: 因为当x >2时,222sin 444x x x xx x x -≤≤--- 而221lim lim0441x x x x x x→+∞→+∞--==--,2lim 04x x x →+∞=- 由迫敛性定理知 2sin lim 4x x xx →+∞-=0(2)单调有界定理[2]设()f x 为定义在()00U x +[或()00U x -]上的单调有界函数,则()0lim x x f x +→存在[或()0lim x x f x -→存在]3.2 利用极限的四则运算求极限极限的四则运算法则[4]:若A x f x x =→)(lim 0,B x g x x =→)(lim 0(1)B A x g x f x g x f x x x x x x ±=±=±→→→)(lim )(lim )]()([lim 0(2)B A x g x f x g x f x x x x x x ⋅=⋅=⋅→→→)(lim )(lim )]()([lim 0(3)若0≠B 则:BAx g x f x g x f x x x x x x ==→→→)(lim )(lim )()(lim 000 (4)cA x f c x f c x x x x =⋅=⋅→→)(lim )(lim 0(c 为常数)上述性质对于-∞→+∞→∞→x x x ,,时也同样成立通常在这一类型的题中,一般都含有未定式不能直接进行极限的四则运算,首先对函数实行各种恒等变形.例 3.3 求极限()22lim 2sin cos x x x x π→--解:()22lim 2sin cos x x x x π→--=22222lim 2lim sin lim cos lim lim x x x x x x x x x πππππ→→→→→⎛⎫⎪--⋅ ⎪⎝⎭=222sin cos212224ππππ⎛⎫⎛⎫⎛⎫--=- ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭例3.4 求极限121lim 221----→x x x x解:121lim221----→x x x x =)12(lim )1(lim 2121----→-→x x x x x =20=0 例3.5 求极限2211lim 21x x x x →---解:2211lim 21x x x x →---=()()()()111lim121x x x x x →-+-+=()()112lim213x x x →+=+例 3.6求极限x →解:()()44244x x x x →→-=-=422x →2243+=3.3 利用两个重要极限公式求极限两个重要极限公式[2]:(A )1sin lim0=→x x x (B)e xx x =+∞→)11(lim但我们经常使用的是它们的变形:1)()(sin lim)'(0)(=→x x A x ϕϕϕ e x B x x =+∞→)()())(11(lim )'(ϕϕϕ例3.7 求极限20cos 1limxxx -→ 解: 20cos 1lim x x x -→=21)22sin(21lim 20=→x xx 例3.8 求极限xx x 10)21(lim +→解: xx x 10)21(lim +→=22210)21(lim e x xx =+⋅→3.4 利用洛必达法则求极限型不定式极限 定理:若函数f 和g 满足: (1)0)(lim )(lim 0==→→x g x f x x x x ;(2)在点0x 的某空心邻域)(00x U 两者都可导,且0)('≠x g ;(3)A x g x f x x =→)(')('lim(A 可为实数,也可为∞±或∞),则 A x g x f x g x f x x x x ==→→)(')('lim )()(lim00∞∞型不定式极限 定理:若函数f 和g 满足: (1)∞==++→→)(lim )(lim 0x g x f x x x x ;(2)在点0x 的某右空心邻域)(00x U +两者都可导,且0)('≠x g ; (3)A x g x f x x =→)(')('lim(A 可为实数,也可为∞±或∞),则 A x g x f x g x f x x x x ==++→→)(')('lim )()(lim 00不定式极限还有∞-∞∞∞⋅∞,,0,1,000等类型,经过简单变换,它们一般均可化为00型或∞∞型的极限. 例3.9 求极限x x x +→0lim解: 由对数恒等式可得x x x e x ln =xx x +→0lim =xx x eln lim 0+→01ln lim ln lim 0==++→→xxx x x x 1lim 00==∴+→e x x x例3.10 求极限02cos 4sin 2lim2sin x x x x x→---解:02cos 4sin 2lim 2sin x x x x x →---=02sin 4cos lim 2cos x x xx →---=-43.5 利用函数连续性求极限(1)若)(x f 在0x x =处连续,则)()(lim 00x f x f x x =→(2)若)]([x f ϕ是复合函数,又a x x x =→)(lim 0ϕ且)(u f 在a u =处连续,则)()](lim [)]([lim 0a f x f x f x x x x ==→→ϕϕ这种方法适用于求复合函数的极限.如果)(x g u =在点0x 连续00)(u x g =,而)(u f y =在点0u 连续,那么复合函数)]([x g f y =在点0x 连续.即)]([)](lim [)]([lim 00x g f x g f x g f x x x x ==→→.例3.10 求极限x x x)11ln(lim +∞→解: 令u y ln =,x xu )11(+=因为u ln 在点e x u x x =+=∞→)11(lim 0处连续所以x x x )11ln(lim +∞→=])11(lim ln[x x x+∞→=1ln =e3.6 通过等式变形化为已知极限要点:当极限不宜直接求出时,可考虑将求极限的变量作适当的等式变形,得到已知极限的新变量.例3.11 求极限1lim++++∞→x xx x x解: 1lim++++∞→x xx x x =xx x xx 11111lim 73++++∞→=03.7 利用换元法求极限当一个函数的解析式比较复杂或不便于观察时,可采用换元的方法加以变形,使之简化易求.例3.12 求极限xx x x x ln 1lim 1-→解: 令1-=x x t ,则)1ln(ln +=t x xx x x x x ln 1lim 1-→=111lim )1ln(lim 00=+=+→→t tt t t t3.8 利用自然对数法求极限自然对数法:把形如)()(x g x f 通过恒等变形写成)(ln )(x f x g 的形式,改为求0或∞∞不定式的极限. 例3.13 求极限xx x x cos 110)sin (lim -→解: 用自然对数法,令y=xxx cos 11)sin (- 取自然对数得xxx y sin lncos 11ln -=2sin ln limsin ln cos 11lim200x x xxxx x x →→=- =x x xx x x x x 20sin cos sin lim -⋅→ =3020sin cos lim sin sin cos lim x xx x x x x x x x x -=-→→=313sin lim 20-=-→x x x x31cos 110)sin (lim --→=∴e xx xx3.9 利用因式分解法求极限要点:如果可以通过因式分解将变量化简或转化为已知的极限,即可利用此方法求变量极限.例3.14 就极限2sin 3sin 1sin 3sin 4lim 222+---→x x x x x π解 : 222224sin 3sin 1limsin 3sin 2(4sin 1)(sin 1)lim(sin 2)(sin 1)4sin 1lim5sin 2x x x x x x x x x x x x x πππ→→→---++-=--+==--=3.10 利用等价无穷小量求极限当0→x 时,下列函数都是无穷小(极限为0)且相互等价,x x sin ~,x x arcsin ~,x x tan ~,x x arctan ~,1~-x e x ,)1ln(~x x +,a x a x ln ~1-,x x αα~1)1(-+设函数h g f ,,在)(00x U 有定义,且有)(~)(x g x f )(0x x →.(1)若A x h x f x x =→)()(lim 0,则A x h x g x x =→)()(lim 0(2)若B x f x h x x =→)()(lim,则B x g x h x x =→)()(lim 0注:在用等价无穷小求极限过程,不是乘除的情况,不一定能这样做.例3.15 求极限3340)2(sin lim x x x x +→解: 3340)2(sin lim x x x x +→=88lim )2(lim 33403340=+=+→→x x x x x x x x 例3.16 x →α的值,使0x →时为同阶无穷小量解:1sin cos x x⋅~x ()0x →所以,0lim1x x→=,故当α=1时x α当0x →时为同阶无穷小量3.11 利用积分中值定理求极限一般根据积分第一中值定理[4]:若f 在],[b a 上连续,则至少存在一点],[b a ∈ξ,使得⎰-=baa b f dx x f ))(()(ξ将某些含有积分的变量化为一般形式再求极限. 例3.17 求极限⎰+→103011lim dx x εε]3[ 解: 由积分中值定理⎰+10311dx x ε=113+εα, )10(<<α,111lim 11lim 301030=+=+→→⎰εαεεεdx x3.12利用定积分求和式的极限利用定积分和式求极限时首先选好恰当的可积函数)(x f ,把所求极限的和式表示成)(x f 在某区间],[b a 上的等分的积分和式的极限[5].