当前位置:文档之家› 第七章 无机高分子材料及其应用

第七章 无机高分子材料及其应用

第七章 无机高分子材料及其应用
第七章 无机高分子材料及其应用

无机高分子材料及其应用

摘要本文简要地介绍了无机高分子的定义、分类,以及一些重要无机高分子材料的性能及其应用。

关键词无机高分子材料无机聚合物性能和应用apdeng@https://www.doczj.com/doc/9b44661.html,

1、前沿

随着人们对健康、安全、环境意识的强化,尤其天然气和石油资源的日趋耗竭,材料未来总的发展趋向于:逐步由非金属材料部分地替代金属材料,而在非金属材料中,无机材料在许多领域中将越来越多地取代有机材料。因此,由蕴藏量极其丰富而廉价的无机矿物制备无毒、耐高温、耐老化、高强度甚至多功能化的无机材料是当今世界材料学研究的重要方向之一。无机高分子材料因能符合这些要求而日益引起重视。

无机高分子也称为无机聚合物,是介于无机化学和高分子化学之间的古老而又新兴的交叉领域。实际上,传统的无机化学中许多内容属于无机聚合物,许多无机物本身就是聚合物,例如金刚石、二氧化硅、

玻璃、陶瓷和氧化硼。第一届国际无机聚合物会议于1961年召开,会上把无机聚合物定义为:凡在主链上不含碳原子的多聚化合物称为无机聚合物,如此定义相当于把离子晶体及固态金属也包括在内,故后来有人建议把无机聚合物定义为:主链由非碳原子共价键结合而成的巨大分子。

2、无机高分子的分类

2.1 均链聚合物

主链由同种元素组成的聚合物为均链聚合物。

周期表中Ⅳ、Ⅴ、Ⅵ主族的大部分元素及Ⅲ族的B元素能生成均链聚合物。例如金刚石和石墨,三维网络固态聚合物Si、Ge、Sn、P、As、Pb、S、Se和Te的聚合分子等。但由于形成主链的同种原子之间的键能低于—C—C—键能,表现为稳定性甚差、易分解,而且当前合成的均链聚合物聚合度甚低,所以缺乏应用价值。

表一原子之间键能(计算值)

2.2 杂链聚合

由表一可知,同种原子间的键能C—C 键能最高为80Kcal/mol;而两种原子之间的键能多数较高,B—O键能达119.3 Kcal/mol。键能主要反映聚合物受热后稳定性,此外必须考虑聚合物的耐水解性、耐氧化性等。

元素键合生成均链或杂链聚合物的可能性可由元素电负性之和判断,如果两元素电负性之和5—6 ,则能生成聚合物。

2.3 无机聚合物的有机衍生物

均链聚合物或杂链聚合物中引入有机基团后,可

以提高其耐水性,因此具有较高键能的杂链聚合物与有机基团形成的元素有机杂链聚合物,既表现有高度耐热性又表现耐水性,得到应用价值很高的高分子材料,其中最突出的就是有机硅聚合物。

2.4 配位聚合物

在结构单元中通过有机或无机配体与金属离子配位的聚合物。如固态PdCl 2。

3、通用无机高分子及其应用

3.1 硅酸盐无机高分子

硅酸盐无机高分子基本结构为—O —Si —O —单元组成,由于由廉价的二氧化硅和氢氧化钠为起始原料,故价格低,并且具有无毒、耐火、耐污、不老化等优点。适用于作为内外墙建筑涂料。有两种原料作为成膜物质,一种是水玻璃,另一类是硅溶胶。

水玻璃型无机高分子涂料的成膜物质是碱金属硅酸盐,通常为硅酸钾、硅酸钠或其混合物,通式为M 2O ·nSiO 2·XH 2O,其中n 为模数,一般为2-3,模数越高,粘度越大,耐水性越好,体系中存在如下平衡:

-+=+-OH OH Si O H SiO 4)(2624232

Si(OH)4+2OH - ==Si(OH)62-

2Si(OH)62- -++----?OH O H Si O Si 42

干燥过程中通过硅醇基之间缩合成为一Si—O—Si—无机高分子而固化成膜。这种聚合长链遇水时易水解,故涂膜耐水性欠佳。加入固化剂可以提高耐水性,常用的固化剂有金属氧化物、硅氧化物、磷酸盐、硼酸盐或其混合物。通过水玻璃的改性,如用氟盐或硅氧烷预先改性制成基料可提高耐水性。添加热塑性有机高分子树脂的水乳液作为辅助成膜物,使有机树脂填充在—Si—O—Si—网状间隙中,起到屏蔽线存羟基提高耐水性并增加塑性的作用。硅酸盐建筑涂料配方如下:钾水玻璃100份,辅助成膜助剂20份,填料100份,颜料20—25份,分散剂0。3—0。6份,增塑剂2—6份,表面活性剂0。3—0。5份,固化剂10份。

硅溶胶涂料所用的助剂与水玻璃涂料相似,由于没有碱金属离子的干扰,故耐水性较好,但硅溶胶成本高而影响推广应用。

硅酸盐无机粘合剂通过加入如上述固化剂且加热而固化,获得较高的粘接强度。可粘接金属、陶瓷和玻璃。尤其适用于须耐温得金属工件的粘接。笔者研制的硅酸盐粘合剂用来粘接碳钢,进行平面搭接,施压使被粘面紧密结合,低于200℃,加热拉伸剪切强度达14.7Mpa,经800℃受热若干小时,强度基本

不变,粘接机理研究结果表明,水玻璃和填料粘土矿物的表面羟基发生了键合作用。这类粘合剂的缺点也是耐水性较差。湖南省机械研究所的研究者通过在固化剂内添加磷硅酸或其他盐类,同时在基料中引进相应的阴离子,显著提高了耐水性。

3.2 磷酸盐无机分子

用于制备磷酸盐高分子的原料是酸性磷酸盐,即磷酸二氢盐、磷酸倍半氢盐、磷酸氢盐或其混合物,通式为aMmOn·P2O5·BH2O。这些原料多数采用磷酸盐和金属氧化物或氢氧化物在水溶液中反应制备。金属原子和磷原子之比M/P值越小,磷酸水溶液的稳定性相应提高;但固化性能和耐水性均下降。

酸性磷酸盐水溶液的固化剂可以是金属氧化物、氢氧化物、硅酸盐、硼酸盐或其它金属盐类如AlCl3、ZnSO4等,以金属氧化物固化剂为例,在烘烤过程中,金属氧化物与酸性磷酸盐发生反应:

磷酸盐涂料耐高温、耐腐蚀、附着力比硅酸盐涂料大,用于化工设备如烟囱、热交换器、高温炉、高温蒸气管、石油炼制设备等。

配方为:磷酸175份、氢氧化铝20份、氧化镁15份,反应性颜料铝6份。

磷酸盐无机高分子粘合剂和硅酸盐粘合剂比较,具有粘性大,粘合力强,收缩率较小,耐水性较好,固化温度较低等优点。原哈尔滨军事工程学院的贺孝先成功地研制的YW-1胶粘剂,甲组份是以磷酸为主的液体,可用于粘接金属切削工具、精密量具、冲压模具、各种机械构件,应用面涉及到冶金、机械、交通、能源、纺织、兵器及尖端科学等,采用平面、槽接、套接、效果均好,已推广应用。

