八年级上册数学期末考试试卷分析
- 格式:doc
- 大小:16.50 KB
- 文档页数:2
人教版数学八年级上册期末考试试卷一、选择題(共10小题,每小题3分,总分30分)1.若分式有意义,则x应满足的条件是()A.x≠0B.x≥3C.x≠3D.x≤32.若下列各组值代表线段的长度,能组成三角形的是()A.1、2、3.5B.4、5、9C.5、15、8D.20、15、83.如图,AB=AD,BC=CD,那么全等三角形的对数是()A.1B.2C.3D.44.如图,在△ABC中,∠C=90°,∠ABC=60°,BD平分∠ABC,若AD=6,则CD等于()A.3B.4C.5D.65.下列运算中正确的是()A.(x3)2=x5B.2a﹣5•a3=2a8C.6x3÷(﹣3x2)=2x D.3﹣2=6.如图,已知∠1=∠2,要得到△ABD≌△ACD,还需从下列条件中补选一个,则错误的选法是()A.AB=AC B.DB=DC C.∠ADB=∠ADC D.∠B=∠C7.下列图形中,不一定是轴对称图形的是()A.直角三角形B.线段C.钝角D.等腰三角形8.如果=3,则=()A.B.xy C.4D.9.货车行驶25千米与小车行驶35千米所用时间相同,已知小车每小时比货车多行驶20千米,求两车的速度各为多少?设货车的速度为x千米/小时,依题意列方程正确的是()A.B.C.D.10.如图所示的正方形网格中,网格线的交点称为格点.已知A、B是两格点,如果C也是图中的格点,且使得△ABC为等腰三角形,则点C的个数是()A.6B.7C.8D.9二、填空題(共8小题,每小題3分,满分24分)11.若分式的值为0,则x的值为.12.三角形三边的长分别为8、19、a,则边a的取值范围是.13.已知x2+mx+9是完全平方式,则常数m等于.14.已知点A(a,1)和B(2,b)关于x轴对称,则(a+b)2015=.15.已知:a+b=,ab=1,化简(a﹣2)(b﹣2)的结果是.16.分解因式:3a3﹣12a=.17.在△ABC中,AB=AC,AB的垂直平分线DE交AC于D,交AB于E,∠ADE=50°,则∠B=.18.如图,在△ABC中,∠C=90°,AC=BC,AD平分∠CAB交BC于D,DE⊥AB于E,且AB=8cm,则△BED的周长是.三、解答題(本大题共6小题,共计46分)19.解方程:﹣=0.20.一个多边形内角和是一个四边形内角和的4倍,请求出这个多边形的边数.21.如图,在平面直角坐标系xOy中,A(﹣1,5),B(﹣1,0),C(﹣4,3).(1)求出△ABC的面积.(2)在图中作出△ABC关于y轴的对称图形△A1B1C1.(3)写出点A1,B1,C1的坐标.22.先化简,再求值:÷(1+),其中x=﹣1.23.如图1,在△ABC中,AB=AC,点D是BC的中点,点E在AD上.(1)求证:BE=CE;(2)如图2,若BE的延长线交AC于点F,且BF⊥AC,垂足为F,∠BAC=45°,原题设其它条件不变.求证:△AEF≌△BCF.24.一项工程,甲,乙两公司合作,12天可以完成,共需付施工费102000元;如果甲,乙两公司单独完成此项工程,乙公司所用时间是甲公司的1.5倍,乙公司每天的施工费比甲公司每天的施工费少1500元.(1)甲,乙两公司单独完成此项工程,各需多少天?(2)若让一个公司单独完成这项工程,哪个公司的施工费较少?参考答案与试题解析一、选择題(共10小题,每小题3分,总分30分)1.若分式有意义,则x应满足的条件是()A.x≠0B.x≥3C.x≠3D.x≤3【考点】分式有意义的条件.【专题】压轴题.【分析】本题主要考查分式有意义的条件:分母≠0.【解答】解:∵x﹣3≠0,∴x≠3.故选C.【点评】本题考查的是分式有意义的条件.当分母不为0时,分式有意义.2.若下列各组值代表线段的长度,能组成三角形的是()A.1、2、3.5B.4、5、9C.5、15、8D.20、15、8【考点】三角形三边关系.【专题】探究型.【分析】根据三角形两边之和大于第三边和两边之差小于第三边可以判断选项中的数据是否能组成三角形,本题得以解决.【解答】解:∵1+2<3.5,∴选项A中的数据不能组成三角形;∵4+5=9,∴选项B中的数据不能组成三角形;∵5+8<15∴选项C中的数据不能组成三角形;∵15+8>20∴选项D中的数据能组成三角形;故选D.【点评】本题考查三角形三边的关系,解题的关键是明确三角形两边之和大于第三边和两边之差小于第三边.3.如图,AB=AD,BC=CD,那么全等三角形的对数是()A.1B.2C.3D.4【考点】全等三角形的判定.【分析】先根据SSS推出△ABC≌△ADC,推出∠1=∠2,∠3=∠4,再根据SAS即可推出△ABO≌△ADO,△CBO≌△CDO.【解答】解:全等三角形有△ABC≌△ADC,△ABO≌△ADO,△CBO≌△CDO,共3对,故选C.【点评】本题考查了全等三角形的性质和判定的应用,注意:全等三角形的判定定理是:SAS,ASA,AAS,SSS.4.如图,在△ABC中,∠C=90°,∠ABC=60°,BD平分∠ABC,若AD=6,则CD等于()A.3B.4C.5D.6【考点】含30度角的直角三角形.【分析】由于∠C=90°,∠ABC=60°,可以得到∠A=30°,又由BD平分∠ABC,可以推出∠CBD=∠ABD=∠A=30°,BD=AD=6,再30°角所对的直角边等于斜边的一半即可求出结果.【解答】解:∵∠C=90°,∠ABC=60°,∴∠A=30°,∵BD平分∠ABC,∴∠CBD=∠ABD=∠A=30°,∴BD=AD=6,∴CD=BD=6×=3.故选A.【点评】本题主要考查了等腰三角形的性质和判定,三角形的内角和定理,含30度角的直角三角形性质的应用,关键是求出BD的长和得出CD=BD.5.下列运算中正确的是()A.(x3)2=x5B.2a﹣5•a3=2a8C.6x3÷(﹣3x2)=2x D.3﹣2=【考点】整式的除法;幂的乘方与积的乘方;负整数指数幂.【分析】根据幂的乘方、单项式的乘方、除法法则以及负指数次幂的意义即可判断.【解答】解:A、(x3)2=x6,选项错误;B、2a﹣5•a3=2a﹣2=,选项错误;C、6x3÷(﹣3x2)=﹣2x,选项错误;D、3﹣2==,选项正确.故选D.【点评】本题考查了单项式除单项式,用整式乘除解决实际问题时要注意分清量与量之间存在的数量关系.6.如图,已知∠1=∠2,要得到△ABD≌△ACD,还需从下列条件中补选一个,则错误的选法是()A.AB=AC B.DB=DC C.∠ADB=∠ADC D.∠B=∠C【考点】全等三角形的判定.【分析】先要确定现有已知在图形上的位置,结合全等三角形的判定方法对选项逐一验证,排除错误的选项.本题中C、AB=AC与∠1=∠2、AD=AD组成了SSA是不能由此判定三角形全等的.【解答】解:A、∵AB=AC,∴,∴△ABD≌△ACD(SAS);故此选项正确;B、当DB=DC时,AD=AD,∠1=∠2,此时两边对应相等,但不是夹角对应相等,故此选项错误;C、∵∠ADB=∠ADC,∴,∴△ABD≌△ACD(ASA);故此选项正确;D、∵∠B=∠C,∴,∴△ABD≌△ACD(AAS);故此选项正确.故选:B.【点评】本题考查了三角形全等的判定定理,普通两个三角形全等共有四个定理,即AAS、ASA、SAS、SSS,但SSA无法证明三角形全等.7.下列图形中,不一定是轴对称图形的是()A.直角三角形B.线段C.钝角D.等腰三角形【考点】轴对称图形.【分析】根据轴对称图形的概念容易得出结果.【解答】解:B、C、D都是轴对称图形;A、不一定是轴对称图形,若三角形不是等腰直角三角形就不是轴对称图形.故选:A.【点评】本题考查了轴对称图形的知识,注意掌握轴对称图形的判断方法:如果一个图形沿一条直线折叠后,直线两旁的部分能够互相重合,那么这个图形叫做轴对称图形.8.如果=3,则=()A.B.xy C.4D.【考点】分式的基本性质.【专题】计算题.【分析】由=3,得x=3y,再代入所求的式子化简即可.【解答】解:由=3,得x=3y,把x=3y代入==4,故选C.【点评】找出x、y的关系,代入所求式进行约分.9.货车行驶25千米与小车行驶35千米所用时间相同,已知小车每小时比货车多行驶20千米,求两车的速度各为多少?设货车的速度为x千米/小时,依题意列方程正确的是()A.B.C.D.【考点】由实际问题抽象出分式方程.【分析】题中等量关系:货车行驶25千米与小车行驶35千米所用时间相同,列出关系式.【解答】解:根据题意,得.故选:C.【点评】理解题意是解答应用题的关键,找出题中的等量关系,列出关系式.10.如图所示的正方形网格中,网格线的交点称为格点.已知A、B是两格点,如果C也是图中的格点,且使得△ABC为等腰三角形,则点C的个数是()A.6B.7C.8D.9【考点】等腰三角形的判定.【专题】分类讨论.【分析】根据题意,结合图形,分两种情况讨论:①AB为等腰△ABC底边;②AB为等腰△ABC其中的一条腰.【解答】解:如上图:分情况讨论.①AB为等腰△ABC底边时,符合条件的C点有4个;②AB为等腰△ABC其中的一条腰时,符合条件的C点有4个.故选:C.【点评】本题考查了等腰三角形的判定;解答本题关键是根据题意,画出符合实际条件的图形,再利用数学知识来求解.数形结合的思想是数学解题中很重要的解题思想.二、填空題(共8小题,每小題3分,满分24分)11.若分式的值为0,则x的值为3.【考点】分式的值为零的条件.【专题】计算题.【分析】分式的值为0的条件是:(1)分子为0;(2)分母不为0.两个条件需同时具备,缺一不可.据此可以解答本题.【解答】解:由题意可得x﹣3=0且x+3≠0,解得x=3.故答案为:3.【点评】本题主要考查了分式的值为0的条件.由于该类型的题易忽略分母不为0这个条件,所以常以这个知识点来命题.12.三角形三边的长分别为8、19、a,则边a的取值范围是11<a<27.【考点】三角形三边关系.【专题】推理填空题.【分析】根据三角形中的两边之和大于第三边和两边之差小于第三边进行计算即可解答本题.【解答】解:∵三角形三边的长分别为8、19、a,∴19﹣8<a<19+8,∴11<a<27,故答案为:11<a<27.【点评】本题考查三角形的三边关系,解题的关键是明确两边之和大于第三边和两边之差小于第三边.13.已知x2+mx+9是完全平方式,则常数m等于±6.【考点】完全平方式.【分析】完全平方式有a2+2ab+b2和a2﹣2ab+b2两个,根据已知得出mx=±2•x•3,求出即可.【解答】解:x2+mx+9=x2+mx+32,∵x2+mx+9是完全平方式,∴mx=±2•x•3,解得:m=±6,故答案为:±6.【点评】本题考查了对完全平方式的应用,能求出符合的两个值是解此题的关键,注意:完全平方式有a2+2ab+b2和a2﹣2ab+b2两个.14.已知点A(a,1)和B(2,b)关于x轴对称,则(a+b)2015=1.【考点】关于x轴、y轴对称的点的坐标.【分析】根据关于x轴对称的点,横坐标相同,纵坐标互为相反数,可得a、b的值,根据1的任何次幂都是1,可得答案.【解答】解:由点A(a,1)和B(2,b)关于x轴对称,得a=2,b=﹣1.(a+b)2015=1,故答案为:1.【点评】本题考查了关于x轴对称的点的坐标,解决本题的关键是掌握好对称点的坐标规律:关于x轴对称的点,横坐标相同,纵坐标互为相反数;关于y轴对称的点,纵坐标相同,横坐标互为相反数;关于原点对称的点,横坐标与纵坐标都互为相反数.15.已知:a+b=,ab=1,化简(a﹣2)(b﹣2)的结果是2.【考点】整式的混合运算—化简求值.【专题】整体思想.【分析】根据多项式相乘的法则展开,然后代入数据计算即可.【解答】解:(a﹣2)(b﹣2)=ab﹣2(a+b)+4,当a+b=,ab=1时,原式=1﹣2×+4=2.故答案为:2.【点评】本题考查多项式相乘的法则和整体代入的数学思想.16.分解因式:3a3﹣12a=3a(a+2)(a﹣2).【考点】提公因式法与公式法的综合运用.【分析】先提取公因式3a,再对余下的多项式利用平方差公式继续分解.【解答】解:3a3﹣12a=3a(a2﹣4),=3a(a+2)(a﹣2).故答案为:3a(a+2)(a﹣2).【点评】本题考查了用提公因式法和公式法进行因式分解,一个多项式有公因式首先提取公因式,然后再用其他方法进行因式分解,同时因式分解要彻底,直到不能分解为止.17.在△ABC中,AB=AC,AB的垂直平分线DE交AC于D,交AB于E,∠ADE=50°,则∠B=70°.【考点】线段垂直平分线的性质;等腰三角形的性质.【分析】根据线段垂直平分线的概念得到∠AED=90°,求出∠A=40°,根据三角形内角和定理和等腰三角形的性质计算即可.【解答】解:∵DE是AB的垂直平分线,∴DE⊥AB,∴∠AED=90°,又∠ADE=50°,∴∠A=40°,又AB=AC,∴∠B=∠C=70°,故答案为:70°.【点评】本题考查的是线段垂直平分线的概念和等腰三角形的性质,掌握三角形内角和等于180°、等腰三角形等边对等角是解题的关键.18.如图,在△ABC中,∠C=90°,AC=BC,AD平分∠CAB交BC于D,DE⊥AB于E,且AB=8cm,则△BED的周长是8cm.【考点】角平分线的性质;等腰直角三角形.【分析】根据角平分线上的点到角的两边的距离相等可得CD=DE,再根据“HL”证明△ACD和△AED 全等,根据全等三角形对应边相等可得AC=AE,然后求出△BED的周长=AB,即可得解.【解答】解:∵∠C=90°,AD平分∠CAB,DE⊥AB,∴CD=DE,在△ACD和△AED中,,∴△ACD≌△AED(HL),∴AC=AE,∴△BED的周长=DE+BD+BE,=BD+CD+BE,=BC+BE,=AC+BE,=AE+BE,=AB,∵AB=8cm,∴△BED的周长是8cm.故答案为:8cm.【点评】本题考查了角平分线上的点到角的两边的距离相等的性质,全等三角形的判定与性质,熟记性质并求出△BED的周长=AB是解题的关键.三、解答題(本大题共6小题,共计46分)19.解方程:﹣=0.【考点】解分式方程.【专题】计算题.【分析】分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.