以“古典概型”为例谈生成性教学设计
- 格式:docx
- 大小:36.72 KB
- 文档页数:2
古典概型1教学设计与教学反思古典概型是概率论中的基础概念之一,广泛应用于教学设计和教学反思。
本文将介绍古典概型的基本概念和教学设计中的应用,并结合实际案例对教学反思进行分析和总结。
一、古典概型的基本概念古典概型是指在具有相同概率的有限个事件中,每个事件发生的可能性都相等。
在数学中,古典概型可以用以下的公式表示:P(E) = S(E)/S,其中P(E)表示事件E发生的概率,S(E)表示事件E 发生的样本空间,S表示总的样本空间。
二、教学设计中的古典概型应用在教学设计中,古典概型可以用来确定教学目标和制定教学计划。
例如,在数学教学中,老师可以通过古典概型来确定学生熟悉程度,从而确定教学内容和难度。
古典概型还可以用于设计教学活动,例如通过抽签或摇骰子等方式进行实验,来帮助学生理解古典概型的概念和应用。
三、教学反思中的古典概型应用在教学反思中,古典概型可以用来评估教学效果和改进教学方法。
通过分析学生在实际学习中的表现和成绩,可以计算古典概型中的事件发生概率,进而评估教学的有效性。
如果学生在某个事件中的成绩普遍较低,可能说明教学内容或方法需要进行调整和改进。
四、案例分析:数学教学中的古典概型应用以数学教学为例,假设某位老师正在教授二年级学生有关颜色的知识。
老师使用了古典概型的方法来设计教学活动和评估学生的学习效果。
首先,老师为学生准备了不同颜色的球,如红、黄、蓝、绿。
然后,老师通过演示和解释,让学生了解每个颜色球出现的概率都是相同的,即古典概型。
接着,老师让学生自己抽取一个球,观察其颜色,并记录下来。
通过多次实验,学生可以得到每种颜色球出现的频率,并计算古典概型中每个事件发生的概率。
最后,老师根据学生的实际表现和计算结果,进行教学反思。
如果学生的计算结果与理论预期相符,说明教学效果较好;如果出现偏差较大或学生理解困难,可能需要调整教学内容或方法。
通过以上案例可以看出,古典概型在教学设计和教学反思中具有重要的应用价值。
古典概型教案优秀教案标题:古典概型教案优秀教学目标:1. 了解古典概型的基本概念和原理。
2. 能够应用古典概型解决简单的概率问题。
3. 培养学生的逻辑思维和问题解决能力。
教学重点:1. 古典概型的定义和特点。
2. 古典概型的计算方法。
3. 古典概型在实际问题中的应用。
教学难点:1. 学生对古典概型的理解和应用能力。
2. 学生在实际问题中运用古典概型解决问题的能力。
教学准备:1. 教学课件和投影仪。
2. 学生练习册和作业本。
3. 小组讨论活动所需的材料。
教学过程:一、导入(5分钟)1. 利用多媒体展示一些与概率相关的场景,引起学生的兴趣和思考。
2. 提出问题:你认为什么是概率?为什么我们需要学习概率?二、知识讲解(15分钟)1. 介绍古典概型的定义和特点,以及其在概率中的应用。
2. 讲解古典概型的计算方法,包括等可能性原理和计数原理。
3. 通过具体的例子和计算步骤,帮助学生理解和掌握古典概型的计算方法。
三、示范演练(20分钟)1. 给学生提供一些简单的古典概型问题,让他们尝试解决。
2. 引导学生按照计算步骤进行思考和计算,解决问题。
3. 对学生的答案进行讲解和讨论,帮助他们发现问题和改进思路。
四、合作探究(15分钟)1. 将学生分成小组,每个小组选择一个实际问题,应用古典概型解决。
2. 学生在小组内进行讨论和计算,共同解决问题。
3. 每个小组汇报他们的解决思路和计算结果,进行交流和讨论。
五、拓展延伸(10分钟)1. 给学生提供一些拓展问题,要求他们运用古典概型解决。
2. 鼓励学生思考更复杂的问题,挑战他们的思维和解决能力。
六、总结反思(5分钟)1. 对本节课的学习内容进行总结,强调古典概型的重要性和应用。
2. 鼓励学生提出问题和反思,为下节课的学习做准备。
教学评估:1. 教师观察学生在课堂上的参与度和理解程度。
