七年级下数学第七章-平面直角坐标系知识点总结
- 格式:doc
- 大小:283.50 KB
- 文档页数:6
一、选择题1.在平面直角坐标系xOy 中,线段AB 的两个端点坐标分别为(1,1)A --,(1,2)B ,平移线段AB ,得到线段A B '',已知A '的坐标为(3,1)-,则点B '的坐标为( )A .(4,2)B .(5,2)C .(6,2)D .(5,3) 2.一只跳蚤在第一象限及x 、y 轴上跳动,第一次它从原点跳到(0,1),然后按图中箭头所示方向跳动(0,0)→(0,1)→(1,1)→(1,0)→……,每次跳一个单位长度,则第2021次跳到点( )A .(3,44)B .(4,45)C .(44,3)D .(45,4) 3.已知两点(,5)A a ,(1,)B b -且直线//AB x 轴,则( )A .a 可取任意实数,5b =B .1a =-,b 可取任意实数C .1a ≠-,5b =D .1a =-,5b ≠ 4.在平面直角坐标系中,将三角形各顶点的纵坐标都加上3,横坐标保持不变,所得图形的位置与原图形相比( )A .向上平移3个单位B .向下平移3个单位C .向右平移3个单位D .向左平移3个单位 5.下列各点中,在第二象限的是( )A .()1,0B .()1,1C .()1,1-D .()1,1- 6.在平面直角坐标系中,点A 的坐标为(-4,3),AB ∥y 轴,AB=5,则点B 的坐标为( )A .(1,3)B .(-4,8)C .(-4,8)或(-4,-2)D .(1,3)或(-9,3) 7.点(,)M x y 在第二象限,且230,40x y -=-=,则点M 的坐标是( )A .(3,2)-B .(3,2)-C .(2,3)-D .(2,3)- 8.已知点A 坐标为()2,3-,点A 关于x 轴的对称点为A ',则A '关于y 轴对称点的坐标为( )A .()2,3--B .()2,3C .()2,3-D .以上都不对 9.下列说法正确的是( )A .若0ab =,则点(,)P a b 表示原点B .点(1,)a 在第三象限C .已知点(3,3)A -与点(3,3)B ,则直线//AB x 轴D .若0ab >,则点(,)P a b 在第一或第三象限10.点()P 3,2-在平面直角坐标系中所在的象限是( )A .第一象限B .第二象限C .第三象限D .第四象限 11.如图,在平面直角坐标系中,若干个半径为3个单位长度,圆心角为60°的扇形组成一条连续的曲线,点P 从原点O 出发,沿这条曲线向右上下起伏运动,点在直线上的速度为每秒3个单位长度,点在弧线上的速度为每秒π个单位长度,则2020秒时,点P 的坐标是( )A .(2020,0)B .(3030,0)C .( 3030,3)D .(3030,﹣3) 12.在平面直角坐标系中,将点A (﹣2,﹣2)先向右平移6个单位长度再向上平移5个单位长度得到点A ',则点A '的坐标是( )A .(4,5)B .(4,3)C .(6,3)D .(﹣8,﹣7) 13.如图所示,某战役缴获敌人防御工事坐标地图碎片,依稀可见,一号暗堡的坐标为(4,2),四号暗堡的坐标为(2,4)-,原有情报得知:敌军指挥部的坐标为(0,0),你认为敌军指挥部的位置大约是( )A .A 处B .B 处C .C 处D .D 处14.如图,在平面直角坐标系中,有若干个横坐标分别为整数的点,其顺序按图中(1,0)→(2,0)→(2,1)→(1,1)→(1,2)→(2,2)…根据这个规律,则第2016个点的横坐标为( )A .44B .45C .46D .4715.已知点M (12,﹣5)、N (﹣7,﹣5),则直线MN 与x 轴、y 轴的位置关系分别为( )A .相交、相交B .平行、平行C .垂直相交、平行D .平行、垂直相交二、填空题16.已知点P 的坐标为()2,6a -,且点P 到两坐标轴的距离相等,则a 的值为_________.17.定义:在平面直角坐标系xOy 中,把从点P 出发沿纵或横方向到达点(至多拐一次弯)的路径长称为P ,Q 的“实际距离”.如图,若(1,1)P -,(2,3)Q ,则P ,Q 的“实际距离”为5,即5PS SQ +=或5PT TQ +=.环保低碳的共享单车,正式成为市民出行喜欢的交通工具.设A ,B ,C 三个小区的坐标分别为(2,2)A ,(4,2)B -,(2,4)C --,若点M 表示单车停放点,且满足M 到A ,B ,C 的“实际距离”相等,则点M 的坐标为______.18.在电影院内找座位,将“4排3号”简记为(4,3),则(8,7)表示______19.如图,一个机器人从0点出发,向正东方向走3米到达1A 点,记为()3,0;再向正北方向走6米到达2A 点,记为()3,6:再向正西方向走9米到达3A 点,记为()6,6-;再向正南方向走12米到达4A 点,再向正东方向走15米到达5A 点,按如此规律走下去,当机器人走到99A 点时,则99A 的坐标为________.20.三角形A′B′C′是由三角形ABC 平移得到的,点A(-1,4)的对应点为A′(1,-1),若点C′的坐标为(0,0),则点C′的对应点C 的坐标为______.21.已知点A(3a ﹣6,a+4),B(﹣3,2),AB ∥y 轴,点P 为直线AB 上一点,且PA =2PB ,则点P 的坐标为_____.22.已知点()1,2A ,//AC x 轴,5AC =,则点C 的坐标是______ .23.如图,若棋盘中“帅”的坐标是(0,1),“卒”的坐标是(2,2),则“马”的坐标是________.24.对于平面坐标系中任意两点()11,A x y ,()22,B x y 定义一种新运算“*”为:()()()11221221,*,,x y x y x y x y =.若()11,A x y 在第二象限,()22,B x y 在第三象限,则*A B 在第_________象限.25.如果点P (a ﹣1,a +2)在x 轴上,则a 的值为_____.26.已知线段AB 的长度为3,且AB 平行于y 轴,A 点坐标为()32,,则B 点坐标为______.三、解答题27.阅读以下材料,并解决问题:小明遇到一个问题:在平面直角坐标系xOy 中,点()1,4A ,()5,2B ,求OAB 的面积.小明用割补法解决了此问题,如图,过点A 作AM x ⊥轴于点M ,过点B 作BN x ⊥轴于点N ,则OAB OAM OBN AMNB S S S S =+-△△△梯形()()111142451529222=⨯⨯+⨯+--⨯⨯= 解决问题后小明又思考,如果将问题一般化,是否会有好的结论,于是它首先研究了点A ,B 在第一象限内的一种情形:如图,点()11,A x y ,()22,B x y ,其中12x x <,12y y >(1)请你帮助小明求出这种情形下OAB 的面积.(用含1x ,2x ,1y ,2y 的式子表示)(2)小明继续研究发现,只要将(1)中求得的式子再取绝对值就可以得到第一象限内任意两点A ,B (点O ,A ,B 不共线)与坐标原点O 构成的三角形OAB 的面积公式,请利用此公式解决问题:已知点(),2A a a +,(),B b b 在第一象限内,探究是否存在点B ,使得对于任意的0a >,都有3OAB S=?若存在,求出点B 的坐标;若不存在说明理由. 28.(1)已知点()23,47P x x +-的横坐标减纵坐标的差为6,求这个点到x 轴、y 轴的距离;(2)已知点()23,6A x x --到两坐标轴的距离相等,且在第二象限,求点A 的坐标;(3)已知线段AB 平行于y 轴,点A 的坐标为()2,3-,且4AB =,求点B 的坐标. 29.如图,在平面直角坐标系中,三角形ABC?的顶点坐标分别是()()A 4,1B 1,1?--,,()C 1,4?-,点()11P x ,y ?是三角形 ABC?内一点,点()11 P x ,y ?平移到点()111 P x 3,1?y +-时;(1)画出平移后的新三角形111?A B C 并分别写出点111?A B C 的坐标;(2)求出三角形111?A B C 的面积30.如图,三角形ABC 三个顶点坐标分别是()4,3A ,()3,1B ,()1,2C ,三角形ABC 内任意一点(),M m n .(1)将三角形ABC 平移得到三角形111A B C ,点C 的对应点为()14,4C ,请画出三角形111A B C 并写出1A 的坐标;(2)若三角形PQR 是三角形ABC 经过某种变换后得到的图形.点A 的对应点为P ,点B 的对应点为Q ,点C 的对应点为R .观察变换前后各对应点之间的关系,若点M 经过这种变换后的对应为N ,则点N 的坐标为(______,______)(用含m ,n 的式子表示)。
七年级下册第七章主要包括以下数学知识点:图形的相似与等腰三角形、平行四边形、直角三角形与勾股定理、平面坐标系与直线方程。
1.图形的相似与等腰三角形:
-相似图形:两个图形,形状相似但大小不一样。
相似图形的特点是对应角相等,对应边成比例。
-相似比例:两个相似图形对应边的比值。
-相似三角形:三角形的对应角相等,对应边成比例的三角形。
-等腰三角形:两条边相等的三角形。
等腰三角形的性质是两底角相等,顶角为直角,底角的角平分线也是高线。
2.平行四边形:
-平行四边形:具有两组对边平行的四边形。
-平行四边形的性质:对边相等,对角线互相平分,相邻角互补。
3.直角三角形与勾股定理:
-直角三角形:一条边与另外两条边构成直角的三角形。
-勾股定理:直角三角形斜边的平方等于两直角边的平方和。
即
a²+b²=c²。
4.平面坐标系与直线方程:
-平面直角坐标系:由x轴和y轴组成的坐标系。
坐标轴的交点称为原点,记作O。
-坐标:点在平面坐标系中的位置称为坐标,通过两个数值(x,y)表示,称为有序数对。
- 直线方程:一般形式为y = kx + b,其中k是直线的斜率,b是直线与y轴交点的纵坐标。
这些数学知识点在七年级下册第七章中展开讲解,学生需要掌握相似图形的判断和计算相似比例,能够在平行四边形中应用对边相等的性质,理解直角三角形的构成和勾股定理的应用,以及能够在平面坐标系中绘制直线和写出直线方程。
一、选择题 1.如图是北京市地图简图的一部分,图中“故宫”、“颐和园”所在的区域分别是( )D E F 6颐和园 奥运村 7故宫 日坛 8天坛 A .D7,E6 B .D6,E7 C .E7,D6 D .E6,D7 2.在平面直角坐标系xOy 中,线段AB 的两个端点坐标分别为(1,1)A --,(1,2)B ,平移线段AB ,得到线段A B '',已知A '的坐标为(3,1)-,则点B '的坐标为( )A .(4,2)B .(5,2)C .(6,2)D .(5,3) 3.已知两点(,5)A a ,(1,)B b -且直线//AB x 轴,则( )A .a 可取任意实数,5b =B .1a =-,b 可取任意实数C .1a ≠-,5b =D .1a =-,5b ≠ 4.已知P(a ,b )满足ab=0,则点P 在( ) A .坐标原点 B .X 轴上 C .Y 轴上 D .坐标轴上 5.在平面直角坐标系中,将三角形各顶点的纵坐标都加上3,横坐标保持不变,所得图形的位置与原图形相比( )A .向上平移3个单位B .向下平移3个单位C .向右平移3个单位D .向左平移3个单位6.如图是轰炸机机群的一个飞行队形,如果最后两架轰炸机的平面坐标分别为A ()2,1-和B ()2,3--,那么第一架炸机C 的平面坐标是( )A .()2,1B .()3,1-C .()2,1-D .()3,1 7.太原植物园是山西省唯一集科学研究、科普教育、园艺观赏和文化旅游于一体的综合性植物园.其标志性建筑为热带植物馆、沙生植物馆、主题花卉馆三个展览温室,远远望去犹如镶嵌在湖边的3颗大小不一的“露珠”(图1).若利用网格(图2)建立适当的平面直角坐标系,表示东门的点的坐标为()3,2A ,表示热带植物馆入口的点的坐标为()3,3B -,那么儿童游乐园所在的位置C 的坐标应是( )A .()5,1-B .()2,4--C .()8,3--D .()5,1-- 8.在平面直角坐标系中,点P 的坐标为(3,﹣1),那么点P 在( ) A .第一象限 B .第二象限 C .第三象限 D .第四象限 9.将点()1,2P 向左平移3个单位后的坐标是( )A .()2,2-B .()1,1-C .()1,5D .()1,1-- 10.平面直角坐标系中,线段CD 是由线段AB 平移得到的,点A(-1,4)的对应点C(4,7),点B(-4,-1)的对应点D 的坐标为( )A .(-1,-4)B .(1,-4)C .(1,2)D .(-1,2)11.在平面直角坐标系中,对于点P (x ,y ),我们把点P ′(-y +1,x +1)叫做点P 的幸运点.已知点A 1的幸运点为A 2,点A 2的幸运点为A 3,点A 3的幸运点为A 4,……,这样依次得到点A 1,A 2,A 3,…,A n .若点A 1的坐标为(3,1),则点A 2020的坐标为( ) A .(-3,1) B .(0,-2) C .(3,1) D .(0,4)12.如图,在平面直角坐标系中,若干个半径为3个单位长度,圆心角为60°的扇形组成一条连续的曲线,点P 从原点O 出发,沿这条曲线向右上下起伏运动,点在直线上的速度为每秒3个单位长度,点在弧线上的速度为每秒π个单位长度,则2020秒时,点P 的坐标是( )A .(2020,0)B .(3030,0)C .( 3030,3)D .(3030,﹣3) 13.如图,数轴上的点A ,B ,O ,C ,D 分别表示数-2,-1,0,1,2,则表示数25-的点P 应落在( )A .