例3.18 求极限)12111(lim nn n n n ++++++∞→解: n n n n ++++++12111 =]11211111[1nn n n n ++++++ =∑=⋅+nk n nk 1111○1 令)(x f =10,11≤≤+x x,则由定积分定义知 ⎰∑=∞→⋅+=+101111lim 11nk n n nk dx x ○2 又⎰=+102ln 11dx x○3 由○1,○2,○3得)12111(lim nn n n n ++++++∞→ =2ln3.13 利用级数收敛的必要条件求极限利用级数收敛的必要条件:若级数∑∞=1n n u 收敛,则)(0∞→→n u n ,运用这个方法首先判定级数∑∞=1n n u 收敛,然后得出它的通项极限[6].例3.19 求极限2)!(lim n n nn ∞→解: 设2)!(n n a nn = 则n n n nn n n n n n a a 2211)!(])!1[()1(lim lim ⋅++=+∞→+∞→ =n n nn )11(11lim+⋅+∞→=0<1由比值判别法知∑∞=1n n a 收敛由必要条件知2)!(lim n n nn ∞→=03.14 利用泰勒公式求极限泰勒公式是一大难点,在学习时首先要清楚泰勒定理成立的条件,清楚泰勒 公式、麦克劳林公式的表达形式以及常见的麦克劳林展开式[7].实际上,泰勒公式在证明、极限计算等方面有着广泛而独到的应用. 泰勒定理[8]:若)(x f 在0=x 点有直到1+n 阶连续导数,那么)(!)0(!2)0('')0(')0()(2x R x n f x f x f f x f n n n +++++=1)1()!1()()(+++=n n n x n f x R ξ (其中ξ在0与1之间)例3.20 求极限4202cos limx e x x x -→-解: 泰勒展开式)(!4!21cos 442x O x x x ++-= )()2(!21)2(1422222x O x x ex +-+-+=-于是)(121cos 4422x O x ex x +-=--所以4202cos limx e x x x -→-=121)(121lim444-=+-→x x O x x3.15 利用压缩定理定理3.15(压缩定理):1 对于任意数列{}n x 而言,若存在常数r ,使得n N ∀∈,恒有11n n n n x x r x x +--≤-,01r <<, 则数列{}n x 收敛2 特别,若数列{}n x 利用递推公式给出:1()(1,2,3)n n x f x n +==⋅⋅⋅,其中f 为某一可微函数,且r R ∃∈,使得 '()1()f x r x R ≤<∀∈,则{}n x 收敛。
绪论极限研究的是函数的变化趋势, 在自变量的某个变化过程中, 对应的函数值能无限接近某个确定的数,那这个数就是函数的极限.函数的极限概念在高等数学中是一个很重要的概念.极限概念是微分概念的基础,因此加深理解函数极限的概念是十分必要的.在近代数学许多分支中,一些重要的概念与理论都是极限和连续函数概念的推广、延拓和深化.只有深刻地理解极限概念并熟练掌握求极限的方法,才能真正地学好微积分.极限是初等数学和高等数学接壤部分,极限概念是高等数学最基本的概念.导数,微分,积分都是建立在极限概念的基础上的,高等数学就是以极限方法为主要工具来研究变量与变量之间关系的科学.在有了极限的定义之后,为了判断具体某一函数是否有极限,人们必须不断地对极限存在的充分条件和必要条件进行探讨.在经过了许多数学家的不断努力之后,法国数学家柯西获得了完善的结果,即柯西收敛原理.到了近代,在数学家们的努力下给了极限一个专业的定义.有了极限的定义自然就有了许多求极限的方法.求函数极限的方法有很多,其中有利用定义求函数极限、利用夹逼定理求函数极限、利用函数的连续性求极限、利用极限的四则运算、利用变量替换、利用等价无穷小替换、利用定积分、利用导数定义、利用泰勒公式、利用罗必达法则求极限等一些方法,对不是同一类型的函数求极限的方法不一样,有的可以用同一种方法求解,有的不可以,因此研究函数求极限的方法显得尤为重要.第一章 函数极限的概念1.1 函数极限的概念1.1.1 x →∞时函数的极限设函数f 定义在[),a +∞上,类似于数列情形,我们研究当自变量x 趋于+∞图象上可见,当x 无限增大时,函数值无限地接近于0;而对于函数x 趋于+∞时有极限.一般地,当x 趋于+∞时函数极限的精确定义如下: 定义1 设f 为定义在[),a +∞上的函数,A 为定数.若对任何给的()0,M a ε>≥存在正数,使得当x M >时有则称函数f 当x 趋于+∞时以A 为极限,记作lim ()x f x A →+∞= 或 ()f x A → ()x →+∞定义 2 设f 为定义在](,a -∞上的函数,A 为定数.若对任何给的()0,M a ε>≥存在正数,使得当x M <-时有则称函数f 当x 趋于-∞时以A 为极限,记作()lim x f x A →-∞= 或 ()f x A → ()x →-∞则称常数A 为函数()x f 当∞→x 时的极限,记作()()()lim x f x A f x A x →∞=→→∞或当若f 为定义在()U x 上的函数,则+lim ()lim ()lim ()x x x f x A f x f x A →∞→-∞→∞=⇔==.定理1 +lim ()lim ()lim ()x x x f x A f x f x A →∞→-∞→∞=⇔==.1.1.2 x →0x 时函数的极限设f 为定义在0x 的某个空心邻域()00U x 内的函数.现在讨论当x 趋于00()x x x ≠时,对应的函数值能否趋于某个定数A .这类函数极限的精确定义如下:定义4(函数极限的εδ-定义) 设函数f 在点0x 的某个空心邻域()'00;δx U时有则称函数f 当x 趋于0x 时以A 为极限,记作lim ()x xf x A →= 或 0()()f x A x x →→.注:1.0ε>是可以任意给的,在确定δ的过程中又看成是个定数; 2.δ与ε有关,但与x 无关,并且不唯一;3.极限()0lim x x f x →是否存在,与()f x 在点0x 是否有定义以及()0f x 的值为多少无关;4.0lim ()x x f x A →=的前提:()f x 在某()'00;δx U 内有定义.定义5 设函数f 在()()()'0'00;;U x U x δδ+-或内有定义,A 为定数.若对任给的0ε>,存在正数()'δδ<,使得当()0000x x x x x x δδ<<+-<<或时有则称A 为函数f 当()00x x x +-趋于时的右(左)极限,记作()()00lim lim x x x x f x A f x A +-→→⎛⎫== ⎪⎝⎭或()()0f x A x x +→→ ()()()0f x A x x -→→. 右极限与左极限统称为单侧极限.f 在点0x 的右极限与左极限又分别记为:()()()()0000lim 0lim x x x x f x f x f x f x +-→→+=-=与 极限存在的充要条件:()()()0lim lim lim x x x x x x f x A f x f x A +-→→→=⇔== 关于函数极限()0lim x x f x →与相应的左、右极限之间的关系,有下述定理:定理2 ()()()0lim lim lim x x x x x x f x A f x f x A +-→→→=⇔==.第二章 函数极限的求解方法2.1 利用函数极限的定义求极限分析:利用函数极限的定义来证明,首先要任取0ε>;其次是写出不等式lim ()x x f x A →=.由函数极限的εδ-定义得:分析:根据前面所学的函数极限的定义证明,要证明这道题就要找出M 的值.分析:要验证这道题不仅要找到M 的值,还要利用函数的左、右极限的定义.证 : 任给ε>0,由于而此不等式的左半部分对任何x 都成立,所以只要考察其右半部分x 的变化范围.这就证明了1).类似地可证2).注: +lim ()lim ()lim ()x x x f x A f x f x A →∞→-∞→∞=⇔==(f 为定义在()U ∞上的函数)所以当x →∞时arctan x 不存在极限.一般来说应尽可能将()f x 的表达式简化.值得注意的是,有时()f x 不能简化,反倒是可以把A 变复杂,写成与()f x 相类似的形式.以要用单侧极限的定义进行求解.()221xε-<时,就是小结:利用极限定义求函数极限是熟悉和掌握求极限方法的基础.2.2 利用函数极限的性质求极限定理3 (1)若()f x 在0x x =处连续,则()()00lim x x f x f x →=(2)若()f x ϕ⎡⎤⎣⎦是复合函数,又()0lim x x x a ϕ→=且()f u 在u a =处连续,则()()()()00lim lim x x x x f x f x f a ϕϕ→→⎡⎤==⎢⎥⎣⎦.分析:利用函数极限的性质及定理3,并且要看清该函数是否连续,最后在进行计算.在u e =处连续,所以由定理3(2)知 :2.3 利用函数极限的四则运算求极限定理4(四则运算法则) 若极限()()0lim lim x x x xf xg x →→与都存在,则函数,f g f g ±⋅当0x x →时极限也存在,且1)()()()()0lim lim lim x x x x x x f x g x f x g x →→→±=±⎡⎤⎣⎦;2)()()()()0lim lim lim x x x x x x f x g x f x g x →→→=⋅⎡⎤⎣⎦;又若()0lim 0x x g x →≠,则0/f g x x →当时极限存在,且有4)()()0lim lim x x x xc f x c f x →→⋅=⋅ (C 为常数) 上述的性质对于0,,,x x x x x ±→∞→+∞→-∞→时也同样成立.