【解答】解:去分母得:4x﹣8﹣3x=0,解得:x=8,经检验x=8是分式方程的解.【点评】此题考查了解分式方程,解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解.解分式方程一定注意要验根.20.一个多边形内角和是一个四边形内角和的4倍,请求出这个多边形的边数.【考点】多边形内角与外角.【分析】设这个多边形的边数为n,根据n边形的内角和的计算公式(n﹣2)•180°列出方程,解方程即可.【解答】解:设这个多边形的边数为n,由题意得,(n﹣2)×180°=360°×4,解得:n=10.答:这个多边形的边数为10.【点评】本题考查的是多边形的内角和和外角和的计算,掌握n边形的内角和的计算公式:(n﹣2)•180°是解题的关键.21.如图,在平面直角坐标系xOy中,A(﹣1,5),B(﹣1,0),C(﹣4,3).(1)求出△ABC的面积.(2)在图中作出△ABC关于y轴的对称图形△A1B1C1.(3)写出点A1,B1,C1的坐标.【考点】作图-轴对称变换.【专题】综合题.【分析】(1)根据网格可以看出三角形的底AB是5,高是C到AB的距离,是3,利用面积公式计算.(2)从三角形的各顶点向y轴引垂线并延长相同长度,找对应点.顺次连接即可.(3)从图中读出新三角形三点的坐标.【解答】解:(1)S△ABC=×5×3=(或7.5)(平方单位).(2)如图.(3)A1(1,5),B1(1,0),C1(4,3).【点评】本题综合考查了三角形的面积,网格,轴对称图形,及直角坐标系,学生对所学的知识要会灵活运用.22.先化简,再求值:÷(1+),其中x=﹣1.【考点】分式的化简求值.【分析】分式的化简,要熟悉混合运算的顺序,分子、分母能因式分解的先因式分解;除法要统一为乘法运算,注意化简后,将,代入化简后的式子求出即可.【解答】解:=÷(+)=÷=×=,把,代入原式====.【点评】此题主要考查了分式混合运算,要注意分子、分母能因式分解的先因式分解;除法要统一为乘法运算是解题关键.23.如图1,在△ABC中,AB=AC,点D是BC的中点,点E在AD上.(1)求证:BE=CE;(2)如图2,若BE的延长线交AC于点F,且BF⊥AC,垂足为F,∠BAC=45°,原题设其它条件不变.求证:△AEF≌△BCF.【考点】全等三角形的判定与性质;等腰三角形的性质.【专题】证明题.【分析】(1)根据等腰三角形三线合一的性质可得∠BAE=∠EAC,然后利用“边角边”证明△ABE 和△ACE全等,再根据全等三角形对应边相等证明即可;(2)先判定△ABF为等腰直角三角形,再根据等腰直角三角形的两直角边相等可得AF=BF,再根据同角的余角相等求出∠EAF=∠CBF,然后利用“角边角”证明△AEF和△BCF全等即可.【解答】证明:(1)∵AB=AC,D是BC的中点,∴∠BAE=∠EAC,在△ABE和△ACE中,,∴△ABE≌△ACE(SAS),∴BE=CE;(2)∵∠BAC=45°,BF⊥AF,∴△ABF为等腰直角三角形,∴AF=BF,∵AB=AC,点D是BC的中点,∴AD⊥BC,∴∠EAF+∠C=90°,∵BF⊥AC,∴∠CBF+∠C=90°,∴∠EAF=∠CBF,在△AEF和△BCF中,,∴△AEF≌△BCF(ASA).【点评】本题考查了全等三角形的判定与性质,等腰三角形三线合一的性质,等腰直角三角形的判定与性质,同角的余角相等的性质,是基础题,熟记三角形全等的判定方法与各性质是解题的关键.24.一项工程,甲,乙两公司合作,12天可以完成,共需付施工费102000元;如果甲,乙两公司单独完成此项工程,乙公司所用时间是甲公司的1.5倍,乙公司每天的施工费比甲公司每天的施工费少1500元.(1)甲,乙两公司单独完成此项工程,各需多少天?(2)若让一个公司单独完成这项工程,哪个公司的施工费较少?【考点】分式方程的应用;一元一次方程的应用.【分析】(1)设甲公司单独完成此项工程需x天,则乙工程公司单独完成需1.5x天,根据合作12天完成列出方程求解即可.(2)分别求得两个公司施工所需费用后比较即可得到结论.【解答】解:(1)设甲公司单独完成此项工程需x天,则乙公司单独完成此项工程需1.5x天.根据题意,得+=,解得x=20,经检验知x=20是方程的解且符合题意.1.5x=30故甲公司单独完成此项工程,需20天,乙公司单独完成此项工程,需30天;(2)设甲公司每天的施工费为y元,则乙公司每天的施工费为(y﹣1500)元,根据题意得12(y+y﹣1500)=102000,解得y=5000,甲公司单独完成此项工程所需的施工费:20×5000=100000(元);乙公司单独完成此项工程所需的施工费:30×(5000﹣1500)=105000(元);故甲公司的施工费较少.【点评】本题考查了分式方程的应用,解题的关键是从实际问题中整理出等量关系并利用等量关系求解.。
湘教版八年级上册数学期末考试试题一、单选题1.下列实数中,是无理数的是()A .1B C .﹣3D .132.在13115143πx xx y ++,,,-,中,分式有()A .1个B .2个C .3个D .4个3.化简2111x x x+--的结果是()A .x +1B .11x +C .x -1D .1x x -4.下列长度的三条线段不能组成三角形的是()A .5,5,10B .4,5,6C .4,4,4D .3,4,55.工人师傅砌门时,如图所示,常用木条EF 固定矩形木框ABCD ,使其不变形,这是利用().A .两点之间线段最短B .三角形的稳定性C .垂线段最短D .两直线平行,内错角相等6.计算)A .2BC .6D .7.若a >b ,则下列各式中一定成立的是()A .a +2<b +2B .a -2<b -2C .2a >2bD .-2a >-2b8.不等式323xx +-≤的非负整数解有()A .3个B .4个C .5个D .无数个二、填空题9.肥皂泡沫的泡壁厚度大约是0.00075mm ,则数据0.00075用科学记数法表示为_________.10___________.11.5_______12.如图,图中∠1的大小等于_____.13.如图,已知∠CAE =∠DAB ,AC =AD .要使△ABC ≌△AED 的还需添加的条件为________.(注:不做辅助线,添加一个条件)14.如图,在△ABC 中,AB=5cm ,AC=3cm ,BC 的垂直平分线分别交AB 、BC 于D 、E ,则△ACD 的周长为___cm .15.如图,在ABC 中,D ,E 分别是BC ,AD 的中点,24ABC S cm =V ,则ABE S 的值是_______.16.已知关于x 的不等式组12x x m ->⎧⎨≤⎩无解,则m 的取值范围是____.三、解答题17.(1)计算:02202013(3)(1)2-π-+-+--((2)解方程:3231x x =+-18.先化简,再求值:211(1)211x x x x x -+÷+-+-,其中x 19.解不等式组513(1)131722x x x x +>-⎧⎪⎨-≤-⎪⎩,并把它的解集在数轴上表示出来.20.已知:如图,//AB CD ,=BF DE ,点B 、E 、F 、D 在同一直线上,.A C ∠∠=求证:=AE CF.21.如图所示,BO 平分∠CBA ,CO 平分∠ACB ,过O 作EF ∥BC ,若AB =12,AC =8,求△AEF的周长.22.某商场计划购进一批甲、乙两种玩具,已知一件甲种玩具的进价与一件乙种玩具的进价的和为40元,用90元购进甲种玩具的件数与用150元购进乙种玩具的件数相同.(1)求每件甲种、乙种玩具的进价分别是多少元?(2)商场计划购进甲、乙两种玩具共48件,其中甲种玩具的件数少于乙种玩具的件数,商场决定此次进货的总资金不超过1000元,求商场共有几种进货方案?23.如图1,已知AB=AC,AB⊥AC.直线m经过点A,过点B作BD⊥m于D,CE⊥m 于E.我们把这种常见图形称为“K”字图.(1)悟空同学对图1进行一番探究后,得出结论:DE=BD+CE,现请你替悟空同学完成证明过程.(2)悟空同学进一步对类似图形进行探究,在图2中,若AB=AC,∠BAC=∠BDA=∠AEC,则结论DE=BD+CE,还成立吗?如果成立,请证明之.参考答案1.B【详解】【分析】根据无理数和有理数的概念逐项进行判断即可得.【详解】A.1,是有理数,不符合题意;B.,是无理数,符合题意;C.﹣3,是有理数,不符合题意;D.13,是有理数,不符合题意,故选B.【点睛】本题考查了无理数的判断,判断无理数时通常结合有理数来进行,熟练掌握有理数和无理数的概念是解题的关键.2.B 【分析】分式的分母中含有字母,据此对各选项进行判断即可.【详解】解:根据分式的定义可知:1x ,31y+为分式,故选:B .【点睛】本题考查分式的定义,熟知分式的定义是解题的关键.3.A 【分析】先化成同分母分数,再相加减,然后对分子分母分别因式分解,最后约分即可.【详解】原式=2111x x x ---=211x x --=()()111x x x +--=1x +.故选:A .【点睛】本题考查分式的加减运算,掌握分式加减的运算法则为解题关键.4.A 【详解】试题解析:A .5+5=10,不能组成三角形,故此选项正确;B .4+5=9>6,能组成三角形,故此选项错误;C .4+4=8>4,能组成三角形,故此选项错误;D .4+3=7>5,能组成三角形,故此选项错误.故选A .5.B 【分析】三角形具有稳定性,其他的多边形不具备稳定性,但把多边形分割成三角形的形状就具有了稳定性.【详解】解:如图所示,通过连接木条形成DEF ,而三角形具有稳定性,故不会变形.故选B .【点睛】本题考查了三角形的稳定性的实际应用,三角形在实际生活中有广泛的应用,如房屋桥梁等,本题关键在于要知道要使多边形具有稳定性,则可将其分割成三角形.6.B 【分析】根据二次根式的加减法则,合并同类二次根式即可.【详解】(21=-,故选B .【点睛】本题考查了二次根式的加减法,解题的关键是熟悉合并同类二次根式.7.C 【详解】已知a >b ,A.a +2>b +2,故A 选项错误;B.a −2>b −2,故B 选项错误;C.2a >2b,故C 选项正确;D.−2a <−2b ,故D 选项错误.故选C.8.C 【分析】求出不等式的解集,再根据非负整数解的条件求出特殊解.【详解】解:去分母得:3(x-2)≤x+3,去括号,得3x-6≤x+3,移项、合并同类项,得2x≤9,系数化为1,得x≤4.5,则满足不等式的“非负整数解”为:0,1,2,3,4,共5个,故选:C.【点睛】本题考查解不等式,解题的关键是理解题中的“非负整数”.9.-4⨯7.510【分析】绝对值小于1的正小数也可以利用科学记数法表示,一般形式为a×10-n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【详解】解:0.00075=7.5×10-4.故答案为7.5×10-4.【点睛】本题考查用科学记数法表示较小的数,一般形式为a×10-n,其中1≤|a|<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定.10.2【分析】8,根据立方根的定义即可求解.【详解】=,8的立方根是2,8故答案为:2.【点睛】本题考查算术平方根和立方根的定义,明确算术平方根和立方根的定义是解题的关键.11.1【分析】根据二次根式的乘除混合运算法则进行计算即可.【详解】==,解:551故答案为:1.【点睛】本题考查二次根式的运算,熟练掌握运算法则是解题的关键.12.70°.【分析】根据三角形的外角等于和它不相邻的两个内角的和计算即可;【详解】由三角形的外角的性质可知:130°=∠1+60°,∴∠1=70°,故答案为70°.【点睛】本题考查三角形的外角的性质,解题的关键是记住三角形的外角等于和它不相邻的两个内角的和.13.AE=AB(答案不唯一,符合条件即可)【分析】此题是一道开放性的题目,答案不唯一,要添加的条件,要符合全等三角形的判定定理即可.【详解】添加条件为:AE=AB,理由是:在△ABC和△AED中,∵∠CAE=∠DAB,∴∠CAE+∠BAE=∠DAB+∠BAE即∠BAC=∠EAD,在△ABC和△AED中,∵AC=AD,∠BAC=∠EAD,AE=AB,∴△ABC≌△AED故要添加的条件为AE=AB.【点睛】本题考查了全等三角形判定的应用,能熟记全等三角形的判定定理是解此题的关键.14.8【详解】试题分析:根据线段垂直平分线的性质得,BD=CD,则AB=AD+CD,所以,△ACD的周长=AD+CD+AC=AB+AC,解答出即可解:∵DE是BC的垂直平分线,∴BD=CD,∴AB=AD+BD=AD+CD,∴△ACD的周长=AD+CD+AC=AB+AC=8cm;故答案为8考点:线段垂直平分线的性质点评:本题主要考查了线段垂直平分线的性质和三角形的周长,掌握线段的垂直平分线上的点到线段两端点的距离相等15.21cm【分析】中线AD把△ABC分成面积相等的两个三角形,中线BE又把△ABD分成面积相等的两个三角形,所以△ABE的面积是△ABC的面积的1 4.【详解】解:∵D、E分别是BC,AD的中点,∴△ABD是△ABC面积的12,△ABE是△ABD面积的12,∴△ABE的面积=4×12×12=21cm.故答案为:21cm.【点睛】本题考查了三角形的面积计算,解题的关键是熟悉三角形的中线把三角形分成面积相等的两个小三角形.16.3m ≤.【分析】先计算第一个不等式,得到3x >,不等式组无解,即两个不等式没有公共解集,据此解题.【详解】解:由不等式组可得3x x m >⎧⎨⎩,因为不等式组无解,根据大大小小找不到的原则可知3m,故答案为:3m ≤.【点睛】本题考查由一元一次不等式组的解集求参数,是重要考点,难度较易,掌握相关知识是解题关键.17.(1)1;(2)9x =【分析】(1)根据绝对值的性质、零指数幂、负整数次幂和有理数的乘方进行计算即可;(2)把分式方程化成整式方程求解,最后验根.【详解】解:(1)原式=31411=+-+=;(2)3231x x =+-去分母得:()()3123x x -=+,去括号得:3326x x -=+,移项、合并得:x =9,检验:把x =9代入方程,各分母都不为0,∴x =9是方程的解.