3.3 聚铁盐和聚铝盐

聚铁盐和聚铝盐主要用作为絮凝剂。

聚铁盐可以看作是硫酸铁中的一部分SO42- 被OH-所取代而形成无机聚合物,其通式为

[Fe2(OH)n(SO4)3-n/2]m, 式中n<2,m>10,聚铁

水溶液中存在着[Fe(H2O)6]3+, [Fe2(OH)3]3+, [Fe3(OH)2]3+等络离子,以OH—作为架桥形成多核络离子,分子量高达1*105 ,是一种红褐色粘稠液体,对污水杂质有强混凝作用,这是由于水解过程中产生的多核络合物强烈吸附胶体微粒,通过粘结、架桥、交联作用,从而促使微粒凝聚。同时还中和胶体微粒及悬浮表面的电荷,降低胶团的电位,使之相互吸引而形成絮状混凝沉淀,而且沉淀本身表面积大、物理吸附作用显著。

聚铝盐主要有聚硫酸铝(PAS)[Al2(OH)2(SO4)3n/2]m和聚氯化铝(PAC)[Al2(OH)2C lε-n]m(SO4)x,是一类当前公认的高效无机高分子絮凝剂,大量用于生活、工业及污水处理,但原料比聚铁盐紧缺,造价高,而且存在对原水质pH 适用范围窄的缺点。

铝铁合剂

聚丙烯酰胺

PVC

Mg(OH)2

3.4 硅氧聚合物的有机衍生物

硅氧聚合物的有机衍生物既有机硅聚合物。基本结构单元是

R

(---Si---O---),即主链由硅原子和氧原子交替组成稳定骨架,R可以是甲基、苯基

R 乙烯基等,这种半无机、半有机的结构赋予这类材料许多优良特性,主要表现为无毒,耐高低温,化学性质稳定,具柔韧性,还有良好的电绝缘性,并且易加工等特性。

由于组成与分子量大小的不同,有机硅聚合物可以是线型低聚合物,即液态硅油及半固体的硅脂;可以是线型高聚物弹性体,即硅橡胶;还可以是具反应性基团SiOH的含支链的低聚合物,即树脂状流体----硅树脂,缩合固化后转变为体型高聚物。硅树脂可用作涂料、高温粘合剂,或加入填料生产模塑制品。有机硅油分子间距大,作用力小,比起碳氢化合物有较低的表面张力和低表面能,所以成膜能力强,如乙基硅油广泛作为纺织,印染机械润滑油的添加剂。当R 为甲基或苯基时,可用过氧化物进行硫化,如果R含有乙烯基则可用硫进行硫化。硅橡胶具优良的低温和高温性能(-115-- +300℃)、优良的耐老化性能,是优良的绝缘材料和耐温密封材料。由于氧在硅橡胶

中,故硅橡胶成为已知高分子材料中渗透性最好的透氧材料,在工业炉的富氧化燃烧和医疗上富氧化系统应用。

然而,聚有机硅氧烷毕竟含有有机基团,长期受热后,分子中的有机基团大部分遭受破坏,失去柔韧性,近年来,科学家试图通过改变侧基团或主链中引进金属原子,以达到改性目的,已获得一些进展。

4、特种无机高分子

4.1 聚磷腈

聚磷腈是一类卓越的无机橡胶,有低聚环开环聚合成长链聚合物,通式为

N

[R1----P----R2],最简单的聚磷腈r1和r2是卤素,通过亲核取代可制备复杂聚合物,如r为---NHCH3,----Cl,----PtCl2或是配位的金属离子单元。具有结构多样化,已知的已有二百多种,选择不同取代基团,可以赋予聚磷腈良好的离子导电性,柔韧性、水溶性、生物相容性等特殊功能,可用于做垫圈、救火软管、半导体、人工心脏泵、血管、药物缓释剂等。

4.2 聚氮化硼和氮化硫

聚氮化硼(BN)n为六方形,具有类似于石墨的层次结构。制备方法很多,例如可由硼砂和NH4Cl混合压制,在高温合成炉通氨气氮化制得,是一种功能陶瓷,具有优良的高温下稳定的介电性、热传导性,并且加工性能好,可以加工成形态复杂、精度很高的瓷件,特别是用于用做高温度下电子件的散热陶瓷组件和电绝缘陶瓷组件。

聚氮化硫(SN)n是具有异常性质电极材料,当制成纤维状晶体时,沿纤维轴有电导性,且随温度降低而增加,在接近绝对零度时成为超导体。聚氮化硫还有许多功能陶瓷如SiC、Si3N4 等前驱体,即这些陶瓷可由聚氮化硫和有关无机物经高温热反应制得。

4.3 酞菁聚合物

将含有金属或非金属二卤化物单元的酞菁进行水解,可制得以共价键Si—O,Ge—O,Sn—O等为主链的酞菁聚合物,然后缩合失水就制成有100个以上重复单元骨架的柱状酞菁聚合物。由于金属酞菁是一类耐高温,有催化活性和导电性的化合物,相应聚合物也有这方面的特殊功能,聚合物可制成纤维或薄膜材料。

4.4 锆的聚合物

聚磷酸锆具有类似于粒土矿物的层状结构,通过化学反应把有机基因引入层间,能使之功能化,如成为催化剂固定场所,成为选择吸附场所等。

无定形锆聚合物在涂料方面较多,如:把尿素和Zr(NO3)4一起放在水中加热,制得无定形氢氧锆聚合物的稳定透明溶胶,将之于ZrO2粉和溶剂混合,涂布于金属板材上得到了良好的涂层。

高分子名词解释

第一章绪论(Introduction) 高分子化合物(High Molecular Compound):所谓高分子化合物,系指那些由众多原子或原子团主要以共价键结合而成的相对分子量在一万以上的化合物。 单体(Monomer):合成聚合物所用的-低分子的原料。如聚氯乙烯的单体为氯乙烯。重复单元(Repeating Unit):在聚合物的大分子链上重复出现的、组成相同的最小基本单元。如聚 氯乙烯的重复单元为。 单体单元(Monomer Unit):结构单元与原料相比,除了电子结构变化外,其原子种类和各种原子的个数完全相同,这种结构单元又称为单体单元。 结构单元(Structural Unit):单体在大分子链中形成的单元。聚氯乙烯的结构单元为 。 聚合度(DP、X n)(Degree of Polymerization):衡量聚合物分子大小的指标。以重复单元数为基准,即聚合物大分子链上所含重复单元数目的平均值,以表示;以结构单元数为基准,即聚合物 大分子链上所含结构单元数目的平均值,以表示。聚合物是由一组不同聚合度和不同结构形态的 同系物的混合物所组成,因此聚合度是一统计平均值,一般写成、。 聚合物分子量(Molecular Weight of Polymer):重复单元的分子量与重复单元数的乘积;或结构单元数与结构单元分子量的乘积。 数均分子量(Number-average Molecular Weight):聚合物中用不同分子量的分子数目平均的统计平 均分子量。, N i:相应分子所占的数量分数。

重均分子量(Weight-average Molecular Weight):聚合物中用不同分子量的分子重量平均的统计 平均分子量。, W i:相应的分子所占的重量分数。 粘均分子量(Viscosity-average Molecular Weight):用粘度法测得的聚合物的分子量。 分子量分布(Molecular Weight Distribution, MWD):由于高聚物一般由不同分子量的同系物组成的混合物,因此它的分子量具有一定的分布,分子量分布一般有分布指数和分子量分布曲线两种表示方法。 多分散性(Polydispersity):聚合物通常由一系列相对分子量不同的大分子同系物组成的混合物,用以表达聚合物的相对分子量大小并不相等的专业术语叫多分散性。 分布指数(Distribution Index):重均分子量与数均分子量的比值。即。用来表征分子量分布的宽度或多分散性。 连锁聚合(Chain Polymerization):活性中心引发单体,迅速连锁增长的聚合。烯类单体的加聚反应大部分属于连锁聚合。连锁聚合需活性中心,根据活性中心的不同可分为自由基聚合、阳离子聚合和阴离子聚合。 逐步聚合(Step Polymerization):无活性中心,单体官能团之间相互反应而逐步增长。绝大多数缩聚反应都属于逐步聚合。 加聚反应(Addition Polymerization):即加成聚合反应,烯类单体经加成而聚合起来的反应。加聚反应无副产物。 缩聚反应(Condensation Polymerization):即缩合聚合反应,单体经多次缩合而聚合成大分子的反应。该反应常伴随着小分子的生成。 塑料(Plastics):具有塑性行为的材料,所谓塑性是指受外力作用时,发生形变,外力取消后,仍能保持受力时的状态。塑料的弹性模量介于橡胶和纤维之间,受力能发生一定形变。软塑料接近橡胶,