计算.解: 当10x +≠时有故所求的极限等于分析:利用函数极限的四则运算法则,把所求函数的极限化为一些已知的简单函数的极限来计算.像(2)中的类型就是1→x 时,分子、分母的极限都是零注:使用极限的四则运算法则的前提是各部分极限都存在.2.4 利用迫敛性定理求极限定理5 设()()0lim lim ,x x x x f x g x A →→==且在某()0'0;U x δ内有()()()f x h x g x ≤≤ 则有()0lim x x h x A →=.分析:应用迫敛性的定理进行计算.解:因为1cos 1≤≤-x ,所以当0x <时分析:要求出这道题,必须应用到前面所学的知识点,即关于函数[]y x =有所以应用这个可以进行计算.故由迫敛性得小结:利用函数极限的迫敛性与四则运算,我们可以从一些简单的函数极限出发,计算较复杂的函数极限.2.5 利用两个重要极限求极限(1我们经常使用的是它们的变形:(1)的特点:(01)分子、分母的极限值为0;(02)分子是分母的正弦函数. (2)的特点:(01)幂指函数的底趋于1,指数趋于无穷时,其极限值是e ; (02)底是常数1与一个无穷小量之和,指数是底中无穷小量的倒数.例12 求下列函数极限1)0sin 2lim x x x →; 2)0tan lim x x→; 3)1lim sin x x →+∞; 4)()10lim 1(x x x αα→+为给定实数). 解:1)0sin 2lim x x x →=02lim2122x x →=⨯= 2)0tan lim x x x →=0sin 1lim1cos x x x x→⋅= 3)令1y x =,于是当x →∞时,0y →,从而1lim sin x x x →+∞=0sin lim1y y y→=. 4) ()()11lim 1lim 1xx x x x x e ααααα→→⎡⎤+=+=⎢⎥⎣⎦. 例13 求下列函数极限x a x x 1lim )1(0-→、 bxaxx cos ln cos ln lim )2(0→、. 分析:首先要看题目的类型,看看是否符合两个重要的极限及特点.)1ln(ln 1 ln )1ln( ,11 u au x a a u x u a x x+=-+==-于是则)令解:(a u au u a u a u xa u x uu u u x x ln )1ln(ln lim )1ln(ln lim )1ln(ln lim 1lim 010000=+=+=+=-→→→→→→故有:时,又当)]1(cos 1ln[)]1(cos 1ln[(lim)2(0-+-+=→bx ax x 、原式1cos 1cos 1cos )]1(cos 1ln[1cos )]1(cos 1ln[(lim0--⋅--+--+=→ax bx bx bx ax ax x1cos 1cos lim 0--=→ax bx x=2022sin 2lim2sin 2x a xb x→-- 2222022sin 222lim sin 222x a x a b x x ba x xb x →⎛⎫⎛⎫ ⎪ ⎪⎝⎭⎝⎭=⋅⎛⎫⎪⎝⎭⎛⎫ ⎪⎝⎭22b a=.2.6 利用无穷小量的性质求极限2.6.1利用无穷小量与有界变量之乘积仍为无穷小量求极限与无穷小数列的概念相类似,我们给出关于函数为无穷小量的定义.定义6 设f 在某()00U x 内有定义,若 ()0lim 0x x f x →=,则称f 为当0x x →时的无穷小量.若函数g 在某()00U x 内有界,则称g 为当0x x →时的有界量. 由无穷小量的定义可立刻推得如下性质:1.两个(相同类型的)无穷小量之和、差、积仍为无穷小量.2.无穷小量与有界量的乘积为无穷小量. 定理6 设函数()f x 、()g x 满足:()()0lim 0x x g x f x →=.2.6.2 利用无穷小量与无穷大量的关系求极限定义7 设函数f 在某()00U x 内有定义.若对任给的0G >,存在0δ>,使得当()()()0000;x U x U x δ∈⊂时有则称函数f 当0x x →时有非正常极限∞,记作 ()0lim x x f x →=∞.若(1.2)式换成“()f x G >”或“()f x G <-”,则分别称f 当0x x →时有非正常极限+∞或-∞,记作()0lim x x f x →=+∞ 或 ()0lim x x f x →=-∞.定义8 对于自变量x 的某种趋向(或n →∞时),所有以∞,+∞或-∞为非正常极限的函数(包括数列),都称为无穷大量.定理7 (I )若:∞=)(lim x f ,则 0)(1lim=x f . (II) 若: 0)(lim =x f 且 ()0f x ≠ 则 ∞=)(1lim x f . 例15 求下列极限(1) 51lim+∞→x x (1)11lim 1-→x x .解:(1)由∞=+∞→)5(lim x x ,故 051lim=+∞→x x . (2)由0)1(lim 1=-→x x ,故 11lim 1-→x x =∞.注:无穷大量不是很大的数,而是具有非正常极限的函数;若f 为0x x →时的无穷大量,则易见f 为()00U x 上的无界函数.但无界函数却不一定是无穷大量.2.6.3 利用等价无穷小替换求极限定理8 设函数()00,,f g h U x 在内有定义,且有()f x ()g x ()0x x →.(1)若()()()()0lim ,lim x x x x f x h x A g x h x A →→==则;注:设'',,,ββαα 都是同一极限过程中的无穷小量,且有:''~,~ββαα, ''lim βα 存在,则 βαlim 也存在,且有βαlim= ''lim βα.解:由于()arctan 0xx x →,()sin 440x x x →.故有定理8得例17 求极限2220sin cos 1limx x x x -→ .分析:本题切忌将2cos x和2sin x 用2x 等价替换.解: ,~sin 22x x 2)(~cos 1222x x -∴ 2220sin cos 1lim x x x x -→=0lim x →212)(2222=x x x 注:1、在利用等价无穷小量替换求极限时,应注意:只有对所求极限式中相乘或相除的因式才能用等价无穷小量来替换,而对极限式中的相加或相减部分则不能随意替换.2、常用的等价无穷小量. 当0x →时,有xsin x ,tan x x ,211cos 2xx -,()ln 1x x +,arcsin x x ,1ln x a x a -,arctan xx ,e xx ,()11ax ax +-()0a ≠.2.7 用左右极限与极限关系求极限适用于分段函数求分段点处的极限,以及用定义求极限等情形.定理9 函数极限)(lim 0x f x x →存在且等于A 的充分必要条件是左极限)(lim 0x f x x -→及右极限)(lim 0x f x x +→都存在且都等于A .即有⇔=→A x f x x )(lim 0)(lim 0x f x x -→=)(lim 0x f x x +→=A.例18 设)(x f =⎪⎪⎩⎪⎪⎨⎧≥<<-≤--1,10,0,212x x x x xx x e x 求)(lim 0x f x →及)(lim 1x f x →.分析:此题一看就知道是分段函数,要分多步来计算,最后再综合起来. 解:()()0lim lim 12x x x f x e ---→→=-1=()00lim lim x x f x ++→→⎛⎫=)0lim 1x +→=1=由1)(lim )(lim 0-==+-→→x f x f x x1)(lim 0-=∴→x f x不存在由(又)(lim )01()01(1lim )(lim 0)1lim lim )(lim 1211111x f f f x x f x xx x x f x x xx x x →→→→→→∴+≠-===-=-=++---注:此方法一般适用于分段函数.2.8 利用函数的数学公式、定理求极限2.8.1利用罗比塔法则求极限(适用于不定式极限) 定理10 若A x g x f x g x f A A x g x f iii x g x u x g f ii x g x f i x x x x x x x x x x ==∞∞±=≠==→→→→→)()(lim )()(lim ()()(lim )(0)()()(0)(lim ,0)(lim )('''''0000000),则或可为实数,也可为内可导,且的某空心邻域在与 此定理是对0x x →时而言,对于函数极限的其它类型,均有类似的法则,该定理对00型或∞∞型均成立.注:运用罗比塔法则求极限应注意以下几点:1、要注意条件,也就是说,在没有化为∞∞,00时不可求导.2、应用罗比塔法则,要分别的求分子、分母的导数,而不是求整个分式的导数.3、要及时化简极限符号后面的分式,在化简以后检查是否仍是未定式,若遇到不是未定式,应立即停止使用罗比塔法则,否则会引起错误.4、当)()(lim ''x g x f a x → 不存在时,本方法则失效,但并不是说极限不存在,此时求极限须用另外方法.