线段AB 上 B .线段BO 上C .线段OC 上D .线段CD 上 14.在平面直角坐标系中,点()25,1N a -+一定在( )A .第一象限B .第二象限C .第三象限D .第四象限15.若把点A (-5m ,2m -1)向上平移3个单位后得到的点在x 轴上,则点A 在( ) A .x 轴上 B .第三象限 C .y 轴上 D .第四象限二、填空题16.如图所示,点1,0A 、B(-1,1)、()2,2C ,则ABC 的面积是_________.17.如图,将边长为1的正方形OABP 沿x 轴正方向连续翻转,点P 依次落在点1P ,2P ,3P ,4P ,…的位置,那么2016P 的坐标是________.18.若电影票上座位是12排5号可记为(12,5),则(5,6)表示_______________. 19.若点M (5,a )关于y 轴的对称点是点N (b ,4),则(a+b )2020= __20.如图,一个机器人从0点出发,向正东方向走3米到达1A 点,记为()3,0;再向正北方向走6米到达2A 点,记为()3,6:再向正西方向走9米到达3A 点,记为()6,6-;再向正南方向走12米到达4A 点,再向正东方向走15米到达5A 点,按如此规律走下去,当机器人走到99A 点时,则99A 的坐标为________.21.已知点M 在y 轴上,纵坐标为4,点P (6,﹣4),则△OMP 的面积是__. 22.已知点A(3a ﹣6,a+4),B(﹣3,2),AB ∥y 轴,点P 为直线AB 上一点,且PA =2PB ,则点P 的坐标为_____.23.如图,若棋盘中“帅”的坐标是(0,1),“卒”的坐标是(2,2),则“马”的坐标是________.24.下图是利用平面直角坐标系画出的老北京一些地点的示意图,这个坐标系分别以正东和正北方向为x 轴和y 轴的正方向,如果表示右安门的点的坐标为(-2,-3),表示朝阳门的点的坐标为(3,2),那么表示西便门的点的坐标为___________________.25.点A (m ,﹣3),点B (2,n ),AB //x 轴,则n=_____.26.若点()35,62P a a +--到 两坐标轴的距离相等,则a 的值为____________三、解答题27.如图,在平面直角坐标系中,四边形OABC 各顶点的坐标分别是()0,0O ,()0,12A ,()10,8B -,()14,0C -,求四边形OABC 的面积.28.已知,在平面直角坐标系中,三角形ABC 三个顶点的坐标分别为()5,6A ,()2,3B -,()3,1C .请在所给的平面直角坐标系中按要求完成以下问题:(1)画出三角形ABC ;(2)将三角形ABC 先向下平移6个单位长度,再向左平移3个单位长度后得到的三角形111A B C (点1A ,1B ,1C 分别是点A ,B ,C 移动后的对应点)请画出三角形111A B C ;并判断线段AC 与11A C 位置与数量关系.29.如图①,A 、B 、C 三地依次在一条直线上,两辆汽车甲、乙分别从A 、B 两地同时出发驶向C 地.如图②,是两辆汽车行驶过程中到B 地的距离(km)s 与行驶时间(h)t 的关系图象,其中折线EF-FG 是甲车的图象,线段OM 是乙车的图象.(1)请求出图②中a 的值和点M 的坐标;(2)在行驶过程中,甲车有可能在乙车与B 地中点的位置吗?如有,请求出行驶时间t 的值;若没有,请说明理由.30.如图,△ABC 在直角坐标系中,(1)请写出△ABC 各点的坐标.(2)若把△ABC 向上平移2个单位,再向左平移1个单位得到△A ′B ′C ′,写出A ′、B ′、C ′的坐标.(3)求出三角形ABC 的面积.。
一、选择题1.一只跳蚤在第一象限及x 、y 轴上跳动,第一次它从原点跳到(0,1),然后按图中箭头所示方向跳动(0,0)→(0,1)→(1,1)→(1,0)→……,每次跳一个单位长度,则第2021次跳到点( )A .(3,44)B .(4,45)C .(44,3)D .(45,4) 2.如果点A (a ,b )在第二象限,那么a 、b 的符号是( ) A .0>a ,0>b B .0<a ,0>b C .0>a ,0<b D .0<a ,0<b 3.如图,动点P 在平面直角坐标系中按图中箭头所示方向运动,第1次从原点运动到点()1,1,第2次接着运动到点()2,0,第3次接着运动到点()3,2,……按这样的运动规律,经过第2020次运动后,动点P 的坐标是( )A .()2020,0B .()2020,1C .()2021,1D .()2021,2 4.下列各点中,在第二象限的是( ) A .()1,0 B .()1,1 C .()1,1- D .()1,1- 5.太原植物园是山西省唯一集科学研究、科普教育、园艺观赏和文化旅游于一体的综合性植物园.其标志性建筑为热带植物馆、沙生植物馆、主题花卉馆三个展览温室,远远望去犹如镶嵌在湖边的3颗大小不一的“露珠”(图1).若利用网格(图2)建立适当的平面直角坐标系,表示东门的点的坐标为()3,2A ,表示热带植物馆入口的点的坐标为()3,3B -,那么儿童游乐园所在的位置C 的坐标应是( )A .()5,1-B .()2,4--C .()8,3--D .()5,1-- 6.在平面直角坐标系中,点Q 的坐标是()35,1m m -+.若点Q 到x 轴的距离与到y 轴的距离相等,则m 的值为( )A .3B .1C .1或3D .2或3 7.已知点M (9,﹣5)、N (﹣3,﹣5),则直线MN 与x 轴、y 轴的位置关系分别为( )A .相交、相交B .平行、平行C .垂直相交、平行D .平行、垂直相交 8.点A (n+2,1﹣n )不可能在( )A .第一象限B .第二象限C .第三象限D .第四象限 9.若实数a ,b 满足2(2)30a b ++-=,则点P(a ,b)所在的象限是( )A .第一象限B .第二象限C .第三象限D .第四象限 10.平面直角坐标系中,线段CD 是由线段AB 平移得到的,点A(-1,4)的对应点C(4,7),点B(-4,-1)的对应点D 的坐标为( )A .(-1,-4)B .(1,-4)C .(1,2)D .(-1,2) 11.在平面直角坐标系xOy 中,对于点P (x ,y ),我们把点P ′(﹣y +1,x +1)叫做点P 的伴随点.已知点A 1的伴随点为A 2,点A 2的伴随点为A 3,点A 3的伴随点为A 4…,这样依次得到点A 1,A 2,A 3,…,A n ,若点A 1的坐标为(3,1),则点A 2019的坐标为( ) A .(0,﹣2) B .(0,4) C .(3,1) D .(﹣3,1) 12.如图,动点P 在平面直角坐标系中按图中箭头所示方向运动,第1次从原点运动到点(1,1),第2次接着运动到点(2,0),第3次接着运动到点(3,2)……按这样的运动规律,经过第2021次运动后,动点P 的坐标是( )A .(2021,0)B .(2020,1)C .(2021,1)D .(2021,2) 13.在平面直角坐标中,点()1,2P 平移后的坐标是)3(3,-'P ,按照同样的规律平移其它点,则以下各点的平移变换中( )符合这种要求.A .()3,24(,2)→-B .()(104),5,--→-C .(1.2,5)→(-3.2,6)D .122.5, 1.5,33⎛⎫⎛⎫-→- ⎪ ⎪⎝⎭⎝⎭14.在平面直角坐标系中,将点A (﹣2,﹣2)先向右平移6个单位长度再向上平移5个单位长度得到点A ',则点A '的坐标是( )A .(4,5)B .(4,3)C .(6,3)D .(﹣8,﹣7)15.在平面直角坐标系中,我们把横、纵坐标都是整数的点叫做整点,且规定:正方形内不包含边界上的点,观察如图所示的中心在原点,一边平行于x 轴的正方形,边长为1的正方形内部有一个整点,边长为3的正方形内部有9个整点,…,则边长为10的正方形内部的整点个数为( )A .100B .81C .64D .49二、填空题16.在平面直角坐标系中,若点(1, 2)M m m -+与点(23, 2)N m m ++之间的距离是5,则m =______.17.若电影票上座位是12排5号可记为(12,5),则(5,6)表示_______________. 18.如下图,在平面直角坐标系中,第一次将OAB 变换成11OA B ,第二次将11OA B 变换成22OA B △,第三次将22OA B △变换成33OA B ,…,将OAB 进行n 次变换,得到n n OA B △,观察每次变换中三角形顶点坐标有何变化,找出规律,推测2020A 的坐标是__________.19.如图,在平面直角坐标系中,对△ABC 进行循环往复的轴对称变换,若原来点A 坐标是(a ,b ),经过第1次变换后所得的1A 坐标是(),-a b ,则经过第2020次变换后所得的点2020A 坐标是_____.20.在平面直角坐标系中,与点A (5,﹣1)关于y 轴对称的点的坐标是_____. 21.已知点(1,0)A 、(0,2)B ,点P 在x 轴上,且PAB △的面积为5,则点P 的坐标为__________.22.点A (m ,﹣3),点B (2,n ),AB //x 轴,则n=_____.23.如图,已知点A 的坐标为(−2,2),点C 的坐标为(2,1),则点B 的坐标是____.24.已知P (a,b ),且ab <0,则点P 在第_________象限.25.已知点A (﹣3,2),AB ∥坐标轴,且AB =4,若点B 在x 轴的上方,则点B 坐标为__.26.如图,直线BC 经过原点O ,点A 在x 轴上,AD BC ⊥于D .若A (4,0),B (m ,3),C (n ,-5),则AD BC =______.三、解答题27.如图,在平面直角坐标系中,四边形OABC 各顶点的坐标分别是()0,0O ,()0,12A ,()10,8B -,()14,0C -,求四边形OABC 的面积.28.已知点(1,5)A a -和(2,1)B b -.试根据下列条件求出a ,b 的值.(1)A ,B 两点关于y 轴对称;(2)A ,B 两点关于x 轴对称;(3)AB ‖x 轴29.如图,在平面直角坐标系中,△ABC 的顶点为(5,1)A -,(1,0)B -,(1,5)C -. (1)作出△ABC 关于y 轴对称图形△A 1B 1C 1;(2)若点P 在x 轴上,且△ABP 与△ABC 面积相等,求点P 的坐标.30.如图所示,在平面直角坐标系中,点O 为原点,点()1,2A -,()3,1B -,将AOB 向右平移2个单位,再向上平移3个单位得到111AO B ,点A 的对应点是1A ,点B 的对应点是1B(1)直接写出1O ,1A ,1B 的坐标;(2)在图中画出111AO B ;(3)AOB 的面积=______.。
一、选择题1.在直角坐标系中,ABC 的顶点()1,5A -,()3,2B ,()0,1C ,将ABC 平移得到A B C ''',点A 、B 、C 分别对应A '、B '、C ',若点()1,4A ',则点'C 的坐标( ) A .()2,0- B .()2,2- C .()2,0 D .()5,1 2.如图,将一颗小星星放置在平面直角坐标系中第二象限内的甲位置,先将它绕原点O 旋转180︒到乙位置,再将它向上平移2个单位长到丙位置,则小星星顶点A 在丙位置中的对应点A '的坐标为( )A .()3,1-B .()1,3C .()3,1D .()3,1- 3.在平面直角坐标系中,点(2,1)A -关于y 轴对称的点在( )A .第一象限B .第二象限C .第三象限D .第四象限 4.如图是轰炸机机群的一个飞行队形,如果最后两架轰炸机的平面坐标分别为A ()2,1-和B ()2,3--,那么第一架炸机C 的平面坐标是( )A .()2,1B .()3,1-C .()2,1-D .()3,1 5.下列各点中,在第二象限的是( ) A .()1,0 B .()1,1 C .()1,1- D .()1,1- 6.在平面直角坐标系中,点Q 的坐标是()35,1m m -+.若点Q 到x 轴的距离与到y 轴的距离相等,则m 的值为( )A .3B .1C .1或3D .2或37.点(,)M x y 在第二象限,且230,40x y -=-=,则点M 的坐标是( ) A .(3,2)- B .(3,2)- C .(2,3)- D .(2,3)- 8.如图,在平面直角坐标系中,、、A B C 三点的坐标分别是()()()1,2,4,2,2,1--,若以A B C D 、、、为顶点的四边形为平行四边形,则点D 的坐标不可能是( )A .()7,1-B .()3,1--C .()1,5D .()2,5 9.将点()1,2P 向左平移3个单位后的坐标是( )A .()2,2-B .()1,1-C .()1,5D .()1,1-- 10.在平面直角坐标系xOy 中,对于点P (x ,y ),我们把点P ′(﹣y +1,x +1)叫做点P 的伴随点.已知点A 1的伴随点为A 2,点A 2的伴随点为A 3,点A 3的伴随点为A 4…,这样依次得到点A 1,A 2,A 3,…,A n ,若点A 1的坐标为(3,1),则点A 2019的坐标为( ) A .(0,﹣2)B .(0,4)C .(3,1)D .(﹣3,1) 11.在下列点中,与点A(-2,-4)的连线平行于y 轴的是( ) A .(2,-4) B .(4,-2) C .(-2,4) D .(-4,2) 12.在平面直角坐标系中,一个智能机器人接到如下指令:从原点O 出发,按向右,向上,向右,向下的方向依次不断移动,每次移动1m .