高分子材料与无机非金属金属材料的区别

高分子材料与无机非金属金属材料的区别 标准化管理处编码[BBX968T-XBB8968-NNJ668-MM9N]

高分子材料与无机非金属材料、金属材料的区别有机高分子化合物简称高分子化合物或高分子,又称高聚物,与无机非金属材料、高分子材料并称三大材料。高分子材料一般具有以下特点: (1)力学性能:比强度高,韧性高,耐疲劳性好,但易应力松弛和蠕变; (2)反应性:大多数是惰性的,耐腐蚀,但粘连时要表面处理,加聚合物共混时需要表面处理,另外,有的高分子材料容易吸收紫外线或红外线及可见光发生降解; (3)物理性能:密度小,很高的电阻率,熔点相比金属较低,限制了使用领域高分子化合物的一般具有特殊的结构,使它表现出了非同凡响的特性。例如,高分子主链有一定内旋自由度,可以弯曲,使高分子链具有柔性;高分子结构单元间的作用力及分子链间的交联结构,直接影响它的聚集态结构,从而决定高分子材料的主要性能。 此外高分子材料可用纤维增强(复合材料)制成高性能的新型材料,可设极性大,部分性能超过金属。当前,高分子材料正趋向功能化,合金化发展,比传统材料有更大的发展空间和更广阔使用的领域。 高分子化合物固、液、气三种存在状态的变化一般并不很明显。固体高分子化合物的存在状态主要有玻璃态、橡胶态和纤维态。固体状态的高分子化合物多是硬而有刚性的物体。无定形的透明固体高分子化合物很像玻璃,故称它为玻璃态。在橡胶态下,高分子链处于自然无规则和卷曲状态,在应力作用下被拉伸,去掉应力又恢复卷曲,表现出弹性。纤维是由高分子化合物构成的长度对直径比大很多倍的纤细材料。

通常使用的高分子材料,常是由高分子化合物加入各种添加剂所形成,其基本性能取决于所含高分子化合物的性质,各种不同添加剂的作用在于更好地发挥、保持、改进高分子化合物的性能,满足不同的要求,用在更多的方面。 无机非金属材料(inorganic nonmetallic materials)是以某些元素的氧化物、碳化物、氮化物、卤素化合物、硼化物以及硅酸盐、铝酸盐、磷酸盐、硼酸盐等物质组成的材料。是除有机高分子材料和金属材料以外的所有材料的统称。无机非金属材料一般具有高熔点、高硬度、耐腐蚀、耐磨损、高强度和良好的抗氧化性等基本属性,以及宽广的导电性、隔热性、透光性及良好的铁电性、铁磁性和压电性。金属材料则一般具有导电、导热、磁性的物理性能,并能表现出一定的强度、硬度和可塑性。

第三部分 常见无机物及其应用

第三部分常见无机物及其应用 元素化合物的知识是化学基本概念、基本理论、化学实验、化学计算的载体和核心。将元素化合物的知识系统化、结构化是学习本部分内容的一个好方法;从多个角度来认识元素化合物能更全面更深刻地理解元素化合物。 异。了解Na+、K+离子的检验方法。 铝单质及其重要化能说出铝的重要化合物的物理性质;认识铝的主要 化学性质(与氧气、酸、强碱反应);认识氧化铝和 氢氧化铝的两性;认识氢氧化铝的制备原理及加热 分解的性质; 化学 第一、二、三节 一、知识整理 1.常见金属元素的位置和物理通性 (1)元素在周期表中的位置 (2)金属材料的物理通性 常用的金属材料主要有金属和合金两类,它们具有如下的物理通性:①金属具有金属光泽;②金属具有导电性;③金属具有导热性;④金属具有良好的延展性。

2.比较金属性强弱的方法 元素金属性的本质是指元素的原子失电子能力。它取决于金属的原子半径、核电荷数、最外层电子数等因素。可以从以下几个方面来比较元素金属性强弱: (1)根据金属的原子结构; (2)根据元素在周期表中的位置; (3)根据最高价氧化物对应水化物的碱性强弱; (4)根据与氧气反应的难易; (5)根据与水反应的条件难易; (6)根据与非氧化性酸反应的剧烈情况; (7)根据金属间发生的置换; (8)根据原电池反应,做负极的金属比做正极的金属活泼。 3.金属活动性顺序的应用 在金属的复习中,充分发挥金属活动性顺序表在金属及化合物知识整合方面的功能对提高复习的实效性极为有利。 金属与氧气反应 常温极易氧 化,燃烧产生过氧化物或超氧化物 常温形成氧膜,点燃剧烈反应 常温与氧气缓慢 反应,高温下Fe 可在纯氧中燃烧 铜加热与氧化合,余难反应Mg 加热反铁与水蒸气反应 二、重点知识解析 1.钠及其钠的化合物 (1)钠及其钠的化合物的知识体系

高分子材料与无机非金属、金属材料的区别

高分子材料与无机非金属材料、金属材料的区别有机高分子化合物简称高分子化合物或高分子,又称高聚物,与无机非金属材料、高分子材料并称三大材料。高分子材料一般具有以下特点: (1)力学性能:比强度高,韧性高,耐疲劳性好,但易应力松弛和蠕变; (2)反应性:大多数是惰性的,耐腐蚀,但粘连时要表面处理,加聚合物共混时需要表面处理,另外,有的高分子材料容易吸收紫外线或红外线及可见光发生降解; (3)物理性能:密度小,很高的电阻率,熔点相比金属较低,限制了使用领域高分子化合物的一般具有特殊的结构,使它表现出了非同凡响的特性。例如,高分子主链有一定内旋自由度,可以弯曲,使高分子链具有柔性;高分子结构单元间的作用力及分子链间的交联结构,直接影响它的聚集态结构,从而决定高分子材料的主要性能。 此外高分子材料可用纤维增强(复合材料)制成高性能的新型材料,可设极性大,部分性能超过金属。当前,高分子材料正趋向功能化,合金化发展,比传统材料有更大的发展空间和更广阔使用的领域。 高分子化合物固、液、气三种存在状态的变化一般并不很明显。固体高分子化合物的存在状态主要有玻璃态、橡胶态和纤维态。固体状态的高分子化合物多是硬而有刚性的物体。无定形的透明固体高分子化合物很像玻璃,故称它为玻璃态。在橡胶态下,高分子链处于自然无规则和卷曲状态,在应力作用下被拉伸,去掉应力又恢复卷曲,表现出弹性。纤维是由高分子化合物构成的长度对直径比大很多倍的纤细材料。 通常使用的高分子材料,常是由高分子化合物加入各种添加剂所形成,其基本性能取决于所含高分子化合物的性质,各种不同添加剂的作用在于更好地发挥、保持、改进高分子化合物的性能,满足不同的要求,用在更多的方面。 无机非金属材料(inorganic nonmetallic materials)是以某些元素的氧化物、碳化物、氮