例19 求下列函数的极限①)1ln()21(lim 2210x x e x x ++-→ ②)0,0(ln lim>>+∞→x a x xax解:①令()f x = 21)21(x e x +-, ()g x = l )1n(2x + 21')21()(-+-=x e x f x , 2'12)(xxx g +=222"23")1()1(2)(,)21()(x x x g x e x f x+-=++=- 由于0)0()0(,0)0()0(''====g g f f 但2)0(,2)0(""==g f从而运用罗比塔法则两次后得到122)1()1(2)21(lim 12)21(lim )1ln()21(lim22223022102210==+-++=++-=++--→-→→x x x e x xx e x x e xx xx xx . ② 由∞=∞=+∞→+∞→a x x x x lim ,ln lim ,故此例属于∞∞型,由罗比塔法则有: )0,0(01lim 1lim ln lim 1>>===+∞→-+∞→+∞→x a ax ax x x x ax a x a x .2.8.2 利用泰勒公式求极限对于求某些不定式的极限来说,应用泰勒公式比使用罗比塔法则更为方便,下列为常用的泰勒展开式:1、)(!!212n nxx o n x x x e +++++= 2、)()!12()1(!5!3sin 212153n n n x o n x x x x x +--+++-=--3、)()!2()1(!4!21cos 12242++-+++-=n nn x o n x x x x 4、)()1(2)1ln(12n nn x o nx x x x +-++-=+- 5、)(!)1()1(!2)1(1)1(2n n x o x n n x x x ++--++-++=+ααααααα6、)(x x 1 112n n x o x x+++++=- 上述展开式中的符号)(n x o 都有:0)(lim 0=→n n x xx o 例20 求)0(2lim>+-+→a xxa x a x解:利用泰勒公式,当0→x 有)(211x o xx ++=+ 于是 xxa x a x +-+→2lim=xax a x a x )121(lim 0+-+→=x x o a x x o a x a x ⎥⎦⎤⎢⎣⎡-⋅--++→)(211)()2(211lim=ax x o x a x x o a x a x x 21)(21lim )(2lim00=+=+⋅→→2.8.3 利用拉格朗日中值定理求极限 定理11 若函数f 满足如下条件:(I) f 在闭区间[],a b 上连续 (II)f 在(),a b 内可导 则在(),a b 内至少存在一点ξ,使得ab a f b f f --=)()()('ξ此式变形可为:)10( ))(()()('<<-+=--θθa b a f ab a f b f .例21 求 xx e e xx x sin lim sin 0--→.分析:对于这个题目,好多同学看到题目之后,发现所求极限的函数是“0”型不定式,马上想到用罗比塔法则法,但是此题用拉格朗日中值定理更容易,更简单.解:令x e x f =)( 对它应用拉格朗日中值定理得)1(0 ))sin ((sin )sin ()(sin )('sin <<-+-=-=-θθx x x f x x x f x f e e x x 即1)(0 ))sin ((sin sin 'sin <<-+=--θθx x x f xx e e xx x e x f =)(' 连续1)0())sin ((sin lim ''==-+∴→f x x x f x θ,从而有 1sin limsin 0=--→x x e e xx x .2.9利用分子或分母有理化求极限若分子或分母的极限为0,不能运用四则运算中商的极限运算法则时,采用通过分子或分母有理化,消去分母中的趋于0的因子,再运用极限的运算法则.2.9.1.约去零因式(此法适用于型时0,0x x →)例22 求121672016lim 23232+++----→x x x x x x x解:原式=()())12102(65)2062(103lim2232232+++++--+---→x x x x x x x x x xx =)65)(2()103)(2(lim 222+++--+-→x x x x x x x=)65()103(lim 222++---→x x x x x =)3)(2()2)(5(lim 2+++--→x x x x x =2lim -→x 735-=+-x x .2.9.2通分法(适用于∞-∞型) 例23 求 )2144(lim 22x xx ---→. 解:原式=)2()2()2(4lim2x x x x -⋅++-→=)2)(2()2(lim2x x x x -+-→=4121lim2=+→x x .例24求极限20x →.解:20x →=21x x→=)221limx x x →=)lim1x →=2.2.10 利用定积分求极限定义9 设函数()f x 在闭区间[],a b 上有定义,在闭区间[],a b 内任意插入1n -个分点将[],a b 分成n 个区间[],x i i x x -,记i x ∆1i i x x -=-()1,2,3,,i n =⋅⋅⋅,[]1,i i x x ξ-∀∈,作乘积()i f ξi x ∆ ,若这些乘积相加得到和式()1ni i f ξ=∑i x ∆ ,设max λ={}:1i x i n ∆≤≤,若0lim λ→()1nii f ξ=∑i x ∆极限存在唯一且该极限与区间[],a b 的分法及分点i ξ的取法无关,则称这个唯一的极限值为函数()f x 在[],a b 上的定积分,记作()baf x dx ⎰,即 ()baf x dx ⎰=0limλ→()1nii f ξ=∑i x ∆否则称()f x 在[],a b 上不可积.注:(1)由牛顿莱布尼兹公式知,计算定积分与原函数有关,故这里借助了不定积分的符号.(2)若()ba f x dx ⎰存在,区间[],ab 进行特殊分割,分点i ξ进行特殊的取法得到的和式极限存在且与定积分的值相等,但反之不成立,这种思想在思考题中经常出现,我们要好好理解.(3)定积分是否存在或者值是多少只与被积函数式和积分区间有关,与积分变量用什么字母表示无关,即()()()bbbaaaf x dx f t dt f u du ==⎰⎰⎰.定积分的极限有两个特性:第一,定积分是无穷项和式的极限,容易知道一般项在项数趋近于无穷大时极限值必然趋近于零,否则和式极限不存在.第二,定积分与某一连续函数有紧密的关系,它的一般项受到这一连续函数的约束,它是连续函数在某个区间上进行了无穷的分割,各小区间上任意的函数值与区间长度的乘积的累积.例25 利用定积分求极限:1111lim 1232n J n n n n →∞⎛⎫+++⋅⋅⋅+=⎪+++⎝⎭ 分析:此极限的求解,不容易直接用极限的定义解决,因为该法往往是用来一边计算一边证明某个极限结果已经比较明显的问题,因此这里不合适,重要极限的结论显然也在这里没有用处,因为形式上根本不同;在考虑洛必达法则,它不是无穷比无穷型的极限也非零比零型的极限,也不可能用到此法;那么泰勒公式呢?泰勒公式往往是用来解决连续函数的极限问题,通过泰勒展式往往能把非多项式形式的表达式转化成多项式形式,以简化形式从而求解,看来这里也不适用.再看用迫敛性:1111221221n nn n n n n =≤++⋅⋅⋅+≤+++,又lim11n nn →∞=+所以迫敛性失效.那是不是就没有什么合适的办法了呢?答案当然是否定的,事实上,它从形式上与定积分的定义还是有一些相像的,那么就让我们尝试用定积分的办法来解决这道题.解:把此极限式化为某个积分和的极限式,并转化为计算定积分.为此作如下变形:111lim 11nn i J n i→∞==⋅+∑. 不难看出,其中的和式是函数()11f x x=+在区间[]0,1上的一个积分和(这里所取的是等分分割,11,,,1,2,i i i i i x i n n n n ξ-⎡⎤∆==∈=⎢⎥⎣⎦···,n ),所以()1100ln 1ln 21dxJ x x==+=+⎰ . 当然,也可把J 看作()11f x x=+在[]1,2上的定积分,同样有2312ln 21dx dx J x x ===⋅⋅⋅=-⎰⎰ .2.11 利用单调有界原理求极限定理12 若数列{}n a 收敛,则{}n a 为有界数列,即存在正数M ,使得对一切正整数n ,有 M a n ≤.定理13(单调有界定理) 在实数系中,有界的单调数列必有极限. 例26 设21=a ,n n a a 21=+,n =1,2,⋅⋅⋅,求lim n n a →∞.分析:用单调有界原理求极限首先要证明是有界的单调数列. 解:(1)先证{}n a 是有界数列.事实上,n +∀∈N 由12n a <<现用数学归纳法证明如下:当1k =时,1a =12<<成立. 设n k =时结论成立,即12k a <<,则当1n k =+时,11222k a +<=<= 故12,n a <<∀n +∈N(2)再证{}n a 严格单调递增.由于12n a <<,故11n n n a a +==>,因此{}n a 严格单调递增.由单调有界定理知lim n x a →∞存在.(3)设lim n n a →∞=a ,则对nn a a 21=+两边取极限得1lim nn n a +→∞= a =解之得2a = 或 0a =(不合题意,舍去),故lim n n a →∞=2.注:(唯一性定理)数列收敛,极限唯一.2.12 多种方法的综合运用上述介绍了求函数极限的基本方法,然而,每一道题目并非只有一种方法。
在数学中,极限是一种重要的概念,能够帮助我们研究函数和序列的性质。
求解极限是数学学年论文或毕业论文中的一部分。
下面我将介绍几种常用的求极限的方法。
一、代入法代入法是求解极限最为简单的方法之一,其基本思想是将极限中的变量替换为一些特定的常数值,然后计算函数在该值处的函数值。
如果该函数在该点的函数值存在,则该值即为极限值。
二、夹逼定理夹逼定理是数学分析中常用的一种方法,可以用来求解一些函数在其中一点处的极限。
夹逼定理的原理是,如果一个函数f(x)在其中一点x0附近能够找到两个较为简单的函数g(x)和h(x),并且满足g(x) ≤ f(x) ≤ h(x),那么在x0处,这三个函数的极限也有相应的关系,即lim(g(x)) ≤ lim(f(x)) ≤ lim(h(x))。