【点睛】本题考查实数的运算、解分式方程,解题的关键是掌握实数的相关性质和解分式方程的方法.18.12x 【分析】根据异分母分式加减法先计算括号里的式子,再利用分式除法法则进行运算求出化简结果,然后将x【详解】解:2111211x x x x x -⎛⎫÷+ ⎪-+⎝-⎭+,2121(1)x x x x -=÷--,2112(1)x x x x --=⋅-,12x=;当x =时,原式4=.【点睛】本题考查了分式的化简求值、最简二次根式,掌握分式混合运算的运算顺序和运算法则是解题的关键.19.24x -<≤,数轴见解析.【详解】试题分析:分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小无解了确定不等式组的解集.试题解析:解:解不等式5x +1>3(x ﹣1),得:x >﹣2,解不等式12x ﹣1≤7﹣32x ,得:x ≤4,则不等式组的解集为﹣2<x ≤4,将解集表示在数轴上如下:20.详见解析【分析】根据平行线的性质得∠∠=B D ,再利用=BF DE 得到=BE DF ,则可根据”AAS“判断ABE ≌CDF ,从而得到结论.【详解】解://AB CD ,∠∠∴=B D ,BF DE =,∴+=+BE EF EF DF ,∴=BE DF ,在ABE 和CDF 中A CB D BE DF ∠=∠⎧⎪∠=∠⎨⎪=⎩,∴ABE ≌()CDF AAS ,AE CF ∴=.【点睛】考查了全等三角形的判定与性质:全等三角形的判定是结合全等三角形的性质证明线段和角相等的重要工具.在判定三角形全等时,关键是选择恰当的判定条件.21.20【详解】试题分析:首先根据角平分线的性质以及平行线的性质得出△BEO 和△CFO 为等腰三角形,从而得出BE=OE ,CF=OF ,然后根据三角形的周长计算公式将线段进行转换得出三角形的周长.试题解析:∵BO 平分∠CBA ,∴∠EBO=∠OBC ,∵CO 平分∠ACB∴∠FCO=∠OCB ,∵EF ∥BC ,∴∠EOB=∠OBC ,∠FOC=∠OCB ,∴∠EBO=∠EOB ,∠FOC=∠FCO ,∴BE=OE ,CF=OF ,∴△AEF 的周长AE+OE+OF+AF=AE+BE+CF+AF=AB+AC ,∵AB=12,AC=8,∴C △AEF =12+8=20.点睛:本题主要考查的就是角平分线的性质、平行线的性质以及等腰三角形的性质,本题属于中等题,在考试的时候经常会考到,同学们一定要特别注意.在解决这种问题的关键就是找出哪几个是等腰三角形,找出相等的线段,然后将所求的线段转化成已知的线段,最后进行求解.22.(1)甲,乙两种玩具分别是15元/件,25元/件;(2)共有四种方案.【分析】(1)设甲种玩具进价x 元/件,则乙种玩具进价为(40﹣x )元/件,根据已知一件甲种玩具的进价与一件乙种玩具的进价的和为40元,用90元购进甲种玩具的件数与用150元购进乙种玩具的件数相同可列方程求解.(2)设购进甲种玩具y 件,则购进乙种玩具(48﹣y )件,根据甲种玩具的件数少于乙种玩具的件数,商场决定此次进货的总资金不超过1000元,可列出不等式组求解.【详解】解:设甲种玩具进价x 元/件,则乙种玩具进价为(40﹣x )元/件,x=15,经检验x=15是原方程的解.∴40﹣x=25.甲,乙两种玩具分别是15元/件,25元/件;(2)设购进甲种玩具y 件,则购进乙种玩具(48﹣y)件,,解得20≤y <24.因为y 是整数,甲种玩具的件数少于乙种玩具的件数,∴y 取20,21,22,23,共有4种方案.考点:分式方程的应用;一元一次不等式组的应用.23.(1)见解析;(2)成立,见解析【分析】(1)先证∠ABD=∠EAC ,再证△ABD ≌△CAE (AAS )即可;(2)先证出∠ABD =∠EAC ,再证△ABD ≌△CAE (AAS )即可.【详解】证明:(1)∵AB ⊥AC,BD ⊥DE,CE ⊥DE,∴∠BDA=∠AEC=∠BAC=90°,∴∠DAB+∠ABD=∠EAC+∠DAB=90°,∴∠ABD=∠EAC,在△ABD 和△CAE 中,ABD EACBDA AEC AB AC∠=∠⎧⎪∠=∠⎨⎪=⎩,∴△ABD ≌△CAE (AAS ),∴BD =AE ,AD =CE ,∴DE =AE +DA ;(2)成立,理由如下:∵∠BAC +∠BAD +∠EAC =180°,∠ADB +∠BAD +∠ABD =180°,∠BAC =∠BDA ,∴∠ABD =∠EAC ,在△ABD 和△CAE 中,ABD EACBDA AEC AB AC∠=∠⎧⎪∠=∠⎨⎪=⎩,∴△ABD ≌△CAE (AAS ),∴BD =AE ,AD =CE ,∴DE =AE +DA =BD +CE.【点睛】本题考查三角形全等的判定与性质,掌握三角形全等的判定与性质是解题关键.。
苏科版八年级上册数学期末考试试题一、单选题1.2的算术平方根是()A.B C.D.22.点P(1,﹣2)关于y轴对称的点的坐标是()A.(1,2)B.(﹣1,2)C.(﹣1,﹣2)D.(﹣2,1)3.已知点os2)在一次函数=+1的图像上,则的值为()A.3B.2C.1D.−14.3.0269精确到百分位的近似值是()A.3.026B.3.027C.3.02D.3.035.如图,在矩形纸片ABCD中,AB=3,点E在边BC上,将△ABE沿直线AE折叠,点B 恰好落在对角线AC上的点F处,若∠EAC=∠ECA,则AC的长是()A.B.6C.4D.56.将一次函数=2的图像向上平移2个单位后,当>0时,的取值范围是() A.>−1B.>1C.>−2D.>2 7.点o1,1),o2,2)在直线=−2+3上,若1>2,则1与2的大小关系是() A.1>2B.1<2C.1=2D.无法确定8.一次函数y kx b=+与y kbx=,它们在同一坐标系内的图像可能为()A.A B.B C.C D.D9.小东家与学校之间是一条笔直的公路,早饭后,小东步行前往学校,图中发现忘带画板,停下给妈妈打电话,妈妈接到电话后,带上画板马上赶往学校,同时小东沿原路返回,两人相遇后,小东立即赶往学校,妈妈沿原路返回16min到家,再过5min小东到达学校,小东始终以100m/min的速度步行,小东和妈妈的距离y(单位:m)与小东打完电话后的步行时间t(单位:min)之间的函数关系如图所示,下列四种说法:①打电话时,小东和妈妈的距离为1400米;②小东和妈妈相遇后,妈妈回家的速度为50m /min ;③小东打完电话后,经过27min 到达学校;④小东家离学校的距离为2900m .其中正确的个数是()A .1个B .2个C .3个D .4个10.已知AB CD =,从下列条件中补充一个条件后,仍不能判定ABC CDA ∆≅∆的是()A .BC AD=B .90B D ∠=∠=︒C .BAC DCA ∠=∠D .ACB CAD∠=∠二、填空题11=_____.12.三角形三边长分别为3,4,5,那么最长边上的中线长等于.13.若函数1(1)3m y m x -=+-是关于x 的一次函数,且y 随x 的增大而减小,则m =________.14.与直线31y x =+平行,且经过点(0,2)-的一次函数表达式为_______________.15.已知34x <<4x -得________.16.直线4y x =+与坐标轴围成的图形的面积为________.17.如图,点B 的坐标为(4,4),作BA ⊥x 轴,BC ⊥y 轴,垂足分别为A ,C ,点D 为线段OA 的中点,点P 从点A 出发,在线段AB 、BC 上沿A→B→C 运动,当OP=CD 时,点P 的坐标为_________________________.18.如图,直线223y x =+x 轴、y 轴分别交于,A B 两点,以OB 为边在y 轴左侧作等边三角形OBC .将OBC ∆沿y 轴上下平移,使点C 的对应点'C 恰好落在直线AB 上,则点'C 的坐标为________.三、解答题19.(1)计算0192()3-+-;(2)求2(3)16x -=中的x 的值.20.如图,方格纸中每个小方格都是边长为1的正方形,我们把以格点连线为边的多边形称为“格点多边形”.如图①中四边形ABCD 就是一个“格点四边形”.(1)作出四边形ABCD 关于直线BD 对称的四边形''''A B C D ;(2)图①中四边形ABCD 的面积是;(3)在图②方格纸中画一个格点三角形EFG ,使EFG ∆的面积等于8且EFG ∆为轴对称.21.已知y 与2x -成正比例,且1x =时,4y =.(1)求y与x之间的函数表达式;(2)当2y 时,求x的值.22.如图,已知在四边形ABCD中,点E在AD上,∠BCE=∠ACD=90°,∠BAC=∠D,BC=CE.(1)求证:AC=CD;(2)若AC=AE,求∠DEC的度数.23.如图,在平面直角坐标系xOy中,A(0,5),直线x=-5与x轴交于点D,直线y=-38x-398与x轴及直线x=-5分别交于点C,E.点B,E关于x轴对称,连接AB.(1)求点C,E的坐标及直线AB的解析式;(2)若S=S△CDE+S四边形ABDO,求S的值;(3)在求(2)中S时,嘉琪有个想法:“将△CDE沿x轴翻折到△CDB的位置,而△CDB与四边形ABDO拼接后可看成△AOC,这样求S便转化为直接求△AOC的面积,如此不更快捷吗?”但大家经反复验算,发现S△AOC≠S,请通过计算解释他的想法错在哪里.24.“低碳环保,绿色出行”的理念得到广大群众的接受,越来越多的人再次选择自行车作为出行工具,小军和爸爸同时从家骑自行车去图书馆,爸爸先以150米/分的速度骑行一段时间,休息了5分钟,再以m米/分的速度到达图书馆,小军始终以同一速度骑行,两人行驶的路程y(米)与时间x(分钟)的关系如图,请结合图象,解答下列问题:(1)a=,b=,m=;(2)若小军的速度是120米/分,求小军在途中与爸爸第二次相遇时,距图书馆的距离;(3)在(2)的条件下,爸爸自第二次出发至到达图书馆前,何时与小军相距100米?(4)若小军的行驶速度是v米/分,且在途中与爸爸恰好相遇两次(不包括家、图书馆两地),请直接写出v的取值范围.25.某商店销售A型和B型两种电脑,其中A型电脑每台的利润为400元,B型电脑每台的利润为500元.该商店计划再一次性购进两种型号的电脑共100台,其中B型电脑的进货量不超过A型电脑的2倍,设购进A型电脑x台,这100台电脑的销售总利润为y元.(1)求y关于x的函数关系式;(2)该商店购进A型、B型电脑各多少台,才能使销售总利润最大,最大利润是多少?(3)实际进货时,厂家对A型电脑出厂价下调a(0<a<200)元,且限定商店最多购进A 型电脑60台,若商店保持同种电脑的售价不变,请你根据以上信息,设计出使这100台电脑销售总利润最大的进货方案.26.如图,已知:AB=AD,BC=CD,AE⊥BC,垂足为E,AF⊥CD,垂足为F.求证:(1)∠B=∠D;(2)AE=AF.参考答案1.B【详解】解:2,故选B.2.C【详解】关于y轴对称的点,纵坐标相同,横坐标互为相反数,由此可得P(1,﹣2)关于y轴对称的点的坐标是(﹣1,﹣2),故选C.【点睛】本题考查了关于坐标轴对称的点的坐标,正确地记住关于坐标轴对称的点的坐标特征是关键.关于x轴对称的点的坐标特点:横坐标不变,纵坐标互为相反数;关于y轴对称的点的坐标特点:纵坐标不变,横坐标互为相反数.3.C【解析】【分析】直接把点A(a,2)代入一次函数y=x+1,求出a的值即可.【详解】∵点A(a,2)在一次函数y=x+1的图象上,∴2=a+1,解得a=1.故选C.【点睛】本题考查的是一次函数图象上点的坐标特点,熟知一次函数图象上各点的坐标一定适合此函数的解析式是解答此题的关键.4.D【分析】根据近似数的精确度进行判断.【详解】3.0269≈3.03(精确到百分位).【点睛】本题考查的是近似数,熟练掌握近似数的概念是解题的关键.5.B【详解】∵将△ABE沿直线AE折叠,点B恰好落在对角线AC上的点F处,∴AF=AB,∠AFE=∠B=90°,∴EF⊥AC,∵∠EAC=∠ECA,∴AE=CE,∴AF=CF,∴AC=2AB=6,故选B.【点睛】本题考查了翻折变换的性质、矩形的性质等,得到EF垂直平分AC是解题的关键.6.A【解析】【分析】首先得出平移后解析式,进而求出函数与坐标轴交点,即可得出y>0时,x的取值范围.【详解】∵将y=2x的图象向上平移2个单位,∴平移后解析式为:y=2x+2,当y=0时,x=-1,故y>0,则x的取值范围是:x>-1.故选A.【点睛】此题主要考查了一次函数图象与几何变换,正确得出平移后解析式是解题关键.7.B【解析】【分析】先根据一次函数的解析式判断出函数的增减性,再根据x1>x2即可作出判断.∵直线y=-2x+3中k=-2<0,∴y随x的增大而减小,∵x1>x2,∴y1<y2.故选B.【点睛】本题考查的是一次函数图象上点的坐标特点,即一次函数图象上各点的坐标一定适合此函数的解析式.8.A【解析】试题分析:根据一次函数的图象与系数的关系,有由一次函数y=kx+b图象分析可得k、b 的符号,进而可得k•b的符号,从而判断y=kbx的图象是否正确,即:A、由一次函数y=kx+b图象可知k<0,b>0,即kb<0;一次函数y=kbx的图象可知kb<0,两函数解析式均成立;B、由一次函数y=kx+b图象可知k<0,b>0,即kb<0,与次函数y=kbx的图象可知kb>0矛盾;C、由一次函数y=kx+b图象可知k>0,b<0,即kb<0,与次函数y=kbx的图象可知kb>0矛盾;D、由一次函数y=kx+b图象可知k>0,b>0;即kb>0,与次函数y=kbx的图象可知kb<0矛盾.故选A.考点:一次函数的图像与性质9.D【详解】解:①当t=0时,y=1400,∴打电话时,小东和妈妈的距离为1400米,结论①正确;②2400÷(22﹣6)﹣100=50(m/min),∴小东和妈妈相遇后,妈妈回家的速度为50m/min,结论②正确;③∵t的最大值为27,∴小东打完电话后,经过27min到达学校,结论③正确;④2400+(27﹣22)×100=2900(m),∴小东家离学校的距离为2900m,结论④正确.综上所述,正确的结论有:①②③④.