纳米材料生物效应及其毒理学研究进展
- 格式:pdf
- 大小:3.12 MB
- 文档页数:10
纳米材料的环境行为及生态效应研究一、引言随着纳米材料的广泛应用,环境和生态效应成为了研究的热点问题。
纳米材料具有独特的物理化学性质,那么它们在自然环境中会发生什么样的行为呢?这篇文章将介绍纳米材料的环境行为以及在环境中的生态效应,并探讨现有研究中的问题和挑战。
二、纳米材料的环境行为纳米材料在自然环境中表现出与微米或更大颗粒不同的行为。
由于小尺寸、高比表面积和表面反应等因素的影响,纳米材料对环境的影响可能会更加显著。
因此,了解纳米材料在环境中的行为对于评估其生态效应至关重要。
1.稳定性纳米材料在环境中的行为高度依赖于其物理和化学稳定性。
物理稳定性影响其分散状态和剪切力,能够影响其在环境中的行为。
化学稳定性影响其重组和显露的可溶性,同时 also影响了其在环境中与其他物质的相互作用。
2.吸附和沉积纳米材料在环境中的行为主要是依靠吸附和沉积来体现。
吸附会影响纳米材料的迁移、分布和生态效应。
它受到吸附材料、相对湿度和物理化学性质等因素的影响。
与吸附不同,沉积是纳米材料突破大气边界层并进入土壤、淡水和海水等矿质介质的过程。
沉积速率高度依赖于纳米材料的物理和化学性质以及介质的性质,如pH值、离子强度和类型等。
3.溶解纳米材料与环境中的溶液相互作用时可能会出现溶解现象。
该过程仅限于些溶于水或其他液体中的纳米材料。
纳米颗粒的溶解速率可能会影响其在环境中的行为和人体健康状况。
三、纳米材料的生态效应纳米材料对环境和生态系统有着多种影响。
它们通过改变自然系统中的化学、生物和物理过程影响生态系统的功能,改变整个系统的生物多样性和韧性。
以下是一些典型的生态效应。
1.生物毒性由于纳米材料的高比表面积和大量的表面,它们可能会表现出更强的生物毒性。
孟买大学的研究显示,银纳米颗粒会对某些植物造成不良影响,干扰其生长和发育。
此外,纳米材料可能会通过生物积累引入食物链并影响食物的安全性。
2.影响生态系统纳米材料的作用不仅仅局限于某个层面或单一环境领域,其可能对整个生态系统造成严重影响。
生物纳米材料的功能及应用研究全球科学技术的快速发展,促进了新型材料技术的研发。
其中,生物纳米材料的功能与应用备受关注。
本文将介绍生物纳米材料的概念、性质、功能和应用研究进展。
一、生物纳米材料的概念和性质生物纳米材料是指尺寸小于100纳米的生物分子,例如蛋白质、核酸和多糖等。
它们具有独特的性质:与特定的分子互相作用,形成高度有序的结构。
生物纳米材料可以用于制备新型的材料,具有高效、可控、可重复等特点。
二、生物纳米材料的功能研究1. 光学应用生物纳米材料的结构和性质使其在光学应用上具有广泛的用途。
例如,蛋白质纳米材料可以用于构建高分辨率的生物传感器,核酸纳米材料可以用于制造可程序的光子材料,多糖纳米材料可以用于制备光敏材料。
2. 生物医药应用生物纳米材料在生物医药领域的应用是一个重要的研究方向。
例如,纳米粒子可以通过改变其表面化学性质来实现靶向输送药物。
蛋白质可以修饰成可远程控制的纳米机器人,用于精确治疗。
核酸纳米材料可以用于基因诊疗和基因编辑。
三、生物纳米材料的制备生物纳米材料的制备方法包括生物合成、化学合成和物理合成等。
较为普遍的生物合成方法有:克隆表达、大肠杆菌表达、酵母表达等。
其中,克隆表达是目前用得最多的一种生物合成方法。
化学合成方法则包括:化学还原法、水热法、溶剂热法等。
物理合成方法则包括:激光剥蚀法、离子束打造法等。
四、生物纳米材料的应用前景随着生物纳米材料研究的不断深入,其应用前景也越来越广泛。
例如,生物纳米材料可以用于构建可重构纳米电子器件、快速响应传感器、医疗用途等。
同时,结合人工智能、机器人技术、虚拟现实技术等,未来应用的领域也将变得更加广阔。
五、结论生物纳米材料在光学应用和生物医药领域等具有广泛的应用前景,其研究也在不断深入。
未来,结合多学科领域的研究,生物纳米材料的功能和应用将会更加丰富和多样化。
纳米生物技术学习心得第一篇:纳米生物技术学习心得在现代科技发展中,纳米科技无疑将在21世纪极大地影响着人类的生活,影响和带动许多其它学科的发展进程。