三、无穷小量法无穷小量法是求解极限的一种重要方法,它的原理是当变量趋向无穷大或者趋向零时,一些函数的变化可以近似看作是一个无穷小量。
通过将待求极限中的变量作适当的变换,将其表示为无穷小量与一些已知极限之间的关系,然后求解已知极限,最后根据变换的关系得到待求极限。
四、洛必达法则洛必达法则是求解极限中常用的方法之一,其基本思想是用导数的求导法则来求解函数的极限。
具体来说,如果在其中一点x=a处,函数f(x)和g(x)都满足条件lim(f(x))=lim(g(x))=0或lim(f(x))=lim(g(x))=∞,且g'(x)≠0,则该极限lim(f(x)/g(x))存在。
通过求解lim(f'(x)/g'(x)),可以得到lim(f(x)/g(x))的值。
五、级数展开法级数展开法是一种将待求极限变换为级数求和的方法,它适用于一些函数无法直接求解极限的情况。
通过将函数f(x)在其中一点进行泰勒级数展开,然后利用级数的性质,可以得到该函数在该点处的极限。
在实际应用中,以上多种方法可以相互结合使用,根据具体问题的性质来选择合适的方法。
求函数极限方法的若干方法摘要:关键词:1引言:极限的重要性极限是数学分析的基础,数学分析中的基本概念来表述,都可以用极限来描述。
如函数y=f(x)在x=x0处导数的定义,定积分的定义,偏导数的定义,二重积分,三重积分的定义,无穷级数收敛的定义,都是用极限来定义的。
极限是研究数学分析的基本公具。
极限是贯穿数学分析的一条主线。
学好极限是从以下两方面着手。
1:是考察所给函数是否存在极限。
2:若函数否存在极限,则考虑如何计算此极限。
本文主要是对第二个问题即在极限存在的条件下,如何去求极限进行综述。
2极限的概念及性质2。
1极限的概念2.1.1limn→∞x n=A,任意的正整数N,使得当n>N时就有|x n−A|<ε。
2。
1.2limx→∞f(x)=A↔∀ε>0,任意整数X,使得当|x|>X时就有|f(x)−A|<ε。
类似可以定义单侧极限limx→+∞f(x)=A与limx→−∞f(x)。
2.2。
3,整数,使得当时有。
类似可定义当时右极限与左极限:,。
在此处键入公式。
2.2极限的性质2.2。
1极限的不等式性质:设,。
若,则,当时有;若,使得当时有,则。
2。
2。
1(推论)极限的保号性:设。
若,则,当时有;若,使得当时有,则。
2.2。
2存在极限的函数局部有界性:设存在极限,则在的某空心邻域内有界,即与,使得当时有3求极限的方法1、定义法2、利用极限的四则运算性质求极限,3、利用夹逼性定理求极限4、利用两个重要极限求极限,5、利用迫敛性求极限,6、利用洛必达法则求极限,7、利用定积分求极限,8、利用无穷小量的性质和无穷小量和无穷大量之间的关系求极限9、利用变量替换求极限, 10、利用递推公式求极限, 11、利用等价无穷小量代换求极限,12、利用函数的连续性求极限, 13、利用泰勒展开式求极限, 14、利用两个准则求极限15、利用级数收敛的必要条件求极限16、利用单侧极限求极限17、利用中值定理求极限3.1定义法利用数列极限的定义求出数列的极限.设是一个数列,是实数,如果对任意给定的,总存在一个正整数,当时,都有,我们就称是数列的极限。
求函数极限的方法与技巧6篇第1篇示例:求函数极限的方法与技巧在学习数学的过程中,函数极限是一个非常重要的概念。
通过求函数的极限,我们可以了解函数在某一点的变化趋势,从而掌握函数的性质和特征。
在实际应用中,求函数极限也是解决数学问题和物理问题的基础。
那么,如何求函数的极限呢?下面我们就来讨论一下求函数极限的方法与技巧。
我们来说一说函数极限的定义。
对于函数f(x),当自变量x趋于某一值a时,如果函数值f(x)无限接近于某一确定的常数L,那么常数L 就是函数f(x)在点a处的极限,记作lim(x→a) f(x) = L。
换句话说,就是当x无限接近a时,f(x)的取值无限接近L。
要求函数的极限,就是要找到这个L。
1. 代入法:对于一些简单的函数,我们可以直接代入a的数值,求出f(a)的值。
如果f(a)存在且有限,那么这个值就是函数在点a处的极限。
2. 因子分解法:对于一些复杂的函数,我们可以通过因子分解来求得函数的极限。
根据函数的性质,我们可以将函数分解为一些简单的分式或者根式,从而求得极限的值。
3. 夹逼定理:对于一些特殊的函数,我们可以利用夹逼定理来求得函数的极限。
夹逼定理是一种通过两个较为简单的函数来夹逼待求函数的极限的方法,通过和两个函数比较来逼近待求函数的极限值。
4. 利用导数:对于一些连续的函数,我们可以利用导数来求得函数的极限。
通过求导数,我们可以得到函数的切线斜率,从而得到函数在某一点的变化趋势。
除了以上的方法与技巧,还有一些注意事项需要我们在求函数极限时要注意:1. 涉及无穷大的极限时,要格外注意函数的性质,以及无穷大的表示方式。
2. 找出函数的不确定形式,通过化简或者变形来求得函数的极限。
3. 对于有理函数的极限,要特别注意分母为0的情况,以及分子、分母次数的关系。
4. 要熟练掌握常用函数的极限形式,比如指数函数、对数函数、三角函数等。
5. 在求导数时,要注意一阶导数、高阶导数等,以及导数的性质和规律。
一元函数求极限的若干方法(陕西师范大学 数学系,陕西 )摘 要:极限是数学分析中最基本的,也是最重要的概念之一,是研究微积分学的重要工具.因此掌握好极限的思想与方法是学好微积分的前提条件,针对这种情况,本文探讨了一些常用的求极限的方法 关键词:极限;方法大家知道,极限是数学分析中最基本、也是最重要的概念之一,数学分析中许多深层次的理论及应用都是极限的拓展和延伸,如:连续、导数、微积分等都是由极限定义的,而离开了极限思想的数学分析就失去了其基础与价值,因此极限运算在数学分析中占有举足轻重的地位.由于极限定义的高度抽象使我们很难用极限本身的定义去求极限,而对极限的求法可谓是多种多样,针对这种情况,通过归纳和总结,罗列出一些常用的求法.1 利用极限的定义求极限极限是指无穷的趋于一个固定的数值,数学分析中的极限包括:数列极限和函数极限.1.1 数列极限的定义设{}n x 是一个数列,a 是定数,如果对任意给定的0>ε,总存在正整数N ,使得当N n >时有ε<-a x n ,我们就称定数a 是数列}{n x 的极限.记为a x n n =∞→lim 或 ()∞→→n a a n .例1 按定义证明01lim=∞→an n ,这里a 是常数. 证 由于aa nn 101=-, 故对任给的0>ε,只要取111+⎥⎥⎦⎤⎢⎢⎣⎡=a εN ,则当N n >时,便有εN n a a <<11 即εna <-01.这就证明了 01lim=∞→an n . 例2证明223lim33n n n →∞=- 分析 由于()2223993333n n n n n-=≤≥-- (1)因此,对任给的0ε>,只要9nε<,便有 2233,3n n ε-<- (2)即当9n ε>时,(2)式成立.又由于(1)式是在3n ≥的条件下成立的,故应取9max 3,.N ε⎧⎫=⎨⎬⎭⎩ (3)证 任给0ε>,取9max 3,.N ε⎧⎫=⎨⎬⎭⎩据分析,当n>N 时有(2)式成立.于是本题得证.注 本例在求N 的过程中,(1)式中运用了适当放大的方法,这样求N 就比较方便.但应注意这种放大必须“适当” ,以根据给定的ε能确定出N .又(3)式给出的N 不一定是正整数.一般地,在定义1中N 不一定限于正整数,而只要它是正数即可.1.2 函数极限的定义函数极限的定义包括两个,一个是x 趋于∞时函数的极限,另一个是x 趋于0x 时函数的极限.1.2.1 x 趋于∞时函数的极限设f 为定义在[)+∞,a 上的函数,A 为定数.若对任给的0>ε,存在正数()a M ≥,使得当M x >时有()ε<-A x f ,则称函数f 当x 趋于∞+时以A 为极限,记为()A x f x =+∞→lim 或 ()()+∞→→x A x f .1.2.2 x 趋于0x 时函数的极限设函数f 在点0x 的某个空心邻域()'。
目录1 摘要 (1)2 前言 (1)3 一元函数极限的定义及定义 (1)3.1x趋于∞时函数的极限概念 (2)ε-定义的定义 (2)3.2函数极限的δ4 方法、技巧与典型例题 (3)4.1利用极限的定义验证极限 (3)4.2利用极限的四则运算求极限 (4)4.2.1直接运用法则 (5)4.2.2间接运用法则 (5)4.3利用迫敛准则求函数极限 (7)4.4利用左右极限求函数极限 (8)4.5利用两个重要极限公式求函数极限 (8)4.6利用无穷小量的性质求函数极限 (10)4.7利用替换法求函数极限 (10)4.7.1利用变量代换法求函数极限 (10)4.7.2利用等价无穷小量求函数极限 (10)4.8利用洛必达法则求函数极限 (12)4.9利用导数的定义求函数极限 (13)4.10利用定积分的定义验证极限 (14)4.11利用麦克劳林展式求函数极限 (14)4.12利用微分中值定理求函数极限 (16)4.13利用积分中值定理求函数极限 (16)4.14利用级数的必要条件求函数极限 (17)5 结束语 (17)参考文献 (18)一元函数极限的若干求法作者吴剑颜指导老师吴勇旗(湛江师范学院数学与计算科学学院湛江 524048)摘要:一元函数极限的计算是“数学分析”的基础,必须掌握其各种极限的求法才能熟练准确地计算各种极限,本文主要讲述一元函数极限的不同求法。