故选D .10.D【分析】全等三角形的判定定理有SAS ,ASA ,AAS ,SSS (直角三角形还有HL ),看看是否符合定理,即可判断选项.【详解】A.∵在△ABC 和△CDA 中AC CA AB CD BC AD =⎧⎪=⎨⎪=⎩∴△ABC ≌△CDA(SSS),正确,故本选项不符合题意;B.∵∠B=∠D=90°AC CA AB CD =⎧⎨=⎩,∴在Rt △ABC 和Rt △CDA 中AC CA AB CD=⎧⎨=⎩∴Rt △ABC ≌Rt △CDA(HL),正确,故本选项不符合题意;C.根据AB=CD ,AC=AC ,∠BAC=∠DCA ∴△ABC ≌△CDA(SAS),正确,故本选项不符合题意;D.∵在△ABC 和△CDA 中AB=CD ,∠ACB=∠CAD ,AC=AC不能推出△ABC ≌△CDA(SAS),错误,故本选项符合题意;故答案选:D.【点睛】本题考查的知识点是全等三角形的性质,解题的关键是熟练的掌握全等三角形的性质.11.3-【分析】根据立方根的意义求解即可.【详解】3-.12.2.5【详解】∵32+42=25=52,∴该三角形是直角三角形,∴最长边上的中线长为:12×5=2.5.考点:勾股定理的逆定理;直角三角形斜边上的中线.13.-2【分析】根据一次函数的定义和性质得到1011m m +<⎧⎨-⎩=,然后解不等式和方程即可确定满足条件的m 的值.【详解】根据题意得1011m m +<⎧⎨-⎩=,解得m=-2.故答案为-2.【点睛】本题考查了一次函数的定义:一般地,形如y=kx+b (k≠0,k 、b 是常数)的函数,叫做一次函数.也考查了一次函数的性质.14.32y x =-【分析】根据平行得出一次函数的解析式k=3,设一次函数的解析式是y=3x+b ,把(0,-2)代入求出b 即可.【详解】∵与直线y=3x+1平行,∴设一次函数的解析式是y=3x+b ,把(0,-2)代入得:-2=b ,∴符号条件的一次函数的解析式是y=3x-2,故答案为y=3x-2.【点睛】本题考查了用待定系数法求一次函数的解析式,两直线相交或平行问题的应用,关键是根据题意求出k=3,题目比较典型,难度不大.15.1【解析】【分析】根据二次根式性质得出|x-3|+|x-4|,根据绝对值意义得出x-3+4-x,求出即可.【详解】∵3<x<4,4x+-=|x-3|+|x-4|=x-3+4-x=1.故答案为:1.【点睛】本题考查了绝对值和二次根式的性质的应用,关键是去绝对值符号,注意:正数的绝对值等于它本身,负数的绝对值等于它的相反数.16.8【解析】【分析】由一次函数的解析式求得与坐标轴的交点,然后利用三角形的面积公式即可得出结论.【详解】由一次函数y=x+4可知:一次函数与x轴的交点为(-4,0),与y轴的交点为(0,4),∴其图象与两坐标轴围成的图形面积=12×4×4=8.故答案为:8.【点睛】本题考查的是一次函数图象上点的坐标特点,熟知一次函数图象上各点的坐标一定适合此函数的解析式是解答此题的关键.17.(2,4)或(4,2).【详解】试题分析:①当点P在正方形的边AB上时,在Rt△OCD和Rt△OAP中,∵OC=OA,CD=OP,∴Rt△OCD≌Rt△OAP,∴OD=AP,∵点D是OA中点,∴OD=AD=12OA,∴AP=12AB=2,∴P(4,2);②当点P在正方形的边BC上时,同①的方法,得出CP=12BC=2,∴P(2,4).综上所述:P(2,4)或(4,2).故答案为(2,4)或(4,2).考点:全等三角形的判定与性质;坐标与图形性质;分类讨论.18.(3,6--+【分析】根据直线A和点B的坐标,从而可以求得点C到OB的距离,从而可以得到C′的横坐标,然后代入C′的坐标,本题得以解决.【详解】∵∴当x=0时,y=0时,∴点A(0),点B(0,,∵△OBC是等边三角形,∴点C到OB的距离是:=3,将x=-3代入∴点C′的坐标为(-3,,故答案为(-3,.【点睛】本题考查一次函数图象上点的坐标特征、等边三角形的性质、坐标与图形变化-平移,解题的关键是明确题意,找出所求问题需要的条件,利用等边三角形的性质和平移的性质解答.19.(1)2;(2)7x=或1-【解析】【分析】(1)原式利用算术平方根定义,绝对值的意义以及零指数幂的运算法则计算即可得到结果;(2)方程利用平方根定义开方即可求出解.【详解】(1)原式=3-2+1,=2;(2)方程开方得:x-3=±4,解得:x=7或x=-1.【点睛】此题考查了实数的运算,熟练掌握运算法则是解本题的关键.20.(1)详见解析;(2)12;(3)所画出的EFG 为等腰三角形(不唯一),只需满足面积为8.【解析】【分析】(1)分别找到A 、C 关于BD 的对称点,顺次连接即可;(2)分成两个三角形的面积进行计算即可;(3)画一个面积为8的等腰三角形,即底和高相乘为16即可.【详解】(1)如图所示:.(2)S 四边形ABCD =S △ABC +S △ADC =12×6×3+12×6×1=9+3=12;(3)如图所示:.【点睛】本题考查了利用轴对称设计图案的知识,注意格点不规则图形面积的求解方法,可以用“构图法”,也可以用分割法.21.(1)48y x =-+;(2)32x =【解析】【分析】(1)根据y 与x-2成正比例关系设出函数的解析式,再把当x=1时,y=-4代入函数解析式即可求出k 的值,进而求出y 与x 之间的函数解析式.(2)利用(1)中所求函数解析式,将y=2代入其中,即可求得x 的值.【详解】(1)设y=k (x-2)(k≠0).∵当x=1时,y=4,∴-k=4,解得k=-4,所以y 与x 之间的函数关系式为:y=-4x+8;(2)∵y=-4x+8,∴当y=2时,2=-4×x+8,解得,x=32.【点睛】此题考查了待定系数法求一次函数解析式,以及一次函数图象上点的坐标特征,熟练掌握待定系数法是解本题的关键.22.(1)证明见解析;(2)112.5°.【分析】()1根据同角的余角相等可得到24∠=∠,结合条件BAC D ∠=∠,再加上BC CE =,可证得结论;()2根据90ACD AC CD ∠=︒=,,得到145D ∠=∠=︒,根据等腰三角形的性质得到3567.5∠=∠=︒,由平角的定义得到1805112.5DEC ∠=︒-∠=︒.【详解】() 1证明:90BCE ACD ∠=∠=︒ ,2334,∴∠+∠=∠+∠24∴∠=∠,在△ABC 和△DEC 中,24BAC D BC CE ∠=∠⎧⎪∠=∠⎨⎪=⎩,()AAS ABC DEC ∴ ≌,AC CD ∴=;(2)∵∠ACD =90°,AC =CD ,∴∠1=∠D =45°,∵AE =AC ,∴∠3=∠5=67.5°,∴∠DEC =180°-∠5=112.5°.23.(1)C (-13,0),E (-5,-3),255y x =+;(2)32;(3)见解析.【解析】【分析】(1)利用坐标轴上点的特点确定出点C 的坐标,再利用直线的交点坐标的确定方法求出点E 坐标,进而得到点B 坐标,最后用待定系数法求出直线AB 解析式;(2)直接利用直角三角形的面积计算方法和直角梯形的面积的计算即可得出结论,(3)先求出直线AB 与x 轴的交点坐标,判断出点C 不在直线AB 上,即可.【详解】(1)在直线339y x 88=--中,令y=0,则有0=339x 88--,∴x=﹣13,∴C (﹣13,0),令x=﹣5,代入339y x 88=--,解得y=﹣3,∴E (﹣5,﹣3),∵点B ,E 关于x 轴对称,∴B (﹣5,3),∵A (0,5),∴设直线AB 的解析式为y=kx+5,∴﹣5k+5=3,∴k=25,∴直线AB 的解析式为2y x 55=+;(2)由(1)知E (﹣5,﹣3),∴DE=3,∵C (﹣13,0),∴CD=﹣5﹣(﹣13)=8,∴S △CDE =12CD×DE=12,由题意知,OA=5,OD=5,BD=3,∴S 四边形ABDO =12(BD+OA )×OD=20,∴S=S △CDE +S 四边形ABDO =12+20=32;(3)由(2)知,S=32,在△AOC 中,OA=5,OC=13,∴S △AOC =12OA×OC=652=32.5,∴S≠S△AOC,理由:由(1)知,直线AB的解析式为2y x55=+,令y=0,则0=2x55+,∴x=﹣252≠﹣13,∴点C不在直线AB上,即:点A,B,C不在同一条直线上,∴S△AOC≠S.【点睛】此题是一次函数综合题,主要考查了坐标轴上点的特点,对称的性质,待定系数法,三角形,直角梯形的面积的计算,解(1)的关键是确定出点C,E的坐标,解(2)的关键是特殊几何图形的面积的计算,解(3)的关键是确定出直线AB与x轴的交点坐标,是一道常规题.24.(1)10;15;200;(2)750米;(3)17.5分钟时和20分钟;(4)100<v<400 3.【详解】试题分析:(1)根据时间=路程÷速度,即可求出a值,结合休息的时间为5分钟,即可得出b值,再根据速度=路程÷时间,即可求出m的值;(2)根据数量关系找出线段BC、OD所在直线的函数解析式,联立两函数解析式成方程组,通过解方程组求出交点的坐标,再用3000去减交点的纵坐标,即可得出结论;(3)根据(2)结论结合二者之间相距100米,即可得出关于x的含绝对值符号的一元一次方程,解之即可得出结论;(4)分别求出当OD过点B、C时,小军的速度,结合图形,利用数形结合即可得出结论.试题解析:(1)a=1500÷150=10(分钟),b=10+5=15(分钟),m=(3000-1500)÷(22.5﹣15)=200(米/分).故答案为10;15;200.(2)线段BC所在直线的函数解析式为y=1500+200(x﹣15)=200x﹣1500;线段OD所在的直线的函数解析式为y=120x.联立两函数解析式成方程组,,解得:,∴3000﹣2250=750(米).答:小军在途中与爸爸第二次相遇时,距图书馆的距离是750米.(3)根据题意得:|200x﹣1500﹣120x|=100,解得:x1==17.5,x2=20.答:爸爸自第二次出发至到达图书馆前,17.5分钟时和20分钟时与小军相距100米.(4)当线段OD过点B时,小军的速度为1500÷15=100(米/分钟);当线段OD过点C时,小军的速度为3000÷22.5=(米/分钟).结合图形可知,当100<v<时,小军在途中与爸爸恰好相遇两次(不包括家、图书馆两地).考点:一次函数的应用.25.(1)=﹣100x+50000;(2)该商店购进A型34台、B型电脑66台,才能使销售总利润最大,最大利润是46600元;(3)见解析.【详解】【分析】(1)根据“总利润=A型电脑每台利润×A电脑数量+B型电脑每台利润×B电脑数量”可得函数解析式;(2)根据“B型电脑的进货量不超过A型电脑的2倍且电脑数量为整数”求得x的范围,再结合(1)所求函数解析式及一次函数的性质求解可得;(3)据题意得y=(400+a)x+500(100﹣x),即y=(a﹣100)x+50000,分三种情况讨论,①当0<a<100时,y随x的增大而减小,②a=100时,y=50000,③当100<m<200时,a ﹣100>0,y随x的增大而增大,分别进行求解.【详解】(1)根据题意,y=400x+500(100﹣x)=﹣100x+50000;(2)∵100﹣x≤2x,∴x≥100 3,∵y=﹣100x+50000中k=﹣100<0,∴y随x的增大而减小,∵x为正数,∴x=34时,y取得最大值,最大值为46600,答:该商店购进A型34台、B型电脑66台,才能使销售总利润最大,最大利润是46600元;(3)据题意得,y=(400+a)x+500(100﹣x),即y=(a﹣100)x+50000,3313≤x≤60,①当0<a<100时,y随x的增大而减小,∴当x=34时,y取最大值,即商店购进34台A型电脑和66台B型电脑的销售利润最大.②a=100时,a﹣100=0,y=50000,即商店购进A型电脑数量满足3313≤x≤60的整数时,均获得最大利润;③当100<a<200时,a﹣100>0,y随x的增大而增大,∴当x=60时,y取得最大值.即商店购进60台A型电脑和40台B型电脑的销售利润最大.【点睛】本题考查了一次函数的应用及一元一次不等式的应用,弄清题意,找出题中的数量关系列出函数关系式、找出不等关系列出不等式是解题的关键.26.详见解析.【分析】(1)先利用SSS证明△ABC≌△ADC,再根据全等三角形的对应角相等即可得出∠B=∠D;(2)根据全等三角形的对应角相等得出∠ACB=∠ACD,再根据角的平分线上的点到角的两边的距离相等即可得出AE=AF.【详解】(1)在△ABC与△ADC中,AB AD BC DC AC AC =⎧⎪=⎨⎪=⎩,∴△ABC ≌△ADC ,∴∠B=∠D ;(2)∵△ABC ≌△ADC ,∴∠ACB=∠ACD ,∵AE ⊥BC ,垂足为E ,AF ⊥CD ,垂足为F ,∴AE=AF .【点睛】本题考查了全等三角形的判定与性质,角平分线的性质,证明出△ABC ≌△ADC 是解题的关键.。
八年级数学上册期末考试试卷分析本次期末试题较好地体现了全面贯彻《数学课程标准》中关于“知识与能力,过程与方法,情感、态度与价值观”三维目标的要求,切实有效地把考查数学知识与考查学生学习能力、学习方法和学习过程以及情感、态度与价值观结合起来,题目知识难度中等,加强对问题分析和解决能力的考查,基本体现了考试对中学数学课程改革和数学教学的导向作用。
一、题型及分值分配:一题为单项选择题10道,每题2分,共20分,二题为填空题6道,共计18分,三题为计算题3道,分值为18分,四题为证明题,1道共计6分,五题为解答题4道共计38分。
二、试题特点(1)基础题仍占较大的比例。
主要考查学生的基础知识、基本概念的理解和掌握、简单应用。
选择题、填空题前几个题考查的都是学生基础掌握情况,选择题第8、9题填空题第13、14题,考察学生对知识的理解和分析应用能力,难度稍大。
(2)重视理解能力的考查,在考查学生基础知识的掌握方面,主要考查学生的理解能力。
在选择题和填空题中考查的知识内容主要是:勾股定理、平面直角坐标系、二元一次方程、无理数、平行线、一次函数,考查学生对基础知识的理解和掌握程度。
(3)我认为本次考试的计算题知识点考察全面且难易适中。
第一小题是无理数的计算考察了和的完全平方公式属于初一知识点对于数学基础知识较差的普通班来说有一定的难度。