化学必修常见无机物复习题有答案

江苏省苏州中学2009-2010学年度第一学期期中考试 高一物理 本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两卷,满分100分,考试时间90分钟。第Ⅰ卷将正确的选项填涂在答题卡相应位置上,第Ⅱ卷直接做在答案专页上。 第Ⅰ卷(选择题,共36分) 一.单项选择题(以下各题只有一个答案正确) 1.下列说法正确的是: A.加速度增大,速度一定增大B.速度变化量越大,加速度就越大 C.物体有加速度,速度就增大D.物体加速度很大,速度可能为零 2.小李讲了一个龟兔赛跑的故事:龟、免从同一地点出发,发令枪响后龟缓慢地向终点跑去,直至到达终点,兔自恃跑得快,让龟跑了一段时间后才开始跑,当它超过龟后便在路旁睡起觉来,醒来一看,龟已接近终点了,于是便奋力追去,但最终还是让龟先到达了终点,据此,我们可以将龟兔赛跑的运动过程用位移一时间图象来表示,在下图中正确的是 3.如图所示,物体相对静止在水平传送带上随传送带同向匀速运动。它受到的力是 A.重力、弹力、静摩擦力 B.重力、弹力 C.重力、弹力、滑动摩擦力 D.重力、滑动摩擦力 4.如图所示,质量为10kg的物体在水平面上向右运动,此时受到水平向右外力作用F=20N,物体与平面之间的动摩擦因数为,则物体受到的合力是(g=9.8m/s2) A.20N,水平向右 B.,水平向左 C.,水平向右 D.,水平向右 二.多项选择题(以下各题有两个或两个以上答案正确)5.下列情况中的物体,哪些可以看作质点 A.研究从北京开往上海的一列火车的运行速度 B.研究汽车后轮上一点运动情况 C.体育教练员研究百米赛跑运动员的起跑动作 D.研究地球公转时的地球v F

无机絮凝剂

无机高分子絮凝剂(IPF) 摘要:对国内近几年无机高分子絮凝剂铝系絮凝剂、铁系絮凝剂、硅系絮凝剂及其复合絮凝剂的制备和应用进展状况的比较研究。无机高分子絮凝剂分为阳离子型、阴离子型和复合型三大类,简述了不同类型无机高分子絮凝剂研制、开发和混凝机理研究现状的基础上,指出了存在的问题,并对今后的研究方向做了展望。 关键词:无机高分子化合物;絮凝剂;发展历程与现状;开发;应用 Inorganic polymer flocculant(IPF) Abstract:Of inorganic polymer flocculants in recent years, domestic aluminum flocculants, iron flocculating agent, silicone flocculant and composite flocculant of a comparative study of preparation and application progress. Inorganic polymer flocculant divided into three types of cationic, anionic and complex, this paper briefly describes the different types of inorganic polymer flocculants research, development and research status quo on the basis of coagu-flocculation mechanism, points out the existing problems, and future research direction were discussed. Keywords:Inorganic polymer compounds; Flocculant; Development course and current situation; Development; application 前言 无机高分子絮凝剂(Inorganic Polymer Flocculant 简写 IPF)是 20 世纪 60 年代后期才发展起来的一类新型废水处理剂。与传统絮凝剂相比,它能成倍的提高效能,且价格较低,因而有逐步成为主流药剂的趋势。目前日本、俄罗斯、西欧及我国生产此类絮凝剂已达到工业化、规模化和流程自动化的程度。由于无机高分子絮凝剂(IPF)比传统絮凝剂具有适应性强、无毒、可成倍提高效能且相对价廉等优点,而比有机高分子絮凝剂(OPF)价格低廉,另有投加量少、矾花大、除 COD、色度及悬浮物性能好等优点,因而近年已得到广泛重视,被称为第二代无机絮凝剂。无机高分子絮凝剂(IPF)的生产已占絮凝剂总产量的 30%~60%。 无机絮凝剂是最早使用的第一代絮凝剂,它应用范围非常广泛。按金属盐可分为铝盐系及铁盐系两类;按阴离子成分又可分为盐酸盐系和硫酸盐系两类;按分子量的大小可分为低分子系和高分子系两类。 1 无机高分子絮凝剂的发展历程 絮凝剂是水处理剂中最重要的品种。2001年全国有200家左右水处理剂生产厂家生

高分子名词解释

第一章绪论 高分子化合物:所谓高分子化合物,系指那些由众多原子或原子团主要以共价键结合而成的相对分子量在一万以上的化合物。 单体:合成聚合物所用的-低分子的原料。如聚氯乙烯的单体为氯乙烯。重复单元:在聚合物的大分子链上重复出现的、组成相同的最小基本单元。结构单元:单体在大分子链中形成的单元。单体单元:结构单元与原料相比,除了电子结构变化外,其原子种类和各种原子的个数完全相同,这种结构单元又称为单体单元。 聚合度:衡量聚合物分子大小的指标。以重复单元数为基准,即聚合物大分子链上所含重复单元数目的平均值;以结构单元数为基准,即聚合物大分子链上所含结构单元数目的平均值。 聚合物分子量:重复单元的分子量与重复单元数的乘积;或结构单元数与结构单元分子量的乘积。 数均分子量:聚合物中用不同分子量的分子数目平均的统计平均分子量。重均分子量:聚合物中用不同分子量的分子重量平均的统计平均分子量。粘均分子量:用粘度法测得的聚合物的分子量。 分子量分布:由于高聚物一般由不同分子量的同系物组成的混合物,因此它的分子量具有一定的分布,分子量分布一般有分布指数和分子量分布曲线两种表示方法。 多分散性:聚合物通常由一系列相对分子量不同的大分子同系物组成的混合物,用以表达聚合物的相对分子量大小并不相等的专业术语叫多分散性。 分布指数:重均分子量与数均分子量的比值,用来表征分子量分布的宽度或多分散性。 连锁聚合:活性中心引发单体,迅速连锁增长的聚合。烯类单体的加聚反应大部分属于连锁聚合。连锁聚合需活性中心,根据活性中心的不同可分为自由基聚合、阳离子聚合和阴离子聚合。 逐步聚合:无活性中心,单体官能团之间相互反应而逐步增长。绝大多数缩聚反应都属于逐步聚合。 加聚反应:即加成聚合反应,烯类单体经加成而聚合起来的反应。加聚反应无副产物。 缩聚反应:即缩合聚合反应,单体经多次缩合而聚合成大分子的反应。该反应常伴随着小分子的生成。塑料:具有塑性行为的材料,所谓塑性是指受外力作用时,发生形变,外力取消后,仍能保持受力时的状态。塑料的弹性模量介于橡胶和纤维之间,受力能发生一定形变。软塑料接近橡胶,硬塑料接近纤维。橡胶:具有可逆形变的高弹性聚合物材料。在室温下富有弹性,在很小的外力作用下能产生较大形变,除去外力后能恢复原状。橡胶属于完全无定型聚合物,它的玻璃化转变温度(T g)低,分子量往往很大,大于几十万。 纤维:聚合物经一定的机械加工(牵引、拉伸、定型等)后形成细而柔软的细丝,形成纤维。纤维具有弹性模量大,受力时形变小,强度高等特点,有很高的结晶能力,分子量小,一般为几万。 热塑性聚合物:聚合物大分子之间以物理力聚而成,加热时可熔融,并能溶于适当溶剂中。热塑性聚合物受热时可塑化,冷却时则固化成型,并且可以如此反复进行。热固性聚合物:许多线性或支链形大分子由化学键连接而成的交联体形聚合物,许多大分子键合在一起,已无单个大分子可言。这类聚合物受热不软化,也不易被溶剂所溶胀。 碳链聚合物:大分子主链完全由碳原子组成的聚合物。杂链聚合物:聚合物的大分子主链中除了碳原子外,还有氧、氮等杂原子。 元素有机聚合物:聚合物的大分子主链中没有碳原子孙,主要由硅、硼、铝和氧、氮、硫、磷等原子组成。无机高分子:主链与侧链均无碳原子的高分子。聚合反应:由低分子单体合成聚合物的反应。 第二章自由基聚合 活性种:打开单体的π键,使链引发和增长的物质,活性种可以是自由基,也可以是阳离子和阴离子。均裂:化合物共价键的断裂形式,均裂的结果,共价键上一对电子分属两个基团,使每个基团带有一个独电子,这个带独电子的基团呈中性,称为自由基。异裂:化合物共价键的断裂形式,异裂的结果,共价键上一对电子全部归属于其中一个基团,这个基团形成阴离子,而另一缺电子的基团,称为阳离子。自由基聚合:以自由基作为活性中心的连锁聚合。离子聚合:活性中心为阴、阳离子的连锁聚合。阳离子聚合:以阳离子作为活性中心的连锁聚合。阴离子聚合:以阳离子作为活性中心的连锁聚合。