本文在某些具体求解方法中就要注意的细节和技巧做了说明,以便我们了解函数的各种极限,这样才能达到事半功的效果.关键词:一元函数;极限;求法A function of severalAuthor Wu Jianyan Instructor Wu YongqiMathematics and Computational Science School, Zhanjiang Normal University, Zhanjiang,524048Abstract: A function of the calculation of limit is the basis of “mathematical analysis”.Must be to master the method to get its various limit accurately calculate various limits, this article mianly tells a function limits of different calculation methods.This article in some concrete solving method must pay attention to details and skills,so that we can understand the function of all kinds of limits, in this way can we achieve twice the result with half the effort.Key words:Function of one variable; Limitation; Method for evaluating2 前言一元函数极限的计算在数学分析中占据着重要的地位,根据此重要性,本文详细介绍了求一元函数极限的若干求法,例如:定义法、四则运算法则法、迫敛法、洛必达法则法、左右极限法、麦克劳林展式法等。
一元函数求极限方法我折腾了好久一元函数求极限方法,总算找到点门道。
说实话,一元函数求极限这事,我一开始也是瞎摸索。
我最开始就只知道直接把自变量的值代入函数,如果能算出一个确定的值,那极限就求出来了,这是最理想的情况,就好像你走到一扇门前,门没锁,你直接就进去了一样,特别简单直接。
但是,很快我就遇到问题了。
有时候直接代入会得到一个类似于零分之零或者无穷比无穷这种没意义的结果。
我当时就懵了,这可咋办呢?我就开始乱试方法。
我试过分解因式这一招。
比如说遇到那种分子分母都是多项式的函数求极限,当出现零分之零型的时候,就像(f(x)=(x²- 1)/(x - 1))当x趋向于1的时候,直接代入就不行。
那我就把分子分解因式啊,x²- 1可以写成(x + 1)(x - 1),这样分子分母的(x - 1)就可以约掉了,那这个函数当x 趋向于1的时候极限就变成2了。
这就好比你遇到路中间有个大石头挡着,你把它敲碎搬走了,路就通了。
可是,这也不是万能的呀。
后来遇到那种有根式的函数求极限,分解因式也行不通了。
我又去尝试有理化。
比如说求(x趋向于0)时,(根号(x + 1)- 1)/x的极限。
我就把分子有理化,分子分母同时乘以(根号(x + 1)+1),这样经过化简之后就能求出极限是二分之一了。
我还犯过一个错呢,有次遇到一个函数求极限,我看形式和以前做的差不多,就直接套方法,都没仔细看函数的条件,结果就错得离谱。
所以大家一定得看清函数的定义域之类的条件啊,这就像你跑步,你得先看清跑道有没有坑或者障碍物一样。
还有一个洛必达法则,这个法则可好用了,但是我一开始都不敢用,感觉它好高大上。
就是对于零比零或者无穷比无穷这种类型的极限,可以对分子分母分别求导再求极限。
不过这里要注意了,不是所有的这种类型都能用,而且有时候要多次求导才会有结果。
就像你打开一个很复杂的锁,可能要试好几次钥匙才行。
这就是我在一元函数求极限方法摸索过程中的一点经验啦,希望对你们有点帮助。
绪论极限研究的是函数的变化趋势, 在自变量的某个变化过程中, 对应的函数值能无限接近某个确定的数,那这个数就是函数的极限.函数的极限概念在高等数学中是一个很重要的概念.极限概念是微分概念的基础,因此加深理解函数极限的概念是十分必要的.在近代数学许多分支中,一些重要的概念与理论都是极限和连续函数概念的推广、延拓和深化.只有深刻地理解极限概念并熟练掌握求极限的方法,才能真正地学好微积分.极限是初等数学和高等数学接壤部分,极限概念是高等数学最基本的概念.导数,微分,积分都是建立在极限概念的基础上的,高等数学就是以极限方法为主要工具来研究变量与变量之间关系的科学.在有了极限的定义之后,为了判断具体某一函数是否有极限,人们必须不断地对极限存在的充分条件和必要条件进行探讨.在经过了许多数学家的不断努力之后,法国数学家柯西获得了完善的结果,即柯西收敛原理.到了近代,在数学家们的努力下给了极限一个专业的定义.有了极限的定义自然就有了许多求极限的方法.求函数极限的方法有很多,其中有利用定义求函数极限、利用夹逼定理求函数极限、利用函数的连续性求极限、利用极限的四则运算、利用变量替换、利用等价无穷小替换、利用定积分、利用导数定义、利用泰勒公式、利用罗必达法则求极限等一些方法,对不是同一类型的函数求极限的方法不一样,有的可以用同一种方法求解,有的不可以,因此研究函数求极限的方法显得尤为重要.第一章 函数极限的概念1.1 函数极限的概念1.1.1 x →∞时函数的极限设函数f 定义在[),a +∞上,类似于数列情形,我们研究当自变量x 趋于+∞图象上可见,当x 无限增大时,函数值无限地接近于0;而对于函数x 趋于+∞时有极限.一般地,当x 趋于+∞时函数极限的精确定义如下: 定义1 设f 为定义在[),a +∞上的函数,A 为定数.若对任何给的()0,M a ε>≥存在正数,使得当x M >时有则称函数f 当x 趋于+∞时以A 为极限,记作lim ()x f x A →+∞= 或 ()f x A → ()x →+∞定义 2 设f 为定义在](,a -∞上的函数,A 为定数.若对任何给的()0,M a ε>≥存在正数,使得当x M <-时有则称函数f 当x 趋于-∞时以A 为极限,记作()lim x f x A →-∞= 或 ()f x A → ()x →-∞则称常数A 为函数()x f 当∞→x 时的极限,记作()()()lim x f x A f x A x →∞=→→∞或当若f 为定义在()U x 上的函数,则+lim ()lim ()lim ()x x x f x A f x f x A →∞→-∞→∞=⇔==.定理1 +lim ()lim ()lim ()x x x f x A f x f x A →∞→-∞→∞=⇔==.1.1.2 x →0x 时函数的极限设f 为定义在0x 的某个空心邻域()00U x 内的函数.现在讨论当x 趋于00()x x x ≠时,对应的函数值能否趋于某个定数A .这类函数极限的精确定义如下:定义4(函数极限的εδ-定义) 设函数f 在点0x 的某个空心邻域()'00;δx U时有则称函数f 当x 趋于0x 时以A 为极限,记作lim ()x xf x A →= 或 0()()f x A x x →→.注:1.0ε>是可以任意给的,在确定δ的过程中又看成是个定数; 2.δ与ε有关,但与x 无关,并且不唯一;3.极限()0lim x x f x →是否存在,与()f x 在点0x 是否有定义以及()0f x 的值为多少无关;4.0lim ()x x f x A →=的前提:()f x 在某()'00;δx U 内有定义.定义5 设函数f 在()()()'0'00;;U x U x δδ+-或内有定义,A 为定数.若对任给的0ε>,存在正数()'δδ<,使得当()0000x x x x x x δδ<<+-<<或时有则称A 为函数f 当()00x x x +-趋于时的右(左)极限,记作()()00lim lim x x x x f x A f x A +-→→⎛⎫== ⎪⎝⎭或()()0f x A x x +→→ ()()()0f x A x x -→→. 右极限与左极限统称为单侧极限.f 在点0x 的右极限与左极限又分别记为:()()()()0000lim 0lim x x x x f x f x f x f x +-→→+=-=与 极限存在的充要条件:()()()0lim lim lim x x x x x x f x A f x f x A +-→→→=⇔== 关于函数极限()0lim x x f x →与相应的左、右极限之间的关系,有下述定理:定理2 ()()()0lim lim lim x x x x x x f x A f x f x A +-→→→=⇔==.第二章 函数极限的求解方法2.1 利用函数极限的定义求极限分析:利用函数极限的定义来证明,首先要任取0ε>;其次是写出不等式lim ()x x f x A →=.由函数极限的εδ-定义得:分析:根据前面所学的函数极限的定义证明,要证明这道题就要找出M 的值.分析:要验证这道题不仅要找到M 的值,还要利用函数的左、右极限的定义.证 : 任给ε>0,由于而此不等式的左半部分对任何x 都成立,所以只要考察其右半部分x 的变化范围.这就证明了1).类似地可证2).注: +lim ()lim ()lim ()x x x f x A f x f x A →∞→-∞→∞=⇔==(f 为定义在()U ∞上的函数)所以当x →∞时arctan x 不存在极限.一般来说应尽可能将()f x 的表达式简化.值得注意的是,有时()f x 不能简化,反倒是可以把A 变复杂,写成与()f x 相类似的形式.以要用单侧极限的定义进行求解.()221xε-<时,就是小结:利用极限定义求函数极限是熟悉和掌握求极限方法的基础.2.2 利用函数极限的性质求极限定理3 (1)若()f x 在0x x =处连续,则()()00lim x x f x f x →=(2)若()f x ϕ⎡⎤⎣⎦是复合函数,又()0lim x x x a ϕ→=且()f u 在u a =处连续,则()()()()00lim lim x x x x f x f x f a ϕϕ→→⎡⎤==⎢⎥⎣⎦.