纳米生物技术是生物技术领域的前沿和热点学科,在医药卫生领域有广泛的应用和明确的产业化前景,特别是纳米生物材料、纳米药物载体、纳米探针及诊断技术、基因工程方面发挥重要作用。
一、纳米生物材料通过课程学习,我了解到纳米生物材料是指具有纳米量级的超微粒构成的固体物质。
纳米颗粒具有稳定的物理化学性质,较高的物理强度,较好扩散和渗透能力、吸附能力和化学活性,以及良好生物降解性等特点。
正是因为纳米生物材料为一新型生物材料具有传统材料无可比拟的优势,其作为人体内植入物在组织工程中的广泛应用,将能够很好的解决传统材料的许多弊端,在生物医学领域已表现出独特的优势,具有着良好的应用前景。
伴随着高分子材料、生物技术、信息技术、纳米技术、组织工程技术的发展,必将加速推动对纳米生物材料的基础研究和生物医学领域应用研究工作,使之进入一个新的阶段。
二、纳米药物载体课程中我们学习到,常见的纳米药物载体主要包括无机纳米药物载体和有机高分子纳米药物载体。
其中,高分子纳米粒子作为药物载体研究得比较早,目前已有少量基于高分子纳米载体的药物得到欧美一些国家药监部门批准用于临床治疗。
这是因为高分子纳米粒子生物相容性好,毒性小,药物可通过物理包覆或者化学键合的方式结合到高分子纳米粒子中,其释放后高分子载体可通过降解排出体外。
常见的无机纳米药物载体包括磁性纳米粒子、介孔二氧化硅、纳米碳材料、量子点等这些无机纳米药物载体,在实现靶向性给药、控释和缓释药物以及癌症靶向治疗等方面表现出良好的应用前景。
与高分子纳米粒子相比,无机纳米粒子不仅尺寸、形貌可控性好比表面积大,而且独特的光、电、磁性质赋予其具有潜在的成像显影、靶向输送和协同药物治疗等功能,使其更适于在细胞内进行药物输送。
随着人类对于自身细胞和病毒粒子研究的深入,不断提高纳米粒子作为药物载体的可行性、实用性必然给药物载体系统的研究提供突破性的进展。
纳米材料的生物安全性研究田蜜(湖北的二师范学院化学与生命科学学院,武汉,430205)摘要综述了包括富勒烯(C60)、氧化铁、氧化铝、氧化锌、二氧化钛、二氧化硅等在内的多种典型的碳基纳米材料、金属及其氧化物纳米材料和半导体(绝缘体)纳米材料的生物安全性研究进展。
关键词:纳米材料;纳米生物安全;纳米毒理学:毒性AbstractIncluding of fullerenes (C60) are reviewed in this paper, ferric oxide, aluminum oxide, zinc oxide, titanium dioxide, silica, such as a variety of typical carbon nano material and semiconductor, metal and oxide nanomaterials (insulator) biological safety of nanomaterials were reviewed.Key words: nano materials; Nano biological safety; Nanotoxicology: toxicity引言纳米粒子尺寸小、比表面积大、表面态丰富、化学活性高,具有许多块体及通粉末所没有的特殊性质,许多在普通条件没有生物毒性的物质,在纳米尺寸下却表现出很强的生物毒性[1]。
与此同时,纳米材料可能产生的负面效应特别是对环境和健康的潜在影响,也引起了人们的关注。
2003 年4 月,Science 首先发表文章讨论纳米材料可能产生的生物安全性问题[2]。
随后,许多学者相继开展了纳米材料的毒理学研究。
本文将一些学者的研究进行了综合,希望对各位有所帮助。
一、纳米安全性问题的提出纳米科技预计也将给人类生活带来巨大的变化,因而成为发展最快的研究和技术开发领域之人们在逐渐认识纳米科学技术的优点和其潜在的巨大市场的同时,一个新的科学问题及社会问题—一纳米效应与安全性,引起人们广泛关注。
纳米材料有毒吗摘要介绍了纳米材料的一些应用和几种主要纳米材料(如纳米TiO2、碳纳米管、纳米铁粉等)目前已取得的部分生物效应及毒理学的研究结果;讨论了纳米材料对人体和环境带来的潜在影响,及纳米颗粒材料未来的毒性研究重点,并对纳米材料安全性进行了展望。
关键词纳米材料毒性安全性纳米是一种尺度,和米、毫米、微米一样,都是长度的计量单位。