高考化学冲刺训练3.1常见无机物及其应用

江苏省2013高考化学冲刺训练常见无机物及其应用 一、单项选择题 1.下列类比关系正确的是( ) 与过量NaOH溶液反应生成AlO2-,则与过量NH3·H2O反应也生成AlO2- 与CO2反应生成Na2CO3和O2,则与SO2反应可生成Na2SO3和O2 与Cl2反应生成FeCl3,则与I2反应可生成FeI3 与Fe2O3能发生铝热反应,则与MnO2也能发生铝热反应 2.(2011·福建高考)下表各选项中,不能利用置换反应通过Y得到W的一组化合物是( ) 3.(2011·山东高考)Al、Fe、Cu都是重要的金属元素。下列说法正确的是( ) A.三者对应的氧化物均为碱性氧化物 B.三者的单质放置在空气中只生成氧化物 C.制备AlCl3、FeCl3、CuCl2均不能采用将溶液直接蒸干的方法 D.电解AlCl3、FeCl3、CuCl2的混合溶液时阴极上依次析出Cu、Fe、Al 4.下列实验报告记录的实验现象正确的是( )

是一种常见的单质,B、C为中学常见的化合物,A、B、C均含有元素X,它们有如图所示的转化关系(部分产物及反应条件已略去)。下列判断正确的是 ( ) 元素可能为Al 元素可能为Si C.反应①和②互为可逆反应 D.反应①和②一定为氧化还原反应 二、不定项选择题 6.(2011·镇江模拟)A、B、C、D、E都是中学化学中常见物 质,它们均含有同一种短周期元素,在一定条件下可发生如 图所示的转化,其中A是单质,B在常温下是气态氢化物, C、D是氧化物,E是D和水反应的产物。下列判断中不合理的是( ) A.A可能是金属 B.由C生成D肯定发生了电子转移 C.A生成C肯定属于离子反应 D.B和E可能会发生反应生成一种盐

无机絮凝剂

分类和性质 无机絮凝剂包括硫酸铝、氯化铝、硫酸铁、氯化铁等,其中硫酸铝最 早是由美国开发的,并一直沿用至今的一种重要的无机絮凝剂。常用的铝 盐有硫酸铝AL2(SO4)3.18H2O和明矾AL2(SO4)3.K2SO4.24H2O,另一类是铁盐有三氯化铁水合物FeCL3.6H2O.硫酸亚铁水合物FeSO4.17H2O和硫酸铁。 无机絮凝剂的优点是比较经济、用法简单;但用量大、絮凝效果低,而且存在成本高、腐蚀性强的缺点。无机高分子絮凝剂无机高分子絮凝剂是 20世纪60年代后期才发展起来的一类新型废水处理剂。与传统絮凝剂相比,它能成倍的提高效能,且价格较低,因而有逐步成为主流药剂的趋势。目 前日本、俄罗斯、西欧及我国生产此类絮凝剂已达到工业化、规模化和流 程自动化的程度,加上产品质量稳定,无机聚合类絮凝剂的生产已占絮凝 剂总产量30%~60%。 简单的无机聚合物絮凝剂,这类无机聚合物絮凝剂主要是铝盐和铁盐 的聚合物。如聚合氯化铝(PAC)、聚合硫酸铝(PAS)、聚合氯化铁(PFC)以及聚合硫酸铁(PFS)等。无机聚合物絮凝剂之所以比其它无机絮凝剂效果好,其根本原因在于它能提供大量的络合离子,且能够强烈吸附胶体微粒,通 过吸附、桥架、交联作用,从而使胶体凝聚。同时还发生物理化学变化, 中和胶体微粒及悬浮物表面的电荷,降低了δ电位,使胶体微粒由原来的相斥变为相吸,破坏了胶团稳定性,使胶体微粒相互碰撞,从而形成絮状 混凝沉淀,沉淀的表面积可达(200~1000)m2/g,极具吸附能力。 改性的单阳离子无机絮凝剂 除常用的聚铝、聚铁外,还有聚活性硅胶及其改性品,如聚硅铝(铁)、聚磷铝(铁)。改性的目的是引入某些高电荷离子以提高电荷的中和能力, 引入羟基、磷酸根等以增加配位络合能力,从而改变絮凝效果,其可能的 原因是:某些阴离子或阳离子可以改变聚合物的形态结构及分布,或者是 两种以上聚合物之间具有协同增效作用。 近年来国内相继研制出复合型无机絮凝剂和复合型无机高分子絮凝剂。聚硅酸絮凝剂(PSAA)由于制备方法简便,原料来源广泛,成本低,是一种 新型的无机高分子絮凝剂,对油田稠油采出水的处理具有更强的除油能力,故具有极大的开发价值及广泛的应用前景。聚硅酸硫酸铁(PFSS)絮凝剂, 发现高度聚合的硅酸与金属离子一起可产生良好的混凝效果。将金属离子 引到聚硅酸中,得到的混凝剂其平均分子质量高达2×105,有可能在水处 理中部分取代有机合成高分子絮凝剂。聚磷氯化铁(PPFC)中PO43-高价阴离子与Fe3+有较强的亲和力,对Fe3+的水解溶液有较大的影响,能够参与Fe3+的络合反应并能在铁原子之间架桥,形成多核络合物;对水中带负电的硅 藻土胶体的电中和吸附架桥作用增强,同时由于PO43-的参与使矾花的体积、密度增加,絮凝效果提高。聚磷氯化铝(PPAC)也是基于磷酸根对聚合铝(PAC)

