抽样理论与方法:分层随机抽样
- 格式:ppt
- 大小:2.53 MB
- 文档页数:64
抽样调查方法抽样调查是社会科学研究中常用的一种数据收集方法,通过对样本进行调查和研究,来推断总体的特征和规律。
在实际调查中,选择合适的抽样方法对于研究结果的准确性和可靠性至关重要。
本文将介绍几种常见的抽样调查方法,并对它们的特点和适用范围进行简要分析。
一、简单随机抽样。
简单随机抽样是最基本的抽样方法之一,其特点是每个样本被选中的概率是相等的,且相互独立。
这种方法适用于总体中各个个体的特征分布均匀的情况,操作简单,且具有较好的代表性。
但是在总体分布不均匀或者样本容量较大时,可能会导致抽样误差较大,需要较大的样本容量来保证结果的可靠性。
二、分层抽样。
分层抽样是将总体按照某种特征分成若干层,然后在每一层中进行简单随机抽样,最后将各层的样本组合在一起,形成最终的样本。
这种抽样方法可以有效控制样本的代表性,保证各个层次的特征都能得到充分的反映。
但是在实际操作中,需要提前了解总体的分层情况,并对各层样本的比例进行合理的确定,操作相对复杂一些。
三、整群抽样。
整群抽样是将总体分成若干个群体,然后随机抽取其中的若干个群体作为样本。
这种方法在总体分布不均匀,且群体内部差异较大的情况下比较适用,可以减小抽样误差,提高调查效率。
但是需要注意的是,群体内部的差异也可能会影响样本的代表性,需要根据实际情况进行合理的选择。
四、系统抽样。
系统抽样是按照一定的规则从总体中选择样本,例如每隔若干个个体进行抽样。
这种方法操作简单,适用于总体有序排列的情况,且样本容量较大的情况下比较有效。
但是需要注意的是,如果总体的周期性规律与抽样规则相吻合,可能会导致样本的偏倚,需要进行合理的调整。
综上所述,不同的抽样调查方法各有特点,适用于不同的调查对象和研究目的。
在实际应用中,需要根据具体情况选择合适的抽样方法,并结合其他调查技术和分析方法,以确保研究结果的准确性和可靠性。
同时,对于抽样调查过程中可能出现的偏倚和误差,也需要进行合理的控制和修正,以提高研究的科学性和实用性。
分层随机抽样的原理和应用1. 简介分层随机抽样是一种常用的抽样方法,它通过将总体划分为不同的层级,然后在每个层级中进行随机抽样,从而得到具有代表性的样本集合。
这种抽样方法可以有效减小抽样误差,提高样本的代表性,广泛应用于统计调查、市场调研、社会调查等领域。
2. 原理分层随机抽样的原理是将总体划分为若干个层级,使得同一层级内的个体相对相似,而不同层级之间的个体有一定差异。
在抽样时,首先从每个层级中随机选择一部分个体作为样本,然后合并这些样本得到最终的抽样结果。
分层随机抽样的具体步骤如下: 1. 将总体划分为若干个层级,可以按照地域、年龄、性别、收入等因素进行划分。
2. 确定每个层级的样本大小,样本大小可以根据层级的重要性和总体特征进行确定。
3. 在每个层级中进行随机抽样,可以使用随机数表、计算机程序或抽奖方式进行抽样。
4. 将每个层级的样本合并,得到最终的样本集合。
3. 应用分层随机抽样在各个领域都有广泛的应用。
以下是一些应用示例:3.1 统计调查在进行统计调查时,人们通常希望从总体中抽取一部分样本,然后通过分析样本数据来推断总体的特征。
分层随机抽样可以保证样本的代表性,使得样本数据能够准确反映总体特征。
例如,政府机关在进行人口普查时,通常会将人口按照地域、年龄等因素进行划分,然后在每个层级中进行抽样调查。
3.2 市场调研在市场调研中,分层随机抽样可以帮助企业了解目标消费群体的特征和需求,从而制定相应的市场营销策略。