二、三小题分别是用带入消元法和加减消元法解二元一次方程,比较简单。
(4)解答题知识点覆盖较全面,难以适中。
三、失分原因1、学生对一些基础知识的记忆和理解不够,并且不能在理解的基础上进行掌握和应用导致答题错误。
2、学生对一些基础知识掌握不牢,迁移能力较差。
3、学生阅读分析能力和用数学语言表达的能力较差,导致解题时不能排除干扰信息,而出现错误。
四、今后教学建议:为全面提高教学质量,建议在今后教学工作中应注意以下几点:1、在教学时,切实注重“知识与技能”“过程与方法”“情感态度与价值观”等三维目标的达成,要认真把握好数学知识与技能的教学目标。
扬州市梅岭中学教育集团2023-2024学年第一学期期末考试试卷初二年级 数学学科(时间:120分钟)一、选择题(本大题共有8小题,每小题3分,共24分,在每小题所给出的四个选项中,有一项是符合题目要求的,请将正确选项的字母代号填涂在答题卡相应位置上)1. 以下是用电脑字体库中的一种篆体写出的“诚信友善”四字,若把它们抽象为几何图形,从整体观察(个别细微之处的细节可以忽略不计),其中大致是轴对称图形的是( )A. B. C. D.【答案】D【解析】【分析】根据轴对称图形的定义进行逐一判断即可.【详解】解:根据轴对称图形的定义可得:A 、B 、C 均不能找到一条直线,使得直线两旁的部分能够互相重合,故不是轴对称图形,不符合题意;D 轴对称图形,符合题意.故选:D .【点睛】本题主要考查了轴对称图形的定义,如果一个平面图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形就叫做轴对称图形,熟练掌握此定义是解题关键.2. 根据下列表述,能确定准确位置的是( )A. 万达影城1号厅2排B. 东经,北纬C. 江都中学南偏东40°D. 仙城北路【答案】B【解析】【分析】根据坐标的定义,确定位置需要两个数据对各选项分析判断利用排除法求解.【详解】解:A 、万达影城影城3号厅2排,不能确定具体位置,不符合题意;B 、东经,北纬,能确定具体位置,符合题意;C 、江都中学南偏东40°,不能确定具体位置,不符合题意;D 、仙城北路,不能确定具体位置,故本选项不符合题意.故选:B.是11927'︒3217'︒11927'︒3217'︒【点睛】本题考查坐标与位置.解题的关键是掌握确定位置需要两个数据.3. 将34.945取近似数精确到十分位,正确的是( )A. 34.9B. 35.0C. 35D. 35.05【答案】A【解析】【分析】把百分位上的数字4进行四舍五入即可得出答案.【详解】34.945取近似数精确到十分位是34.9;故选:A .【点睛】此题考查近似数,根据要求精确的数位,看它的后一位数字,根据“四舍五入”的原则精确即可.4. 如图,点B ,E ,C ,F 共线,,,添加一个条件,不能判断的是( )A. B. C. D. 【答案】B【解析】【分析】本题主要考查了全等三角形的判定,熟知全等三角形的判定定理是解题的关键,全等三角形的判定定理有.【详解】解:∵,∴,A 、添加条件,结合条件,,可以由证明,不符合题意;B 、添加条件,结合条件,,不可以由证明,符合题意;C 、添加条件,即,结合条件,,可以由证明,不符合题意;D 、添加条件,结合条件,,可以由证明,不符合题意;故选B.AB DE ∥A D ∠=∠ABC DEF ≌△△AB DE=ACB F ∠=∠BE CF =AC DF=SSS SAS AAS ASA HL ,,,,AB DE ∥B DEF ∠=∠AB DE =B DEF ∠=∠A D ∠=∠ASA ABC DEF ≌△△ACB F ∠=∠B DEF ∠=∠A D ∠=∠AAA ABC DEF ≌△△BE CF =BC EF =B DEF ∠=∠A D ∠=∠AAS ABC DEF ≌△△AC DF =B DEF ∠=∠A D ∠=∠AAS ABC DEF ≌△△5. 已知点为第一象限内的点,则一次函数的图象大致是( )A. B. C. D.【答案】B【解析】【分析】根据为第四象限内的点,可得 ,从而得到 ,进而得到一次函数的图象经过第一、三、四象限,即可求解.【详解】解:∵为第一象限内点,∴ ,∴ ,∴一次函数的图象经过第一、三、四象限.故选:B【点睛】本题主要考查了坐标与图形,一次函数的图象,熟练掌握一次函数,当时,一次函数图象经过第一、二、三象限;当时,一次函数图象经过第一、三、四象限;当时,一次函数图象经过第一、二、四象限;当时,一次函数图象经过第二、三、四象限是解题的关键.6. 正整数a 、b( )A. 16B. 9C. 8D. 4【答案】A【解析】【分析】本题考查无理数的估算,利用无理数的估算求得,的值后代入中计算即可.【详解】解:∵,,∴,,∴,的(),kb y kx b =-(),k b 0,0k b >>0b -<y kx b =-(),k b 0,0k b >>0b -<y kx b =-()0y kx b k =+≠0,0k b >>0,0k b ><0,0k b <>0,0k b <<a b <<<<a b =a b a b 546496<<347<<42<<<<4a =2b =4216a b ==故选:A .7. 一次函数的自变量和函数值的部分对应值如下表所示:则关于x 的不等式的解集是( )A. B. C. D. 【答案】A【解析】【分析】本题考查了一次函数与一元一次不等式,先根据待定系数法求出一次函数的解析式,再解不等式求解.【详解】解:将代入解得:∴,∴,解得:,故选:A .8. 已知,,为直线上的三个点,且,则以下判断正确的是( )A. 若,则B. 若,则C. 若,则D. 若,则【答案】D【解析】【分析】根据一次函数增减性,结合各选项条件逐项验证即可得到答案.【详解】解:直线中,随的增大而减小,y ax b =+x 05y 35ax b x +>5x <5x >0x <0x >()()0,35,5,y ax b =+355b a b =⎧⎨+=⎩0.43a b =⎧⎨=⎩0.43y x =+0.43x x +>5x <()11,x y ()22,x y ()33,x y 31y x =-+123x x x <<121=x x 130y y >132x x =-120y y >233x x =130y y >231x x =-120y y > 31y x =-+30-<∴y x,,A 、若,则,即与同号(同时为正或同时为负),,若取与同为负数,由不能确定的正负,,为直线上的三个点,,正负不能确定,则无法判断符号,该选项不合题意;B 、若,则,即与异号(一正一负),,,,由不能确定的正负,,为直线上的三个点,,正负不能确定,则无法判断符号,该选项不合题意;C 、若,则,即与同号(同时为正或同时为负),,若取与同为正数,由不能确定的正负,,为直线上的三个点,正负不能确定,正负不能确定,则无法判断符号,该选项不合题意;D 、若,则,即与异号(一正一负),,,,由确定的正负,,为直线上的三个点,,,则,该选项合题意;故选:D .123x x x <<∴123y y y >>121=x x 120x x >1x 2x 123x x x <<∴1x 2x 123x x x <<3x ()11,x y ()33,x y 31y x =-+∴11310y x =-+>3331y x =-+13y y 132x x =-130x x <1x 3x 123x x x <<∴10x <30x >123x x x <<2x ()11,x y ()22,x y 31y x =-+∴11310y x =-+>2231y x =-+12y y 233x x =230x x >2x 3x 123x x x <<∴2x 3x 123x x x <<1x ()11,x y ()33,x y 31y x =-+∴1131y x =-+3331y x =-+13y y 231x x =-230x x <1x 3x 123x x x <<∴20x <30x >123x x x <<10x < ()11,x y ()22,x y 31y x =-+∴11310y x =-+>22310y x =-+>120y y >【点睛】本题考查一次函数图像与性质,由题中条件判断出正负,结合一次函数增减性求解是解决问题的关键.二、填空题(本大题共有10小题,每小题3分,共30分.不需写出解答过程,请把答案直接填写在答题卡相应位置上)9. 4的算术平方根是______.【答案】2【解析】【分析】本题主要考查的是算术平方根的定义,一般地,如果一个正数x 的平方等于a ,即,那么这个正数x 叫做a【详解】解:,∴4的算术平方根是2.故答案为:2.10. 在平面直角坐标系中,点关于轴对称的点的坐标为_______.【答案】【解析】【分析】此题主要考查了关于轴对称的点的坐标,根据关于轴对称点的坐标特点:横坐标不变,纵坐标互为相反数,可得答案.【详解】解:点关于轴对称的点的坐标为,故答案为:.11. 等腰三角形的两边a ,b 满足,则三角形的周长是_____.【答案】12【解析】【详解】试题分析:应用非负数的性质求出a ,b 的值,再利用分类讨论及三角形三角形的关系求出三边长,再求和即可得出三角形的周长.∵,∴,,又∵是等腰三角形,123,,x x x 2x a =2=(4,3)A --x (4,3)-x x (4,3)A --x (4,3)-(4,3)-()2250a b -+-=()2250a b -+-=2a =5b =∴三边长为5,5,2或5,2,2 (不满足三角形构造条件,舍去),∴周长为.故答案为1212. 小明将两把完全相同的长方形直尺如图放置在上,两把直尺的接触点为P ,边与其中一把直尺边缘的交点为C ,点C 、P 在这把直尺上的刻度读数分别是2、5,则的长度是____.【答案】3【解析】【分析】根据图形可得是的角平分线,再根据平行线性质及等角对等边即可得到答案;【详解】解:由题意可得,如图所示,∵,,,∴,∵,∴,∴,∴,∵点C 、P 在这把直尺上的刻度读数分别是2、5,∴,故答案为3.【点睛】本题考查角平分线的判定,平行线性质及等角对等边,解题的关键是根据图形判断出角平分线.55212++=AOB ∠OA OC OP AOB ∠PE PF =PE OC ⊥PF OB ⊥POE POF ∠=∠CP OB ∥CPO POF ∠=∠CPO POE ∠=∠OC PC =523OC PC ==-=13. 如图,直线与直线的交点为A ,则关于,的方程组的解是______.【答案】【解析】【分析】根据两条直线的交点的意义即可解答.【详解】解:由函数图像可知:直线与直线的交点为,方程组的解是.故答案为:.【点睛】本题主要考查一次函数图像的交点和方程组的解,理解两条直线的交点坐标的意义是解题的关键.14. 如图,已知,连接、,,则的度数为_______.【答案】##35度【解析】【分析】本题考查了全等三角形的性质和等腰三角形的性质,熟练掌握各知识点是解题的关键.先根据全等三角形的性质求出,,再根据等腰三角形的性质求出,最后根据计算即可.【详解】∵,∴,,y mx n =+y kx b =+x y ,y mx n y kx b =+⎧⎨=+⎩13x y =⎧⎨=⎩y mx n =+y kx b =+()1,3A ∴,y mx n y kx b =+⎧⎨=+⎩13x y =⎧⎨=⎩13x y =⎧⎨=⎩CBE DAE △≌△AB 65ABE ∠=︒30BAD ∠=︒CBE ∠35︒BE AE ==CBE DAE ∠∠65BAE ABE ∠=∠=︒30BAD ∠=︒CBE DAE △≌△BE AE ==CBE DAE ∠∠∵,∴,∵,∴故答案为:.15. 如图,在中,的垂直平分线与的垂直平分线交于点P ,垂足分别为D ,E ,连接,,,若,则_____.【答案】45【解析】【分析】本题考查了垂直平分线的性质、等腰三角形的性质三角形内角和定理,根据垂直平分线的性质得,进而得,,根据三角形内角和及外角的性质得,即可求解.【详解】解:的垂直平分线与的垂直平分线交于点P ,,,,,,,即:,,,故答案为:45.16. 如图,已知四边形中,,则四边形的面积等于________.65ABE ∠=︒65BAE ∠=︒30BAD ∠=︒=6530=35CBE DAE ∠∠=︒-︒︒35︒ABC V AC PD BC PE PA PB PC 45PAD ∠=︒ABC ∠=︒PA PB PC ==PAB PBA ∠=∠PCB PBC ∠=∠2290PBC PBA ∠+∠=︒AC PD BC PE PA PB PC ∴==45PCA PAD ∠∠\==°PAB PBA ∠=∠PCB PBC ∠=∠180PCA PAD PAB PBA PCB PBC ∠∠∠∠∠∠+++++=° 90PAB PBA PCB PBC ∠∠∠∠\+++=°2290PBC PBA ∠+∠=︒45PBC PBA ∠∠\+=°45ABC ∴∠=︒ABCD 90,3,4,13,12∠===== ABC AB BC CD DA ABCD【答案】36【解析】【分析】连接AC ,先根据勾股定理求出AC 的长度,再根据勾股定理的逆定理判断出△ACD 的形状,最后利用三角形的面积公式求解即可.【详解】连接AC ,如下图所示:∵∠ABC=90°,AB=3,BC=4,∴,在△ACD 中,AC 2+AD 2=25+144=169=CD 2,∴△ACD 是直角三角形,∴S 四边形ABCD =AB•BC+AC•AD=×3×4+×5×12=36.【点睛】本题考查了勾股定理及勾股定理的逆定理,正确作出辅助线是解题的关键.17. 如图,甲乙两人以相同的路线前往距离单位的培训中心参加学习,图中、分别表示甲乙两人前往目的地所走的路程S (千米)随时间t (分)变化的函数图象,以下说法中正确的是_______.(填写正确结论的序号)①乙比甲提前12分钟到达;②甲平均速度为千米/分钟;③甲、乙相遇时,乙走了6千米;④乙出发6分钟后追上甲.=1212121210km l 甲l 乙0.25【答案】①②③④【解析】【分析】本题考查了从函数图象获取信息,一元一次方程的应用,根据函数图象求出所需数据是解题关键.根据函数图象即可判断①②结论;根据函数图象求出乙平均速度,设分钟时甲、乙相遇时,列一元一次方程求出的值,即可判断③④结论.