1纳米是10-9米,相当于人头发丝直径的万分之一。
纳米技术是通过操纵原子、分子、原子团或分子团使其重新排列组合成新物质的技术,其研究范围在1~100 nm之间的物质组成。
应用纳米技术研制出来的物质称纳米材料。
直径小于100 nm的颗粒物质称为纳米颗粒。
1 纳米材料的应用及其毒性问题的提出20世纪80年代末诞生并急剧发展的纳米材料,我们并不陌生,其应用古今有之。
古代字画所用的墨是由纳米级的碳墨组成;铜镜表面的防绣层是由纳米氧化锡颗粒组成。
现代的手机涂层中有纳米颗粒,防晒霜中有纳米二氧化钛颗粒,口红中有氧化铁纳米颗粒;纳米材料也广泛应用于工业催化、工程材料、生物和医学等方面。
但就在科学家肯定纳米材料对社会做出贡献的同时,一个新的科学问题——纳米生物效应与安全性,引起了人们的广泛关注。
这些新型的、高科技的纳米产品对我们的生存环境、人体健康会带来负面影响吗?神奇的纳米材料有毒吗?2003年在美国召开的第25届全美化学年会上,科学家们就提出了金属、陶瓷和有机纳米薄片很可能具有毒性。
欧洲和美国的科学家发表的一项长达20多年的与大气颗粒物有关的长期流行病学研究结果显示[1]:人的发病率与他们所生活环境空气中大气颗粒浓度和颗粒尺寸密切相关;死亡率增加是由剂量非常低的相对较小的颗粒物引起的;伦敦大雾事件中,有4000多人突然死亡;2004年北京连续3天被浓雾笼罩之后,呼吸道病人增加了两成。
科学家分析,这主要是空气中纳米颗粒大量增加造成的。
可见,纳米材料、纳米颗粒的毒性已成为专家的共识。
纳米材料和纳米颗粒是不同的实体,下面所指的毒性研究主要是针对纳米颗粒而言的。
生物纳米材料的研究与应用随着科技不断发展,生物纳米材料逐渐成为材料科学领域的热点研究方向。
生物纳米材料的独特性质和应用潜力,正在受到越来越多的关注。
本文将介绍生物纳米材料的概念、性质、合成方法及其应用领域,以及当前的研究局限,探讨其未来的发展方向。
一、生物纳米材料的概念与性质生物纳米材料是一种由生物分子组成的尺寸在纳米级别的材料。
因其具备独特的物理、化学和生物学特性,在生物医学、药物递送、纳米生物传感器等领域有广泛的应用前景。
相比于其它材料,生物纳米材料具有以下优越性质:1、天然生物材料:生物纳米材料大多来源于生物体内的天然物质,通过改变其尺寸和结构,可以赋予其新的性质和功能。
2、独特的生物相容性和生物通透性:生物纳米材料能够通过细胞膜进入细胞内部,并在体内与生物分子(如蛋白质、荷尔蒙等)相互作用。
3、独特的光学性质:生物纳米材料具有许多金属、半导体、磁性等材料所不具备的光学性质,如表面增强拉曼散射(SERS)、荧光与磷光等效应。
4、高度可控性:生物纳米材料的形态、尺寸、表面功能化均可通过不同的合成方法和表面修饰实现高度可控。
二、生物纳米材料的制备方法1、绿色制备法:采用植物或微生物等天然物质进行合成,具有环保、安全、无毒等特点。
2、物理制备法:例如水相凝胶法、高压均质法、光解法等。
3、化学制备法:例如溶胶凝胶法、淀粉酸钙沉淀法、金属有机框架(MOF)法等。
4、生物制备法:通过植物、微生物、动物等进行生物合成,具有代表性的有温和、低成本的植物合成法和微生物法。
三、生物纳米材料的应用领域1、药物递送:通过改变生物纳米材料相关的生物学特性,可以实现有效的药物递送。
2、纳米生物传感器:生物纳米材料具有广泛的生物分子识别和传感应用。
3、生物光子学及分子影像学:生物纳米材料能够通过光学方法进行生物成像。
4、免疫疗法:将生物纳米材料用于免疫疗法的治疗。
四、生物纳米材料的研究局限及未来发展方向目前,虽然生物纳米材料已经在许多领域得到了应用,但是还存在以下局限:1、生产成本较高:生物纳米材料的制备过程需要高技术和复杂的设备,导致生产成本较高。