其行走路线如图所示,第1次移动到1A ,第2次移动到2A ,...,第n 次移动到n A .则22020OA A ∆的面积是( )A .210112mB .2505mC .220092mD .2504m 13.已知点P 到x 轴的距离为2,到y 轴的距离为3,且点P 在x 轴的上方,则点P 的坐标为( )A .(2,3)B .(3,2)C .(2,3)或(-2,3)D .(3,2)或(-3,2)14.如图,在平面直角坐标系中,有若干个横坐标分别为整数的点,其顺序按图中(1,0)→(2,0)→(2,1)→(1,1)→(1,2)→(2,2)…根据这个规律,则第2016个点的横坐标为( )A .44B .45C .46D .4715.在平面直角坐标系中,我们把横、纵坐标都是整数的点叫做整点,且规定:正方形内不包含边界上的点,观察如图所示的中心在原点,一边平行于x 轴的正方形,边长为1的正方形内部有一个整点,边长为3的正方形内部有9个整点,…,则边长为10的正方形内部的整点个数为( )A .100B .81C .64D .49二、填空题16.下列四个命题中:①对顶角相等;②如果两条直线被第三条直线所截,那么同位角相等;③如果两个实数的平方相等,那么这两个实数也相等;④当0m ≠时,点()2,P m m -在第四象限内.其中真命题有________(填序号).17.在x 轴上方的点P 到x 轴的距离为3,到y 轴距离为2,则点P 的坐标为________. 18.若电影票上座位是12排5号可记为(12,5),则(5,6)表示_______________. 19.如图,有A ,B ,C 三点,如果A 点用()1,1表示,B 点用()2,3表示,则C 点的坐标为_______.20.如图,在平面直角坐标系中,有若干个横纵坐标分别为整数的点,其顺序按图中“→”方向排列,如()1,0,()2,0,()2,1,()1,1,1,2,()2,2根据这个规律,第2020个点的坐标为______.21.已知点P 的坐标为(a ,b )(a >0),点Q 的坐标为(c ,2),且|a ﹣c|+8b -=0,将线段PQ 向右平移a 个单位长度,其扫过的面积为24,那么a+b+c 的值为_____. 22.在平面直角坐标系中,一蚂蚁从原点O 出发,按向上、向右、向下、向右的方向依次不断移动,每次移动1个单位,其行走路线如下图所示,则点A 400的坐标为_______.23.在平面直角坐标系中,对于平面内任一点(),a b ,若规定以下三种变换: ①()(),,a b a b ∆=-;②(),a b O (),a b =--;③()(),,a b a b Ω=-按照以上变换例如:()()()1,21,2∆O =-,则()()2,5O Ω等于__________. 24.在平面直角坐标系中,若干个边长为1个单位长度的等边三角形,按下图中的规律摆放. 点P 从原点O 出发,以每秒1个单位长度的速度沿着等边三角形的边"OA 1→A 1A2→A 2A 3→A 3A 4→A 4A 5…."的路线运动,设第n 秒运动到点P n (n 为正整数);则点P 2021的横坐标为_______25.若点A (-2,n )在x 轴上,则点B(n-2,n+1)在第_____象限 .26.如图,动点P 在平面直角坐标系中按图中箭头所示方向运动,第1次从原点运动到点()1,1,第2次接着运动到点()2,0,第3次接着运动到点()3,2,按这样的运动规律,经过第1000次运动后,动点P 的坐标是_______;经过第2019次运动后,动点P 的坐标是_______.三、解答题27.在平面直角坐标系中,已知(0,1)A ,(2,0)B ,(4,3)C .(1)在给出的平面直角坐标系中画出ABC ∆;(2)已知P 为x 轴上一点,若ABP ∆的面积为2,求点P 的坐标.28.在直角坐标系中,ABC 顶点C 的坐标为()1m ,.90C ∠=︒,//BC x 轴,直线//l y 轴,,BC a AC b ==,ABC 与111A B C △关于直线l 对称,222A B C △与111A B C △关于y 轴对称,333A B C △与222A B C △关于x 轴对称.(1)问ABC 与222A B C △通过平移能重合吗?若不能说明其理由,若能请你说出一个平移方案(平移的单位数用m 、a 表示):(2)试写出点33A B 、坐标(注:结果可用含a 、b 、m 的代数式表示).29.画图并填空:如图,方格纸中每个小正方形的边长都为1.在方格纸内将ABC经过''',图中标出了点B的对应点B'.一次平移后得到A B C''';(1)在给定方格纸中画出平移后的A B C(2)画出AB边上的中线CD和BC边上的高线AE;''的面积是多少?(3)求A B C30.如图1,在平面直角坐标系中,A(a,0),C(b,4),且满足(a+5)2+5b=0,过-C作CB⊥x轴于B.(1)a=,b=,三角形ABC的面积=;(2)若过B作BD//AC交y轴于D,且AE,DE分别平分∠CAB,∠ODB,如图2,求∠AED的度数;(3)在y轴上是否存在点P,使得三角形ABC和三角形ACP的面积相等?若存在,求出P 点坐标;若不存在,请说明理由.。
一、选择题1.如图,将一颗小星星放置在平面直角坐标系中第二象限内的甲位置,先将它绕原点O 旋转180︒到乙位置,再将它向上平移2个单位长到丙位置,则小星星顶点A 在丙位置中的对应点A '的坐标为( )A .()3,1-B .()1,3C .()3,1D .()3,1- 2.第24届冬季奥林匹克运动会将于2022年由北京市和张家口市联合举行.以下能够准确表示张家口市地理位置的是( )A .离北京市200千米B .在河北省C .在宁德市北方D .东经114.8°,北纬40.8°3.如图,点A 的坐标是()3,1-将四边形ABCD 先向左平移3个单位,再向上平移2个单位,那么点A 的对应点A '的坐标是( )A .()0,1B .()6,1C .()0,3-D .()6,3- 4.若点P (x, y )在第二象限,且2,3x y ==,则x + y =( )A .-1B .1C .5D .-55.在平面直角坐标系中,点P 在第二象限,且点P 到x 轴的距离为3个单位长度,到y 轴的距离为4个单位长度,则点P 的坐标是( )A .()3,4B .()3,4--C .()4,3-D .()3,4- 6.已知点M (9,﹣5)、N (﹣3,﹣5),则直线MN 与x 轴、y 轴的位置关系分别为( )A .相交、相交B .平行、平行C .垂直相交、平行D .平行、垂直相交7.已知点A 的坐标为(2,1)--,点B 的坐标为(0,2)-,若将线段AB 平移至A B ''的位置,点A '的坐标为(3,2)-,则点B '的坐标为( )A .(3,2)--B .(0,1)C .(1,1)-D .(1,1)- 8.象棋在中国有三千多年的历史,由于用具简单,趣味性强,成为流行极为广泛的益智游戏.如图是一局象棋残局,已知棋子“马”和“车”表示的点的坐标分别为(4,1),(2,1)--,则在第三象限的棋子有( )A .1颗B .2颗C .3颗D .4颗9.下列说法正确的是( )A .若0ab =,则点(,)P a b 表示原点B .点(1,)a 在第三象限C .已知点(3,3)A -与点(3,3)B ,则直线//AB x 轴D .若0ab >,则点(,)P a b 在第一或第三象限10.平面直角坐标系中,线段CD 是由线段AB 平移得到的,点A(-1,4)的对应点C(4,7),点B(-4,-1)的对应点D 的坐标为( )A .(-1,-4)B .(1,-4)C .(1,2)D .(-1,2)11.在平面直角坐标系xOy 中,对于点P (x ,y ),我们把点P ′(﹣y +1,x +1)叫做点P 的伴随点.已知点A 1的伴随点为A 2,点A 2的伴随点为A 3,点A 3的伴随点为A 4…,这样依次得到点A 1,A 2,A 3,…,A n ,若点A 1的坐标为(3,1),则点A 2019的坐标为( ) A .(0,﹣2) B .(0,4) C .(3,1) D .(﹣3,1) 12.在平面直角坐标系中,一个智能机器人接到如下指令:从原点O 出发,按向右,向上,向右,向下的方向依次不断移动,每次移动1m .其行走路线如图所示,第1次移动到1A ,第2次移动到2A ,...,第n 次移动到n A .则22020OA A ∆的面积是( )A .210112mB .2505mC .220092mD .2504m 13.已知点P 到x 轴的距离为2,到y 轴的距离为3,且点P 在x 轴的上方,则点P 的坐标为( )A .(2,3)B .(3,2)C .(2,3)或(-2,3)D .(3,2)或(-3,2)14.在平面直角坐标系中,点A (0,a ),点B (0,4﹣a ),且A 在B 的下方,点C(1,2),连接AC ,BC ,若在AB ,BC ,AC 所围成区域内(含边界),横坐标和纵坐标都为整数的点的个数为4个,那么a 的取值范围为( )A .﹣1<a ≤0B .0<a ≤1C .1≤a <2D .﹣1≤a ≤1 15.如图,在平面直角坐标系中,有若干个横坐标分别为整数的点,其顺序按图中(1,0)→(2,0)→(2,1)→(1,1)→(1,2)→(2,2)…根据这个规律,则第2016个点的横坐标为( )A .44B .45C .46D .47二、填空题16.如图,平面直角坐标系xOy 中,点A(4,3),点B(3,0),点C(5,3),OAB ∆沿AC 方向平移AC 长度的到ECF ∆,四边形ABFC 的面积为_________.17.在平面直角坐标系中,点()3,2P -到y 轴的距离为__________.18.已知点P 的坐标()41,52a a --,且点P 到两坐标轴的距离相等,则点P 的坐标是______.19.若点P 位于x 轴上方,y 轴左侧,距离x 轴4个单位长度,距离y 轴2个单位长度,则点P 的坐标是_____________.20.如图,在平面直角坐标系中,有若干个横纵坐标分别为整数的点,其顺序按图中“→”方向排列,如()1,0,()2,0,()2,1,()1,1,1,2,()2,2根据这个规律,第2020个点的坐标为______.21.在平面直角坐标系中,有点A (a ﹣2,a ),过点A 作AB ⊥x 轴,交x 轴于点B ,且AB =2,则点A 的坐标是___.22.如图,若棋盘中“帅”的坐标是(0,1),“卒”的坐标是(2,2),则“马”的坐标是________.23.在平面直角坐标系中,点(,)A x y 的坐标满足方程34x y -=,(1)当点A 到两条坐标轴的距离相等时,点A 坐标为__________.(2)当点A 在x 轴上方时,点A 横坐标x 满足条件__________.24.如图,动点P 在平面直角坐标系中按图中箭头所示方向运动,第1次从原点运动到点(1,1),第2次接着运动到点(2,0),第3次接着运动到点(3,2)…按这样的运动规律经过第2021次运动后,动点P 的坐标是_____.25.已知点()24,1P m m +-.()1若点P 在x 轴上,则点P 的坐标为________;()2若点P 在第四象限,且到y 轴的距离是2,则点P 的坐标为________.26.在平面直角坐标系中,对于平面内任一点(),a b ,若规定以下三种变换: ①()(),,a b a b ∆=-;②(),a b O (),a b =--;③()(),,a b a b Ω=-按照以上变换例如:()()()1,21,2∆O =-,则()()2,5O Ω等于__________.三、解答题27.如图,在平面直角坐标系中,三角形ABC?的顶点坐标分别是()()A 4,1B 1,1?--,,()C 1,4?-,点()11P x ,y ?是三角形 ABC?内一点,点()11 P x ,y ?平移到点()111 P x 3,1?y +-时;(1)画出平移后的新三角形111?A B C 并分别写出点111?A B C 的坐标;(2)求出三角形111?A B C 的面积28.如图为某校区分布图的一部分,方格纸中每个小方格是边长为1个单位的正方形,若教学楼的坐标为A(1,2),图书馆的坐标为(-2,-1).解答以下问题:(1)在图中找到坐标系中的原点O ,并建立直角坐标系;(2)若体育馆的坐标为C(1,-3),餐厅坐标为D (2,0),请在图中标出体育馆和餐厅的位置;(3)顺次连接教学楼、图书馆、体育馆、餐厅得到四边形ABCD ,求四边形ABCD 的面积.29.已知()4,0A ,点B 在x 轴上,且5AB =.(1)直接写出点B 的坐标;(2)若点C 在y 轴上,且10ABC S =△,求点C 的坐标.(3)若点()3,2D a a -+,且15ABD S =,求点D 的坐标.30.如图,已知火车站的坐标为()2,1,文化宫的坐标为()1,2-.(1)请你根据题目条件,画出平面直角坐标系;(2)写出体育馆、市场、超市、宾馆的坐标;(3)请将原点O,宾馆C和文化宫B,看作三点用线段连起来,将得OBC,然后将此三O B C,并求出其面积.角形向下平移3个单位长度,画出平移后的111。
新人教版七年级数学下册《平面直角坐标系》知识点概述及实例1. 平面直角坐标系概述平面直角坐标系是解决平面上点的位置关系问题的一种工具。
它由横轴(x轴)和纵轴(y轴)组成,两条轴相互垂直,且通过原点。
在平面直角坐标系中,每个点可以用一个有序数对表示,即(x, y),其中x代表横坐标,y代表纵坐标。
平面直角坐标系有助于求解图形的性质和方程的解等问题。