例如,一家公司想要了解某个地区不同年龄段消费者对某种产品的喜好程度,可以将该地区的消费者按照年龄划分为不同层级,然后在每个层级中进行抽样调研。
3.3 社会调查在社会调查中,分层随机抽样可以用来收集广泛的意见和观点,了解不同群体的态度和看法。
例如,一项社会调查想调查不同职业人群对某个社会问题的看法,可以将人群按照职业划分为不同层级,然后在每个层级中进行抽样调查。
4. 优缺点分层随机抽样的优点在于: - 提高样本的代表性,可以准确反映总体特征; -减小抽样误差,提高样本数据的可靠性; - 适用性广泛,可以应用于各种不同的调查和研究。
【抽样调查】分层随机抽样第2部分:分层随机抽样⽬录概述分层随机抽样的思路:当N ,n 都较⼤,总体单元之间的差异也较⼤时,简单随机抽样会出现⾼成本、低精度情形,解决⽅法是将总体划分为若⼲个⼦总体、减少总体单元之间的差异。
假设在各个⼦总体内已经满⾜实施简单随机抽样的条件,则可以在各个⼦总体内独⽴地进⾏简单随机抽样,再将各个⼦总体参数的估计值进⾏加权,得到总体参数的估计。
分层抽样的概念:层:如果⼀个包含N 个单位的总体可以分成不重不漏的L 个⼦总体,即每个单元必定属于且仅属于⼀个⼦总体,则这样的⼦总体称为层。
有N 1+⋯+N L =N 。
分层抽样:在每⼀层中独⽴进⾏抽样,总的样本由各层样本组成,总体参数⼜按照各层样本参数的汇总作出估计。
有n 1+⋯+n L =n 。
分层随机抽样:每层的样本,都独⽴地按照简单随机抽样进⾏,这样的分层抽样称为分层随机抽样。
符号规定:h :层。
从⽽N h 代表第h 层的单位总数,n h 代表第h 层的样本数。
i :层内单位号。
从⽽Y hi 代表第h 层第i 个总体单元,y hi 代表第h 层第i 个样本单元。
W h :层权,即W h =N h N 。
f h :层内抽样⽐,即f h =n hN h 。
¯Yh,Y h,S 2h:层内总体参数(均值、总值与⽅差)。
¯y h ,y h ,s 2h:层内样本参数(样本均值、样本总值与样本⽅差)。
简单估计量分层抽样⾸先根据各层的样本,计算出各层均值¯Y h的适当估计值ˆ¯Y h ,然后再使⽤总体层权加权平均,得到总体均值¯Y 的估计,即ˆ¯Y st =L∑h =1W h ˆ¯Y h =1N L∑h =1N h ^¯Y h .对于分层随机抽样,每⼀层的ˆ¯Y h就是h 层的样本均值¯y h ,即ˆ¯Y st =L∑h =1W h ¯y h =1N L∑h =1N h ¯y h .注意这⾥的线性形式。
抽样技术-分层随机抽样概述介绍在实际调查和研究中,我们往往无法对所研究的总体进行全面调查,而需要通过抽样的方式来获取一局部样本数据。
而抽样技术是统计学中非常重要的一个概念,它可以帮助我们从总体中选择样本,通过对样本进行分析和研究,得出对总体的结论。
分层随机抽样是抽样技术中的一种常用方法,它将总体按照一定的特征进行分组,然后从每个组中随机选择一局部样本进行调查。
这种方法可以提高样本的代表性,使得样本更能够反映总体的情况。
分层随机抽样的步骤分层随机抽样包括以下几个步骤: 1. 第一步,确定抽样的总体。
需要明确需要研究的总体是什么,例如某个地区的人群、某家企业的员工等等。
2. 第二步,将总体进行分层。
根据需要研究的特征,将总体进行分组,例如按照性别、年龄、职业等特征进行分层。
3. 第三步,确定每层的样本大小。
根据实际情况和研究的要求,确定每个分层的样本大小,使得每个分层的样本能够充分反映该层的特征。
4. 第四步,进行随机抽样。