2. 学生完成的练习册和作业本。
3. 学生小组讨论活动中的表现和解决问题的能力。
教学反思:1. 在教学过程中,要充分激发学生的兴趣和思考,使他们主动参与到课堂中来。
一、教学目标1. 知识与技能目标:理解古典概型的定义,掌握古典概型的性质,能够运用古典概型解决实际问题。
2. 过程与方法目标:通过观察、实验、讨论等方法,培养学生分析问题和解决问题的能力。
3. 情感态度与价值观目标:激发学生对数学学习的兴趣,培养学生严谨、求实的科学态度。
二、教学内容1. 古典概型的定义:在所有可能事件中,每个事件发生的概率相等,这种概率模型称为古典概型。
2. 古典概型的性质:古典概型的概率计算公式,以及如何利用古典概型解决实际问题。
三、教学过程1. 导入新课(1)回顾概率的基本概念,引导学生思考如何计算随机事件发生的概率。
(2)提出问题:如何计算在有限个等可能事件中,某个事件发生的概率?2. 探究新课(1)展示实例,引导学生观察并分析实例中的古典概型。
(2)引导学生总结古典概型的定义和性质。
(3)通过小组讨论,让学生尝试运用古典概型解决实际问题。
3. 讲解新课(1)讲解古典概型的概率计算公式,以及如何利用公式求解实际问题。
(2)通过实例讲解如何判断一个概率模型是否为古典概型。
4. 巩固练习(1)布置课后作业,让学生独立完成。
(2)课堂上进行课堂练习,巩固所学知识。
5. 总结与反思(1)回顾本节课所学内容,总结古典概型的定义、性质和计算方法。
(2)引导学生反思:在学习过程中,如何运用古典概型解决实际问题?四、教学评价1. 课堂表现:观察学生在课堂上的参与程度、讨论积极性等。
2. 作业完成情况:检查学生课后作业的完成质量,了解学生对古典概型的掌握程度。
3. 实际应用能力:通过课堂练习和课后作业,考察学生运用古典概型解决实际问题的能力。
五、教学资源1. 教学课件:用于展示古典概型的定义、性质和计算方法。
2. 实例分析:用于引导学生观察、分析实例中的古典概型。
3. 课后作业:用于巩固学生对古典概型的掌握程度。
4. 教学评价表:用于评价学生在课堂上的表现和作业完成情况。
第十章概率10.1.3古典概型教学设计一、教学目标1.古典概型的计算方法2.运用古典概型计算概率.3. 在实际问题中建立古典概型模型.二、教学重难点1. 教学重点古典概型的概念以及利用古典概型求解随机事件的概率.2. 教学难点运用古典概型计算概率.三、教学过程(一)探索新知探究一:随机事件的概率对随机事件发生可能性大小的度量(数值)称为事件的概率,事件A的概率用P(A)表示.探究二:古典概型一般地,若试验E具有以下特征:(1)有限性:样本空间的样本点只有有限个;(2)等可能性:每个样本点发生的可能性相等.称试验E为古典概型试验,其数学模型称为古典概率模型,简称古典概型.探究三:古典概型的概率公式一般地,设试验E是古典概型,样本空间Ω包含n个样本点,事件A包含其中的k个样本点,则定义事件A的概率()()(Ω)k n AP An n==.其中,()n A和(Ω)n分别表示事件A和样本空间Ω包含的样本点个数.归纳:求解古典概型问题的一般思路:(1)明确试验的条件及要观察的结果,用适当的符号(字母、数字、数组等)表示试验的可能结果(借助图表可以帮助我们不重不漏地列出所有的可能结果);(2)根据实际问题情境判断样本点的等可能性;(3)计算样本点总个数及事件A包含的样本点个数,求出事件A的概率.(二)课堂练习1.某网站登录密码由四位数字组成,某同学将四个数字0,3,2,5,编排了一个顺序作为密码.由于长时间未登录该网站,他忘记了密码.