【详解】解:①由图象可知,甲用了分钟到达,乙用了分钟到达,(分钟),乙比甲提前12分钟到达,结论正确;②由图象可知,甲用时分钟所走路程为,甲平均速度千米/分钟,结论正确;③由图象可知,乙用时分钟所走路程为,乙平均速度千米/分钟,设分钟时甲、乙相遇时,则,解得:,即分钟时甲、乙相遇时,乙走的路程为千米,结论正确;④由③可知,分钟时甲、乙相遇时,分钟,乙出发6分钟后追上甲,结论正确;即说法中正确的是①②③④,故答案为:①②③④.18. 如图,在中,,,动点D 从点A 出发,沿线段以每秒t t 4028402812-= ∴∴4010km ∴10400.25=÷=∴1010km ∴10101=÷=t 0.2518t t =-24t =24∴()124186⨯-=∴2424186-= ∴∴Rt ABC △9020ACB AB ∠=︒=,16AC =AB2个单位的速度向B 运动,过点D 作交所在的直线于点F ,连接.设点D 运动时间为t 秒.当是等腰三角形时,则____________________秒.【答案】5或或4【解析】【分析】先根据勾股定理求出,再分三种情况,根据等腰三角形的性质、勾股定理计算即可.【详解】解:在中,,,由勾股定理得:,当时,,∴,∴;当时,,则,∴,即,解得:,由勾股定理得:,∴;当时,∵,∴,由勾股定理得:∵,DF AB ⊥BC AF CD ,ABF △t =145BC FA FB AF AB BF AB ===、、Rt ABC △9020ACB AB ∠=︒=,16AC =12BC ===FA FB =DF AB ⊥11201022AD AB ==⨯=1025t =÷=20AF AB ==90ACB ∠=︒224BF BC ==1122AB DF BF AC ⋅=⋅1120241622DF ⨯⨯=⨯⨯965DF =285AD ===2814255t =÷=20BF AB ==2012BF BC ==,8CF BF BC =-=AF ===BF BA FD AB AC BF =⊥⊥,,∴,∴,∴;综上所述,是等腰三角形时,t 的值为5或或4,故答案为:5或或4.【点睛】本题考查的是勾股定理、三角形的面积计算、等腰三角形的性质,灵活运用分情况讨论思想是解题的关键.三、解答题(本大题共有10小题,共96分,请在答题卡指定区域内作答,解答时应写出必要的文字说明、证明过程或演算步骤)19. (1)计算:(2)求中x 的值【答案】(1);(2)【解析】【分析】此题考查了实数的混合运算和用立方根的意义解方程,熟练掌握运算法则是解题的关键.(1)先计算算术平方根、立方根,再进行加减法计算即可;(2)变形为,根据立方根的意义得到,即可求出x 的值.【详解】解:(1(2)∴,∴,解得20.已知 的算术平方根为3,的立方根为4,求的平方根.16DF AC ==8AD ===824t =÷=ABF △145145()331270x -+=5.523x =-()33127x -=-313x -=-+()1322=--+1322=++5.5=()331270x -+=()33127x -=-313x -=-23x =-21a -31a b +-5b a -【答案】【解析】【分析】根据算术平方根和立方根定义得出,求出,求出的值,再根据平方根定义求出即可.【详解】解:∵的算术平方根为3,∴,∴,∵的立方根为4,∴,∴,∴∴的平方根是【点睛】本题考查了平方根,立方根,算术平方根的应用,解此题的关键是能关键题意求出a 、b 的值.21. 已知与成正比例,且时.(1)求与之间的函数关系式;(2)当时,求的值.【答案】(1)(2)【解析】【分析】本题考查待定系数法求一次函数解析式,解题的关键是灵活运用待定系数法建立函数解析式.(1)已知与成正比例,可设,把,代入求出k 的值,从而可得函数解析式;(2)在解析式中,令求出x 即可.【小问1详解】解:因为与成正比例,所以可设,将代入,得,解得:,5±219,3164a a b -=+-=5,50a b ==5b a -21a -219a -=5a =31a b +-3164a b +-=50b =525b a -=5b a -5±2y +x 3x =4y =y x 2y =x 22y x =-2x =2y +x ()20y kx k +=≠3x =4y =2y =2y +x ()20y kx k +=≠3,4x y ==423k +=2k =所以与之间的函数关系式为:,即;【小问2详解】解:将代入得:,解得:.22. 如图,三个顶点的坐标分别为,,.(1)的面积为______;(2)请画出关于y 轴对称的;(3)在x 轴上画出点P ,使值最小,并直接写出点P 的坐标.(保留画图痕迹)【答案】(1) (2)见解析(3)见解析,【解析】【分析】本题考查了作图——轴对称图形、三角形面积:(1)利用割补法即可求解;(2)根据轴对称图形的性质作出轴对称图形即可求解;(3)作点关于x 轴对称的点,连接,交x 轴于,连接,根据轴对称图形的性质可得,则此时值最小,进而可求解;熟练掌握轴对称图形的性质及割补法求图形的面积是解题的关键.【小问1详解】解:,故答案为:.【小问2详解】y x 22y x +=22y x =-2y =22y x =-222x =-2x =ABC V ()1,1A ()4,2B ()3,4C ABC V ABC V 111A B C △PA PB +72()2,0P A A 'A B 'P AP PA PB PA PB A B ''+=+=PA PB +()173313122322ABC S =⨯-⨯⨯+⨯+⨯=V 72根据轴对称图形的性质得:如图所示,即为所求.【小问3详解】作点关于x 轴对称的点,连接,交x 轴于,连接,,,则此时值最小,如图所示,点P 即为所求,坐标为.23. 明朝数学家程大位在他的著作《算法统宗》中写了一首计算秋千绳索长度的词《西江月》:“平地秋千未起,踏板一尺离地.送行二步恰竿齐,五尺板高离地…”翻译成现代文为:如图,秋千静止的时候,踏板离地高一尺(尺),将它往前推进两步(尺,于),此时踏板升高离地五尺(尺),求秋千绳索(或)的长度.【答案】秋千绳索的长度为14.5尺.【解析】【分析】此题考查了勾股定理的应用,熟练掌握勾股定理是解本题的关键.设尺,用表示出的长,在直角三角形中,利用勾股定理列出关于的方程,求出方程的解即可得到结果.【详解】解:设尺,111A B C △A A 'A B 'P AP AP A P '= PA PB PA PB A B ''∴+=+=PA PB +()2,0OA 1AC =10EB =BE OA ⊥E 5EC BD ==OA OB OA OB x ==x OE OEB x OA OB x ==尺,尺,(尺,尺,在中,尺,尺,尺,根据勾股定理得:,整理得:,即,解得:,则秋千绳索的长度为14.5尺.24. 如图,∠ACB =∠ADB =90°,M 、N 分别是AB 、CD 的中点.(1)求证:MN ⊥CD ;(2)若AB =50,CD =48,求MN 的长.【答案】(1)证明见详解;(2)7.【解析】【分析】(1)根据直角三角形的斜边上的中线等于斜边的一半得出,,再利用N 是CD 的中点,得出△DMN ≌△CMN ,求出MN 垂直CD ;(2)利用AB =50,CD =48,求出CN =24,CM =25,由勾股定理求出NM 即可.【详解】解:(1)∵∠ACB =∠ADB =90°,M 、N 分别是AB 、CD 中点,∴,,∴MC =MD ,∵N 是CD的中点,的5EC BD == 1AC =514EA EC AC ∴=-=-=)(4)OE OA AE x =-=-Rt OEB △(4)OE x =-OB x =10EB =222(4)10x x =-+8116x =229x =14.5x =12CM AB =12DM AB =12CM AB =12DM AB =在△DMN 和△CMN 中,,∴△DMN ≌△CMN (SSS ),∴∠MNC =∠MND =90°,∴MN ⊥CD ;(2)∵AB =50,∴DM =CM =25,∵CD =48,MN 垂直CD ,N 是CD 的中点,∴CN =24,∴.【点睛】此题主要考查了勾股定理和直角三角形的斜边上的中线等于斜边的一半等知识,利用已知得出MC =MD 是解题关键.25. 某市为助力新能源汽车产业的健康发展,打造新能源交通生态城市,近几年在全市范围内安装电动汽车充电桩.2021年该市投入资金1250万元,安装A 型充电桩200个和B 型充电桩300个;2022年又投入2000万元,安装A 型充电桩250个和B 型充电桩500个.已知这两年安装A 、B 两种型号的充电桩单价不变.(1)求安装A 型充电桩和B 型充电桩的单价各是多少万元?(2)为适应电动汽车快速发展的需要,市政府计划2023年再安装A 、B 两种型号的充电桩共200个.考虑到充电容量等综合因素,决定安装A 型充电桩的数量不多于B 型充电桩的一半.在安装单价不变的前提下,当安装A 型充电桩多少个时,所需投入的总费用最少,最少费用是多少万元?【答案】(1)安装A 型充电桩和B 型充电桩的单价分别是1万元和3.5万元(2)当A 型充电桩安装66个时,所需投入的总费用最少,最少的费用为535万元【解析】【分析】(1)设安装A 型充电桩的单价为x 万元,B 型充电桩的单价y 万元,根据题意即可列出关于x 、y 的方程组,解方程组即可求出答案;(2)设A 型充电桩安装了m 个,则B 型充电桩安装了个,投入的总费用为w 万元,根据题意可列出不等式,进而可求出m 的取值范围,然后得出w 关于m 的函数关系式,再根据一次函数的性质求最值即可.【小问1详解】设安装A 型充电桩的单价为x 万元,B 型充电桩的单价y 万元,根据题意,===CM DM MN MN DN CN ⎧⎪⎨⎪⎩7MN ===()200m -得,解这个方程组,得;答:安装A 型充电桩和B 型充电桩的单价分别是1万元和3.5万元.【小问2详解】设A 型充电桩安装了m 个,则B 型充电桩安装了个,投入的总费用为w 万元,根据题意,得.解这个不等式,得.投入的总费用.∴,∵,∴w 随m 增大而减小,∵m 为正整数,当m 取最大值66时,w 的最小值为(万元).答:当A 型充电桩安装66个时,所需投入的总费用最少,最少的费用为535万元.【点睛】本题考查了二元一次方程组的应用、一元一次不等式的应用以及一次函数的应用等知识,正确理解题意、列出方程组、不等式及一次函数关系式是解题的关键.26. 学习完一次函数内容后,小明同学想探究函数C :的图象情况.他通过列表得到如下几组数据:x…024…y …a 31b …20030012502505002000x y x y +=⎧⎨+=⎩13.5x y =⎧⎨=⎩()200m -()12002m m ≤-2366m ≤()1 3.5200w m m =⨯+-2.5700w m =-+2.50-< 2.566700535w =-⨯+=243(2)14(2)2x x y x x ⎧--≤⎪=⎨->⎪⎩2-1-3-(1)表格中a = ,b = .(2)结合表格,请在平面直角坐标系中画出函数C 的图象,并写出该函数的最小值.(3)若一次函数与函数C 的图象有2个交点,请求出m 的取值范围.【答案】(1)5,(2)图见解析,y 得最小值为(3)【解析】【分析】(1)将a 、b 对应x 值代入对应的解析式中求解即可;(2)根据表格数据和对应函数解析式进行描点、连线即可得到函数的图象,再根据图象的最低点可得函数的最小值;(3)当函数过点时与函数C 有且只有一个交点,求出此时的m 值,结合图象可得满足条件的m 值的取值范围.【小问1详解】解:当时,,∴;当时,,∴,故答案为:5,;【小问2详解】解:函数C的图象如图:的y x m =-+2-3-1m >-y x m =-+()2,3-2x =-()22435y =⨯---=5a =4x =14422y =⨯-=-2b =-2-由图可知,当时,y 有最小值为;【小问3详解】解:将代入中,得,此时,函数与函数C 有一个交点,由图知,当时,函数与函数C 有两个交点.【点睛】本题考查一次函数的图象与性质、两直线的交点问题,理解分段函数中自变量的取值范围,正确画出图象,利用数形结合思想求解是解答的关键.27. 新定义:顶角相等且顶角顶点重合的两个等腰三角形互为“兄弟三角形”.(1)如图①中,若△ABC 和△ADE 互为“兄弟三角形”,AB =AC ,AD =AE .写出∠BAD ,∠BAC 和∠BAE 之间的数量关系,并证明.(2)如图②,△ABC 和△ADE 互为“兄弟三角形”,AB =AC ,AD =AE ,点D 、点E 均在△ABC 外,连接BD 、CE 交于点M ,连接AM ,求证:AM 平分∠BME .(3)如图③,若AB =AC ,∠BAC =∠ADC =60°,试探究∠B 和∠C 的数量关系,并说明理由.【答案】(1)∠BAD +∠BAC =∠BAE ,理由见解析;(2)见解析;(3)∠B +∠C =180°,理由见解析【解析】【分析】(1)根据“兄弟三角形”的定义得到∠BAC =∠DAE ,进而得到∠CAE =∠BAD ,得到答案;(2)2x =3-()2,3-y x m =-+1m =-y x m =-+1m >-y x m =-+过点A 作AG ⊥DM 于G ,AH ⊥EM 于H ,证明△BAD ≌△CAE ,根据全等三角形的对应高相等得到AG =AH ,根据角平分线的判定定理证明结论;(3)延长DC 至点P ,使DP =AD ,证明△BAD ≌△CAP ,得到∠B =∠ACP ,根据邻补角的定义证明即可.【详解】(1)解:∠BAD +∠BAC =∠BAE ,理由如下:∵△ABC 和△ADE 互为“兄弟三角形”,∴∠BAC =∠DAE ,∴∠BAC ﹣∠DAC =∠DAE ﹣∠DAC ,即∠CAE =∠BAD ,∴∠BAD +∠BAC =∠CAE +∠BAC =∠BAE ;(2)证明:如图②,过点A 作AG ⊥DM 于G ,AH ⊥EM 于H ,∵△ABC 和△ADE 互为“兄弟三角形”,∴∠BAC =∠DAE ,∴∠BAC +∠DAC =∠DAE +∠DAC ,即∠CAE =∠BAD ,在△BAD 和△CAE 中,∴△BAD ≌△CAE (SAS ),∵AG ⊥DM ,AH ⊥EM ,∴AG =AH ,∵AG ⊥DM ,AH ⊥EM ,∴AM 平分∠BME.AB AC BAD CAEAD AE =⎧⎪∠=∠⎨⎪=⎩(3)∠B +∠C =180°,理由如下:如图③,延长DC 至点P ,使DP =AD ,∵∠ADP =60°,∴△ADP 为等边三角形,∴AD =AP ,∠DAP =60°,∵∠BAC =60°,∴∠BAD =∠CAP ,在△BAD 和△CAP 中,,∴△BAD ≌△CAP (SAS ),∴∠B =∠ACP ,∵∠ACD +∠ACP =180°,∴∠B +∠ACD =180°.