纳米材料的生物效应李福林;宁月辉;王佳祥【摘要】纳米科技在全球迅速发展,纳米材料的生产与应用对传统行业产生了巨大的影响,纳米材料的环境安全性问题已经引起了各界的注意.纳米材料具有独特物理与化学性质,他们与相同成分的体材料性质存在很大差异.近年来国内外在纳米材料的生物安全性研究方面的工作已经证实,直接或间接接触纳米材料将对生物体有负面影响.纳米粒子可以进入细胞内部,甚至可以透过血脑屏障,从而危及生物的健康和生态环境.%The rapid development of nanotechnology worldwide has already made the nanomaterials to the applications in industrialization stage progressively. However, the impacts of nano-materials on the environment have not been paid much attention.Because of the unique physical and chemical characteristics, nanosized materials are changing many basic scientific concepts, their properties differ substantially from those bulk materials of the same composition. Recent research on the biological safety of nanomaterials is summarized. It has been demonstrated that nanoparticles had more adverse effects of direct and indirect exposure to nano-materials, related reports have shown that nanoparticles can enter cells and cross the blood-brain barrier which may increase the risk of human and environment.【期刊名称】《化学工程师》【年(卷),期】2011(000)007【总页数】4页(P48-51)【关键词】纳米材料;生物安全性【作者】李福林;宁月辉;王佳祥【作者单位】黑龙江省质,监督检测研究院,黑龙江,哈尔滨,150001;黑龙江省质,监督检测研究院,黑龙江,哈尔滨,150001;黑龙江省质,监督检测研究院,黑龙江,哈尔滨,150001【正文语种】中文【中图分类】R318.08纳米技术(Nanotechnology)[1]是指在纳米尺度上研究物质(包括原子、分子的操纵)的特性和相互作用,及利用这些特性的多学科交叉的科学和技术。
项目名称:重要纳米材料的生物效应机制与安全性评价研究首席科学家:赵宇亮中国科学院高能物理研究所起止年限:2011.1至2015.8依托部门:中国科学院二、预期目标总体目标本项目将围绕与工作场所和纳米产品相关,已经规模化生产或使用的重要纳米材料的生物效应与安全性展开研究,在学术上取得重大突破的同时,抓住机遇,提升我国纳米产业所面临的国际竞争力,为我国纳米科技可持续发展的重大国家需求,提供保障。
在科学上:重点揭示:生产车间纳米颗粒的释放与团聚行为,工人暴露限量以及健康效应,食品纳米颗粒进入胃肠道后的行为和命运;在细胞、分子水平上揭示这些纳米材料与呼吸系统、心血管系统、胃肠道以及皮肤相互作用机理;力争率先揭示影响工作场所和消费品中纳米颗粒生物安全性的关键因素和共性规律;揭示纳米颗粒与产品添加剂的复合-协同效应关系;获得具有重大国际影响力的研究成果。
培养一批能够进行原创性研究的高水平人才。
在应用上:筛选出能够用于评价纳米材料安全性的生物学或毒理学的指标;提出我国自主知识产权的与工作场所和消费产品相关的纳米材料安全性评价方法和评估程序;向国家提出相关纳米材料的职业接触限值OELs;为国家建立相应的安全评价体系提供科学依据,提高我国纳米产业的国际竞争力,支撑国家纳米科技可持续发展。