若登录时随机输入由0,3,2,5组成的一个密码,则该同学不能顺利登录的概率是( )A.124B.2324C.116D.1516答案:B解析:用事件A表示“输入由0,3,2,5组成的一个四位数字,但不是密码”,由于事件A 比较复杂,可考虑它的对立事件A,即“输入由0,3,2,5组成的一个四位数字,恰是密码”,显然它只有一种结果,四个数字0,3,2,5随机编排顺序,所有可能结果可用树状图表示,如图:从树状图可以看出,将四个数字0,3,2,5随机编排顺序,共有24种可能的结果,即样本空间共含有24个样本点,且24个样本点出现的结果是等可能的,因此可以用古典概型来解决,由1()24P A=,得23()1()24P A P A=-=.因此,随机输入由0,3,2,5组成的一个四位数字,但不是密码,即该同学不能顺利登录的概率为2324.故选B.2.在5件产品中,有3件一等品和2件二等品,从中任取2件,以710为概率的事件是( )A.恰有1件一等品B.至少有1件一等品C.至多有1件一等品D.都不是一等品答案:C解析:将3件一等品编号为1,2,3,2件二等品编号为4,5,从中任取2件有10种取法:(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5).其中恰有1件一等品的取法有(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),则恰有1件一等品的概率16 10P=;恰有2件一等品的取法有(1,2),(1,3),(2,3),则恰有2件一等品的概率23 10P=,故“至多有1件一等品”的概率3237111010P P =-=-=.故选C. 3.《史记》中讲述了田忌与齐王赛马的故事:“田忌的上等马优于齐王的中等马,劣于齐王的上等马;田忌的中等马优于齐王的下等马,劣于齐王的中等马;田忌的下等马劣于齐王的下等马.”若双方各自拥有上等马、中等马、下等马各1匹,从中随机选1匹进行1场比赛,则齐王的马获胜的概率为( ) A.23 B.13 C.12 D.56答案:A解析:记田忌的上等马、中等马、下等马分别为a ,b ,c ,齐王的上等马、中等马、下等马分别为A ,B ,C .由题意可知,所有的基本事件有aA ,bA ,cA ,aB ,bB ,cB ,aC ,bC ,cC ,共9种,其中田忌可以获胜的事件有aB ,aC ,bC ,共3种,则齐王的马获胜的概率32193P =-=.故选A.(三)小结作业小结:本节课我们主要学习了哪些内容?1. 随机事件的概率;2. 古典概型;3. 古典概型的概率公式.四、板书设计10.1.3古典概型1. 随机事件的概率;2. 古典概型;3. 古典概型的概率公式.。
《古典概型》说课稿一、教材的本质、地位、作用分析本节课的内容选自《普通高中课程标准实验教科书数学必修3(A)版》第三章中的第 3.2.1节古典概型。
它安排在随机事件的概率之后,几何概型之前,学生还未学习排列组合的情况下教学的。
古典概型是一种特殊的数学模型,也是一种最基本的概率模型,在概率论中占有相当重要的地位,是学习概率必不可少的内容,同时有利于理解概率的概念,有利于计算一些事件的概率,能解释生活中的一些问题。
因此本节课的教学重点是理解古典概型的概念及利用古典概型求解随机事件的概率。
二、教学目标及重难点分析根据本节课在本章中的地位和课程标准的要求以及学生实际,本节课的教学目标制定如下:1.知识与技能(1)理解基本事件的特点;(这是为了给古典概型下定义的语言表达而铺垫)(2)通过实例,理解古典概型及其概率计算公式;(由于课标要求计算不是本节课的重点,故结合实例理解并能判断古典概型是关键)(3)会用列举法计算一些随机事件所含的基本事件数及事件发生的概率。
(由于还没有学习排列组合,故初中学习的列举法(树状图等)是计算的关键手段)2.过程与方法根据本节课的内容和学生的实际水平,通过两个试验的观察让学生理解古典概型的特征:试验结果的有限性和每一个试验结果出现的等可能性,观察类比骰子试验,归纳总结出古典概型的概率计算公式,体现了化归的重要思想,掌握列举法,学会运用数形结合、分类讨论的思想解决概率的计算问题。
3.情感态度与价值观概率教学的核心问题是让学生了解随机现象与概率的意义,加强与实际生活的联系,以科学的态度评价身边的一些随机现象。