2. 平面直角坐标系的基本概念- 原点:平面直角坐标系的交点,用O表示。
- 横轴:平行于x轴的直线。
- 纵轴:平行于y轴的直线。
- 横坐标:表示点在横轴上的位置,用x表示。
- 纵坐标:表示点在纵轴上的位置,用y表示。
3. 平面直角坐标系的象限平面直角坐标系将平面分为四个象限,以原点为中心,顺时针分别为第一象限、第二象限、第三象限和第四象限。
每个象限有其特点和性质。
4. 平面直角坐标系中的图形平面直角坐标系可以用来描述和研究各种图形,如直线、圆、抛物线等。
通过确定图形上的点的坐标,可以进一步研究图形的性质和方程的解等问题。
5. 平面直角坐标系举例以下是一些示例,帮助理解和应用平面直角坐标系:- 示例1:图形A的两个顶点分别为(-2, 3)和(4, -1),求图形A 的边长和对角线长度。
- 示例2:有一条直线L过点(-3, 2)和(1, 6),求直线L的斜率和方程。
- 示例3:给定圆心坐标为(1, -2)且半径为3的圆C,求圆C上一点的坐标。
- 示例4:已知抛物线的顶点为(0, 4)且对称轴为y轴,求抛物线的方程。
以上是对新人教版七年级数学下册《平面直角坐标系》知识点的概述及实例介绍。
通过深入理解和应用平面直角坐标系,可以更好地解决与图形和方程有关的问题。
一、选择题1.在平面直角坐标系xOy 中,线段AB 的两个端点坐标分别为(1,1)A --,(1,2)B ,平移线段AB ,得到线段A B '',已知A '的坐标为(3,1)-,则点B '的坐标为( )A .(4,2)B .(5,2)C .(6,2)D .(5,3) 2.已知点32,)6(M a a -+.若点M 到两坐标轴的距离相等,则a 的值为( ) A .4 B .6- C .1-或4 D .6-或23 3.下列各点中,在第二象限的是( )A .()1,0B .()1,1C .()1,1-D .()1,1- 4.如图,点A 的坐标是()3,1-将四边形ABCD 先向左平移3个单位,再向上平移2个单位,那么点A 的对应点A '的坐标是( )A .()0,1B .()6,1C .()0,3-D .()6,3- 5.在平面直角坐标系中,点Q 的坐标是()35,1m m -+.若点Q 到x 轴的距离与到y 轴的距离相等,则m 的值为( )A .3B .1C .1或3D .2或3 6.在平面直角坐标系中,一个智能机器人接到的指令是:从原点O 出发,按“向上→向右→向下→向右”的方向依次不断移动,每次移动1个单位长度,其移动路程如图所示,第一次移动到点A 1,第二次移动到点A 2,第n 次移动到点A n ,则点A 2020的坐标是( )A .(1010,0)B .(1010,1)C .(1009,0)D .(1009,1) 7.点A (n+2,1﹣n )不可能在( ) A .第一象限 B .第二象限 C .第三象限 D .第四象限 8.下列说法正确的是( )A .若0ab =,则点(,)P a b 表示原点B .点(1,)a 在第三象限C .已知点(3,3)A -与点(3,3)B ,则直线//AB x 轴D .若0ab >,则点(,)P a b 在第一或第三象限9.在平面直角坐标系xOy 中,对于点P (x ,y ),我们把点P ′(﹣y +1,x +1)叫做点P 的伴随点.已知点A 1的伴随点为A 2,点A 2的伴随点为A 3,点A 3的伴随点为A 4…,这样依次得到点A 1,A 2,A 3,…,A n ,若点A 1的坐标为(3,1),则点A 2019的坐标为( ) A .(0,﹣2)B .(0,4)C .(3,1)D .(﹣3,1) 10.过点A (﹣2,3)且垂直于y 轴的直线交y 轴于点B ,则点B 的坐标为( ) A .(0,﹣2) B .(3,0) C .(0,3) D .(﹣2,0) 11.如图,数轴上的点A ,B ,O ,C ,D 分别表示数-2,-1,0,1,2,则表示数25-的点P 应落在( )A .线段AB 上 B .线段BO 上C .线段OC 上D .线段CD 上 12.在平面直角坐标系中,点A (0,a ),点B (0,4﹣a ),且A 在B 的下方,点C(1,2),连接AC ,BC ,若在AB ,BC ,AC 所围成区域内(含边界),横坐标和纵坐标都为整数的点的个数为4个,那么a 的取值范围为( )A .﹣1<a ≤0B .0<a ≤1C .1≤a <2D .﹣1≤a ≤1 13.如图,线段OA ,OB 分别从与x 轴和y 轴重合的位置出发,绕着原点O 顺时针转动,已知OA 每秒转动45︒,OB 的转动速度是每秒转动30,则第2020秒时,OA 与OB 之间的夹角的度数为( )A .90︒B .145︒C .150︒D .165︒ 14.若把点A (-5m ,2m -1)向上平移3个单位后得到的点在x 轴上,则点A 在( ) A .x 轴上 B .第三象限 C .y 轴上 D .第四象限 15.如图,△ABC 的顶点坐标分别为A(1,0),B(4,0),C(1,4),将△ABC 沿x 轴向右平移,当点C 落在直线y =2x -6上时,线段BC 扫过的面积为( )A .4B .8C .82D .16二、填空题16.如图所示,点1,0A 、B(-1,1)、()2,2C ,则ABC 的面积是_________.17.如图,()3,3A -,()1,2P -,P 关于直线OA 的对称点为1P ,1P 关于x 轴的对称点为2P ,2P 关于y 轴的对称点为3P ,3P 关于直线OA 的对称点为4P ,4P 关于x 轴的对称点为5P ,5P 关于y 轴的对称点为6P ,6P 关于直线OA 的对称点为7P ,…,则2020P 的坐标是__________.18.如图,将边长为1的正方形OABP 沿x 轴正方向连续翻转,点P 依次落在点1P ,2P ,3P ,4P ,…的位置,那么2016P 的坐标是________.19.若电影票上座位是12排5号可记为(12,5),则(5,6)表示_______________. 20.在平面直角坐标系中,与点A (5,﹣1)关于y 轴对称的点的坐标是_____. 21.若点M (5,a )关于y 轴的对称点是点N (b ,4),则(a+b )2020= __ 22.已知点P (a ,a +1)在平面直角坐标系的第二象限内,则a 的取值范围___. 23.已知两点A(-2,m),B(n ,-4),若AB//y 轴,且AB=5,则m=_______;n=_______________.24.已知点()24,1P m m +-.()1若点P 在x 轴上,则点P 的坐标为________;()2若点P 在第四象限,且到y 轴的距离是2,则点P 的坐标为________.25.在平面直角坐标系中,一蚂蚁从原点O 出发,按向上、向右、向下、向右的方向依次不断移动,每次移动1个单位,其行走路线如下图所示.那么点A 2020的坐标是________.26.已知点A (﹣3,2),AB ∥坐标轴,且AB =4,若点B 在x 轴的上方,则点B 坐标为__.三、解答题27.已知,在平面直角坐标系中,三角形ABC 三个顶点的坐标分别为()5,6A ,()2,3B -,()3,1C .请在所给的平面直角坐标系中按要求完成以下问题:(1)画出三角形ABC ;(2)将三角形ABC 先向下平移6个单位长度,再向左平移3个单位长度后得到的三角形111A B C (点1A ,1B ,1C 分别是点A ,B ,C 移动后的对应点)请画出三角形111A B C ;并判断线段AC 与11A C 位置与数量关系.28.已知三角形ABC 在平面直角坐标系中,点(3,6)A ,点()1,3B ,点(4,2)C ,则三角形ABC 的面积为多少?29.暑假期间,张明和爸爸妈妈到福建屏南旅游,以下是张明和妈妈对本次旅游的景点分布图作出的描述:张明:“瑞光塔的坐标是()1,3-,白水洋的坐标是()1,3”;妈妈:“瑞光塔在水松林的西北方向上”.根据以上信息回答下列问题:(1)根据张明的描述在下图中建立合适的平面直角坐标系;(2)请判断妈妈的说法对吗?并说明理由;(3)直接写出在(1)的平面直角坐标系中,白水洋、鸳鸯溪、水松林的坐标. 30.如图,在平面直角坐标系中,点C (-1,0),点A (-4,2),AC ⊥BC 且AC=BC , 求点B 的坐标.。
平面直角坐标系是数学中的一种坐标系,它由两个相互垂直的直线形成,构成了一个平面。
通过这两条直线的交点,我们可以确定平面上任意一点的位置。
平面直角坐标系的建立通常需要选择一个基准点O(原点)和两个相互垂直的直线(称为坐标轴)。
其中一条直线叫做x轴,另一条直线叫做y轴。
坐标轴将平面分成四个区域,称为象限。
在平面直角坐标系中,我们可以使用一对有序的数(x,y)来表示平面上的一个点P。
其中x是点P在x轴上的投影长度,y是点P在y轴上的投影长度。
通常我们将横坐标x称之为点的横坐标,纵坐标y称之为点的纵坐标。
下面是几个关键知识点的讲解:1.坐标轴和象限:x轴是水平的,正方向向右,负方向向左。
y轴是垂直的,正方向向上,负方向向下。
因此,第一象限的点具有正的横纵坐标;第二、三象限的点具有一个正的,一个负的横纵坐标;第四象限的点具有负的横纵坐标。
2.相关术语:原点O是坐标轴交点的位置,它的坐标是(0,0)。
横坐标轴上的点,其纵坐标为0,称之为x轴上的一点。
纵坐标轴上的点,其横坐标为0,称之为y轴上的一点。
3.距离公式:对于平面上的两个点P(x1,y1)和Q(x2,y2),我们可以使用距离公式来计算它们之间的距离,即d=√((x2-x1)²+(y2-y1)²)。
4.点在线上的判定:若给定一点P(x0, y0)和一直线y = kx + b,则点P在直线上的充要条件是P满足方程y = kx + b。
另外,如果一个点P(x,y)在坐标轴上,则有特殊的性质:当点在x轴上时,纵坐标y等于0;当点在y轴上时,横坐标x等于0。
5.点的对称性:若点P(x,y)关于x轴对称的点为P',那么P'的坐标为(x,-y)。
若点P(x,y)关于y轴对称的点为P'',那么P''的坐标为(-x,y)。
若点P(x,y)关于原点对称的点为P''',那么P'''的坐标为(-x,-y)。
一、选择题1.已知两点(,5)A a ,(1,)B b -且直线//AB x 轴,则( )A .a 可取任意实数,5b =B .1a =-,b 可取任意实数C .1a ≠-,5b =D .1a =-,5b ≠ 2.如果点A (a ,b )在第二象限,那么a 、b 的符号是( ) A .0>a ,0>bB .0<a ,0>bC .0>a ,0<bD .0<a ,0<b 3.已知P(a ,b )满足ab=0,则点P 在( ) A .坐标原点 B .X 轴上 C .Y 轴上 D .坐标轴上 4.如图是轰炸机机群的一个飞行队形,如果最后两架轰炸机的平面坐标分别为A ()2,1-和B ()2,3--,那么第一架炸机C 的平面坐标是( )A .()2,1B .()3,1-C .()2,1-D .()3,1 5.如图,动点P 在平面直角坐标系中按图中箭头所示方向运动,第1次从原点运动到点()1,1,第2次接着运动到点()2,0,第3次接着运动到点()3,2,……按这样的运动规律,经过第2020次运动后,动点P 的坐标是( )A .()2020,0B .()2020,1C .()2021,1D .()2021,2 6.在平面直角坐标系中,与点P 关于原点对称的点Q 为()1,3-,则点P 的坐标是( ) A .()1,3B .()1,3--C .()1,3-D .()1,3- 7.已知点 M 到x 轴的距离为 3,到y 轴的距离为2,且在第四象限内,则点M 的坐标为( )A .(-2,3)B .(2,-3)C .(3,2)D .不能确定 8.在平面直角坐标系中,点P (−1,−2+3)在( )A .第一象限B .第二象限C .第三象限D .第四象限 9.如图是医院、公园和超市的平面示意图,超市B 在医院O 的南偏东25︒的方向上,且到医院的距离为300m ,公园A 到医院O 的距离为400m .若∠90AOB =︒,则公园A 在医院O 的( )A .北偏东75︒方向上B .北偏东65︒方向上C .北偏东55︒方向上D .北偏西65°方向上10.如图,在一单位长度为1cm 的方格纸上,依如所示的规律,设定点1A 、2A 、3A 、4A 、5A 、6A 、7A 、n A ,连接点O 、1A 、2A 组成三角形,记为1∆,连接O 、2A 、3A 组成三角形,记为2∆,连O 、n A 、1n A +组成三角形,记为n ∆(n 为正整数),请你推断,当n 为50时,n ∆的面积=( )2cmA .1275B .2500C .1225D .125011.一个图形的各点的纵坐标乘以2,横坐标不变,这个图形发生的变化是( ) A .横向拉伸为原来的2倍B .纵向拉伸为原来的2倍C .横向压缩为原来的12D .纵向压缩为原来的1212.在平面直角坐标系xOy 中,对于点P (x ,y ),我们把点P ′(﹣y +1,x +1)叫做点P 的伴随点.已知点A 1的伴随点为A 2,点A 2的伴随点为A 3,点A 3的伴随点为A 4…,这样依次得到点A 1,A 2,A 3,…,A n ,若点A 1的坐标为(3,1),则点A 2019的坐标为( )A.(0,﹣2)B.(0,4)C.(3,1)D.(﹣3,1)13.课间操时,小华、小军和小刚的位置如图所示,如果小华的位置用(0,0)表示,小军的位置用(2,1)表示,那么小刚的位置可以表示为()A.(5,4) B.(4,5) C.(3,4) D.(4,3)14.若把点A(-5m,2m-1)向上平移3个单位后得到的点在x轴上,则点A在() A.x轴上B.第三象限C.y轴上D.