分析:利用函数极限的性质及定理3,并且要看清该函数是否连续,最后在进行计算.在u e =处连续,所以由定理3(2)知 :2.3 利用函数极限的四则运算求极限定理4(四则运算法则) 若极限()()0lim lim x x x xf xg x →→与都存在,则函数,f g f g ±⋅当0x x →时极限也存在,且1)()()()()0lim lim lim x x x x x x f x g x f x g x →→→±=±⎡⎤⎣⎦;2)()()()()0lim lim lim x x x x x x f x g x f x g x →→→=⋅⎡⎤⎣⎦;又若()0lim 0x x g x →≠,则0/f g x x →当时极限存在,且有4)()()0lim lim x x x xc f x c f x →→⋅=⋅ (C 为常数) 上述的性质对于0,,,x x x x x ±→∞→+∞→-∞→时也同样成立.计算.解: 当10x +≠时有故所求的极限等于分析:利用函数极限的四则运算法则,把所求函数的极限化为一些已知的简单函数的极限来计算.像(2)中的类型就是1→x 时,分子、分母的极限都是零注:使用极限的四则运算法则的前提是各部分极限都存在.2.4 利用迫敛性定理求极限定理5 设()()0lim lim ,x x x x f x g x A →→==且在某()0'0;U x δ内有()()()f x h x g x ≤≤ 则有()0lim x x h x A →=.分析:应用迫敛性的定理进行计算.解:因为1cos 1≤≤-x ,所以当0x <时分析:要求出这道题,必须应用到前面所学的知识点,即关于函数[]y x =有所以应用这个可以进行计算.故由迫敛性得小结:利用函数极限的迫敛性与四则运算,我们可以从一些简单的函数极限出发,计算较复杂的函数极限.2.5 利用两个重要极限求极限(1我们经常使用的是它们的变形:(1)的特点:(01)分子、分母的极限值为0;(02)分子是分母的正弦函数. (2)的特点:(01)幂指函数的底趋于1,指数趋于无穷时,其极限值是e ; (02)底是常数1与一个无穷小量之和,指数是底中无穷小量的倒数.例12 求下列函数极限1)0sin 2lim x x x →; 2)0tan lim x x→; 3)1lim sin x x →+∞; 4)()10lim 1(x x x αα→+为给定实数). 解:1)0sin 2lim x x x →=02lim2122x x →=⨯= 2)0tan lim x x x →=0sin 1lim1cos x x x x→⋅= 3)令1y x =,于是当x →∞时,0y →,从而1lim sin x x x →+∞=0sin lim1y y y→=. 4) ()()11lim 1lim 1xx x x x x e ααααα→→⎡⎤+=+=⎢⎥⎣⎦. 例13 求下列函数极限x a x x 1lim )1(0-→、 bxaxx cos ln cos ln lim )2(0→、. 分析:首先要看题目的类型,看看是否符合两个重要的极限及特点.)1ln(ln 1 ln )1ln( ,11 u au x a a u x u a x x+=-+==-于是则)令解:(a u au u a u a u xa u x uu u u x x ln )1ln(ln lim )1ln(ln lim )1ln(ln lim 1lim 010000=+=+=+=-→→→→→→故有:时,又当)]1(cos 1ln[)]1(cos 1ln[(lim)2(0-+-+=→bx ax x 、原式1cos 1cos 1cos )]1(cos 1ln[1cos )]1(cos 1ln[(lim0--⋅--+--+=→ax bx bx bx ax ax x1cos 1cos lim 0--=→ax bx x=2022sin 2lim2sin 2x a xb x→-- 2222022sin 222lim sin 222x a x a b x x ba x xb x →⎛⎫⎛⎫ ⎪ ⎪⎝⎭⎝⎭=⋅⎛⎫⎪⎝⎭⎛⎫ ⎪⎝⎭22b a=.2.6 利用无穷小量的性质求极限2.6.1利用无穷小量与有界变量之乘积仍为无穷小量求极限与无穷小数列的概念相类似,我们给出关于函数为无穷小量的定义.定义6 设f 在某()00U x 内有定义,若 ()0lim 0x x f x →=,则称f 为当0x x →时的无穷小量.若函数g 在某()00U x 内有界,则称g 为当0x x →时的有界量. 由无穷小量的定义可立刻推得如下性质:1.两个(相同类型的)无穷小量之和、差、积仍为无穷小量.2.无穷小量与有界量的乘积为无穷小量. 定理6 设函数()f x 、()g x 满足:()()0lim 0x x g x f x →=.2.6.2 利用无穷小量与无穷大量的关系求极限定义7 设函数f 在某()00U x 内有定义.若对任给的0G >,存在0δ>,使得当()()()0000;x U x U x δ∈⊂时有则称函数f 当0x x →时有非正常极限∞,记作 ()0lim x x f x →=∞.若(1.2)式换成“()f x G >”或“()f x G <-”,则分别称f 当0x x →时有非正常极限+∞或-∞,记作()0lim x x f x →=+∞ 或 ()0lim x x f x →=-∞.定义8 对于自变量x 的某种趋向(或n →∞时),所有以∞,+∞或-∞为非正常极限的函数(包括数列),都称为无穷大量.定理7 (I )若:∞=)(lim x f ,则 0)(1lim=x f . (II) 若: 0)(lim =x f 且 ()0f x ≠ 则 ∞=)(1lim x f . 例15 求下列极限(1) 51lim+∞→x x (1)11lim 1-→x x .解:(1)由∞=+∞→)5(lim x x ,故 051lim=+∞→x x . (2)由0)1(lim 1=-→x x ,故 11lim 1-→x x =∞.注:无穷大量不是很大的数,而是具有非正常极限的函数;若f 为0x x →时的无穷大量,则易见f 为()00U x 上的无界函数.但无界函数却不一定是无穷大量.2.6.3 利用等价无穷小替换求极限定理8 设函数()00,,f g h U x 在内有定义,且有()f x ()g x ()0x x →.(1)若()()()()0lim ,lim x x x x f x h x A g x h x A →→==则;注:设'',,,ββαα 都是同一极限过程中的无穷小量,且有:''~,~ββαα, ''lim βα 存在,则 βαlim 也存在,且有βαlim= ''lim βα.解:由于()arctan 0xx x →,()sin 440x x x →.故有定理8得例17 求极限2220sin cos 1limx x x x -→ .分析:本题切忌将2cos x和2sin x 用2x 等价替换.解: ,~sin 22x x 2)(~cos 1222x x -∴ 2220sin cos 1lim x x x x -→=0lim x →212)(2222=x x x 注:1、在利用等价无穷小量替换求极限时,应注意:只有对所求极限式中相乘或相除的因式才能用等价无穷小量来替换,而对极限式中的相加或相减部分则不能随意替换.2、常用的等价无穷小量. 当0x →时,有xsin x ,tan x x ,211cos 2xx -,()ln 1x x +,arcsin x x ,1ln x a x a -,arctan xx ,e xx ,()11ax ax +-()0a ≠.2.7 用左右极限与极限关系求极限适用于分段函数求分段点处的极限,以及用定义求极限等情形.定理9 函数极限)(lim 0x f x x →存在且等于A 的充分必要条件是左极限)(lim 0x f x x -→及右极限)(lim 0x f x x +→都存在且都等于A .即有⇔=→A x f x x )(lim 0)(lim 0x f x x -→=)(lim 0x f x x +→=A.例18 设)(x f =⎪⎪⎩⎪⎪⎨⎧≥<<-≤--1,10,0,212x x x x xx x e x 求)(lim 0x f x →及)(lim 1x f x →.分析:此题一看就知道是分段函数,要分多步来计算,最后再综合起来. 解:()()0lim lim 12x x x f x e ---→→=-1=()00lim lim x x f x ++→→⎛⎫=)0lim 1x +→=1=由1)(lim )(lim 0-==+-→→x f x f x x1)(lim 0-=∴→x f x不存在由(又)(lim )01()01(1lim )(lim 0)1lim lim )(lim 1211111x f f f x x f x xx x x f x x xx x x →→→→→→∴+≠-===-=-=++---注:此方法一般适用于分段函数.2.8 利用函数的数学公式、定理求极限2.8.1利用罗比塔法则求极限(适用于不定式极限) 定理10 若A x g x f x g x f A A x g x f iii x g x u x g f ii x g x f i x x x x x x x x x x ==∞∞±=≠==→→→→→)()(lim )()(lim ()()(lim )(0)()()(0)(lim ,0)(lim )('''''0000000),则或可为实数,也可为内可导,且的某空心邻域在与 此定理是对0x x →时而言,对于函数极限的其它类型,均有类似的法则,该定理对00型或∞∞型均成立.注:运用罗比塔法则求极限应注意以下几点:1、要注意条件,也就是说,在没有化为∞∞,00时不可求导.2、应用罗比塔法则,要分别的求分子、分母的导数,而不是求整个分式的导数.3、要及时化简极限符号后面的分式,在化简以后检查是否仍是未定式,若遇到不是未定式,应立即停止使用罗比塔法则,否则会引起错误.4、当)()(lim ''x g x f a x → 不存在时,本方法则失效,但并不是说极限不存在,此时求极限须用另外方法.