适当地增加学生合作学习交流的机会,尽量地让学生自己举出生活和学习中与古典概型有关的实例。
使得学生在体会概率意义的同时,感受与他人合作的重要性以及初步形成实事求是地科学态度和锲而不舍的求学精神。
《古典概型》这一节分为两课时,本节课是第一课时。
主要内容为古典概型的概念、概率计算公式及三个例题。
.《古典概型》教学设计人教版《普通高中课程标准实验教科书(必修3)数学》第三章第3.2.1节顺义二中高二组陶丽《古典概型》第一节教学设计一、指导思想与理论依据新课程标准指出:学生的数学学习活动不应该只限于接受、记忆、模仿和练习,还应倡导自主探索、动手实践、合作交流等学习数学的方式;要注重提高学生的数学思维能力,在学习数学的过程中,经历直观感知、观察发现、归纳类比、等思维过程。
二、教学背景分析(一)教材分析:古典概型是一种特殊的数学模型,也是一种最基本的概率模型,它曾是概率论发展初期的主要研究对象,在概率论中占有相当重要的地位,它的引入,使我们可以解决一类随机事件(等可能事件)的概率,而且可以得到概率精确值,同时避免了大量的重复试验。
学好古典概型可以为其它概率的学习奠定基础,有利于理解概率的概念,并能够解释生活中的一些问题,它也为后面学习几何概型在思路上做了一个铺垫,在教材中起着承前启后的作用。
同时,学习本节课的内容,能够大大激发学生学习数学、应用数学的兴趣。
因此本节知识在概率论中占有相当重要的地位。
(二)学情分析:学生在初中阶段学习了概率初步,在高中阶段刚刚学习了随机事件的概率,并亲自动手操作了掷硬币、骰子(包括同时掷两个)的试验,由此归纳出古典概型的两个特征不是难点,关键是以下3个问题:1、学生在解决古典概型中有关概率计算时,往往会忽视古典概型的两个特征,错用古典概型概率计算公式,因此在教学中结合例2与问题2进行深入讨论,加深对基本事件(相对性)的理解,让学生真正体会到判断古典概型的重要性,其中可以利用试验、统计、列举等手段来帮助学生解决问题。
2、在归纳概率计算公式时,很多学生可能会不重视,想当然地得出结论,教学中应引导学生揭示公式得出的过程,尤其是基本事件的等可能性(可以借助图形引导学生直观认识),并学会从特殊到一般研究问题的方法。
3、学生初步学习概率,较难将实际问题模型(古典概型)化,因此在教学应重视培养学生建模的意识的能力。
§3.2.1 古典概型一、教材分析【学科】:数学【教材版本】:普通高中课程标准实验教科书——数学必修3 [人教版]【课题名称】:古典概型(第三章第130页)【教学任务分析】:本节课是高中数学3(必修)第三章概率的第二节古典概型的第一课时,是在随机事件的概率之后,几何概型之前,尚未学习排列组合的情况下教学的。
古典概型是一种特殊的数学模型(由于它在概率论发展初期是主要的研究对象,许多概率的最初结果也是由它得到的,所以称它为古典概型),也是一种最基本的概率模型,在概率论中占有相当重要的地位。
学好古典概型可以为其它概率的学习奠定基础,同时有利于理解概率的概念,有利于计算一些事件的概率,有利于解释生活中的一些问题。
【教学重点】:理解古典概型的概念及利用古典概型求解随机事件的概率。
【教学难点】:如何判断一个试验是否是古典概型,分清在一个古典概型中某随机事件包含的基本事件的个数和试验中基本事件的总数。
【教学方法与理念】:与学生共同探讨,应用数学解决现实问题。
二、教学目标定位【知识与技能】:(1)理解古典概型及其概率计算公式,(2)会用列举法计算一些随机事件所含的基本事件数及事件发生的概率。
【过程与方法】:根据本节课的内容和学生的实际水平,通过模拟试验让学生理解古典概型的特征:试验结果的有限性和每一个试验结果出现的等可能性,观察类比各个试验,归纳总结出古典概型的概率计算公式,体现了化归的重要思想,掌握列举法,学会运用数形结合、分类讨论的思想解决概率的计算问题。