五年预期目标1.揭示工作场所中重要纳米材料(TiO2、ZnO、SiO2、Al2O3、富勒烯、碳纳米管的健康效应;建立工作场所吸入纳米颗粒特性与生物效应和安全性的关系;阐明释放空气中的纳米颗粒吸附2-3种重金属和1-2种重要有机污染物的复合-协同效应对生物安全性的影响;阐明工作场所纳米颗粒健康效应的分子机制;2.科学客观阐述食品相关5种重要纳米颗粒(如Ag、TiO2、ZnO、SiO2、Al2O3)的生物效应,以及与2-3种添加剂的复合-协同效应;阐述这些纳米颗粒对胃肠道、皮肤的作用规律;发现这些纳米颗粒生物学效应的分子机制;3.建立针对食品相关5种重要纳米颗粒的释放与性质检测方法;建立这类复杂成分纳米产品中纳米颗粒生物效应研究的实验方法学;4.综合上述成果,从10-15种复杂因素中力争筛选出3-5种决定产品中纳米颗粒的毒理学效应的关键因素;阐明它们影响细胞或生物分子的基本过程;在此基础上,提出1种适合纳米生物效应的高通量筛选方法(包括细胞模型、检测参数、检测方法,以及集成的技术体系等);进一步结合理论模拟和上述研究结果,建立纳米材料生物效应的定量构效关系,发展相关的分析预测模型;探索纳米技术相关的社会伦理学现象,为提高公众的接受度和理解度出谋划策。
发展存在有利的观点 当物质小到1—100 nm(10 ---- 10~ m)时,由于量子效应、局域性及巨大 的表面与界面效应,使物质的一些性质、性能发生了质变,原子、分子水平上 制造的纳米材料和器件在化学、材料、生物、医学等领域有着广泛的应用,引 发了一场新的工业革命”。
纳米医学纳米材料已经或正在走进我们生活的诸多方面,如生物医学领 域的纳米制药和疾病监测的方面。因为纳米材料尺度小、活性强,用纳米材料 制成的药物可以准确的杀死病变细胞不会对健康细胞产生影响,这是常规药物 所不能实现的。纳米生物芯片技术将传统的生物样品检测实验室集成到一个芯 片上来,大大增强了检测速度和精度。
纳米材料的生物效应研究纳米材料以其独特的性质被广泛应用于生物领 域,下面以碳纳米材料和药物纳米输送系统作为代表进行阐述。 (一)富勒烯近年 来合成制备方法的改进和突破有力地促进了富勒烯研究的发展。有关 C60及其 衍生物的生物活性的研究越来越广泛和深入,现已证明它们具有抑制细菌感 染、抗病毒活性和抗肿瘤等特性。
水溶性c。衍生物是一类具有生物活性的物质,其羧基化衍生物可以清除体 内的自由基,还可以抑制角化细胞增生,保护人角化细胞免遭紫外线 (uVB)介导 的细胞凋亡Foley等旧。的研究发现c。羧基衍生物能够穿透细胞膜与线粒体结 合,由于细胞内的活性氧自由基来自线粒体内电子传递链,富勒烯清除细胞内 自由基可能与这种结合有关。c60羧基衍生物的抗氧化作用可保护中枢神经系 统,用于治疗神经退化疾病,如帕金森病等 ”
(二)碳纳米管碳纳米管(eNTs),又名巴基管,可分为单壁碳纳米管和多壁 碳
纳米管。研究表明cNTs或含cNTs的复合材料与神经细胞、成骨细胞、纤维 原细胞等各种细胞具有很好的生物兼容性,而且它们有独特的管状结构,所以 被认为是良好的药物载体。
王海芳等"0用平均约1个”原子标记羟基化单壁碳纳米管(” IswNT,直径 1. 4nm、长400nm,),研究了它们在小鼠体内的生物分布以及代谢过程。发现 “ 5I swNT可以很快地分布在整个鼠体内,4种不同给药途径对其分布影响不
纳米银毒理学研究进展邓芙蓉;魏红英;郭新彪【摘要】纳米银因其优越的抗菌性能被广泛应用于环境、农业、医药等领域.以往的研究从体内试验和体外试验方面对纳米银的健康影响及其作用机制进行了探讨,然而,由于研究设计或研究条件等方面的限制,以往的研究结果仍存在一些不足,迄今为止,有关纳米银对健康的影响及其作用机制仍不很清楚.综述了近年来在纳米银毒理学研究方面所取得的进展以及目前研究中的不足,并展望了未来研究的方向.【期刊名称】《环境工程技术学报》【年(卷),期】2011(001)005【总页数】5页(P420-424)【关键词】纳米技术;纳米银;毒理学;进展【作者】邓芙蓉;魏红英;郭新彪【作者单位】北京大学公共卫生学院,北京100191;北京大学公共卫生学院,北京100191;北京大学公共卫生学院,北京100191【正文语种】中文【中图分类】X171.5纳米材料是指在三维尺度上至少有一维尺度小于100 nm的物质。
纳米级粒径使这些物质具有与大颗粒不同的理化特性,其具有更大的比表面积,具备更大的反应活性。
纳米银是以纳米技术为基础研制而成的新型纳米材料,因其优越的抗菌性能,被广泛用于医疗、食品、纺织、水质净化等领域[1-2]。
日益增加的纳米银的使用逐渐引起大家对其造成的环境危害的重视。