无机絮凝剂

1(无机絮凝剂)无机高分子絮凝剂主要是聚铝和聚铁。主要有聚合氯化铝(PAC)、聚合硫酸铝(PAS)、聚合磷酸铝(P删、聚合硫酸铁(PFS)、聚合氯化铁(PFC)、聚合磷酸铁(PFP)、活化硅酸(AS)、聚合硅酸(PS);复合型的有聚合氯化铝铁(PAFc)、聚合硫酸铝铁QAFs)、聚硅酸硫酸铁(PFSS)、聚硅酸硫酸铝(PFSC)、聚合氯硫酸铁(PFCS)、聚合硅酸铝(PASI)、聚合硅酸铁(PFSI)、聚合磷酸铝铁(PAFP)、硅钙复合型聚合氯化铁(SCRC)等。【无机、有机高分子絮凝剂絮凝机理及进展】 聚合氯化铝[poly(aluminum chloride)]又名聚铝、聚合铝、碱式氯化铝和羟基氯化铝。分 子式[AL2(OH)nCl6-N。·Xh20]m(m≤10,n=l一5)。为无机高分子化合物,一般认为是一 种络合物,铝是中心离子,氢氧根和氯根是配位体,是通过羟基起架桥作用交联形成的聚合物,分子中所带羟基的数量不等。聚合氧化铝为五色或黄色的树脂状固体,易潮解,溶液为无色或黄褐色液体,有时因含杂质而呈灰褐色黏稠液体。产品中氧化铝含量:液体>8%:固体含20%一40%,碱化度70%~75%。易溶于水,并发生水解,水解过程伴有电化学、凝聚、吸附、沉淀等物理化学过程。水解溶液是介于三氯化铝和氢氯化铝之间的水解产物,灰色略带混浊,带胶体电荷,有较强的架桥与吸附性能,。因此,对水中的悬浮物有极强的吸附性。【治理含油污水的一种新型复合絮凝剂的研制】 铝盐絮凝剂铝盐的絮凝机理主要是其水解过程的中间产物能与水中不同阴离子和负电溶胶形成聚合体,即产生聚合絮凝作用。 铁盐絮凝的机理是其水解产物能与水体颗粒物进行电中和脱稳、吸附架桥或黏附网捕卷扫.从而形成粗大絮体,通过对絮体的去除,达到对水体的净化。

高分子材料与无机非金属、金属材料的区别

高分子材料与无机非金属材料、金属材料的区别 有机高分子化合物简称高分子化合物或高分子,又称高聚物,与无机非金属材料、高分子材料并称三大材料。高分子材料一般具有以下特点: (1)力学性能:比强度高,韧性高,耐疲劳性好,但易应力松弛和蠕变; (2)反应性:大多数是惰性的,耐腐蚀,但粘连时要表面处理,加聚合物共混时需要表面处理,另外,有的高分子材料容易吸收紫外线或红外线及可见光发生降解; (3)物理性能:密度小,很高的电阻率,熔点相比金属较低,限制了使用领域高分子化合物的一般具有特殊的结构,使它表现出了非同凡响的特性。例如,高分子主链有一定内旋自由度,可以弯曲,使高分子链具有柔性;高分子结构单元间的作用力及分子链间的交联结构,直接影响它的聚集态结构,从而决定高分子材料的主要性能。 此外高分子材料可用纤维增强(复合材料)制成高性能的新型材料,可设极性大,部分性能超过金属。当前,高分子材料正趋向功能化,合金化发展,比传统材料有更大的发展空间和更广阔使用的领域。 高分子化合物固、液、气三种存在状态的变化一般并不很明显。固体高分子化合物的存在状态主要有玻璃态、橡胶态和纤维态。固体状态的高分子化合物多是硬而有刚性的物体。无定形的透明固体高分子化合物很像玻璃,故称它为玻璃态。在橡胶态下,高分子链处于自然无规则和卷曲状态,在应力作用下被拉伸,去掉应力又恢复卷曲,表现出弹性。纤维是由高分子化合物构成的长度对直径比大很多倍的纤细材料。 通常使用的高分子材料,常是由高分子化合物加入各种添加剂所形成,其基本性能取决于所含高分子化合物的性质,各种不同添加剂的作用在于更好地发挥、保持、改进高分子化合物的性能,满足不同的要求,用在更多的方面。 无机非金属材料(inorganic nonmetallic materials)是以某些元素的氧化物、碳化物、氮化物、卤素化合物、硼化物以及硅酸盐、铝酸盐、磷酸盐、硼酸盐等物质组成的材料。是除有机高分子材料和金属材料以外的所有材料的统称。无机非金属材料一般具有高熔点、高硬度、耐腐蚀、耐磨损、高强度和良好的抗氧化性等基本属性,以及宽广的导电性、隔热性、透光性及良好的铁电性、铁磁性和压电性。金属材料则一般具有导电、导热、磁性的物理性能,并能表现出一定的强度、硬度和可塑性。

常见无机物质颜色表

常见无机物质的颜色表 卤族(VIIA): Solid:I2 紫黑;ICl 暗红;ICl3 橙;I2O5 白;IBr 暗灰;IF3 黄色;I2O4 黄;I4O9 黄. Liquid:Br2 红棕;BrF3 浅黄绿;IBr3 棕;Cl2O6暗红;Cl2O7 无色油状;HClO4 无色粘稠状;(SCN)2 黄色油状;(SCN)n 砖红色固体.Gas:F2 浅黄;Cl2 黄绿;I2(g) 紫;BrF 红棕;BrCl 红;Cl2O 黄红;ClO2 黄色;Br2O 深棕. 氧族(VIA): Solid:S 淡黄;Se 灰,褐;Te 无色金属光泽;Na2S,(NH4)2S,K2S,BaS 白,可溶;ZnS 白↓;MnS 肉红↓;FeS 黑↓;PbS 黑↓;CdS 黄↓;Sb2S3 橘红↓;SnS 褐色↓;HgS 黑(沉淀),红(朱砂);Ag2S 黑↓;CuS 黑↓;Na2S2O3 白;Na2S2O4 白;SeO2 白,易挥发;SeBr2 红;SeBr4 黄;TeO2 白加热变黄;H2TeO3 白;TeBr2 棕;TeBr4 橙;TeI4 灰黑;PoO2 低温黄(面心立方),高温红(四方);SO3 无色;SeO3 无色易潮解;TeO3 橙色;H6TeO6 无色. Liquid:H2O 无色;纯H2O2 淡蓝色粘稠;CrO(O2)2(aq) 蓝;纯H2SO4 无色油状;SO4^2-(aq) 无色;SeO2(l) 橙;TeO2(l) 深红. Gas:O2 无色;O3 低浓度无色,高浓度淡蓝;S2(g) 黄,上浅下深;H2S 无色;

SO2 无色;H2Se 无色;H2Te 无色. .卤化硫(未注明者均为无色): Liquid:SF6;S2F10;SCl4 淡黄;SCl2 红;S2Cl2;S2Br2 红. Gas:SF4;SF2;S2F2. 卤砜、卤化亚砜、卤磺酸: Liquid:SOCl2 白色透明;SO2Cl2 无色发烟. 氮族(VA): Solid:铵盐无色晶体;氮化金属白;N2O3 蓝色(低温);N2O5 白;P 白,红,黑;P2O3 白;P2O5 白;PBr3 黄;PI3 红;PCl5 无色;P4Sx 黄;P2S3 灰黄;P2S5 淡黄;H4P2O7 无色玻璃状;H3PO2 白;As 灰;As2O3 白;As2O5 白;AsI3 红;As4S4 红(雄黄);As4S6 黄(雌黄);As2S5 淡黄;Sb 银白;Sb(OH)3 白↓;Sb2O3 白(锑白,颜料);Sb2O5 淡黄;SbX3(X<>I) 白;SbI3 红;Sb2S3 黑↓;Sb2S5 橙黄;Bi 银白略显红;Bi2O3 淡黄;Bi2O5 红棕;BiF3 灰白;BiCl3 白;BiBr3 黄;BiI3 黑↓;Bi2S3 棕黑. Liquid:N2H4 无色;HN3 无色;NH2OH 无色;发烟硝酸红棕;NO3^-(l)无色;王水浅黄,氯气味;硝基苯黄色油状;氨合电子(液氨溶液) 蓝;PX3 无色;纯H3PO4 无色粘稠状;AsX3(X<>I) 无色;. Gas:N2 无色;NH3 无色;N2O 无色甜味;NO 无色;NO2 红棕;PH3 无色;P2H6 无色;AsH3 无色;SbH3 无色;BiH3 无色. 卤化氮(未注明者均为无色):