第四象限15.在平面直角坐标系中,我们把横、纵坐标都是整数的点叫做整点,且规定:正方形内不包含边界上的点,观察如图所示的中心在原点,一边平行于x轴的正方形,边长为1的正方形内部有一个整点,边长为3的正方形内部有9个整点,…,则边长为10的正方形内部的整点个数为()A.100 B.81 C.64 D.49二、填空题16.平面直角坐标系中,已知点P到x轴的距离为2,到y轴的距离为3,且点P在第二象限,则点P的坐标是__________.17.若点p(a+13,2a+23)在第二,四象限角平分线上,则a=_____.18.在电影院内找座位,将“4排3号”简记为(4,3),则(8,7)表示______19.点P先向左平移4个单位,再向上平移1个单位,得到点Q(2,-3),则点P坐标为__ 20.如图所示的坐标系中,单位长度为1 ,点 B的坐标为(1,3) ,四边形ABCD 的各个顶点都在格点上,点P 也在格点上,ADP△的面积与四边形ABCD 的面积相等,写出所有点P 的坐标 _____________.(不超出格子的范围)21.如图,正方形ABCD 的各边分别平行于x 轴或y 轴,蚂蚁甲和蚂蚁乙都由点E (3,0)出发,同时沿正方形ABCD 的边逆时针匀速运动,蚂蚁甲的速度为3个单位长度/秒,蚂蚁乙的速度为1个单位长度/秒,则两只蚂蚁出发后,蚂蚁甲第3次追上蚂蚁乙的坐标是_____.22.如图,在平面直角坐标系xOy 中,将四边形ABCD 先向下平移,再向右平移得到四边形A 1B 1C 1D 1,已知A (﹣3,5),B (﹣4,3),A 1(3,3),则B 1的坐标为_____.23.如图,动点P 在平面直角坐标系中按图中箭头所示方向运动,第1次从原点运动到点(1,1),第2次接着运动到点(2,0),第3次接着运动到点(3,2)…按这样的运动规律经过第2021次运动后,动点P 的坐标是_____.24.在平面直角坐标系中,点A (2,0)B (0,4),作△BOC ,使△BOC 和△ABO 全等,则点C 坐标为________25.在平面直角坐标系中,对于平面内任一点(),a b ,若规定以下三种变换: ①()(),,a b a b ∆=-;②(),a b O (),a b =--;③()(),,a b a b Ω=-按照以上变换例如:()()()1,21,2∆O =-,则()()2,5O Ω等于__________.26.如图,直线BC 经过原点O ,点A 在x 轴上,AD BC ⊥于D .若A (4,0),B (m ,3),C (n ,-5),则AD BC =______.三、解答题27.如图,一只甲虫在5×5的方格(每小格边长为1)上沿着网格线运动.它从A 处出发去看望B 、C 、D 处的其它甲虫(A ,B ,C ,D 都在格点上).规定:向上向右走为正,向下向左走为负.如果从A 到B 记为:A →B (+1,+4),从B 到A 记为:B →A (﹣1,﹣4),其中第一个数表示左右方向,第二个数表示上下方向,那么图中:(1)A →C ( , ),B →C ( , ),C →D ( , );(2)若这只甲虫的行走路线为A →B →C →D ,则该甲虫走过的路程是 ;(3)若这只甲虫从A 处去甲虫P 处的行走路线依次为(+3,+2),(+2,﹣1),(﹣2,+3),(﹣1,﹣2),请在图中标出P 的位置.(4)若图中另有两个格点M 、N ,且M →A (2﹣a ,b ﹣5),M →N (4﹣a ,b ﹣3),则N →A 应记为什么?28.在如图的直角坐标系中,将三角形ABC 平移后得到三角形111A B C ,他们的对应点坐标如下表所示: ABC(,0)A a (3,0)B (5,5)C 111A B C △ 1(4,2)A 1(7,)B b1(,)C c d .(2)在坐标系中画出两个三角形.(3)求出111A B C △面积.29.三角形ABC(记作△ABC)在8×8方格中,位置如图所示,A(-3,1),B(-2,4).(1)请你在方格中建立直角坐标系,并写出C点的坐标;(2)把△ABC向下平移1个单位长度,再向右平移2个单位长度,请你画出平移后的△A1B1C1,若△ABC内部一点P的坐标为(a,b),则点P的对应点P1的坐标是.(3)在x轴上存在一点D,使△DB1C1的面积等于3,求满足条件的点D的坐标.30.在平面直角坐标系中,每个小方格都是边长为1的正方形,△ABC的顶点均在格点上,点A的坐标是(﹣3,2).(1)将△ABC向右平移6个单位长度,再向下平移4个单位长度,得到△A'B′C′.请画出平移后的△A′B′C′,并写出点的坐标A′(,)、B′(,)、C′(,);(2)求出△A′B′C′的面积;(3)若连接AA′、CC′,则这两条线段之间的关系是.。
一、选择题1.如果点A (a ,b )在第二象限,那么a 、b 的符号是( )A .0>a ,0>bB .0<a ,0>bC .0>a ,0<bD .0<a ,0<b 2.如图是轰炸机机群的一个飞行队形,如果最后两架轰炸机的平面坐标分别为A ()2,1-和B ()2,3--,那么第一架炸机C 的平面坐标是( )A .()2,1B .()3,1-C .()2,1-D .()3,13.下列各点中,在第二象限的是( )A .()1,0B .()1,1C .()1,1-D .()1,1-4.太原植物园是山西省唯一集科学研究、科普教育、园艺观赏和文化旅游于一体的综合性植物园.其标志性建筑为热带植物馆、沙生植物馆、主题花卉馆三个展览温室,远远望去犹如镶嵌在湖边的3颗大小不一的“露珠”(图1).若利用网格(图2)建立适当的平面直角坐标系,表示东门的点的坐标为()3,2A ,表示热带植物馆入口的点的坐标为()3,3B -,那么儿童游乐园所在的位置C 的坐标应是( )A .()5,1-B .()2,4--C .()8,3--D .()5,1-- 5.点M 在第二象限,距离x 轴5个单位长度,距离y 轴3个单位长度,则M 点的坐标为( )A .(-3,5)B .(5,- 3)C .(-5,3)D .(3,5)6.在平面直角坐标系中,点A 的坐标为(21a +,3-),则点A 在( )A .第一象限B .第二象限C .第三象限D .第四象限 7.已知点A 坐标为()2,3-,点A 关于x 轴的对称点为A ',则A '关于y 轴对称点的坐标为( )A .()2,3--B .()2,3C .()2,3-D .以上都不对 8.点()P 3,2-在平面直角坐标系中所在的象限是( )A .第一象限B .第二象限C .第三象限D .第四象限 9.如图是医院、公园和超市的平面示意图,超市B 在医院O 的南偏东25︒的方向上,且到医院的距离为300m ,公园A 到医院O 的距离为400m .若∠90AOB =︒,则公园A 在医院O 的( )A .北偏东75︒方向上B .北偏东65︒方向上C .北偏东55︒方向上D .北偏西65°方向上10.如图,在平面直角坐标系中,点A 的坐标为(2,0),点B 的坐标为(0,1),将线段AB 平移,使其一个端点到C (3,2),则平移后另一端点的坐标为( )A .(1,3)B .(5,1)C .(1,3)或(3,5)D .(1,3)或(5,1) 11.如图,在平面直角坐标系中,有若干个横坐标分别为整数的点,其顺序按图中(1,0)→(2,0)→(2,1)→(1,1)→(1,2)→(2,2)…根据这个规律,则第2016个点的横坐标为( )A .44B .45C .46D .47二、填空题12.在平面直角坐标系内,把点A (5,-2)向右平移3个单位,再向下平移2个单位,得到的点B 的坐标为______.13.若点A (m +2,﹣3)与点B (﹣4,n +5)在二四象限角平分线上,则m +n =_____. 14.如图,一只甲虫在55⨯的方格(每小格边长为1)上沿着网格线运动.它从A 处出发去看望B .C .D 处的其它甲虫,规定:向上向右走为正,向下向左走为负、如果从A 到B 记为:(1,4)A B →++,从B 到A 记为:(1,4)B A →--,其中第一个数表示左右方向,第二个数表示上下方向.(1)图中A C →(______,______),B C →(______,______),C →______(1+,______);(2)若图中另有两个格点M .N ,且M A →(3,4)a b --,M N →(5,2)a b --,则N A →应记为______.15.如图所示的坐标系中,单位长度为1 ,点 B 的坐标为(1,3) ,四边形ABCD 的各个顶点都在格点上, 点P 也在格点上,ADP △ 的面积与四边形ABCD 的面积相等,写出所有点P 的坐标 _____________.(不超出格子的范围)16.如图,已知A1(1,0),A2(1,1),A3(﹣1,1),A4(﹣1,﹣1),A5(2,﹣1),…,则坐标为(﹣505,﹣505)的点是______.17.如图,动点P在平面直角坐标系中按图中箭头所示方向运动,第1次从原点运动到点(1,1),第2次运动到点(2,0),第3次运动到点(3,-1),…,按照这样的运动规律,点P第17次运动到的点的坐标为__________.18.如图,已知A1(1,2),A2(2,2),A3(3,0),A4(4,﹣2),A5(5,﹣2),A6(6,0)…,按这样的规律,则点A2020的坐标为______.19.在平面直角坐标系中,一蚂蚁从原点O 出发,按向上、向右、向下、向右的方向依次不断移动,每次移动1个单位,其行走路线如图所示.则点2019A 的坐标是_________.20.已知P (a,b ),且ab <0,则点P 在第_________象限.21.点3(2,)A -到x 轴的距离是__________.三、解答题22.如图1,长方形OABC 的边OA 在数轴上,O 为原点,长方形OABC 的面积为12,OC 边长为3(1)数轴上点A 表示的数为______.(2)将长方形OABC 沿数轴水平移动,移动后的长方形记为O A B C '''',移动后的长方形O A B C ''''与原长方形OABC 重叠部分(如图2中阴影部分)的面积记为S①设点A 的移动距离AA x '=.当4S =时,x =______.②当S 恰好等于原长方形OABC 面积的一半时,求数轴上点A '表示的数为多少. 23.在平面直角坐标系中,已知(0,1)A ,(2,0)B ,(4,3)C .∆;(1)在给出的平面直角坐标系中画出ABC∆的面积为2,求点P的坐标.(2)已知P为x轴上一点,若ABP24.如图,已知五边形ABCDE 各顶点坐标分别为A(-1,-1),B(3,-1),C(3,1),D(1,3),E(-1,3)(1)求五边形ABCDE 的面积;(2)在线段DC 上确定一点F,使线段AF 平分五边形ABCDE 的面积,求F 点的坐标.25.如图,在平面直角坐标系中,四边形ABCD的顶点都在格点上,其中A点坐标为(﹣2,﹣1),C点坐标为(3,3).(1)填空:点B到y轴的距离为,点B到直线AD的距离为;(2)求四边形ABCD的面积;(3)点M在y轴上,当△ADM的面积为12时,请直接写出点M的坐标.一、选择题1.下列关于有序数对的说法正确的是( )A .(3,4)与(4,3)表示的位置相同B .(a ,b )与(b ,a )表示的位置肯定不同C .(3,5)与(5,3)是表示不同位置的两个有序数对D .有序数对(4,4)与(4,4)表示两个不同的位置2.在平面直角坐标系中,点A 的坐标为(21a +,3-),则点A 在( )A .第一象限B .第二象限C .第三象限D .第四象限 3.已知点M (9,﹣5)、N (﹣3,﹣5),则直线MN 与x 轴、y 轴的位置关系分别为( ) A .相交、相交B .平行、平行C .垂直相交、平行D .平行、垂直相交4.如图,一个粒子在第一象限内及x 轴,y 轴上运动,第一分钟内从原点运动到(1,0),第二分钟从(1,0)运动到(1,1),而后它接着按图中箭头所示的与x 轴,y 轴平行的方向来回运动,且每分钟移动1个长度单位,那么,第2017分钟时,这个粒子所在位置的坐标是( )A .(7,44)B .(8,45)C .(45,8)D .(44,7)5.点A (n+2,1﹣n )不可能在( )A .第一象限B .第二象限C .第三象限D .第四象限 6.在平面直角坐标系中,点P(-5,0)在( )A .第二象限B .x 轴上C .第四象限D .y 轴上7.点(),A m n 满足0mn =,则点A 在( )A .原点B .坐标轴上C .x 轴上D .y 轴上8.课间操时,小华、小军和小刚的位置如图所示,如果小华的位置用(0,0)表示,小军的位置用(2,1)表示,那么小刚的位置可以表示为( )A .(5,4)B .(4,5)C .(3,4)D .(4,3)9.如图,一个粒子从原点出发,每分钟移动一次,依次运动到(0,1)()()()()()1,01,11,22,13,0....→→→→→→,则2018分钟时粒子所在点的横坐标为( )A .900B .946C .990D .88610.在平面直角坐标系中,点A (0,a ),点B (0,4﹣a ),且A 在B 的下方,点C (1,2),连接AC ,BC ,若在AB ,BC ,AC 所围成区域内(含边界),横坐标和纵坐标都为整数的点的个数为4个,那么a 的取值范围为( )A .﹣1<a ≤0B .0<a ≤1C .1≤a <2D .﹣1≤a ≤1 11.若把点A (-5m ,2m -1)向上平移3个单位后得到的点在x 轴上,则点A 在( ) A .x 轴上 B .第三象限 C .y 轴上 D .第四象限二、填空题12.