【情感态度与价值观】:概率教学的核心问题是让学生了解随机现象与概率的意义,加强与实际生活的联系,以科学的态度评价身边的一些随机现象。
适当地增加学生合作学习交流的机会,尽量地让学生自己举出生活和学习中与古典概型有关的实例。
使得学生在体会概率意义的同时,感受与他人合作的重要性以及初步形成实事求是地科学态度和锲而不舍的求学精神。
三、教法及学法分析【教法分析】:根据本节课的特点,采用引导发现和归纳概括相结合的教学方法,通过提出问题、思考问题、解决问题等教学过程,观察对比、概括归纳古典概型的概念及其概率公式,再通过具体问题的提出和解决,来激发学生的学习兴趣,调动学生的主体能动性,让每一个学生充分地参与到学习活动中来。
古典概型说课稿最新古典概型说课稿10篇作为一名优秀的教育工作者,总归要编写说课稿,说课稿是进行说课准备的文稿,有着至关重要的作用。
那么你有了解过说课稿吗?以下是小编帮大家整理的最新古典概型说课稿10篇,仅供参考,大家一起来看看吧。
古典概型说课稿 1老师、同学们:早上好。
今天我说课的课题来自普通高中课程标准数学必修3第三章第2节古典概型。
下面,我将围绕教什么,怎么教,为什么要这样教从说教材、说教学目标、说教法学法、说教学过程及说板书设计五个方面来加以说明,请老师、同学们加以批评指正。
一、教材分析教材的地位和作用古典概型是一种特殊的数学模型,也是一种最基本的概率模型,在概率论中占有相当重要的地位。
它承接着前面学过的随机事件的概率及其性质,又是以后学习条件概率的基础,起到承前启后的作用。
学情分析从心理特征来说,已到高一下学期学生,刚经过高一上学期的适应期,知识增多,能力增强,但思维的局限性还很大,能力也有差距。
从认知状况来说,学生在此之前已经学习了随机事件的概率,对随机事件的概念已经有了初步的认识,这为顺利完成本节课的教学任务打下了基础,但对于古典概型的判断与计算,学生可能会产生一定的困难,针对我班学生基础较差,教学中给予以从特殊到一般的认知规律、简单明白深入浅出的分析。
教学的重点和难点根据以上对教材的地位和作用,以及学情分析,结合新课标对本节课的要求,我将本节课的重难点设计如下:重点:理解古典概型及其概率计算公式。
难点:古典概型的判断及把一些实际问题转化成古典概型。
教学目标分析根据新课标的教学理念,培养学生的数学素养和终身学习的能力,我确立了如下的三维目标:1、知识与技能目标:(1)通过试验理解基本事件的概念和特点。
(2)在数学建模的过程中,抽离出古典概型的两个基本特征,推导出古典概型下的概率的计算公式。
2、能力目标:(1)经历公式的推导过程,体验由特殊到一般的数学思想方法,发展抽象思维能力。
(2)学生通过实际问题的条件判断是否为古典概型,及应用公式解决问题,培养分析问题、解决问题和应用问题的能力。
3.2.1古典概型教学设计毕节市第二实验高中数学组杨礼勇一、教材分析《普通高中数学课程标准,(试验)解读》明确指出:“概率教学的核心问题是让学生了解随机现象与概率的意义。
古典概型的教学应上学生通过实例理解古典概型的特征:试验结果的有限性和每一个实验结果出现的等可能性,让学生初步学会把一些实际问题化为古典概型。
教学时不要把重点放在如何计数上,计数本身只是学习的方法与策略问题,在具体的模型中有很多特殊的计数方法,这些不是教学的重点,教学的重点应该是让学生理解古典概型的特征。
”根据本课的特点,紧扣新课标的理念,对古典概型的教材分析如下:1、本节课是高中数学必修三第三章概率的第二节古典概型的第一课时。
是在随机事件的概率之后,几何概型之前的内容。
由于学生刚学过随机事件的概率,教师可以利用其作为知识的生长点,类比,设想中获得及掌握古典概型及其概率计算的公式。
2、古典概型是一种特殊的数学模型,也是一种最基本的概率模型,它的引入避免了大量的重复重复试验,而且都到了是概率的精确值,同时古典概型也是后面学习的条件概率的基础,起到承前启后的作用,所以在概率论中占有相当重要的地位。
