信号分析_第10章滤波器组
- 格式:ppt
- 大小:2.47 MB
- 文档页数:60
第十章习题10-1. 试证明随即过程统计平均量的下列性质: (a) ][][][m n m n y E x E y x E +=+ (b)][][n n x aE ax E =【解题思路】从定义去证明。
证明:(a)][][),(),(),(),(),,,(),,,(),,,(),,,(),,,(),,,()(][22m n y x x x y y x y x y x y x y x y x m n y E x E dy m y yp dx n x xp n x p xn x P yx m y n x P dyy x m y n x P dy m y n x p dxdym y n x yp dxdy m y n x xp dxdym y n x p y x y x E m n n n m n m n m n m n m n m n +=+∴=∂∂=∂∂∂=∂∂∂=+=+=+⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰∞+∞-∞+∞-∞+-∞=∞+∞-∞+∞-∞+∞-∞+∞-∞+∞-∞+∞-+∞∞-+∞∞-上式=(b)][),(),(][n x x n x aE dx n x xp a dx n x axp ax E n n ===⎰⎰+∞∞-+∞∞-10-2. 设x(n)和y(n)是两不相关的随机序列,试证: 如果w(n)=x(n)+y(n),则y x μμμω+=和222y x σσσω+=【解题思路】从定义去证明。
证明:yx w y x n y E n x E n y n x E n w E n y E u n x E μμμμ+=+=+==∴==)]([)]([)]()([)]([)]([)]([用上题结论])()))(()((2))()([(])))()([(]))([(]))([(]))([(222222222y x y x y x w w y y x x n y n x n y n x E n y n x E n w E n y E n x E μμμμμμμσμσμσ++++-+=--+=-=∴-=-= 又证明:2)()]}([)]([){()]()([)()]))(()([(y x y x y x y x n y E n x E n y n x E n y n x E μμμμμμμμ+=++=++=++222222222222222222])([])([])(2)()([)]([)]([)]()([)()()]()([2)]([)]([]))()([()(]))()([(])())()([(yx y x y x y x w yx y x y x w n y E n x E n y n x E n y E n x E n y n x E n y n x n y n x E n y E n x E n y n x E n y n x E n y n x E σσμμμμμμσμμμμμμσ+=-+-=+-++=∴=⋅∴++++-+=+-+=∴=不相关与由于=其中10-3. 某一个随机过程的取样序列x(n)的形式为)cos()(0θω+=n n x式中θ是一个均匀分布的随机变量,其概率密度如图。
随机信号分析与处理(第2版)概述本文档介绍了随机信号分析与处理(第2版)的主要内容。
随机信号是一种在时间上或空间上具有随机性质的信号,在诸多领域中都有广泛的应用,如通信、图像处理、控制系统等。
随机信号的分析和处理对于了解其性质、提取有用信息以及设计有效的处理算法都是必不可少的。
主要内容第一章:随机信号的基本概念本章介绍了随机信号的基本概念和特性,包括随机信号的定义、概率密度函数、均值、方差等。
通过对随机信号的特性分析,可以为后续的分析和处理提供基础。
第二章:随机过程本章讨论了随机过程的定义和性质。
随机过程是一类具有随机性质的信号集合,其在时间上的取值不确定,但具有统计规律性。
通过对随机过程的分析,可以了解其演化规律和统计性质。
本章介绍了随机信号的表示与分解方法。
随机信号可以通过不同的数学模型进行表示,如傅里叶级数、傅里叶变换、小波变换等。
通过将随机信号进行分解,可以提取出其中的有用信息。
第四章:随机信号的功率谱密度本章研究了随机信号的功率谱密度。
功率谱密度描述了随机信号在频率域上的分布,通过分析功率谱密度可以获得随机信号的频率特性和频谱信息。
第五章:随机信号的相关与协方差本章讨论了随机信号的相关与协方差。