已知点P 的坐标为()2,6a -,且点P 到两坐标轴的距离相等,则a 的值为_________. 13.若点A (m +2,﹣3)与点B (﹣4,n +5)在二四象限角平分线上,则m +n =_____. 14.如图,一只甲虫在55⨯的方格(每小格边长为1)上沿着网格线运动.它从A 处出发去看望B .C .D 处的其它甲虫,规定:向上向右走为正,向下向左走为负、如果从A 到B 记为:(1,4)A B →++,从B 到A 记为:(1,4)B A →--,其中第一个数表示左右方向,第二个数表示上下方向.(1)图中A C →(______,______),B C →(______,______),C →______(1+,______);(2)若图中另有两个格点M .N ,且M A →(3,4)a b --,M N →(5,2)a b --,则N A →应记为______.15.对于平面直角坐标系xOy 中的点P (a ,b ),若点P 的坐标为(a +kb ,ka +b )(其中k 为常数,且k ≠0),则称点P 为点P 的“k 属派生点”,例如:P (1,4)的“2属派生点”为P (1+2×4,2×1+4),即P ′(9,6).若点P 在x 轴的正半轴上,点P 的“k 属派生点”为点P ′,且线段PP ′的长度为线段OP 长度的5倍,则k 的值为___.16.已知点(1,0)A 、(0,2)B ,点P 在x 轴上,且PAB △的面积为5,则点P 的坐标为__________.17.三角形A′B′C′是由三角形ABC 平移得到的,点A(-1,4)的对应点为A′(1,-1),若点C′的坐标为(0,0),则点C′的对应点C 的坐标为______.18.如图,已知1(1,0)A ,2(1,1)A ,3(1,1)A -,4(1,1)A --,5(2,1)A -,则2020A 的坐标为_______.19.在平面直角坐标系中,点(,)A x y 的坐标满足方程34x y -=,(1)当点A 到两条坐标轴的距离相等时,点A 坐标为__________.(2)当点A 在x 轴上方时,点A 横坐标x 满足条件__________.20.如图,动点P 在平面直角坐标系中按图中箭头所示方向运动,第1次从原点运动到点(1,1),第2次接着运动到点(2,0),第3次接着运动到点(3,2)…按这样的运动规律经过第2021次运动后,动点P 的坐标是_____.21.已知线段AB 的长度为3,且AB 平行于y 轴,A 点坐标为()32,,则B 点坐标为______.三、解答题22.ABC 在直角坐标系中如图所示.(1)请写出点A 、B 、C 的坐标;(2)求ABC 的面积.23.已知点()24,1P m m +-,试分别根据下列条件,求出P 点的坐标.(1)点P 到x 轴的距离是5;(2)点P 在过点()2,3A 且与x 轴平行的直线上.24.如图,已知平面直角坐标系中,点A 在y 轴上,点B 、C 在x 轴上,S △ABO =8,OA =OB ,BC =10,点P 的坐标是(-6,a )(1)求△ABC 三个顶点A 、B 、C 的坐标;(2)连接PA 、PB ,并用含字母a 的式子表示△PAB 的面积(a ≠2);(3)在(2)问的条件下,是否存在点P ,使△PAB 的面积等于△ABC 的面积?如果存在,请求出点P 的坐标;若不存在,请说明理由.25.如图,在平面直角坐标系中,Rt△ABC 的三个顶点分别是A(﹣3,2),B(0,4),C (0,2).(1)将△ABC 以点O 为旋转中心旋转180°,画出旋转后对应的△A1B1C1;(2)平移△ABC,使对应点A2的坐标为(0,﹣4),写出平移后对应△A2B2C2的中B2,C2点坐标.一、选择题1.已知两点(,5)A a ,(1,)B b -且直线//AB x 轴,则( )A .a 可取任意实数,5b =B .1a =-,b 可取任意实数C .1a ≠-,5b =D .1a =-,5b ≠2.正方形A 1B 1C 1O ,A 2B 2C 2C 1,A 3B 2C 3C 2,…按如图所示的方式放置,点A 1,A 2,A 3,…和点C 1,C 2,C 3,…分别在直线y =x +1和x 轴上,已知点B 1(1,1),B 2(3,2),则B n 的坐标是( )A .(2n ﹣1,2n ﹣1)B .(2n ﹣1,2n ﹣1)C .(2n ﹣1,2n ﹣1)D .(2n ﹣1,2n ﹣1)3.点A 到x 轴的距离是3,到y 轴的距离是6,且点A 在第二象限,则点A 的坐标是( ) A .(-3,6) B .(-6,3) C .(3,-6) D .(8,-3) 4.点A(-π,4)在第( )象限A .第一象限B .第二象限C .第三象限D .第四象限 5.如图,在ABC ∆中,90ACB ∠=︒,AC BC =,点C 的坐标为()2,0-,点B 的坐标为()1,4,则点A 的坐标为( )A .()6,3-B .()3,6-C .()4,3-D .()3,4- 6.象棋在中国有三千多年的历史,由于用具简单,趣味性强,成为流行极为广泛的益智游戏.如图是一局象棋残局,已知棋子“马”和“车”表示的点的坐标分别为(4,1),(2,1)--,则在第三象限的棋子有( )A.1颗B.2颗C.3颗D.4颗7.平面直角坐标系中,线段CD是由线段AB平移得到的,点A(-1,4)的对应点C(4,7),点B(-4,-1)的对应点D的坐标为()A.(-1,-4) B.(1,-4) C.(1,2) D.(-1,2)8.在平面直角坐标系xOy中,对于点P(x,y),我们把点P′(﹣y+1,x+1)叫做点P的伴随点.已知点A1的伴随点为A2,点A2的伴随点为A3,点A3的伴随点为A4…,这样依次得到点A1,A2,A3,…,A n,若点A1的坐标为(3,1),则点A2019的坐标为()A.(0,﹣2)B.(0,4)C.(3,1)D.(﹣3,1)9.课间操时,小华、小军和小刚的位置如图所示,如果小华的位置用(0,0)表示,小军的位置用(2,1)表示,那么小刚的位置可以表示为()A.(5,4) B.(4,5) C.(3,4) D.(4,3)10.如图,动点P在平面直角坐标系中按图中箭头所示方向运动,第1次从原点运动到点(1,1),第2次接着运动到点(2,0),第3次接着运动到点(3,2)……按这样的运动规律,经过第2021次运动后,动点P的坐标是()A.(2021,0)B.(2020,1)C.(2021,1)D.(2021,2)11.如图,数轴上的点A,B,O,C,D分别表示数-2,-1,0,1,2,则表示数25P应落在()A .线段AB 上 B .线段BO 上C .线段OC 上D .线段CD 上二、填空题12.某人从A 点沿北偏东60︒的方向走了100米到达点B ,再从点B 沿南偏西10︒的方向走了100米到达点C ,那么点C 在点A 的南偏东__度的方向上.13.已知点A (2a+5,a ﹣3)在第一、三象限的角平分线上,则a =_____.14.如图,点A 的坐标(-2,3)点B 的坐标是(3,-2),则图中点C 的坐标是______.15.若不在第一象限的点(),22A x x -+到两坐标轴距离相等,则A 点坐标为 _________. 16.已知点A(3a ﹣6,a+4),B(﹣3,2),AB ∥y 轴,点P 为直线AB 上一点,且PA =2PB ,则点P 的坐标为_____.17.在平面直角坐标系中,有点A (a ﹣2,a ),过点A 作AB ⊥x 轴,交x 轴于点B ,且AB =2,则点A 的坐标是___.18.点A (m ,﹣3),点B (2,n ),AB //x 轴,则n=_____.19.如图,已知点A 的坐标为(−2,2),点C 的坐标为(2,1),则点B 的坐标是____.20.在平面直角坐标系中,对于平面内任一点(),a b ,若规定以下三种变换: ①()(),,a b a b ∆=-;②(),a b O (),a b =--;③()(),,a b a b Ω=-按照以上变换例如:()()()1,21,2∆O =-,则()()2,5O Ω等于__________. 21.若点A (-2,n )在x 轴上,则点B(n-2,n+1)在第_____象限 . 三、解答题22.如图,在平面直角坐标系中,点C (-1,0),点A (-4,2),AC ⊥BC 且AC=BC , 求点B 的坐标.23.如图,在平面直角坐标系中,点A ,B ,C 的坐标分别为()6,6-,()3,0-,()0,3.(1)画出三角形ABC ,并求它的面积.(2)在三角形ABC 中,点C 经过平移后的对应点为()5,4C ',将三角形ABC 做同样的平移得到三角形A B C ''',画出平移后的三角形A B C ''',并写出点A ',B '的坐标. 24.已知()4,0A ,点B 在x 轴上,且5AB =.(1)直接写出点B 的坐标;(2)若点C 在y 轴上,且10ABC S =△,求点C 的坐标.(3)若点()3,2D a a -+,且15ABD S =,求点D 的坐标.25.已知点P (2x ﹣6,3x +1),求下列情形下点P 的坐标.(1)点P 在y 轴上;(2)点P 到x 轴、y 轴的距离相等,且点P 在第二象限;(3)点P 在过点A (2,﹣4)且与y 轴平行的直线上.。
平面直角坐标系重要笔记知识点一有序数对1、定义:教室中座位的位置常用"几排几列"来表示,假设排数在前,列数在后,那么第2排第3列可记作(2,3),我们把这种有顺序的两个数a与b组成的数对,叫做有序数对.2、意义:(1)由两个数组成;(2)两数有顺序性;(3)成对出现.3、记法:两个数a,b组成的有序数对记作(a,b),a和b要用逗号分开,以表示它们是独立有序芝两个数,同时用括号括起来,表示它们是一个整体.例:如图,点A用有序数对(1,2)表示,点B用有序数对(2,3)表示;有序数对(4,1)表示点C,有序数对(5 4)表示点D知识点二平面直角坐标系1.平面直角坐标系:我们可以在平面内画两条相互垂直、原点重合得数轴,组成平面直角坐标系(如图1).水平的数轴称为x轴或横轴,习惯上取向右为正方向竖直的数轴称为y轴或纵轴,取向上方向为正方向两坐标轴的交点为平由平面直角坐标系的原点。
2. 平面直角坐标系四要素:1)同一平面内;2)两条数轴;3)相互垂直;4)有公共原点。
3. 象限: 建立了平面直角坐标系以后,坐标平面就被两条坐标轴分成Ⅰ,Ⅱ,Ⅲ,Ⅳ四个部分(如图2),每个一部分称为象限,分别叫做第一象限、第二象限、第三象限和第四象限。
坐标轴上的点不属于任何象限。
例1:在平面直角坐标系中描出下列各点.A(-4,-2),B(2,0),C(3,-3),D(-312,0),E(312,0),F(2,4)知识点三点的坐标1.点的坐标的概念:对于平面内任意一点A,由点A分别向x轴、y轴作垂线,垂足M在x 轴上的坐标是a,垂足N在y轴上的坐标是b,我们说点A的横坐标是a,纵坐标是b,有序数对(a,b)叫做点A的坐标.2.坐标的几何意义:点A(a,b)到x轴的距离是|b|,到y轴的距离是|a|例2:(南昌市期中)若点P位于x轴的上方,位于y轴的左边,且距x轴的距离为2个单位长度,距y轴3个单位长度,则P点坐标为()A,(2,-3) B,(-2,3) C,(3,-2) D,(-3,2)解析:位于x轴的上方,y轴的左边,可知P点在第二象限,距离x轴2个单位长度,可知纵坐标为2,距y轴3个单位长度可知横坐标为-3答案:D知识点四坐标平面内点的特点1.象限内点的特征:如图,当点P(x,y)在第一象限时,x>0,y>0;当点P在第二象限时,x<0,y<0;当点P在第三象限时,x<0,y<0;当点P在第四象限时,x>0,y<02.特殊位置的点的坐标的特点点P在x轴正半轴上:x>0,y=0 点P在x轴上点P在x轴负半轴上:x<0,y=0点P在y轴正半轴上:y>0,x=0 点P在y轴上点P在y轴负半轴上:y<0,x=0 点P在一,三象限角平分线上x=y点P在二,四象限角平分线上x=-y例3:(天津中考)若点P(a,4-a)时第四象限内的点,则a必须满足()A,a<4 B,a>4 C,a<0 D,0<a<4解析:第四象限内的点(x,y)应满足x>0,y<0,即a>0,4-a<0,所以a>4答案:B例4:(三中期中)在平面直角坐标系中,点P ( m,m-2)不可能在()A.第一象限B.第二象限C.第三象限D.第四象限解析:m>m-2,所以不存在m<0,m-2>0的情况,即不可能在第二象限答案:B知识点五点变换的平移,对称坐标变换一、平移:点P(x,y)往右平移a个单位长度,则平移后的点为p(x+a,y),点P(x,y)往左平移a个单位长度,则平移后的点为p(x-a,y),点P(x,y)往上平移a个单位长度,则平移后的点为p(x,y+a),点P(x,y)往下平移a个单位长度,则平移后的点为p(x,y-a),Tips:左右平移是平移横坐标x,纵坐标不变,上下平移恰好相反二、对称(1)关于某条线或者轴对称p(x,y)关于x轴对称的点为(x,-y)、p(x,y)关于y轴对称的点为(-x,y)p(x,y)关于一、三象限角平分线对称后的点为p(y,x)p(x,y)关于二、四象限角平分线对称后的点为p(-y,-x)(2)关于点对称p(x,y)关于原点对称的点为(-x,-y)。
七年级下册第七章数学知识点想要学好数学,一定要多看例题,在看例题的过程中,大脑会将已有概念具体化,使对知识的理解更深刻,更透彻。
下面是整理的七年级下册第七章数学知识点,仅供参考希望能够帮助到大家。
七年级下册第七章数学知识点1、有序数对:有顺序的两个数a与b组成的数对叫做有序数对,记做(a,b) 。
2、平面直角坐标系:在平面内,两条互相垂直且有公共原点的数轴组成平面直角坐标系。