在每个分层中,通过随机抽样的方式选择样本。
常用的随机抽样方法有简单随机抽样、系统抽样等。
5. 第五步,收集数据并进行分析。
通过对样本进行调查和数据收集,得到研究所需的数据。
然后可以进行数据分析和统计,得出对总体的结论。
分层随机抽样的优势分层随机抽样相比于其他抽样方法,具有以下优势: 1. 提高样本的代表性。
通过将总体进行分层,可以保证每个分层中都有足够数量的样本,从而使得样本更能够代表总体的特征。
2. 控制误差。
由于每个分层中的样本都是随机选择的,因此可以在一定程度上控制抽样误差,提高调查结果的准确性和可信度。
3. 适用性广泛。
分层随机抽样可以适用于各种调查和研究场景,无论是人口统计学调查、市场调研还是医学研究等,都可以采用这种抽样方法。
分层随机抽样的局限性分层随机抽样虽然具有很多优势,但也存在一些局限性: 1. 难以应对动态总体。
如果总体的分层特征随着时间的推移发生变化,那么分层随机抽样可能无法准确反映总体的情况。
抽样技术:分层随机抽样引言在数据分析中,抽样是一种常见的技术,用于从总体中选择一部分样本进行研究和分析。
抽样的目的是获得对总体的准确、可靠的估计,同时降低研究成本和时间。
然而,在实际应用中,总体往往是复杂多样的,包含不同属性或特征的子群体。
这时,分层随机抽样就是一种有效的抽样技术,可以提高抽样的精确性和代表性。
本文将介绍分层随机抽样的概念、步骤和应用。
什么是分层随机抽样?分层随机抽样是一种按照总体的分层结构进行抽样的方法。
总体根据某种特征或属性被划分为若干层,然后从每一层中随机选择一部分样本,构成最终的样本集。
这种抽样方法能够充分考虑总体内部的差异,保证样本对总体的代表性和准确性。
分层随机抽样的步骤分层随机抽样一般包括以下几个步骤:步骤1:总体划分层首先,需要根据某种特征或属性将总体划分为若干层。
层与层之间应具有较大的差异,而层内部的差异应尽可能小。
步骤2:确定每层的样本量和抽样比例根据抽样的目标和总体的特点,可以确定每一层的样本量。
通常情况下,样本量应当足够大,以获得准确的统计结果。
同时,需要确定每一层的抽样比例,比例应考虑到层内部的差异和样本数量。
步骤3:随机抽样在每一层内,根据抽样比例,从层内随机选择样本。
随机抽样可以保证样本的无偏性和代表性。
步骤4:组成样本集将每一层内抽取的样本进行组合,形成最终的样本集。
样本集应能够反映总体的属性和特征。
分层随机抽样的优点相比于简单随机抽样和系统抽样,分层随机抽样具有以下优点:提高估计的精确性分层随机抽样可以将总体划分为若干个层,然后分别从每一层抽取样本。
这样做有助于充分考虑总体内部的差异,提高估计的精确性。
降低误差由于分层随机抽样将样本分布在不同层中,可以降低抽样误差和估计误差,从而提高研究结论的可靠性。
保证样本的代表性分层随机抽样能够从每一层中抽取样本,使样本更具代表性。
这样可以在不损失总体属性和特征的情况下,降低样本的偏差。
分层随机抽样的应用分层随机抽样在社会调查、市场研究、医学研究等领域有着广泛的应用。
常用抽样方法范文
1.简单随机抽样
简单随机抽样是最基本的一种抽样方法,它是从总体中按照随机的原
则选择样本。
简单随机抽样的特点是每个样本都有相同的机会被选中,并
且每个样本之间是相互独立的。
2.系统抽样
3.分层抽样
分层抽样是根据总体的特征将总体划分为若干个层级,然后从每个层
级中按照其中一种抽样方法选择样本。
这种方法可以确保每个层级都有合
适的样本比例,从而更好地反映总体的特征。
4.整群抽样
整群抽样是将总体划分成若干个互不相交的群体,然后从其中一部分
群体中选择样本。