相关是用来描述随机信号之间的依赖关系,协方差是用来描述随机信号之间的线性关系。
通过分析随机信号的相关与协方差,可以研究信号之间的相关性和相关结构。
本章介绍了随机信号的滤波和平均处理方法。
滤波是用来抑制或增强随机信号中的某些频率分量,平均则是通过对多次采样的随机信号进行求平均来减小随机性。
第七章:随机信号的参数估计本章研究了随机信号的参数估计方法。
参数估计是通过对随机信号进行采样和分析,通过估计参数来了解信号的统计性质和特征。
第八章:随机信号的检测和估计本章讨论了随机信号的检测和估计方法。
检测是用来判断随机信号的存在或不存在,估计是通过对随机信号的采样和分析来估计信号的参数。
第九章:随机信号的最优滤波本章研究了随机信号的最优滤波方法,最优滤波是通过优化设计滤波器来最小化系统误差或最大化输出信噪比。
实验报告课程名称: 信号分析与处理 指导老师: 项基 成绩:__________________ 实验名称:________滤波器 _____实验类型:___研究型________同组学生姓名:__________ 一、实验目的和要求(必填) 二、实验内容和原理(必填) 三、主要仪器设备(必填) 四、操作方法和实验步骤 五、实验数据记录和处理 六、实验结果与分析(必填) 七、讨论、心得一、 实验目的和要求(必填)1、了解有源滤波器的种类、基本结构、工作原理及其特性。
2、学会测量有源滤波器的幅频特性。
二、 实验内容和原理(必填)有源滤波器具有体积小、性能好、调整方便等优点,在信号处理方面得到了广泛的应用。
通常高阶的有源滤波器都可由一阶和二阶的滤波器串联而成,其中一阶滤波器只需一只电阻和一只电容构成一级RC 无源网络即可。
本实验研究二阶RC 有源滤波器的有关问题。
1.二阶低通有源滤波器二阶低通有源滤波器的实验电路如图2-7-1(a )所示。
图中将1C 接地端改接到输出端是为了改善10=ωω附近的滤波器性能。
因为在10<ωω且接近1的范围内,o u 和i u 相位差小于 90,1C 起正反馈作用,因而有利于提高这段范围内的输出幅度,而在频带外即10〉〉ωω时,o u 和i u 基本相同,1C 起促进带外衰减的作用。
当R R R ==21时,该滤波器电路的传递函数为212122122002200121)(C C R s RC s C C R s Q s K s H ++=++=ωωω截止频率为2101C C R =ω品质因数为2121C C Q =通带增益为10=K 。
该电路的优点是改变电阻R 即可改变截止角频率而不影响品质因数Q ,因此,调整时应先调1C 或2C ,使Q 满足要求,然后通过调节电阻R 将0ω调准确。
(a ) 有源低通滤波器 (b ) 有源高通滤波器(c ) 有源带通滤波器 (d ) 有源带阻滤波器图2-7-1 各种滤波器的实验线路图2. 二阶高通有源滤波器只要将低通有源滤波器电路中起滤波作用的电阻、电容互换,即可变成有源高通滤波器,如图2-7-1(b )所示。
信号实验一离散傅里叶变换及其快速算法一、实验目的1、掌握计算序列的离散傅里叶变换(FFT)的方法;2、掌握实现时间抽取快速傅里叶变换(FFT)编程方法;3、加深对DFT与序列的傅里叶变换和Z变换之间的关系的理解;4、复习复数序列的运算方法。
二、程序设计框图1.码位倒置程序框图2.蝶形图运算程序框图三、实验程序实验程序的源代码如下:#include"math.h"#include"stdio.h"/*------------------------------------------------------------------------------------------子函数部分------------------------------------------------------------------------------------------*/ void swap(float *a,float *b)//交换变量子函数{float T;T=*a;*a=*b;*b=T;}void fft (float A [],float B [],unsigned M)//数组A为序列的实部, 数组B为序列的虚部{unsigned long N,I,J,K,L,LE,LE1,P,Q,R;float Wr,Wi,W1r,W1i,WTr,WTi,theta,Tr,Ti;N=1<<M;J=0;for(I=0;I<N-1;I++){if(J>I){swap(&A [I],&A [J]);swap(&B [I],&B [J]);}K=N>>1;while(K>=2&&J>=K){J-=K;K>>=1;}J+=K;}for(L=1;L<=M;L++){LE=1<<L;LE1=LE/2;Wr=1.0;Wi=0.0;theta=(-1)*3.1415926536/LE1;W1r=cos (theta);W1i=sin (theta);for(R=0;R<LE1;R++){for(P=R;P<N-1;P+=LE){Q=P+LE1;//基本蝶形图的复数运算Tr=Wr*A[Q]-Wi*B[Q];Ti=Wr*B[Q]+Wi*A[Q];A[Q]=A[P]-Tr;B[Q]=B[P]-Ti;A[P]+=Tr;B[P]+=Ti;}WTr=Wr;WTi=Wi;Wr=WTr*W1r-WTi*W1i;Wi=WTr*W1i+WTi*W1r;}}return;}/*------------------------------------------------------------------------------------------主函数部分------------------------------------------------------------------------------------------*/ void main(){float A[20],B[20];char t1,t2,file_name[20];int M,N,i,iiff;FILE *fp;/*************************************数据读取部分************************************/ printf("请输入文件名:");//输入数据文件名scanf("%s",file_name);printf("FFT变换还是IFFT变换?(FFT:1,IFFT:-1):");//输入变换方式, 1为FFT, -1为IFFTscanf("%d",&iiff);while(iiff!=1&&iiff!=-1)//检错: 检验上一步的输入是否有错, 有错则重新输入{printf("输入错误, 请重新输入! ");printf("FFT or IFFT?(FFT:1,IFFT:-1):");scanf("%d",&iiff);}fp=fopen(file_name,"r");//打开文件并读入数据fscanf(fp,"%d",&M);N=pow(2,M);//计算序列总数for(i=0;i<N;i++)//读取文件中的数据{fscanf(fp,"%f%c%c%f",&A[i],&t1,&t2,&B[i]);if(iiff==-1)//根据FFT或IFFT修正BB[i]=B[i]*-1;if(t2!='j')//检错: 检验读取格式是否有错{printf("输入格式错误\n");break;}if(t1=='+')//判断虚部的正负号B[i]=B[i];else if(t1=='-')B[i]=-B[i];}/****************************************变换部分****************************************/ fft(A,B,M);//FFT变换/**************************************数据输出部分**************************************/ fp=fopen("fft_result.txt","w"); //输出结果if(iiff==-1)fprintf(fp,"IFFT变换的输出结果是: \n");elsefprintf(fp,"FFT变换的输出结果是: \n");for(i=0;i<N;i++){if(iiff==-1) //根据FFT或IFFT修正B{B[i]=B[i]*-1/N;A[i]=A[i]/N;}if(B[i]>=0)//修正虚部的输出格式fprintf(fp,"%f+j%f\n",A[i],B[i]);else if(B[i]<0)fprintf(fp,"%f-j%f\n",A[i],-B[i]);else if(B[i]==0)fprintf(fp,"%f\n",A[i]);}fclose(fp);}四、程序运行结果检验(1) 1.对序列进行FFT变换输入文件fft_input.txt:21+j02+j0-1+j04+j0控制台输入:请输入文件名: fft_input.txtFFT变换还是IFFT变换?(FFT:1,IFFT:-1): 1输出文件fft_result.txt:FFT变换的输出结果是:6.00000+j0.000002.00000+j2.00000-6.00000+j0.000002.00000+j-2.00000运行结果分析:程序运行输出结果与计算结果相同, 表示傅里叶正变换(FFT)成功。