【点睛】 本题考查了全等三角形的判定和性质,以及角平分线的判定,以及等边三角形的判定和性质,正确作出辅助线并证明是本题关键.28. 美国总统伽菲尔德利用图1验证了勾股定理,过等腰的直角顶点C 作直线l ,过点A 作于点D ,过点B 作于点E ,研究图形,不难发现:.AB AC BAD CAP AD AP =⎧⎪∠=∠⎨⎪=⎩Rt ACB △AD l ⊥BE l ⊥ADC CEB △≌△(1)如图2,在平面直角坐标系中,等腰,,,点C 的坐标为,A 点的坐标为,求B 点坐标;(2)如图3,在平面直角坐标系中,直线分别与y 轴,x 轴交于点A ,B ,将直线绕点A 顺时针旋转得到,求的函数表达式;(3)如图4,直线分别交x 轴、y 轴于点A ,C ,直线过点C 交x 轴于点B ,且.若点Q 是直线上且位于第三象限图象上的一个动点,点M 是y 轴上的一个动点,当以点B 、M 、Q 为顶点的三角形为等腰直角三角形时,直接写出点Q 和点M 的坐标.【答案】(1)(2) (3)、;、;,【解析】分析】(1)如图1,过点轴于E .证明推出,,可得;(2)若将直线绕点A 顺时针旋转得到,过点B 作交直线于点C ,过点C 作轴交于点D ,由(1)的模型可得,求出,再由待定系数法求函数的解析式;(3)分、、三种情况,利用三垂线构造全等三角形分别求解即可.【小问1详解】解:如图2,过点轴于E,【Rt ACB △90ACB ∠=︒AC BC =()0,1-()2,0126l y x =+:1l 45︒2l 2l 22y x =+BC 45CBA ∠=︒AC ()1,1B -163y x =+40,3M⎛⎫ ⎪⎝⎭42,33Q ⎛⎫-- ⎪⎝⎭()0,6M -()2,2Q --()0,4M ()2,2Q --BE y ⊥()AAS CEB AOC ≌V V 1BE OC ==2CE AO ==()1,1B -1l 45︒2l BC AB ⊥2l CD x ⊥BCD ABO ≌V V ()9,3C -90BMQ ∠=︒90MQB ∠=︒90∠=︒QBM BE y ⊥∵点C 的坐标为,A 点的坐标为,∴,,∵等腰,,,又∵轴,∴,∴,,∴,在和中,,∴,∴,,∴,∴;【小问2详解】若将直线绕点A 顺时针旋转得到,如图3,过点B 作交直线于点C ,过点C 作轴交于点D,()0,1-()2,01OC =2OA =Rt ACB △90ACB ∠=︒AC BC =BE y ⊥90BEC AOC ACB ∠=∠=∠=︒90BCE ACO ∠+∠=︒90BCE CBE ∠+∠=︒ACO CBE ∠=∠CEB V AOC V BEC AOC CBE ACO BC AC ∠=∠⎧⎪∠=∠⎨⎪=⎩()AAS CEB AOC ≌V V 1BE OC ==2CE AO ==,211OE CE OC =-=-=()11B -,1l 45︒2l BC AB ⊥2l CD x ⊥∵,∴,由(1)的模型可得,∵与x 轴的交点, ,∴,,∴,设直线的解析式为,∴,解得,∴;【小问3详解】∵直线分别交x 轴、y 轴于点A ,C ,∴,,∵.∴,∴,设点,点,①如图4, 当时,(点M 在x 轴上方),45CAB ∠=︒BC AB =BCD ABO ≌V V 26y x =+()3,0B -()0,6A 3CD OB ==6BD OA ==()9,3C -2l y kx b =+936k b b -+=⎧⎨=⎩136k b ⎧=⎪⎨⎪=⎩163y x =+22y x =+()1,0A -()0,2C 45CBA ∠=︒2OB OC ==()2,0B ()0,M m (),22Q n n +90BMQ ∠=︒分别过点Q 、B 作y 轴的平行线、,过点M 作x 轴的平行线分别交、于点G 、H , 由(1)的模型可得:,∴,,即:,, 解得:,; 故点、点; 同理当点M 在x 轴下方时,∴,,解得:(舍去);②当时,如图5,QG BH GQ BH ()AAS MHB QGM V V ≌GQ MH =BH GM =m n =-222m n --=43m =43n =-40,3M ⎛⎫ ⎪⎝⎭42,33Q ⎛⎫-- ⎪⎝⎭222n m +-=m n -=-0m n ==90MOB ∠=︒同理可得:,,解得:,,∴、;③当时,如图5,同理可得:,,解得:,,∴,;综上,、;、;,.【点睛】本题属于一次函数综合题,主要考查了待定系数法,全等三角形的判定和性质,等腰直角三角形性质和判定,坐标与图形性质等知识;解题的关键是正确添加辅助线构造全等三角形,结合坐标与图形性质解决问题,属于压轴题.22n n -=--222n m n +-=-6m =-2n =-()0,6M -()2,2Q --90∠=︒QBM 222n --=2m n =-4m =2n =-()0,4M ()2,2Q --40,3M ⎛⎫ ⎪⎝⎭42,33Q ⎛⎫-- ⎪⎝⎭()0,6M -()2,2Q --()0,4M ()2,2Q --。
人教版八年级上册数学期末考试试题一、单选题1.下列图形中,不是轴对称图形的是()A .B .C .D .2.将0.00000004米用科学记数法表示为()A .8410-⨯B .9410-⨯C .90.410⨯D .74010-⨯3.下列各式中,从左到右的变形是因式分解的是()A .()()2111x x x +-=-B .()24444x x x x -+=-+C .()()23412x x x x +-=--D .()()2422x x x -=+-4.使分式2x x +有意义的x 的取值范围是()A .2x ≠-B .0x ≠C .2x >-D .2x <-5.下列计算正确的是()A .336()x x =B .6424a a a ⋅=C .325a a a +=D .2232a a a-=6.下列选项中最简分式是()A .211x +B .224x C .211x x +-D .23x x x+7.如图,用尺规作图作已知角平分线,其根据是构造两个三形全等,它所用到的判别方法是()A .SASB .AASC .ASAD .SSS8.如图,CE ∥BF ,AE=DF ,要使△EAC ≌△FDB .需要添加下列选项中的()A .AB=CDB .EC=BFC .∠A=∠D D .AB=BC9.如图,AD 是△ABC 的角平分线,∠C=28°,AB+BD=AC 、将△ABD 沿AD 所在直线翻折,点B 在AC 边上的落点记为点E ,那么∠AED 的度数为()A .28°B .50°C .56°D .65°10.对于两个不相等的实数a 、b ,我们规定符号Min {a ,b }表示a 、b 中较小的值,如Min {2,4}=2,按照这个规定,方程Min {13,x x }=41x-的解为()A .1或3B .1或-3C .1D .3二、填空题11.(-2021)0=_________.12.点(1,2)A -关于x 轴对称点的坐标是___.13.已知三角形的两边分别为2和 7,则第三边c 的取值范围是_______.14.若46x =,412y =,则24x y -=________.15.分解因式:﹣x 2+2x ﹣1=_____.16.如图,在△ABC 中,∠ABC 和∠ACB 的平分线相交于F 点,过点F 作DE ∥BC ,交AB 于点D ,交AC 于点E ,若AB=8,AC=9,则△ADE 的周长为_______.17.如图,已知正五边形ABCDE ,AF ∥CD ,交DB 的延长线于点F ,则∠DFA =____度.18.如图,∠MON=30°,点123A A A 、、…在射线ON 上,点123B B B 、、…在射线OM 上,△112A B A ,△223A B A ,△334A B A ,…均为等边三角形,从左数起第1个等边三角形的边长记1a ,第2个等边三角形的边长记2a ,以此类推,若1OA =1,则2021=a ___.19.如图的三角形纸片中,AB=8cm ,BC=6cm ,AC=7cm ,沿过点B 的直线折叠三角形,使点C 落在AB 边的点E 处,折痕为BD ,则△AED 的周长为_____.20.如图,∠AOB=30°,OP 平分∠AOB ,PD ⊥OB 于D ,PC ∥OB 交OA 于C ,若PC=10,则PD=________.三、解答题21.计算:2(3)(6)x x x ---22.先化简,再求值:211()(4)22x x x +⋅--+,其中13x =.23.如图,△ABC中,∠B=2∠C,E为BC上一点,且到A、C两点的距离相等.(1)尺规作图:作出点E的位置(保留作图痕迹);(2)连接AE,求证:AB=AE.24.一网店经营的一个型号山地自行车,今年一月份销售额为27000元,二月份每辆车售价比一月份每辆车售价降价100元,若销售的数量与上一月销售的数量相同,则销售额是24000元.(1)求二月份每辆车售价是多少元?(2)为了促销,三月份每辆车售价比二月份每辆车售价降低了10%销售,网店仍可获利44%,求每辆山地自行车的进价是多少元?25.如图,在Rt△ABC中,∠ACB=90°,∠ABC=30°,以AB为一边向上作等边三角形ABD,点E在BC垂直平分线上,且EB⊥AB,连接CE,AE,CD.(1)判断△CBE的形状,并说明理由;(2)求证:AE=DC;(3)若CD与AE相交于点F,CD与AB相交于点G,求∠AFD的度数.26.如图,△ABC和△AOD是等腰直角三角形,AB=AC,AO=AD,∠BAC=∠OAD=90°,点O是△ABC内的一点,∠BOC=130°.(1)求证:OB=DC;(2)求∠DCO的大小;(3)设∠AOB=α,那么当α为多少度时,△COD是等腰三角形.27.如图,在等边三角形ABC中,点D,E分别在BC,AB上,且BD=AE,AD与CE 交于点F(1)求证:AD=CE;(2)求∠DFC的度数.28.已知:如图,AD∥BC,AD=BC,E为BC上一点,且AE=AB.求证:(1)∠DAE=∠B;(2)△ABC≌△EAD.参考答案1.D【分析】根据轴对称图形的定义,逐项判断即可求解.【详解】解:A、是轴对称图形,故本选项不符合题意;B、是轴对称图形,故本选项不符合题意;C、是轴对称图形,故本选项不符合题意;D、不是轴对称图形,故本选项符合题意;故选:D【点睛】本题主要考查了轴对称图形的定义,熟练掌握若一个图形沿着一条直线折叠后两部分能完全重合,这样的图形就叫做轴对称图形,这条直线叫做对称轴是解题的关键.2.A【分析】科学记数法的表示形式为a×10n的形式,其中1⩽|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【详解】解:将0.00000004米用科学记数法表示为4×10-8.故选:A.【点睛】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1⩽|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.3.D【分析】根据因式分解的意义(把一个多项式化成几个整式的积的形式,这个过程叫因式分解)逐个判断即可.【详解】解:A、是整式的乘法,不是因式分解,故本选项不符合题意;B、右边不是积的形式,所以不是因式分解,故本选项不符合题意;C、是整式的乘法,不是因式分解,故本选项不符合题意;D、是因式分解,故本选项符合题意;故选D.【点睛】本题考查了因式分解的定义,能正确理解因式分解的定义是解此题的关键.4.A【分析】根据分式有意义的条件列出关于x的不等式,求出x的取值范围即可.【详解】∵分式2x x +有意义,∴x+2≠0,解得x≠-2.故选:A .【点睛】本题考查的是分式有意义的条件,熟知分式有意义的条件是分母不等于零是解答此题的关键.5.C【分析】根据幂的乘方运算法则、同底数幂的乘法法则、合并同类项法则进行运算,即可判定.【详解】A .339()xx =,故该选项不正确;B .6410a a a = ,故该选项不正确;C .325a a a +=,故该选项正确;D .22232a a a -=,故该选项不正确.故选:C .【点睛】本题考查了幂的乘方运算法则、同底数幂的乘法法则、合并同类项法则,掌握各运算法则是解决本题的关键.6.A【分析】一个分式的分子与分母没有非零次的公因式时(即分子与分母互素)叫最简分式.【详解】A.211x +,是最简分式;B.222142x x =,不是最简分式;C.211x x +-=1x 1-,不是最简分式;D.23x x x+=3x+1,不是最简分式.故选A【点睛】本题考核知识点:最简分式.解题关键点:理解最简分式的意义.7.D【分析】根据作图过程可知:OC=OD ,PC=PD ,又OP=OP ,从而利用SSS 判断出△OCP ≌△ODP ,根据全等三角形的对应角相等得出∠COP=∠DOP ,即OP 平分∠AOB ,从而得出答案.【详解】解:由画法得OC=OD ,PC=PD ,而OP=OP ,所以△OCP ≌△ODP (SSS ),所以∠COP=∠DOP ,即OP 平分∠AOB.故答案为:D.【点睛】本题考查了用尺规作图作已知角平分线,三角形全等的判定,用尺规作图作已知角平分线,三角形全等的判定掌握是解题的关键.8.C【分析】由平行线的性质可得ACE DBF ∠=∠,结合AE DF =,则还需要一角,再结合选项可求得答案.【详解】解:∵CE BF ∥,ACE DBF ∴∠=∠.AE DF = ,∴要使EAC FDB ≌,利用判定三角形全等的”AAS “还需要A D ∠=∠或E F ∠=∠.故选:C .