常用的絮凝剂

常用的絮凝剂 1.1 无机絮凝剂的分类和性质 无机絮凝剂按金属盐可分为铝盐系及铁盐系两大类;铝盐以硫酸铝、氯化铝为主,铁盐以硫酸铁、氯化铁为主。后来在传统的铝盐和铁盐的基础上发展合成出聚合硫酸铝、聚合硫酸铁等新型的水处理剂,它的出现不仅降低了处理成本,而且提高了功效。这类絮凝剂中存在多羟基络离子,以OH-为架桥形成多核络离子,从而变成了巨大的无机高分子化合物,相对分子质量高达1×105。无机聚合物絮凝剂之所以比其他无机絮凝剂能力高、絮凝效果好,其根本原因就在于它能提供大量的如上所述的络合离子,能够强烈吸附胶体微粒,通过粘附、架桥和交联作用,从而促使胶体凝聚。同时还发生物理化学变化,中和胶体微粒及悬浮物表面的电荷,降低了Zeta电位,使胶体粒子由原来的相斥变成相吸,破坏了胶团的稳定性,促使胶体微粒相互碰撞,从而形成絮状混凝沉淀,而且沉淀的表面积可达(200-1000)m2/g,极具吸附能力。也就是说,聚合物既有吸附脱稳作用,又可发挥黏附、桥联以及卷扫絮凝作用。 1.2 改性的单阳离子无机絮凝剂 除常用的聚铝、聚铁外,还有聚活性硅胶及其改性品,如聚硅铝(铁)、聚磷铝(铁)。改性的目的是引入某些高电荷离子以提高电荷的中和能力,引入羟基、磷酸根等以增加配位络合能力,从而改变絮凝效果,其可能的原因是:某些阴离子或阳离子可以改变聚合物的形态结构及分布,或者是两种以上聚合物之间具有协同增效作用。 近年来国内相继研制出复合型无机絮凝剂和复合型无机高分子絮凝剂。聚硅酸絮凝剂(PSAA)由于制备方法简便,原料来源广泛,成本低,是一种新型的无机高分子絮凝剂,对油田稠油采出水的处理具有更强的除油能力,故具有极大的开发价值及广泛的应用前景。聚硅酸硫酸铁(PFSS)絮凝剂,发现高度聚合的硅酸与金属离子一起可产生良好的混凝效果。将金属离子引到聚硅酸中,得到的混凝剂其平均分子质量高达2×105,有可能在水处理中部分取代有机合成高分子絮凝剂。聚磷氯化铁(PPFC)中PO43-高价阴离子与Fe3+有较强的亲和力,对Fe3+的水解溶液有较大的影响,能够参与Fe3+的络合反应并能在铁原子之间架桥,形成多核络合物;对水中带负电的硅藻土胶体的电中和吸附架桥作用增强,同时由于PO43-的参与使矾花的体积、密度增加,絮凝效果提高。聚磷氯化铝(PPAC)也是基于磷酸根对聚合铝(PAC)的强增聚作用,在聚合铝中引入适量的磷酸盐,通过磷酸根的增聚作用,使得PPAC产生了新一类高电荷的带磷酸根的多核中间络合物。聚硅酸铁(PSF)它不仅能很好地处理低温低浊水,而且比硫酸铁的絮凝效果有明显的优越性,如用量少,投料范围宽,矾花形成时间短且形态粗大易于沉

高分子材料的合成工艺

高分子材料的合成工艺 1.1 基本概念 单体(Monomer)----高分子化合物是由一类相对分子质量很高的分子聚集而成的化合物,也称为高分子、大分子等。一般把相对分子质量高于10000的分子称为高分子。高分子通常由103~105个原子以共价键连接而成。由于高分子多是由小分子通过聚合反应而制得的,因此也常被称为聚合物或高聚物,用于聚合的小分子则被称为“单体”。 链节(Repreat unit)----链节指组成聚合物的每一基本重复结构单元。 聚合度(Dregree of Polymerization)----衡量聚合物分子大小的指标。以重复单元数为基准,即聚合物大分子链上所含重复单元数目的平均值,以n表示;以结构单元数为基准,即聚合物大分子链上所含结构单元数目的平均值,以x表示。聚合物是由一组不同聚合度和不同结构形态的同系物的混合物所组成,因此聚合度是统一计平均值。 自由基----是指带电子的电中性集团,具有很高的反应活性。 引发剂(Initiator)----又称自由基引发剂,指一类容易受热分解成自由基(即初级自由基)的化合物,可用于引发烯类、双烯类单体的自由基聚合和共聚合反应,也可用于不饱和聚酯的交联固化和高分子交联反应。 分子量(molecular weight)----化学式中各个原子的相对原子质量的总和,就是相对分子质量(Relative molecular mass),用符号Mr表示。 分子量分布(molecular weight distribution)----由于高聚物一般由不同分子量的同系物组成的混合物,因此它的分子量具有一定的分布,分子量分布一般有分布指数和分子量分布曲线两种表示方法。 均聚物(Homopolymer)----由一种单体聚合而成的聚合物。 共聚物(Copolymer)----由一种以上单体聚合而成的聚合物,生产聚合物的聚合反应成为共聚反应。 无规共聚物(Random Copolymerization)---- 在高分子链中不同单体单元的序列分布无规则。A和B两种单元在链中的排列顺序是不能预示的。在烯类单

常用无机高分子絮凝剂的类别和品种

常用无机高分子絮凝剂的类别和品种 无机高分子絮凝剂的特点有哪些? Al(Ⅲ)、Fe(Ⅲ)、Si(Ⅳ)的羟基和氧基聚合物都会进一步结合为聚集体,在一定条件下 保持在水溶液中,其粒度大致在纳米级范围,以此发挥凝聚—絮凝作用会得到低投加量高效果的结果。若比较它们的反应聚合速度,由Al→Fe→Si是趋于强烈的,同时由羟基桥联转为氧基桥联的趋势也按此顺序。因此,铝聚合物的反应较缓和,形态较稳定,铁的水解聚合物则反应迅速,容易失去稳定而发生沉淀,硅聚合物则更趋于生成溶胶及凝胶颗粒。 IPF的优点反映在它比传统絮凝剂如硫酸铝、氯化铁的效能更优异,而比有机高分子 絮凝剂(OPF)价格低廉。现在它成功地应用在给水、工业废水以及城市污水的各种处理 流程,包括预处理、中间处理和深度处理中,逐渐成为主流絮凝剂。但是,在形态、聚合度及相应的凝聚—絮凝效果方面,无机高分子絮凝剂仍处于传统金属盐絮凝剂与有机高分子絮凝剂之间的位置。其分子量和粒度大小以及絮凝架桥能力仍比有机絮凝剂差很多,而且还存在对进一步水解反应的不稳定性问题。IPF的这些弱点促进了各种复合型无机高分子絮凝剂的研究和开发。 聚合氯化铝的特点有哪些? 聚合氯化铝(PAC),又称碱式氯化铝,化学式为ALn(OH)mCL3n-m。PAC是一种多价电解质,能显著地降低水中粘土类杂质(多带负电荷)的胶体电荷。由于相对分子质量大,吸附能力强,形成的絮凝体较大,絮凝沉淀性能优于其他絮凝剂。 PAC聚合度较高,投加后快速搅拌,可以大大缩短絮凝体形成时间。PAC受水温影响较小,低水温时使用效果也很好。它对水的pH值降低较少,适用的pH范围宽(可在pH=5~ 9范围内使用),故可不投加碱剂。PAC的投加量少,产泥量也少,且使用、管理、操作都较方便,对设备、管道等腐蚀性也小。因此,PAC在水处理领域有逐步替代硫酸铝的趋势,其缺点是价格较高。 另外,从溶液化学的角度看,PAC是铝盐水解—聚合—沉淀反应过程的动力学中间产物,热力学上是不稳定的,一般液体PAC产品均应在半年内使用。添加某些无机盐(如CaCl2、MnCl2等)或高分子(如聚乙烯醇、聚丙烯酰胺等)可提高PAC的稳定性,同时可增加凝聚能力。从生产工艺讲,在PAC的制造过程中引入一种或几种不同的阴离子(如SO42-、PO43-等),利用增聚作用可以在一定程度上改变聚合物的结构和形态分布,进而提高PAC 的稳定性和功效;如果在PAC的制造过程中引入其它阳离子组分,如Fe3+,使Al3+和Fe3+交错水解聚合,可制得复合絮凝剂聚合铝铁。 三氧化二铝含量是聚合氯化铝有效成分的衡量指标,一般而言,絮凝剂产品密度越大,三氧化二铝含量越高。一般来说,碱化度越高的聚合氯化铝吸附架桥能力越好,但因接近[Al(OH)3]n而易产生沉淀,因此稳定性也较差。