1-1画出下列各信号的波形【式中)()(t t t r ε=】为斜升函数。
(2)∞<<-∞=-t et f t,)( (3))()sin()(t t t f επ=(4))(sin )(t t f ε= (5))(sin )(t r t f = (7))(2)(k t f kε= (10))(])1(1[)(k k f kε-+=解:各信号波形为 (2)∞<<-∞=-t et f t,)((3))()sin()(t t t f επ=(4))(sin )(t t f ε=(5))f=rt)(sin(t (7))t(k=f kε)(2(10))f kεk=(k+-((])11[)1-2 画出下列各信号的波形[式中)()(t t t r ε=为斜升函数]。
(1))2()1(3)1(2)(-+--+=t t t t f εεε (2))2()1(2)()(-+--=t r t r t r t f(5))2()2()(t t r t f -=ε (8))]5()([)(--=k k k k f εε(11))]7()()[6sin()(--=k k k k f εεπ(12))]()3([2)(k k k f k ---=εε解:各信号波形为(1))2()1(3)1(2)(-+--+=t t t t f εεε(2))2()1(2)()(-+--=t r t r t r t f(5))2()2()(t t r t f -=ε(8))]5()([)(--=k k k k f εε(11))]7()()[6sin()(--=k k k k f εεπ(12))]()3([2)(k k k f k---=εε1-3 写出图1-3所示各波形的表达式。
1-4 写出图1-4所示各序列的闭合形式表达式。
1-5 判别下列各序列是否为周期性的。
如果是,确定其周期。
(2))63cos()443cos()(2ππππ+++=k k k f (5))sin(2cos 3)(5t t t f π+=解:1-6 已知信号)(t f 的波形如图1-5所示,画出下列各函数的波形。
第十章 上机实验数字信号处理是一门理论和实际密切结合的课程,为深入掌握课程内容,最好在学习理论的同时,做习题和上机实验。
上机实验不仅可以帮助读者深入的理解和消化基本理论,而且能锻炼初学者的独立解决问题的能力。
本章在第二版的基础上编写了六个实验,前五个实验属基础理论实验,第六个属应用综合实验。
实验一 系统响应及系统稳定性。
实验二 时域采样与频域采样。
实验三 用FFT 对信号作频谱分析。
实验四 IIR 数字滤波器设计及软件实现。
实验五 FIR 数字滤波器设计与软件实现实验六 应用实验——数字信号处理在双音多频拨号系统中的应用任课教师根据教学进度,安排学生上机进行实验。
建议自学的读者在学习完第一章后作实验一;在学习完第三、四章后作实验二和实验三;实验四IIR 数字滤波器设计及软件实现在。
学习完第六章进行;实验五在学习完第七章后进行。
实验六综合实验在学习完第七章或者再后些进行;实验六为综合实验,在学习完本课程后再进行。
10.1 实验一: 系统响应及系统稳定性1.实验目的(1)掌握 求系统响应的方法。
(2)掌握时域离散系统的时域特性。
(3)分析、观察及检验系统的稳定性。
2.实验原理与方法在时域中,描写系统特性的方法是差分方程和单位脉冲响应,在频域可以用系统函数描述系统特性。
已知输入信号可以由差分方程、单位脉冲响应或系统函数求出系统对于该输入信号的响应,本实验仅在时域求解。
在计算机上适合用递推法求差分方程的解,最简单的方法是采用MA TLAB 语言的工具箱函数filter 函数。
也可以用MATLAB 语言的工具箱函数conv 函数计算输入信号和系统的单位脉冲响应的线性卷积,求出系统的响应。
系统的时域特性指的是系统的线性时不变性质、因果性和稳定性。
重点分析实验系统的稳定性,包括观察系统的暂态响应和稳定响应。
系统的稳定性是指对任意有界的输入信号,系统都能得到有界的系统响应。
或者系统的单位脉冲响应满足绝对可和的条件。