3、横轴、纵轴、原点:水平的数轴称为x轴或横轴;竖直的数轴称为y轴或纵轴;两坐标轴的交点为平面直角坐标系的原点。
4、坐标:对于平面内任一点P,过P分别向x轴,y轴作垂线,垂足分别在x轴,y轴上,对应的数a,b分别叫点P的横坐标和纵坐标,记作P(a,b)。
5、象限:两条坐标轴把平面分成四个部分,右上部分叫第一象限,按逆时针方向依次叫第二象限、第三象限、第四象限。
坐标轴上的点不在任何一个象限内。
6、各象限点的坐标特点①第一象限的点:横坐标0,纵坐标0;②第二象限的点:横坐标0,纵坐标0;③第三象限的点:横坐标0,纵坐标0;④第四象限的点:横坐标0,纵坐标0。
7、坐标轴上点的坐标特点①x轴正半轴上的点:横坐标0,纵坐标0;②x轴负半轴上的点:横坐标0,纵坐标0;③y轴正半轴上的点:横坐标0,纵坐标0;④y轴负半轴上的点:横坐标0,纵坐标0;⑤坐标原点:横坐标0,纵坐标0。
(填“”、“”或“=”)8、点P(a,b)到x轴的距离是|b| ,到y轴的距离是|a| 。
9、对称点的坐标特点①关于x轴对称的两个点,横坐标相等,纵坐标互为相反数;②关于y轴对称的两个点,纵坐标相等,横坐标互为相反数;③关于原点对称的两个点,横坐标、纵坐标分别互为相反数。
10、点P(2,3) 到x轴的距离是; 到y轴的距离是; 点P(2,3) 关于x轴对称的点坐标为( ,);点P(2,3) 关于y轴对称的点坐标为( ,)。
11、如果两个点的横坐标相同,则过这两点的直线与y轴平行、与x轴垂直;如果两点的纵坐标相同,则过这两点的直线与x轴平行、与y轴垂直。
第七章平面直角坐标系7.1 平面直角坐标系1.有序数对(1)定义:有顺序的两个数a与b组成的数对叫做__________.记作:(a,b).注意:(1)两数中间有“,”两边有括号;(2)数对(a,b)与(b,a)不同.(2)有序数对的作用:利用有序数对可以在平面内准确表示一个位置.2.平面直角坐标系(1)定义:满足一下条件的两条数轴叫做平面直角坐标系:①原点重合;②互相垂直;③习惯上取向__________、向__________为正方向,单位长度一般取相同.(2)由点找坐标的方法过点作x轴的垂线,垂足在x轴上对应的数a就是点的横坐标;过点作y轴的垂线,垂足在y轴上对应的数b就是点的纵坐标.有序数对(a,b)就是点的坐标.(3)由坐标找点的方法先找到表示横坐标与纵坐标的点,然后过这两点分别作x轴与y轴的垂线,垂线的交点就是该坐标对应的点.3.点的坐标特征4.特殊位置点的坐标(1)平行于坐标轴的点的坐标平行于横轴的直线上的点的纵坐标相同;平行于纵轴的直线上的点的横坐标相同.(2)象限角平分线上的点的坐标K知识参考答案:1.(1)有序数对(2)右,上K—重点理解有序数对的意义和作用,平面直角坐标系和点的坐标K—难点用有序数对表示点的位置,根据点的位置写出点的坐标,根据点的坐标描出点的位置K—易错确定点的坐标时误判横、纵坐标,确定所在象限时漏解一、有序数对1.理解有序数对的概念有两个要点:一是“有序”,二是“数对”,“数对”是指有两个数.2.有序数对一般用来表示位置,如用“排”“列”表示教师内座位的位置,用经纬度表示地球上的地点等.【例1】王东坐在教室的第3列第2行,用(3,2)表示,李军坐在王东正后方的第一个位置上,李军的位置是A.(4,3)B.(3,4)C.(1,3)D.(3,3)【答案】D【解析】王东坐在教室的第3列第2行,用(3,2)表示,王军坐在王东正后方的第一个位置上,则说明王军与王东在同一列,王军是在第2+1=3(行),所以王军的位置是(3,3),故选D.【例2】下列有污迹的电影票中能让小华准确找到座位的是A.B.C.D.【答案】D【解析】根据确定物体位置要2个数据可得:能让小华准确找到座位的是必须是排数,座位均清新的.分析可知只有D符合两项条件,故选D.【例3】课间操时,小聪、小慧、小敏的位置如图所示,小聪对小慧说,如果我的位置用(1,1)表示,小敏的位置用(7,7)表示,那么你的位置可以表示成A.(5,4)B.(4,4)C.(3,4)D.(4,3)【答案】B【解析】如图,小慧的位置可表示为(4,4).故选B.【例4】下列关于有序数对的说法正确的是A.(3,2)与(2,3)表示的位置相同B.(a,b)与(b,a)表示的位置一定不同C.(3,–2)与(–2,3)是表示不同位置的两个有序数对D.(4,4)与(4,4)表示两个不同的位置【答案】C【解析】(3,2)与(2,3)表示的位置不相同,A选项错误;当a=b时,(a,b)与(b,a)表示的位置相同,B选项错误;(3,–2)与(–2,3)是表示不同位置的两个有序数对,C选项正确;(4,4)与(4,4)表示两个相同的位置,D选项错误.故选C.【例5】下列关于有序数对的说法正确的是A.(3,2)与(2,3)表示的位置相同B.(a,b)与(b,a)表示的位置一定不同C.(3,-2)与(-2,3)是表示不同位置的两个有序数对D.(4,4)与(4,4)表示两个不同的位置【例6】如果将一张“13排10号”的电影票记为(13,10),那么“3排8号”的电影票应记为__________,(10,13)表示的电影票是__________.【答案】(3,8);10排13号【解析】∵“13排10号”的电影票记为(13,10),∴“3排8号”的电影票应记为(3,8),(10,13)的电影票表示为10排13号,故答案为:(3,8);10排13号.二、平面直角坐标系1.在建立平面直角坐标系时要适当,一般建立时能使表示的点的坐标越简单、越容易表示就越适当.2.在建立平面直角坐标系时要首先规定谁是x轴、谁是y轴,谁是原点、正方向,并规定了适当的单位长度,然后再用坐标确定点的位置.3.在写点的坐标时,必须先写横坐标,再写纵坐标,中间用逗号隔开.平面上的任意一点都有唯一的一对有序数对(即这个点的坐标)与之对应,反过来,对于任意一对有序数对,平面上都有唯一的一个点与之对应.【例7】在平面直角坐标系中,点A(2,-3)在A.第一象限B.第二象限C.第三象限D.第四象限【答案】D【解析】因为点A(2,-3)的横坐标是正数,纵坐标是负数,所以点A在平面直角坐标系的第四象限故选D.【例8】在平面直角坐标系中,点P在x轴的下方,y轴右侧,且到x轴的距离为5,到y轴距离为1,则点P的坐标为A.(1,–5) B.(5,1)C.(–1,5) D.(5,–1)【答案】A【解析】∵点P在x轴下方,y轴的右侧,∴点P在第四象限.∵点P到x轴的距离为5,到y轴的距离为1,∴点P的横坐标为1,纵坐标为–5,∴点P的坐标为(1,–5).故选A.【例9】如图,小手盖住的点的坐标可能为A.(5,2) B.(–6,3)C.(–4,–6) D.(3,–4)【答案】C【解析】根据图示,小手盖住的点在第三象限,第三象限的点坐标特点是:横负纵负;分析选项可得只有C符合.故选C.【例10】已知点P(2-a,3a+6),且点P到两坐标轴的距离相等,则点P的坐标是A.(3,3)B.(6,-6)C.(3,-3)D.(3,3)或(6,-6)【答案】D【解析】因为点P(2-a,3a+6)到两坐标轴的距离相等,所以|2-a|=|3a+6|,所以2-a=3a+6或2-a=-(3a+6),解得a=-1或a=-4.当a=-1时,2-a=2-(-1)=2+1=3;当a=-4时,2-a=2-(-4)=2+4=6,所以点P的坐标为(3,3)或(6,-6),故选D.【例11】象棋在中国有着三千多年的历史,由于用具简单,趣味性强,成为流行极为广泛的益智游戏.如图,是一局象棋残局,已知表示棋子“马”和“车”的点的坐标分别为(4,3),(-2,1),则表示棋子“炮”的点的坐标为A.(3,2)B.(1,3)C.(0,3)D.(-3,3)【答案】B【解析】表示棋子“马”的点的坐标分别为(4,3),向左平移3个单位长度,得表示棋子“炮”的点的坐标为(1,3),故选B.【例12】在如图所示的直角坐标系中描出下列各点:A(-2,0),B(2,5),C(-52,-3).【解析】如图所示:【名师点睛】本题考查了点的坐标,熟练掌握平面直角坐标系中点的表示方法是解题的关键.【例13】如图,建立适当的直角坐标系,并写出这个四角星的八个顶点的坐标.【解析】建立如图所示的平面直角坐标系:八个顶点的坐标分别是:(6,0),(2,2),(0,6),(-2,2),(-6,0)(-2,-2),(0,-6),(2,-2).1.确定平面直角坐标系内点的位置是A.一个实数B.一个整数C.一对实数D.有序实数对2.下列描述,能够确定一个点的位置的是A.国家大剧院第三排B.北偏东30C.东经115,北纬35.5D.北京市西南3.在坐标平面内,下列各点中到x轴的距离最近的点是A.(2,5) B.(–4,1)C.(3,–4) D.(6,2)4.下列有污迹的电影票中能让小华准确找到座位的是A.B.C.D.5.若点P(m,1–2m)的横坐标与纵坐标互为相反数,则点P一定在A.第一象限B.第二象限C.第三象限D.第四象限6.若点A(–2,n)在x轴上,则点B(n–2,n+1)在A.第一象限B.第二象限C.第三象限D.第四象限7.已知M(1,–2),N(–3,–2),则直线MN与x轴,y轴的位置关系分别为A.相交,相交B.平行,平行C.垂直,平行D.平行,垂直8.电影院里的座位按“×排×号”编排,小明的座位简记为(12,6),小菲的位置简记为(12,12),则小明与小菲坐的位置为A.同一排B.前后同一条直线上C.中间隔六个人D.前后隔六排9.在平面直角坐标系xOy中,若A点坐标为(–3,3),B点坐标为(2,0),则三角形ABO的面积为A.15 B.7.5C.6 D.310.在平面直角坐标系中,点(-4,4)在第__________象限.11.若点A的坐标是(-3,5),则它到x轴的距离是__________,到y轴的距离是__________.12.已知点A(-3,2),点B(1,4).(1)若CA平行于x轴,BC平行于y轴,则点C的坐标是__________;(2)若CA平行于y轴,BC平行于x轴,则点C的坐标是__________.13.如下图所示,A的位置为(2,6),小明从A出发,经(2,5)→(3,5)→(4,5)→(4,4)→(5,4)→(6,4),小刚也从A出发,经(3,6)→(4,6)→(4,7)→(5,7)→(6,7),则此时两人相距几个格14.如图中标明了小英家附近的一些地方,以小英家为坐标原点建立如图所示的坐标系.(1)写出汽车站和消防站的坐标;(2)某星期日早晨,小英同学从家里出发,沿(3,2)→(3,-1)→(0,-1)→(-1,-2)→(-3,-1)的路线转了一下,又回到家里,写出路上她经过的地方.15.如图,正方形ABCD的点A和点C的坐标分别为(-2,3)和(3,-2),则点B和点D的坐标分别为A.(2,2)和(3,3)B.(-2,-2)和(3,3)C.(-2,-2)和(-3,-3)D.(2,2)和(-3,-3)16.若点M(x,y)满足(x+y)2=x2+y2-2,则点M所在象限是A.第一象限或第三象限B.第二象限或第四象限C.第一象限或第二象限D.不能确定17.已知点A(2a-6,-4)在二、四象限的角平分线上,则a=__________.18.(2018•大连)在平面直角坐标系中,点(–3,2)所在的象限是A.第一象限B.第二象限C.第三象限D.第四象限19.(2018•扬州)在平面直角坐标系的第二象限内有一点M,点M到x轴的距离为3,到y轴的距离为4,则点M的坐标是A.(3,–4)B.(4,–3)C.(–4,3)D.(–3,4)20.(2018•临安区)P(3,–4)到x轴的距离是__________.21.(2018•柳州)如图,在平面直角坐标系中,点A的坐标是__________.22.(2018•鄂尔多斯)在平面直角坐标系中,对于点P(a,b),我们把Q(–b+1,a+1)叫做点P的伴随点,已知A1的伴随点为A2,A2的伴随点为A3,…,这样依次下去得到A1,A2,A3,…,A n,若A1的坐标为(3,1),则A2018的坐标为__________.1.【答案】D【解析】两个实数组成的有序数对,故选D.2.【答案】C【解析】A、国家大剧院第三排,不能够确定一个点的位置,故本选项错误;B、北偏东30,不能够确定一个点的位置,故本选项错误;C、东经115,北纬35.5,能够确定一个点的位置,故本选项正确;D、北京市西南,不能够确定一个点的位置,故本选项错误.故选C.3.【答案】B【解析】A选项中的点到x轴的距离是|5|=5,B选项中的点到x轴的距离是|1|=1,C选项中的点到x轴的距离为|–4|=4,D选项中的点到x轴的距离是|2|=2.故选B.4.【答案】D【解析】根据确定物体位置要2个数据可得:能让小华准确找到座位的必须是排数,座位均清晰的.分析可知只有D符合两项条件,故选D.8.【答案】A【解析】∵(12,6)表示12排6号,(12,12)表示12排12号,∴小明(12,6)与小菲(12,12)应坐的位置在同一排,中间隔5人.故选A.9.【答案】D【解析】易知点A到x轴的距离为3,OB=2,∴1332ABOS OB=⨯⨯=△,故选D.10.【答案】二【解析】在平面直角坐标系中,点(-4,4)在第二象限,故答案为:二.11.【答案】5;3【解析】根据平面直角坐标系的特点,点到x轴的距离是|y|=5,点到y轴的距离为|x|=3,故答案为:5;3.12.【答案】(1,2);(-3,4)【解析】(1)若CA平行于x轴,BC平行于y轴,则点C的横坐标等于点B的横坐标,点C的纵坐标等于点A的纵坐标,点C的坐标为:(1,2);(2)若CA平行于y轴,BC平行于x轴,则点C 的横坐标等于点A的横坐标,点C的纵坐标等于点B的纵坐标,点C的坐标为:(-3,4),故答案为:(1,2);(-3,4).13.【解析】如下图所示,可知小明与小刚相距3个格.14.【解析】(1)汽车站(1,1),消防站(2,-2).(2)小英经过的地方:游乐场,公园,姥姥家,宠物店,邮局.17.【答案】5【解析】由题意得2a-6=4,解得a=5,故答案为:5.18.【答案】B【解析】点(–3,2)所在的象限在第二象限.故选B.19.【答案】C【解析】由题意,得x=–4,y=3,即M点的坐标是(–4,3),故选C.20.【答案】4【解析】根据点在坐标系中坐标的几何意义可知,P(3,–4)到x轴的距离是|–4|=4.故答案为:4.21.【答案】(–2,3)【解析】由坐标系可得:点A的坐标是(–2,3).故答案为:(–2,3).。