3、这节课是没有学习排列组合的基础上学习古典概型及其概率公式,所以在教学重点不是“如何计算”,而是让学生通过生活中的实例和数学模型理解古典概型的两个特征,让学生初步学会把一些实际问题转化为古典概型,因此,在教学过程中,注意引导学生开展小组合作的学习,通过举出大量的古典概型的实例调动学生学习的积极性从而使目标达成。
二、学情分析高二(15)(19)(7)三个班是平行班,学生数学基础比较薄弱,对数学的了解比较浅显,课堂接受容量较低。
本课的学习是建立在学生已经了解了概率的意义,掌握了概率的基本性质,知道了互斥事件和对立事件的概率加法公式。
学生已经具备了一定的归纳、猜想能力,但在数学的应用意识与应用能力方面尚需进一步培养。
多数学生能够积极参与研究,但在合作交流意识方面,发展不够均衡,有待加强。
古典概型教学设计概念:古典概型教学设计是一种教育教学方法,旨在通过给学生提供一系列符合古典概型特性的教学任务和资源,来促使学生主动参与和探索知识。
古典概型教学设计的核心理念是学生可以通过观察、实验和推断来发展他们的认知和理解能力。
1.了解学生的现有知识和兴趣:在开始教学设计之前,了解学生的先前知识和兴趣是很重要的。
这可以通过调查问卷、小组讨论或简短的测试来完成。
通过了解学生的现有知识和兴趣,教师可以更好地调整教学任务来适应学生的需求。
2.设计问题和任务:教师应设计一系列适合学生年龄和能力水平的问题和任务,以激发学生的思考和探索欲望。
这些问题和任务可以从学生的现有知识出发,引导他们进一步思考,并积极参与解决问题的过程。
3.提供资源和材料:教师应提供适当的资源和材料,以帮助学生解决问题和完成任务。
这些资源可以是书籍、杂志、实验设备、网络资源等。
通过提供丰富的资源和材料,学生可以更好地理解和应用他们所学到的知识。
4.激发和引导学生的思考:在教学过程中,教师应引导学生通过观察、实验和推断来发展他们的思考能力。
教师可以通过提出问题、组织实验和讨论等方式,激发学生的兴趣和思考欲望,并帮助他们展开深入的探究。
5.引导学生总结和应用所学知识:在完成任务后,教师应引导学生总结和应用所学的知识。
这可以通过讨论、写作、展示等方式来完成。
通过总结和应用所学的知识,学生可以更好地巩固他们的学习成果。
6.评估学生的学习成果:教师应通过考试、项目展示、口头报告等方式对学生的学习成果进行评估。
评估的重点应放在学生对古典概型的理解和应用能力上。
根据学生的反馈和评估结果,教师可以对教学过程进行调整和改进。
1.促进学生主动学习:古典概型教学设计通过提供问题和任务来激发学生的主动学习意愿。
学生在解决问题的过程中可以自主地探索和学习,这有助于培养学生的独立思考和解决问题的能力。
2.培养学生的观察和实验技能:古典概型教学设计注重学生的观察和实验能力的培养。
以“古典概型”为例谈生成性教学设计
张淑春
【期刊名称】《数学学习与研究:教研版》
【年(卷),期】2018(000)003
【摘要】生成性教学是当前课程改革过程中出现的新的教学理念,与预成式教学相比,其更强调学习的自主建构,更强调教学的动态生成.它不再假定教学有恒定不变的本质,而认为教学的本质是在具体教学过程中生成的.其基本理念表现为对表现性目标、具体的教学过程、教学事件、互动性的教学方法和附加价值的关注.本文以校内优质课"古典概型"为例详谈生成性教学并阐述其基本理念在具体教学过程中的体现.
【总页数】2页(P98-99)
【作者】张淑春
【作者单位】湖北省黄冈中学,湖北黄冈438000
【正文语种】中文
【中图分类】G623.23
【相关文献】
1.两种概型探风韵——“古典概型”与“几何概型”问题揽胜
2.几何概型与古典概型概念认识的统一性及几何概型的应用
3.例谈古典概型的几种求解方法
4.从选择到确定,由多元到等值——例谈“古典概型”教学的两个维度
5.从选择到确定,由多元到等值——例谈"古典概型"教学的两个维度
因版权原因,仅展示原文概要,查看原文内容请购买。