最近一项研究揭示,银在洗涮过程中很容易渗漏到废水当中,从而破坏废水处理厂处理废水所用的有用细菌,还可对湖泊或河流中的水生生物造成威胁[3]。
纳米银抗菌洗衣机的使用,使含有纳米银颗粒的洗衣废水排入水环境,造成对水环境的污染[4]。
此外,有研究表明,纳米银的抗菌性能会影响土壤中的有益菌,从而降低土壤的使用价值[5]。
相对而言,目前有关纳米银对健康的影响及其机制的研究还较为局限,纳米银的毒性及其机制的研究还处于初步探索阶段,有关纳米银使用的安全性还有待进一步探讨。
因此,深入探讨纳米银的毒性作用及其机制,对于纳米银的安全使用和开发利用有着非常重要的理论和现实意义。
金属纳米材料的生物化学制备及在生物医学领域的应用摘要:在纳米结构和纳米材料的制备上,最需要关注的点就是要克服巨大的表面能,防止因 Ostwald ripening 或团聚作用导致所制备的金属纳米材料在尺寸上逐渐变大,结构稳定性差。
本文侧重选择拥有独特结构并能保持生理活性的生物材料,作为金属纳米材料制备过程中的还原剂、封端剂,甚至作为模板框架来更加绿色环保地避免上述问题的发生。
本文主要分析金属纳米材料的生物化学制备及在生物医学领域的应用。
关键词:金属纳米材料,生物化学制备,医学应用引言2000 多年前,人们就已经开始无意识地使用纳米材料。
古埃及人曾在不经意间发现了一种纳米尺度的染料,并用来漂染头发,其色牢度非常优良;科学家们还发现现存于大英博物馆的古罗马莱克格斯杯的玻璃中融入了纳米尺寸的金银颗粒,能够随着光照变化改变颜色;我国考古学家在文物挖掘中发现古代铜镜千百年后依然完好无损就是因为表面涂有一层纳米尺度的氧化锡保护膜;以及流传至今未褪墨的书画也是因为使用的墨汁中存在着纳米尺寸的碳。
1.金属纳米材料的一般制备方法纳米颗粒(Nano Particles),是指在三维空间的某一维度尺寸处在 1 nm 到 100 nm 之间的微小颗粒。
NPs 的电子结构在某些晶面上的费米能级刚好处在体能带结构沿该晶向的禁带之中,使得 NPs 存在小尺寸效应、表面效应、量子尺寸效应、宏观量子隧道效应等材料特性。
除此之外 NPs 还在光学、电学、物理学、化学、生物学上有多种显著特性。
近年来,由于其独特的物理化学性质——高表面积、良好的电导率、低毒性、不错的稳定性和生物相容性,引起了科研工作者们的兴趣。
金溶胶是金纳米颗粒(Au NPs)在水溶液中存在的一种很普遍形式,其历史可以追溯到两千多年前。
虽然合成胶体金的方法五花八门,但是由Turkevich 等人早期开发的柠檬酸还原 HAuCl4 的合成方法到目前仍是制备金纳米颗粒最基础的方法,颇受大众青睐。
一、纳米生物材料生物学特性、生物安全性及在重大疾病快速检测中的应用基础研究一、项目提出的背景及意义近年来,在医疗卫生和生物医学工程领域,纳米技术的引入和纳米生物材料的使用,极大的促进了现代医学的发展。
现在已有多种含纳米生物材料的医疗用品得到国家或省市级食品药品监督管理局的批件,进入了临床阶段。
国内外已有很多报道,纳米材料具有特殊的生物性质,主要体现在两个方面:一方面,从生物体整体而言,纳米材料在生物体内的分布途径及靶器官具有特殊性;另一方面,从细胞水平来讲,与常规材料不同,纳米颗粒可以通过各种方式直接进入细胞内,导致细胞功能的改变甚至丧失,影响细胞的正常工作。
因此,纳米材料特殊生物学性质可能会引起生物负效应,有必要对纳米材料的生物学特性和生物安全性进行研究。
在众多人们日常生活中所能接触的纳米材料中,纳米生物材料与其它纳米材料相比,在与人体的接触方式上有明显不同。
纳米医用材料一个最显著的特点就是在研制和使用它的过程中,已经人为的使它通过了肺、肠、皮肤这三个人体抵御外来颗粒物侵入的主要屏障,直接进入人体的循环系统,因此可能对人体造成更直接、更巨大的危害。
所以,迫切需要马上开展对纳米生物材料安全性的研究。
纳米材料的生物安全性是一个方兴未艾的研究热点,国内外的研究水平基本处在一个水平线上,还有很多问题没有研究透彻,尤其是对纳米生物材料来讲。
例如,现在人们还不了解不同纳米生物材料在生物体内的分布、蓄积、排泄特性,也不了解不同纳米生物材料是如何与各种细胞相互作用的。
因此,对纳米生物材料毒理学的研究还基本上是空白,需要更加细致的研究。