人教七下数学知识点第七章平面直角坐标系一、平面直角坐标系有序数对1.有序数对:用两个数来表示一个确定的位置,其中两个数各自表示不同的意义,我们把这种有顺序的两个数组成的数对,叫做有序数对,记作(a,b)2.坐标:数轴(或平面)上的点可以用一个数(或数对)来表示,这个数(或数对)叫做这个点的坐标。
平面直角坐标系1.平面直角坐标系:在平面内画两条互相垂直,并且有公共原点的数轴。
这样我们就说在平面上建立了平面直角坐标系,简称直角坐标系。
2.X轴:水平的数轴叫X轴或横轴。
向右方向为正方向。
3.Y轴:竖直的数轴叫Y轴或纵轴。
向上方向为正方向。
4.原点:两个数轴的交点叫做平面直角坐标系的原点。
对应关系:平面直角坐标系内的点与有序实数对一一对应。
坐标:对于平面内任一点P,过P分别向x轴,y轴作垂线,垂足分别在x轴,y轴上,对应的数a,b分别叫点P的横坐标和纵坐标。
象限1.象限:X轴和Y轴把坐标平面分成四个部分,也叫四个象限。
右上面的叫做第一象限,其他三个部分按逆时针方向依次叫做第二象限、第三象限和第四象限。
象限以数轴为界,横轴、纵轴上的点及原点不属于任何象限。
一般,在x轴和y轴取相同的单位长度。
2.象限的特点:1、特殊位置的点的坐标的特点:(1)x轴上的点的纵坐标为零;y轴上的点的横坐标为零。
(2)第一、三象限角平分线上的点横、纵坐标相等;第二、四象限角平分线上的点横、纵坐标互为相反数。
(3)在任意的两点中,如果两点的横坐标相同,则两点的连线平行于纵轴;如果两点的纵坐标相同,则两点的连线平行于横轴。
2、点到轴及原点的距离:点到x轴的距离为|y|;点到y轴的距离为|x|;点到原点的距离为x的平方加y的平方再开根号;3、三大规律(1)平移规律:点的平移规律左右平移→纵坐标不变,横坐标左减右加;上下平移→横坐标不变,纵坐标上加下减。
(2)对称规律关于x轴对称→横坐标不变,纵坐标互为相反数;关于y轴对称→横坐标互为相反数,纵坐标不变;关于原点对称→横纵坐标都互为相反数。
七年级下数学第七章 平面直角坐标系知识点总结一、本章的主要知识点(一)有序数对:有顺序的两个数a 与b 组成的数对。
1、记作(a ,b );2、注意:a 、b 的先后顺序对位置的影响。
3、坐标平面上的任意一点P 的坐标,都和惟一的一对 有序实数对(b a ,) 一一对应;其中,a 为横坐标,b 为纵坐标坐标;4、x 轴上的点,纵坐标等于0;y 轴上的点,横坐标等于0;坐标轴上的点不属于任何象限;(二)平面直角坐标系 平面直角坐标系:我们可以在平面内画两条互相垂直、原点重合的数轴,组成平面直角坐标系。
3、各种特殊点的坐标特点。
象限:坐标轴上的点不属于任何象限 第一象限:x>0,y>0第二象限:x<0,y>0第三象限:x<0,y<0 第四象限:x>0,y<0横坐标轴上的点:(x ,0) 纵坐标轴上的点:(0,y )(三)坐标方法的简单应用 1、用坐标表示地理位置; 2、用坐标表示平移二、平行于坐标轴的直线的点的坐标特点:平行于x 轴(或横轴)的直线上的点的纵坐标相同; 平行于y 轴(或纵轴)的直线上的点的横坐标相同。
a) 在与x 轴平行的直线上, 所有点的纵坐标相等;点A 、B 的纵坐标都等于m ;b) 在与y 轴平行的直线上,所有点的横坐标相等;XY点C 、D 的横坐标都等于n ;三、各象限的角平分线上的点的坐标特点:第一、三象限角平分线上的点的横纵坐标相同; 第二、四象限角平分线上的点的横纵坐标相反。
c) 若点P (n m ,)在第一、三象限的角平分线上,则nm =,即横、纵坐标相等; d) 若点P (n m ,)在第二、四象限的角平分线上,则n m -=,即横、纵坐标互为相反数;在第一、三象限的角平分线上 在第二、四象限的角平分线上四、与坐标轴、原点对称的点的坐标特点:关于x 轴对称的点的横坐标相同,纵坐标互为相反数 关于y 轴对称的点的纵坐标相同,横坐标互为相反数 关于原点对称的点的横坐标、纵坐标都互为相反数e)点P ),(n m 关于x 轴的对称点为),(1n m P -, 即横坐标不变,纵坐标互为相反数; f)点P ),(n m 关于y 轴的对称点为),(2n m P -, 即纵坐标不变,横坐标互为相反数; g) 点P ),(n m 关于原点的对称点为),(3n m P --,即横、纵坐标都互为相反数;关于x 轴对称关于原点对称五、特殊位置点的特殊坐标: XXXP X-六、利用平面直角坐标系绘制区域内一些点分布情况平面图过程如下:• 建立坐标系,选择一个适当的参照点为原点,确定x 轴、y 轴的正方向; • 根据具体问题确定适当的比例尺,在坐标轴上标出单位长度;八 、点到坐标轴的距离:点到x 轴的距离=纵坐标的绝对值,点到y 轴的距离=横坐标的绝对值。
即A(x,y),到x 轴的距离=|y|,到y 轴的距离=|x|例、若点A 到x 轴的距离为5,到y 轴的距离为4则A 的坐标为分析 :到x 轴的距离为5说明点A 的|纵坐标|=5,则纵坐标为5或-5,到y 轴的距离为4,说明|横坐标|=4,则横坐标为4或-4。
综述,点A 的坐标为(4,5)、(4,-5)、(-4,5)、(-4,-5)。
类似的,若点M 到x 轴的距离为3,到y 轴的距离为6,且在第二象限,则点M 坐标为 (前两个条件的分析方法一样,可和四个分类,再加上点M 在第二象限,可知点M 坐标符号为(-,+),便可确定答案。
)九、对称两点的坐标特征:1、关于x 轴对称两点:横坐标相同,纵坐标互为相反数。
2、关于y 轴对称两点:横坐标互为相反数,纵坐标相同。
3、关于原点对称两点:横、纵坐标均互为相反数。
即:若A (a,b) ,B(a,-b), 则A 与B 关于x 轴对称,若A (a,b), B(-a,b),则A 与B 关于y 轴对称。
若A (a,b),B(-a,-b),则A 与B 关于原点对称 二、经典例题知识一、坐标系的理解例1、平面内点的坐标是( )A 一个点B 一个图形C 一个数D 一个有序数对 知识二、已知坐标系中特殊位置上的点,求点的坐标点在x 轴上,坐标为(x,0)在x 轴的负半轴上时,x<0, 在x 轴的正半轴上时,x>0 点在y 轴上,坐标为(0,y )在y 轴的负半轴上时,y<0, 在y 轴的正半轴上时,y>0 第一、三象限角平分线上的点的横纵坐标相同(即在y=x 直线上);坐标点(x ,y )xy>0 第二、 四象限角平分线上的点的横纵坐标相反(即在y= -x 直线上);坐标点(x ,y )xy<0例1 点P 在x 轴上对应的实数是3 ,则点P 的坐标是 ,若点Q 在y 轴上对应的实数是31,则点Q 的坐标是 ,例2 点P (a-1,2a-9)在x 轴负半轴上,则P 点坐标是 。
学生自测1、点P(m+2,m-1)在y 轴上,则点P 的坐标是 .2、已知点A (m ,-2),点B (3,m-1),且直线AB ∥x 轴,则m 的值为 。
3、 已知:A(1,2),B(x,y),AB ∥x 轴,且B 到y 轴距离为2,则点B 的坐标是 . 4.平行于x 轴的直线上的点的纵坐标一定( )A .大于0B .小于0C .相等D .互为相反数 (3)若点(a ,2)在第二象限,且在两坐标轴的夹角平分线上,则a= . (3)已知点P (x 2-3,1)在一、三象限夹角平分线上,则x= . 5.过点A (2,-3)且垂直于y 轴的直线交y 轴于点B ,则点B 坐标为( ). A .(0,2) B .(2,0)C .(0,-3)D .(-3,0)6.如果直线AB 平行于y 轴,则点A ,B 的坐标之间的关系是( ). A .横坐标相等 B .纵坐标相等C .横坐标的绝对值相等D .纵坐标的绝对值相等 知识点三:点符号特征。
点在第一象限时,横、纵坐标都为 ,点在第二象限时,横坐标为 ,纵坐标为 ,点有第三象限时,横、纵坐标都为 ,点在第四象限时,横坐标为 ,纵坐标为 ;y 轴上的点的横坐标为 ,x 轴上的点的纵坐标为 。
例1 .如果a -b <0,且ab <0,那么点(a ,b)在( )A 、第一象限B 、第二象限C 、第三象限,D 、第四象限. 例2、如果xy<0,那么点P (x ,y )在( ) (A) 第二象限 (B) 第四象限 (C) 第四象限或第二象限 (D) 第一象限或第三象限 学生自测1.点P的坐标是(2,-3),则点P在第 象限.2、点P (x ,y )在第四象限,且|x|=3,|y|=2,则P 点的坐标是 。
3.点 A 在第二象限 ,它到 x 轴 、y 轴的距离分别是 3 、2,则坐标是 ;4. 若点P(x ,y )的坐标满足xy ﹥0,则点P在第 象限;若点P(x ,y )的坐标满足xy ﹤0,且在x 轴上方,则点P在第 象限.若点P (a ,b )在第三象限,则点P '(-a ,-b +1)在第 象限;5.若点P(m -1, m )在第二象限,则下列关系正确的是 ( ) A.10<<m B.0<m C.0>m D.1>m6.点(x ,1-x )不可能在 ( ) A.第一象限 B.第二象限 C.第三象限 D.第四象限7.已知点P(102-x ,x -3)在第三象限,则x 的取值范围是 ( ) A .53<<x B.3≤x ≤5 C.5>x 或3<x D.x ≥5或x ≤3 8.设点P 的坐标(x ,y ),根据下列条件判定点P 在坐标平面内的位置: (1)0xy =;(2)0xy >;(3)0x y +=. (2)点A(1-π,2)在第 象限. (3)横坐标为负,纵坐标为零的点在( )(A)第一象限 (B)第二象限 (C)X 轴的负半轴 (D)Y 轴的负半轴知识四:求一些特殊图形,在平面直角坐标系中的点的坐标。
过点作x 轴的 线,垂足所代表的 是这点的横坐标;过点作y 轴的垂线,垂足所代表的实数,是这点的 。
点的横坐标写在小括号里第一个位置,纵坐标写小括号里的第 个位置,中间用 隔开。
例1、X 轴上的点P 到Y 轴的距离为2.5,则点P的坐标为( )A(2.5,0) B (-2.5,0) C(0,2.5) D(2.5,0)或(-2.5,0) 学生自测1、点A(2,3)到x 轴的距离为 ;点B(-4,0)到y 轴的距离为 ;点C 到x 轴的距离为1,到y 轴的距离为3,且在第三象限,则C 点坐标是 。
2.若点A的坐标是(-3,5),则它到x 轴的距离是 ,到y 轴的距离是 .3.点P到x 轴、y 轴的距离分别是2、1,则点P的坐标可能为 。
4.已知点M 到x 轴的距离为3,到y 轴的距离为2,则M 点的坐标为( ).A .(3,2)B .(-3,-2)C .(3,-2)D .(2,3),(2,-3),(-2,3),(-2,-3)5.若点P (a ,b )到x 轴的距离是2,到y 轴的距离是3,则这样的点P 有 ( )A.1个 B.2个 C.3个 D.4个6.已知直角三角形ABC 的顶点A(2 ,0),B(2 ,3).A 是直角顶点,斜边长为5,求顶点C 的坐标 . 知识点五:对称点的坐标特征。
关于x 对称的点,横坐标不 ,纵坐标互为 ;关于y 轴对称的点, 坐标不变, 坐标互为相反数;关于原点对称的点,横坐标 ,纵坐标 。
例1. 已知A(-3,5),则该点关于x 轴对称的点的坐标为_________;关于y 轴对的点的坐标为____________;关于原点对称的点的坐标为___________;关于直线x=2对称的点的坐标为____________。
例2. 将三角形ABC 的各顶点的横坐标都乘以1-,则所得三角形与三角形ABC 的关系( )A .关于x 轴对称B .关于y 轴对称C .关于原点对称D .将三角形ABC 向左平移了一个单位学生自测1在第一象限到x 轴距离为4,到y 轴距离为7的点的坐标是______________;在第四象限到x 轴距离为5,到y 轴距离为2的点的坐标是________________;3.点A(-1,-3)关于x 轴对称点的坐标是 .关于原点对称的点坐标是 。
4.若点A(m,-2),B(1,n)关于原点对称,则m= ,n= .5.已知:点P 的坐标是(m ,1-),且点P 关于x 轴对称的点的坐标是(3-,n 2),则_________,==n m ; 6.点P(1-,2)关于x 轴的对称点的坐标是 ,关于y 轴的对称点的坐标是 ,关于原点的对称点的坐标是 ;7.若 ),()与,(13-m n N m M 关于原点对称 ,则 __________,==n m ;8.已知0=mn ,则点(m ,n )在 ;10.点A(3-,4)关于x 轴对称的点的坐标是 ( ) A.(3,4-) B. (3-,4-) C . (3, 4) D. (4-, 3-)11.点P(1-,2)关于原点的对称点的坐标是 ( ) A.(1,2-) B (1-,2-) C (1,2) D. (2,1-)12.在直角坐标系中,点P(2-,3)关于y 轴对称的点P 1的坐标是 ( ) A (2,3) B. (2,3-) C. (2-, 3) D. (2-,3-)知识点六:利用直角坐标系描述实际点的位置。