例19 求下列函数的极限①)1ln()21(lim 2210x x e x x ++-→ ②)0,0(ln lim>>+∞→x a x xax解:①令()f x = 21)21(x e x +-, ()g x = l )1n(2x + 21')21()(-+-=x e x f x , 2'12)(xxx g +=222"23")1()1(2)(,)21()(x x x g x e x f x+-=++=- 由于0)0()0(,0)0()0(''====g g f f 但2)0(,2)0(""==g f从而运用罗比塔法则两次后得到122)1()1(2)21(lim 12)21(lim )1ln()21(lim22223022102210==+-++=++-=++--→-→→x x x e x xx e x x e xx xx xx . ② 由∞=∞=+∞→+∞→a x x x x lim ,ln lim ,故此例属于∞∞型,由罗比塔法则有: )0,0(01lim 1lim ln lim 1>>===+∞→-+∞→+∞→x a ax ax x x x ax a x a x .2.8.2 利用泰勒公式求极限对于求某些不定式的极限来说,应用泰勒公式比使用罗比塔法则更为方便,下列为常用的泰勒展开式:1、)(!!212n nxx o n x x x e +++++= 2、)()!12()1(!5!3sin 212153n n n x o n x x x x x +--+++-=--3、)()!2()1(!4!21cos 12242++-+++-=n nn x o n x x x x 4、)()1(2)1ln(12n nn x o nx x x x +-++-=+- 5、)(!)1()1(!2)1(1)1(2n n x o x n n x x x ++--++-++=+ααααααα6、)(x x 1 112n n x o x x+++++=- 上述展开式中的符号)(n x o 都有:0)(lim 0=→n n x xx o 例20 求)0(2lim>+-+→a xxa x a x解:利用泰勒公式,当0→x 有)(211x o xx ++=+ 于是 xxa x a x +-+→2lim=xax a x a x )121(lim 0+-+→=x x o a x x o a x a x ⎥⎦⎤⎢⎣⎡-⋅--++→)(211)()2(211lim=ax x o x a x x o a x a x x 21)(21lim )(2lim00=+=+⋅→→2.8.3 利用拉格朗日中值定理求极限 定理11 若函数f 满足如下条件:(I) f 在闭区间[],a b 上连续 (II)f 在(),a b 内可导 则在(),a b 内至少存在一点ξ,使得ab a f b f f --=)()()('ξ此式变形可为:)10( ))(()()('<<-+=--θθa b a f ab a f b f .例21 求 xx e e xx x sin lim sin 0--→.分析:对于这个题目,好多同学看到题目之后,发现所求极限的函数是“0”型不定式,马上想到用罗比塔法则法,但是此题用拉格朗日中值定理更容易,更简单.解:令x e x f =)( 对它应用拉格朗日中值定理得)1(0 ))sin ((sin )sin ()(sin )('sin <<-+-=-=-θθx x x f x x x f x f e e x x 即1)(0 ))sin ((sin sin 'sin <<-+=--θθx x x f xx e e xx x e x f =)(' 连续1)0())sin ((sin lim ''==-+∴→f x x x f x θ,从而有 1sin limsin 0=--→x x e e xx x .2.9利用分子或分母有理化求极限若分子或分母的极限为0,不能运用四则运算中商的极限运算法则时,采用通过分子或分母有理化,消去分母中的趋于0的因子,再运用极限的运算法则.2.9.1.约去零因式(此法适用于型时0,0x x →)例22 求121672016lim 23232+++----→x x x x x x x解:原式=()())12102(65)2062(103lim2232232+++++--+---→x x x x x x x x x xx =)65)(2()103)(2(lim 222+++--+-→x x x x x x x=)65()103(lim 222++---→x x x x x =)3)(2()2)(5(lim 2+++--→x x x x x =2lim -→x 735-=+-x x .2.9.2通分法(适用于∞-∞型) 例23 求 )2144(lim 22x xx ---→. 解:原式=)2()2()2(4lim2x x x x -⋅++-→=)2)(2()2(lim2x x x x -+-→=4121lim2=+→x x .例24求极限20x →.解:20x →=21x x→=)221limx x x →=)lim1x →=2.2.10 利用定积分求极限定义9 设函数()f x 在闭区间[],a b 上有定义,在闭区间[],a b 内任意插入1n -个分点将[],a b 分成n 个区间[],x i i x x -,记i x ∆1i i x x -=-()1,2,3,,i n =⋅⋅⋅,[]1,i i x x ξ-∀∈,作乘积()i f ξi x ∆ ,若这些乘积相加得到和式()1ni i f ξ=∑i x ∆ ,设max λ={}:1i x i n ∆≤≤,若0lim λ→()1nii f ξ=∑i x ∆极限存在唯一且该极限与区间[],a b 的分法及分点i ξ的取法无关,则称这个唯一的极限值为函数()f x 在[],a b 上的定积分,记作()baf x dx ⎰,即 ()baf x dx ⎰=0limλ→()1nii f ξ=∑i x ∆否则称()f x 在[],a b 上不可积.注:(1)由牛顿莱布尼兹公式知,计算定积分与原函数有关,故这里借助了不定积分的符号.(2)若()ba f x dx ⎰存在,区间[],ab 进行特殊分割,分点i ξ进行特殊的取法得到的和式极限存在且与定积分的值相等,但反之不成立,这种思想在思考题中经常出现,我们要好好理解.(3)定积分是否存在或者值是多少只与被积函数式和积分区间有关,与积分变量用什么字母表示无关,即()()()bbbaaaf x dx f t dt f u du ==⎰⎰⎰.定积分的极限有两个特性:第一,定积分是无穷项和式的极限,容易知道一般项在项数趋近于无穷大时极限值必然趋近于零,否则和式极限不存在.第二,定积分与某一连续函数有紧密的关系,它的一般项受到这一连续函数的约束,它是连续函数在某个区间上进行了无穷的分割,各小区间上任意的函数值与区间长度的乘积的累积.例25 利用定积分求极限:1111lim 1232n J n n n n →∞⎛⎫+++⋅⋅⋅+=⎪+++⎝⎭ 分析:此极限的求解,不容易直接用极限的定义解决,因为该法往往是用来一边计算一边证明某个极限结果已经比较明显的问题,因此这里不合适,重要极限的结论显然也在这里没有用处,因为形式上根本不同;在考虑洛必达法则,它不是无穷比无穷型的极限也非零比零型的极限,也不可能用到此法;那么泰勒公式呢?泰勒公式往往是用来解决连续函数的极限问题,通过泰勒展式往往能把非多项式形式的表达式转化成多项式形式,以简化形式从而求解,看来这里也不适用.再看用迫敛性:1111221221n nn n n n n =≤++⋅⋅⋅+≤+++,又lim11n nn →∞=+所以迫敛性失效.那是不是就没有什么合适的办法了呢?答案当然是否定的,事实上,它从形式上与定积分的定义还是有一些相像的,那么就让我们尝试用定积分的办法来解决这道题.解:把此极限式化为某个积分和的极限式,并转化为计算定积分.为此作如下变形:111lim 11nn i J n i→∞==⋅+∑. 不难看出,其中的和式是函数()11f x x=+在区间[]0,1上的一个积分和(这里所取的是等分分割,11,,,1,2,i i i i i x i n n n n ξ-⎡⎤∆==∈=⎢⎥⎣⎦···,n ),所以()1100ln 1ln 21dxJ x x==+=+⎰ . 当然,也可把J 看作()11f x x=+在[]1,2上的定积分,同样有2312ln 21dx dx J x x ===⋅⋅⋅=-⎰⎰ .2.11 利用单调有界原理求极限定理12 若数列{}n a 收敛,则{}n a 为有界数列,即存在正数M ,使得对一切正整数n ,有 M a n ≤.定理13(单调有界定理) 在实数系中,有界的单调数列必有极限. 例26 设21=a ,n n a a 21=+,n =1,2,⋅⋅⋅,求lim n n a →∞.分析:用单调有界原理求极限首先要证明是有界的单调数列. 解:(1)先证{}n a 是有界数列.事实上,n +∀∈N 由12n a <<现用数学归纳法证明如下:当1k =时,1a =12<<成立. 设n k =时结论成立,即12k a <<,则当1n k =+时,11222k a +<=<= 故12,n a <<∀n +∈N(2)再证{}n a 严格单调递增.由于12n a <<,故11n n n a a +==>,因此{}n a 严格单调递增.由单调有界定理知lim n x a →∞存在.(3)设lim n n a →∞=a ,则对nn a a 21=+两边取极限得1lim nn n a +→∞= a =解之得2a = 或 0a =(不合题意,舍去),故lim n n a →∞=2.注:(唯一性定理)数列收敛,极限唯一.2.12 多种方法的综合运用上述介绍了求函数极限的基本方法,然而,每一道题目并非只有一种方法。