通过对纳米生物材料安全性的研究,可以了解、掌握各种纳米生物材料的毒理学数据,为相关管理机构对纳米生物材料及其产品进行风险管理提供理论依据和数据基础;使管理机构可以制定科学有效的管理办法来规范纳米医用产品的使用、处理,这一方面可以增强消费者对相关纳米医用产品的使用信心,扩大纳米医用产品的使用市场;另一方面,可以增强国家产业政策决策机构对纳米医用产另促进纳米医用产业的发展。
文章编号:1001-5914(2009)08-0736-04纳米银的抗菌原理及生物安全性研究进展刘焕亮1,王慧杰2,袭著革1摘要:由于纳米银独特的抗菌特性,使其得到了广泛的应用,极大地增加了人们接触纳米银的机会,对其安全性进行评价就成为迫切需要解决的问题。
迄今为止,国内外对纳米银的毒性研究在方法上主要集中于形态学、线粒体功能测定、细胞增殖、酶活力等细胞毒性的检测,整体水平的毒性检测也有报道,而缺乏从分子水平进行机制方面的探讨研究。
该文就纳米银的抗菌原理及其生物安全性的研究现状进行综述,并对纳米银在毒理学研究的发展方向进行了展望。
关键词:纳米银;抗菌原理;生物安全性中图分类号:R994.6文献标识码:AProgress in Research on Antibacterial Mechanism and Biological Safety of Silver Nanoparticles LIU Huan -liang,WANG Hui -jie,XI Zhu -ge .Institution of Health and Environmental Medicine,Academy of Military Medical Sciences,Tianjin 300050,ChinaAbstract :The antibacterial property of silver nanoparticles has resulted in their widespread application in many fields,so the chance of silver nanoparticles exposure for human increased greatly.Thus,there is urgent need to assess the safety of such particle.So far,most toxicological studies of silver nanoparticles mainly focus on the cytotoxicity using different examination endpoint such as morphology,mitochondrial function,cell proliferation,enzyme activity,and so on.In addition,the in vitro studies on the toxicity of silver nanopoarticles are also reported,few of the study on molecule mechanism of toxicity was reported.This review provided a summary of antibacterial mechanism of silver nanoparticles and the current research situation of the safety.The future research direction of toxicological study of silver nanoparticles is also prospected based on the current knowledge .Key words:Silver nanoparticles;Antibacterial mechanism;Biological safety 基金项目:国家高技术研究发展计划项目(2006AA032330)作者单位:1.军事医学科学院卫生学环境医学研究所(天津300050);2.总后第一干休所(天津300161)作者简介:刘焕亮(1977-),女,助理实验师,硕士研究生,从事环境毒理学研究。