这种方法适用于总体内个体之间的相似性较高,群体内
个体之间的差异较小的情况。
5.效应抽样
效应抽样是一种根据研究目标选择合适的个体进行抽样的方法。
例如,在药物研究中,可根据药物的特性和研究对象的需求选择抽样方法,以确
保研究结果的有效性和可靠性。
除了以上常用的抽样方法,还有一些其他的抽样方法,如整理性抽样、初始抽样、逐步回归抽样等。
每种抽样方法都有其适用的场景和限制条件,研究人员需要根据具体情况选择合适的抽样方法。
总之,抽样方法的选择对研究结果的可靠性和推广性起着重要的作用。
研究人员需要根据研究目标、总体特征以及可行性等因素选择合适的抽样
方法,并结合抽样误差的估计和样本大小的确定,以保证研究结果的科学
性和准确性。
随机抽样分层随机抽样:科技名词定义中文名称:分层随机抽样英文名称:stratified random sampling定义:在抽样总体中按生物个体划分为若干个层(组),对每层分别抽取一组随机样本,然后通过加权对总体参数做出估计。
方法简介分层随机抽样(Stratified sampling)是随机抽样中的一种抽样方法。
在抽样前先对母群体依某些特征分成若干层,再利用简单随机抽样,自各层中抽取样本.类型随机抽样,又称分层随机抽样,它是先将总体各单位按一定标准分成各种类型(或层);然后根据各类型单位数与总体单位数的比例,确定从各类型中抽取样本单位的数量;最后,按照随机原则从各类型中抽取样本。
案例学习比如,我们要了解某市400个国营企业的生产经营情况,决定采取类型随机抽样法抽取20个企业作为样本进行调查,其具体做法是:首先,将这400个企业按产业(也可按行政区划、盈利情况、规模大小等)分为三类,假定第一产业40个,第二产业200个,第三产业160个。
然后,按各类企业在总体中的比重,确定各类企业抽取样本单位的数量。
其中,第一产业的企业占总体10%,按比例应抽样本企业2个;按同样方法计算,第二产业中应抽样本企业10个,第三产业中应抽样本企业8个。
最后,采用简单随机抽样或等距随机抽样方法,从各类企业中抽出上述数量的样本单位。
搞好类型随机抽样的关键,是分类的标准要科学、要符合实际情况,许多复杂的事物还应该根据多种标准作多种分类或综合分类。
分类的结果必须是每一个单位都归属于某一类,而不允许既可属于这一类、又可属于那一类,也不允许互相交叉或有所遗漏;必须是各类型单位的数量之和等于总体单位的数量,而不允许大于或小于总体单位的数量。
分层(类型)随机抽样的优点分层(类型)随机抽样的优点是,它适用于总体单位数量较多、内部差异较大的调查对象。
与简单随机抽样和等距随机抽样相比较,在样本数量相同时,它的抽样误差较小;在抽样误差的要求相同时,它所需的样本数量较少。
抽样设计的理论与方法引言抽样是统计学中常用的一种方法,通过从总体中选择一部分个体进行研究或测量,可以从样本数据中推断总体的特征。
在统计学中,设计抽样方案是至关重要的,因为一个好的抽样设计方案可以保证样本数据的代表性和可靠性。
本文将探讨抽样设计的理论和方法,包括简单随机抽样、系统抽样、分层抽样和群集抽样等。
简单随机抽样简单随机抽样是最基本的抽样方法之一,它的特点是每个个体都有相同的机会被选入样本。
简单随机抽样通常需要使用随机数生成方法来选择样本,确保每个个体都有等概率的机会被选入样本。
简单随机抽样的优点是简单易用,缺点是在总体规模较大时,可能需要耗费较多时间和资源。
系统抽样系统抽样是一种每隔一定间隔选择一个个体作为样本的抽样方法。
系统抽样的优点是相对简单,适用于较大总体规模和较少资源的情况下。