无机纳米材料在聚合物改性中的作用

无机纳米材料在聚合物改性中的作用摘要:通过添加填料、组分对聚合物改性,能使聚合物的的刚性、耐热性、耐候行及化学特性得到一定程度的改善。随着高新技术的飞速发展,对材料的要求越来越高,特别是对聚合物材料的强度、韧性、耐热性等方面的要求更是愈来愈苛刻,愈来愈趋于综合化,但是大量研究及生产实践证实,在相同的填充条件下,超细填充体系的力学性能高于普通填料填充体系,即超细体系的填充改性效果更好,改性效率更高,因此超细填料获得了广泛的应用。纳米粒子的出现是制造技术的一大突破它的出现对高性能陶瓷、合金、塑料等复合材料的研制和开发产生了重大影响。由于纳米材料的纳米尺寸效应、大的比表面积、表面原子处于高度活化状态、与聚合物强的界面相互作用产生声、光、电、磁等性质,将其应用于聚合物的改性,开发新型的功能复合材料具有十分重要的意义。 1 纳米SiO2: 1.1 纳束SiO2/UP 玻璃钢虽具有质量轻、强度高、耐腐蚀等特点,但其耐磨性、硬度、耐热性、耐水性等性能仍需进一步改善。因此,人们开始研究利用纳米材料卓越的特殊功能来改善玻璃钢材料的性能缺陷。 未明等通过在UP中加入纳米SiO2,得到了耐磨性、硬度、强度、耐热、耐水等性能得到大幅度提高的玻璃钢。通过实验发现:当向UP中添加3~5的纳米SiO2后,其耐磨性可提高1 ~2倍;奠氏硬度从原来的2级左右提高到2.8 ~2.9级,接近天然大理石的硬度;拉伸强度从133 k g/c m 增加至277 k g/c m ,即大大增加了材料的韧性;耐水性能也明显改善。此外研究者还对纳米SiO2改性UP的改性机理进行了探讨,认为:( 1 ) 由于纳米SiO2颗粒尺寸小、比表面积大、表面原子数多、表面能高、表面严重配位不足,因此表面活性极强,易于与树脂中的氧起键合作用,提高分子在高分子键的空隙中,而其又具有较高的流动性,故使添加纳米SiO2的树脂材料强度、韧性、延展性均大大提高,即表现在拉仲强度、抗冲击性能等方面的提高。( 2 ) 由于纳米SiO2其分子状态是三维链状态的羟基,与树脂中氧键结合或镶嵌在树脂键中,可增强树脂硬度。由于纳米SiO2的小尺寸效应,使材料表面光洁度大大改善,摩擦系数减少,加入纳米颗粒的高强性,因此使材料耐磨性大大提高,且表面光洁度好。( 3 ) 由于纳米SiO2颗粒小,在高温下仍具有高强度、高韧、稳定性好等特点,可使材料的表面细洁度增加,使材料更加致密,同时也增加材料的耐水性和热稳定性。 葛曷一等通过比较不同粒径粒料对不饱和树脂改性作用的差异,得出微米级粒料对不饱和树脂无增韧作用;纳米级粒料对UP具有一定的增韧教果,粒径相同,比表面积越大的粒料对UP的增韧作用越大,作者通过研究发现,加入3%的比表面积较大的纳米SiO2可使UP的冲击韧性提高60%,由此说明,比表面积大的纳米材料表面缺陷少,非配对原子多,表面活性高,与UP发生物理或化学结合的可能性大,增强粒子与UP的界面结合.因而可承担一定的载荷,吸收大量冲击能,具有增强增韧的功效。从纳米SiO2加入量超过3%后,UP冲击韧性开始下降可以推断复合材料的韧性受超微细粉粒料的加入量影响可能与UP基体层厚度L和UP/粒料的L1有关。当2L1

无机絮凝剂的性质

无机絮凝剂的性质 来源:世界化工网https://www.doczj.com/doc/9b44661.html, 全文请访问:https://www.doczj.com/doc/9b44661.html,/睡过站了 常用的无机絮凝剂有铝盐系列,如明矾、三氯化铝、硫酸铝。目前碱式氯化铝越来越引起人们的重视。而对铁盐系列无机絮凝剂,如三氯化铁、硫酸亚铁应用的较少,只在少数的废水处理中应用。但是最近几年来人们对碱式氯化铁和碱式硫酸铁的研究和应用有所增加。 一、无机絮凝剂的性质 能够使胶体颗粒脱稳和产生絮凝沉淀的铝盐和铁盐是有效的、价格低廉的无机紫凝剂。为了掌握它们的絮凝作用,达到良好的絮凝效果,首先应该了解它们的性质。 1.硫酸铝 化学式是Al2(SO4)3·18H2O,呈白色粉末状或块状,有涩味。在水中发生水解反应,水解反应速度缓慢。工业纯的硫 酸铝含Al2(SO4)3大约为20%一25%,化学纯的硫酸铝含 Al2(SO4)3大约为50%一60%。一船情况下,使用的pH 值范围为6.o一7.8。当pH值=4—7时,以去除水溶液 中的有机构为主,当pH值=5.7—7.8时,以去除水溶液 中的悬浮物为主,当PH值=6.4—7.8时,可以处理高浊 度废水和低色度废水。适合的水温为20一40℃,通常的用量

为15—100mg/L。 工业纯的硫酸铝.合有20%一30%的水不溶物,在使用时需要清除残渣。 高浓度的硫酸铝的水溶液有腐蚀性,可存放在塑料、不锈钢等容器中。 2.明矾 明矾又名硫酸铝钾,化学式为Al2(SO4)3·K2SO4·24H2O。实质上,明矾是硫酸铝和硫酸钾的复盐,使用条件与硫酸铝相同。因为含有硫酸钾,使能够起絮凝作用的Al2(SO4)3的含量降低,其中的硫酸钾白白浪费,所以使用明矾不如使用硫酸铝更为合理,现在一般都使用硫酸铝。 3.无水氯化铝 无水氯化铝呈无色透明片状结晶,六方晶系,化学式为AlCl3。其工业品因合有铁、游离氯等杂质,而呈淡黄色、黄绿色和红棕色等。易溶于水,能生成AICl3·6H2O,同时放出大量热;能够溶于乙醇和乙醚等有机溶剂中,不溶于苯。暴露在空气中,易吸收水分并水解放出氯化氢气体。能升华。 如果人的皮肤接触无水氯化铝,同时又接触水时,能剧烈灼烧皮肤。所以,当无水氮化铝落在皮肤上时,先应干拭,再用大量清水冲洗。 4.结晶氯化铝 结晶氮化铝的化学式是AICl3·6H2O,无色结晶。工业品为

相关主题
文本预览
相关文档 最新文档