但是,如果总体中存在周期性或规律性的特征,系统抽样可能导致样本的偏倚。
分层抽样分层抽样是将总体分为不同的层级,然后从每个层级中进行随机或系统抽样。
分层抽样的优点是能够更好地保证样本的多样性和代表性。
分层抽样通常用于总体中存在明显差异或特征的情况下,可以在不同的层级上进行单独的分析和比较。
群集抽样群集抽样是将总体分为多个群集,然后从选取部分群集进行研究或测量。
群集抽样适用于总体中的个体存在某种聚集性或社区性的特征的情况下。
群集抽样的优点是可以更好地利用资源和时间,缺点是可能导致样本的相关性增加。
抽样设计的考虑因素在设计抽样方案时,需要考虑以下因素:1.目标:需要明确研究或测量的目标和问题,确定需要从总体中抽取哪些特征和属性。
2.总体规模:需要考虑总体的规模和样本的大小,以保证样本的代表性和可靠性。
3.资源限制:需要考虑时间、人力和物力等资源的限制条件,选择合适的抽样方法和样本大小。
4.总体特征:需要了解总体的特征和分布情况,以选择合适的抽样方法和样本设计。
5.抽样误差:需要考虑抽样误差的大小和控制方法,以保证样本数据的准确性和可靠性。
第四章分层随机抽样第一节分层随机抽样概述分层抽样也叫做类型抽样,它是实际工作中最常用的抽样技术之一。
分层抽样是在抽样之前,先将总体按一定标志划分为若干个层(组),后在各层内分别独立地进行抽样。
由此所抽得的样本称之为分层样本。
各层所抽的样本也是互相独立的。
如果每层中的抽样都是简单随机的,则这种抽样就叫做分层随机抽样。
由此所得到的样本称做分层随机样本。
从以上概念可以看出,分层抽样的实质是在各层间作全面调查,而在各层内作抽样调查。
因此,分层抽样的误差只与各层内的差异有关,而同各层间的差异无关。
所以,为了能有效地降低抽样误差,提高抽样效果,在分层时应遵循“尽可能使层内差异小,而使层间差异大”的原则,同时要使分层的结果既无重复又无遗漏。
进行分层抽样时应注意:①层内抽样设计的选择;②分层变量的选择;③各层样本量的分配;④层数;⑤层的分界。
以前只重视③,近年来,④和⑤引起了越来越多的关注。
同简单随机抽样相比,分层抽样具有以下特点:①分层抽样能够充分地利用关于总体的各种已知信息进行分层,因此抽样的效果一般比简单随机抽样要好。
但当对总体缺乏较多的了解时,则无法分层或不能保证分层的效果。
②在分层抽样中,总体的方差一般可以分解为层间方差和层内方差两部分。
由于分层抽样的误差只与层内差异有关,而与层间差异无关,因此,分层抽样可以提高估计量的精度。
③由于分层抽样是在每层内独立地进行抽样,因此,使得分层样本能够比简单随机样本更加均匀地分布于总体之内,所以其代表性也更好些。
④分层抽样的随机性具体体现在层内各单元的抽取过程之中,也即在各层内部的每一个单元都有相同的机会被抽中,而在层与层之间则是相互独立的。
⑤分层抽样适合于调查标志在各单元的数量分布差异较大的总体。
因为对这样的总体进行合理的分层后可将其差异较多地转化为层间差异,从而使层内差异大大减弱。
⑥分层抽样中除了可以推断总体参数外,还可以推断各不同层的数量特征,并进一步作对比分析,从而满足不同方面的需要,也能帮助人们对总体作更全面、更深入的了解。
医学研究中的随机抽样与样本分层随机抽样和样本分层是医学研究中常用的两种抽样方法。
它们的应用可以提高研究结果的可靠性和泛化能力。
本文将重点介绍随机抽样和样本分层在医学研究中的意义、原理以及实际应用。
一、随机抽样的意义和原理随机抽样是指通过一种随机的方式,从总体中选取一部分个体作为研究样本。
这种抽样方法的主要目的是保证样本的代表性,使得样本能够准确地反映总体的特征。
随机抽样的原理是基于概率统计理论。
通过随机选择,每个个体都有相同的机会被选入样本,以避免主观性和选择性的影响,确保样本的客观性和可靠性。
因此,通过随机抽样,我们可以有效地控制误差,提高研究的可信度。
二、随机抽样的实际应用在医学研究中,随机抽样被广泛应用于临床试验、流行病学调查以及医学统计学研究中。
在临床试验中,研究者会将接受治疗的患者和接受安慰剂的患者随机分组,以消除潜在的偏倚因素。
通过这种方法,我们能够更好地评估治疗效果的差异,并得出更可靠的结论。
在流行病学调查中,随机抽样可以帮助研究者获取代表性的样本,从而更准确地推断总体的特征。
例如,在调查某种疾病的流行情况时,我们可以通过随机抽样方法从不同地区、不同年龄段的人群中选取样本,以得到更全面、准确的结果。
在医学统计学研究中,随机抽样可以帮助研究者对样本数据进行推断和推论。
通过随机选择,我们可以更好地估计总体参数,并进行统计分析。
这对于研究医学问题的原因和结果具有重要意义。
三、样本分层的意义和原理样本分层是指根据总体的某些特征,将总体划分为若干个层次,然后在每个层次中进行独立的随机抽样。
通过样本分层,我们可以更好地考虑总体的异质性,提高研究结果的准确性和稳定性。
样本分层的原理是基于总体的内部差异性。
当总体中存在明显的差异性时,简单随机抽样可能无法真实地反映总体的特征。
通过将总体分层,我们可以在每个层次中使用不同的抽样比例,使得样本更好地代表总体的各个子群。
四、样本分层的实际应用样本分层在医学研究中的应用非常广泛。
分层随机抽样一、定义在抽样之前,先将总体N 个单元划分成L 个互不重复的子总体(不重不漏),每个子总体称为层,它们的大小分别为L N N N ,,,21 ,这个层合起来就是整个总体∑==Lh h N N 1,然后在每个层中分别独立地进行抽样,这种抽样就是分层抽样,所得到的样本称为分层样本。
如果每层都是独立按照简单随机抽样进行,则称为分层随机抽样 二、作用分层抽样的抽样效率较高,也就是说分层抽样的估计精度较高。
这是因为分层抽样估计量的方差只和层内方差有关,和层间方差无关。
分层抽样不仅能对总体指标进行推算,而且能对各层指标进行推算。
层内抽样方法可以不同,而且便于抽样工作的组织。
分层随机抽样的三个必要条件:(1)每层都抽;(2)各层都独立地抽;(3)各层的抽样都是简单随机抽样。
以分层抽样代替简单随机抽样的理由具体可以总结为以下几个方面:(1)由于每层都进行抽样,这使得样本在总体中分布更加均匀、更加具有代表性。
(2)由于抽样在每一层中独立进行,所以一则允许各层选择适合本层的不同抽样方法;二则可同时对各子总体(层)进行参数估计,而不单是对整个总体的参数进行估计。
(3)由于各层的总体方差因单元之间差异小而肯定小于整个总体的方差,而抽样精度与此成正比,所以分层抽样可以提高参数估计的精度。
三、分层原则总体中的每一个单元一定属于并且只属于某一个层,而不可能同时属于两个层或不属于任何一个层。
(1)估计:层内单元具有相同性质,通常按调查对象的不同类型进行划分。
(2)精度:尽可能使层内单元的指标值相近,层间单元的差异尽可能大,从而达到提高抽样估计精度的目的。
(3)估计和精度:既按类型、又按层内单元指标值相近的原则进行多重分层,同时达到实现估计类值以及提高估计精度的目的。
(4)实施:抽样组织实施的方便,通常按行政管理机构设置进行分层。
例如,对全国范围汽车运输的抽样调查,调查目的不仅要推算全国货运汽车完成的运量,还要推算不同经济成分(国有、集体、个体)汽车完成的运量。