【点睛】本题主要考查全等三角形的判定,掌握全等三角形的判定方法是解题的关键.9.C【分析】根据折叠的性质可得BD=DE ,AB=AE ,然后根据AC=AE+EC ,AB+BD=AC 证得DE=EC ,再根据等边对等角以及三角形的外角的性质求解.【详解】解:根据折叠的性质可得BD=DE ,AB=AE .∵AB+BD=AC ,AC=AE+EC ,∴AB+BD=AE+EC ,∴DE=EC ,∴∠EDC=∠C=28︒,∴28+28=56AED EDC C ∠=∠+∠=︒︒︒.故选:C .【点睛】本题考查了折叠的性质以及等腰三角形的性质、三角形的外角的性质,证明DE=EC是本题的关键.10.D【分析】分类讨论1x与3x的大小,列出分式方程,求出解即可.【详解】解:当13x x>时,x<0,方程变形为341x x=-,去分母得:3=4−x,解得:x=1,经检验x=1是分式方程的解,但是不符合题意;当13x x<时,x>0,方程变形得:141x x=-,去分母得:1=4−x,解得:x=3,经检验x=3是分式方程的解,故原方程的解为x=3故选:D.11.1【分析】根据零次幂进行计算即可求解.【详解】解:原式=1,故答案为:1.【点睛】本题考查了零次幂,掌握非零实数的零次幂为1是解题的关键.12.(1,2)--【分析】利用平面直角坐标系点对称的性质求解.【详解】解:关于x轴对称点的坐标是横坐标不变纵坐标变为原来的相反数可知,(1,2)A-关于x轴对称点的坐标是(1,2)--.故答案是:(1,2)--.【点睛】本题考查点对称的性质,解题的关键是掌握坐标关于x轴对称的变化规律,即关于x轴对称点的坐标是横坐标不变纵坐标变为原来的相反数.13.59c<<【分析】利用“三角形的两边差小于第三边,三角形两边之和大于第三边”,可求出c的取值范围.【详解】解:∵7-2=5,2+7=9,∴第三边c 的取值范围为5<c <9.故答案为:5<c <9.【点睛】本题考查了三角形三边关系,牢记“三角形的两边差小于第三边,三角形两边之和大于第三边”是解题的关键.14.3【分析】由同底数幂的除法,可知222444(4)4x y x y x y -=÷=÷,再把46x =,412y =代入,即可求得其值【详解】解:222444(4)4x y x y x y -=÷=÷,46x = ,412y =,224612=3x y -∴=÷.故答案为:3.15.﹣(x ﹣1)2【详解】试题分析:直接提取公因式﹣1,进而利用完全平方公式分解因式即可解:﹣x 2+2x ﹣1=﹣(x 2﹣2x+1)=﹣(x ﹣1)2.故答案为﹣(x ﹣1)2.考点:提公因式法与公式法的综合运用.16.17【分析】根据角平分线的定义可得∠DBF=∠CBF ,根据平行线的性质,可得∠CBF=∠BFD ,等量代换可得∠DBF=∠BFD ,根据等角对等边可得BD=FD ,同理可得CE=FE ,可求得△ADE 的周长为AB+AC ,据此即可求得.【详解】解:∵BF 平分∠ABC ,∴∠DBF=∠CBF ,∵DE//BC ,∴∠CBF=∠BFD ,∴∠DBF=∠BFD ,∴BD=FD ,同理可得CE=FE ,∵DE=FD+FE ,∴DE=BD+CE ,∴△ADE 的周长为:AD+DE+AE =AD+BD+CE+AE=AB+AC=8+9=17.故答案为:17.17.36【分析】首先求得正五边形内角∠C 的度数,然后根据CD =CB 求得∠CDB 的度数,然后利用平行线的性质求得∠DFA 的度数即可.【详解】解:∵正五边形的外角为360°÷5=72°,∴∠C =180°﹣72°=108°,∵CD =CB ,∴∠CDB =36°,∵AF ∥CD ,∴∠DFA =∠CDB =36°,故答案为36.18.20202【分析】根据等腰三角形的性质以及平行线的性质得出112233A B A B A B ∥∥,以及A 2B 2=2B 1A 2,得出A 3B 3=4B 1A 2,…,依此类推进而得出答案.【详解】解:如图,∵△A 1B 1A 2是等边三角形,∴A 1B 1=A 2B 1,∠3=∠4=∠12=60°,∴∠2=120°,∵∠MON=30°,∴∠1=180°−120°−30°=30°,又∵∠3=60°,∴∠5=180°−60°−30°=90°,∵∠MON=∠1=30°,∴OA 1=A 1B 1=1,即△A 1B 1A 2的边长为0112a ==;∴A 2B 1=1,∵△A 2B 2A 3、△A 3B 3A 4是等边三角形,∴∠11=∠10=60°,∠13=60°,∵∠4=∠10=∠11=60°,∠12=∠13=60°,∴112233A B A B A B ∥∥,1223B A B A ∥,∴∠1=∠6=∠7=30°,∠5=∠8=90°,∴A 2B 2=2B 1A 2=2=21,即△A 2B 2A 3的边长为122a =同理得B 3A 3=2B 2A 3=4=22,即△A 3B 3A 4的边长为232a =,…,∴1n n n A B A + 的边长为12n n a -=,∴202120212022A B A △的边长为202020212a =.故答案为:20202.【点睛】本题考查的是平行线的判定与性质、等边三角形的性质以及等腰三角形的性质,根据已知得出规律是解决本题的关键.19.9cm【详解】试题分析:先根据图形翻折不变性的性质得出△DEB ≌△DCB ,故DE=CD ,EB=BC ,故可得出结论.解:∵△DEB 由△DCB 翻折而成,∴△DEB ≌△DCB ,∴DE=CD ,BE=BC ,∵AB=8cm ,BC=6cm ,AC=7cm ,∴△AED 的周长=AD+DE+AE=(AD+CD )+(AB ﹣BE )=AC+AB ﹣BC=7+8﹣6=9cm .故答案为9cm考点:翻折变换(折叠问题).20.5【详解】解:∵OP 平分∠AOB ,∴∠AOP=∠BOP ,∵PC ∥OB ,∴∠CPO=∠BOP ,∴∠CPO=∠AOP ,∴PC=OC .∵PC=10,∴OC=PC=10,过P 作PE ⊥OA 于点E ,∵PD ⊥OB ,OP 平分∠AOB ,∴PD=PE ,∵PC ∥OB ,∠AOB=30°∴∠ECP=∠AOB=30°在Rt △ECP 中,PE=12PC=5,∴PD=PE=5,故答案为5.21.9【分析】首先根据完全平方公式及单项式乘以多项式法则运算,再根据去括号法则去括号,最后合并同类项,即可求得【详解】解:2(3)(6)x x x ---2269(6)x x x x =-+--22696x x x x=-+-+9=22.2x ;23【分析】先将x 2-4根据平方差公式分解为(x+2)(x-2),再进行乘法运算,可得最简的式子2x ,最后将13x =代入计算即可.【详解】解:211((4)22x x x +⋅--+11=()(2)(2)22x x x x +⋅+--+=x+2+x-2=2x .把13x =代入最简式子,得原式12233=⨯=.23.(1)见解析;(2)见解析.【分析】作线段AC 的垂直平分线,交BC 于点E ,点E 即为所求的点;(2)根据线段垂直平分线的性质,可得AE=CE ,再根据三角形外角的性质,可证得∠AEB=2∠C ,由∠B=2∠C ,可得∠AEB=∠B ,据此即可证得结论.(1)解:如图:作线段AC 的垂直平分线MN ,交BC 于点E ,点E 即为所求的点.(2)解:∵MN 垂直平分AC ,∴AE=CE ,∴∠EAC=∠C ,∴∠AEB=∠EAC+∠C=2∠C ,∵∠B=2∠C ,∴∠AEB=∠B ,∴AB=AE .24.(1)800元;(2)500元.【分析】(1)设二月份每辆车售价为x 元,则一月份每辆车售价为(x+100)元,根据数量=总价÷单价,即可得出关于x 的分式方程,解之经检验后即可得出结论;(2)设每辆山地自行车的进价为y 元,根据利润=售价−进价,即可得出关于y 的一元一次方程,解之即可得出结论.(1)解:二月份每辆车售价为x 元,则一月份每辆车售价为(x+100)元,根据题意得:27002400100x x=+解得:x=800,经检验:x=800是原分式方程的解,故二月份每辆车售价为800元;(2)解:设每辆山地自行车的进价为y 元,根据题意得:800(110%)44%y y ⨯--=,解得:y=500,故每辆山地自行车的进价为500元.【点睛】本题考查了分式方程的应用以及一元一次方程的应用,解题的关键是:找准等量关系,正确列出方程;注意分式方程要检验.25.(1)等边三角形,理由见解析;(2)见解析;(3)60°.【分析】(1)根据垂直平分线的性质可得EC=EB ,再算出∠CBE=60°,可判定△CBE 是等边三角形;(2)根据SAS 可证明△ABE ≌△DBC ,即可得出结论;(3)由(2)中全等可得∠EAB=∠CDB ,再根据三角形内角和可得∠AFD 的度数.(1)解:△CBE 是等边三角形.理由如下:∵点E 在BC 垂直平分线上,∴EC=EB ,∵EB ⊥AB ,∴∠ABE=90°,∵∠ABC=30°,∴∠CBE=60°,∴△CBE 是等边三角形.(2)解:∵△ABD 是等边三角形,∴AB=DB ,∠ABD=60°,∵∠ABC=30°,∴∠DBC=90°,∵EB ⊥AB ,∴∠ABE=90°,∴∠ABE=∠DBC ,由(1)可知:△CBE 是等边三角形,∴EB=CB ,在△ABE 与△DBC 中,===AB DBABE DBC EB CB⎧⎪∠∠⎨⎪⎩∴△ABE ≌△DBC(SAS),∴AE=DC ;(3)解:如图,∵△ABE ≌△DBC ,∴∠EAB=∠CDB ,又∵∠AGC=∠BGD ,∴∠AFD=∠ABD=60°.26.(1)证明见解析;(2)40°;(3)当α的度数为115°或85°或145°时,△AOD 是等腰三角形【分析】(1)由已知证明△AOB ≌△ADC ,根据全等三角形的性质即可证得;(2)由∠BOC=130°,根据周角的定义可得∠BOA+∠AOC=230°,再根据全等三角形的性质继而可得∠ADC+∠AOC=230°,由∠DAO=90°,在四边形AOCD 中,根据四边形的内角和即可求得∠DCO 的度数;(3)分三种情况进行讨论即可得.【详解】(1)∵∠BAC=∠OAD=90°,∴∠BAC ﹣∠CAO=∠OAD ﹣∠CAO ,∴∠DAC=∠OAB ,在△AOB 与△ADC 中,AB AC OAB DAC AO AD =⎧⎪∠=∠⎨⎪=⎩,∴△AOB ≌△ADC ,∴OB=DC ;(2)∵∠BOC=130°,∴∠BOA+∠AOC=360°﹣130°=230°,∵△AOB≌△ADC∠AOB=∠ADC,∴∠ADC+∠AOC=230°,又∵△AOD是等腰直角三角形,∴∠DAO=90°,∴四边形AOCD中,∠DCO=360°﹣90°﹣230°=40°;(3)当CD=CO时,∴∠CDO=∠COD=1801804022DCO︒-∠︒-︒==70°,∵△AOD是等腰直角三角形,∴∠ODA=45°,∴∠CDA=∠CDO+∠ODA=70°+45°=115°,又∠AOB=∠ADC=α,∴α=115°;当OD=CO时,∴∠DCO=∠CDO=40°,∴∠CDA=∠CDO+∠ODA=40°+45°=85°,∴α=85°;当CD=OD时,∴∠DCO=∠DOC=40°,∠CDO=180°﹣∠DCO﹣∠DOC=180°﹣40°﹣40°=100°,∴∠CDA=∠CDO+∠ODA=100°+45°=145°,∴α=145°,综上所述:当α的度数为115°或85°或145°时,△AOD是等腰三角形.27.(1)见解析;(2)60°【分析】(1)根据等边三角形的性质,利用SAS证得△AEC≌△BDA,所以AD=CE,(2)根据全等三角形的性质得到∠ACE=∠BAD,再根据三角形的外角与内角的关系得到∠DFC=∠FAC+∠ACF=∠FAC+∠BAD=∠BAC=60°.【详解】(1)证明:∵△ABC是等边三角形,∴∠B=∠BAC=60°,AB=AC.又∵BD=AE∴△ABD≌△CAE(SAS)∴AD=CE(2)解:由(1)得△ABD≌△CAE∴∠ACE=∠BAD.∴∠DFC=∠FAC+∠ACE=∠FAC+∠BAD=∠BAC=60°.28.证明见解析【详解】试题分析:(1)首先由AE=AB可以得到∠B=∠AEB,然后由AD∥BC可以得到∠AEB=∠DAE,由此即可证明题目的结论;(2)利用(1)的结论,而且AD=BC,AE=AB,由此即可证明△ABC≌△EAD.证明:(1)∵AE=AB,∴∠B=∠AEB,又∵AD∥BC,∴∠AEB=∠DAE,∴∠DAE=∠B;(2)∵∠DAE=∠B,AD=BC,AE=AB,∴△ABC≌△EAD.。
八年级数学上册期末试卷分析本次考试数学命题,能根据教学的实际情况,以《数学课程标准》的精神为指导,以教材为依据来进行。
注重对“三基”即基础知识、基本技能和基本思想方法的考查,关注学生发展,充分体现基础教育的性质和要求,使命题有利于激发学生的创新意识和创新精神,有利于素质教育;注重数学核心内容和重要数学思想方法的考查;考查学生用数学的意识。
能立足学生发展和实际生活需要设计应用题(如第23题);关注学生获取数学信息,认识数学对象的基本过程和方法,突出教育价值,促进教师教学方式的改革,促进学生学习方式的转变;努力为学生创造探索思考的机会和空间,为学生的可持续发展创造良好的条件。
试题的考点覆盖了新课程标准所列的重点知识,不刻意追求知识的覆盖面,各部分比例力求与规定的课时保持一致,整份试卷无繁、难、偏的题目,不超出课程标准的要求,下面就学生答卷中出现的情况分析如下:一、试题分析(一)、选择题1题—14题考查学生基础知识的掌握情况,个别学生掌握不好选错的较多。
(二)、填空题16题、18题学生掌握不好,大部分同学都做错,只有优秀生做出来。
(三)、解答题19题计算的第(2)小题做错的较多,学生对绝对值的意义没有掌握。
20题重点考查学生对因式分解掌握的情况,还有部分学生做的不对,没有掌握。
22题几何证明学生对推理掌握不好,做题不规范。
23题应用题学生的理解、分析能力差,做对的只有个别同学。
24题函数问题学生掌握的较好,多数同学都做对了。
二、小结及教学建议从本次期末考试的情况可以看出,学生整体素质还不容乐观。
出现了失误,低分的学生也不少,一些基础题目还是有学生做错,这些反映了学生还没有真正掌握基础知识,数学能力不够强。
我认为在今后的教学中可以从以下几个方面来改进:1、立足教材,扎根于生活。
教材是我们的教学之本,在教学中,我们既要以教材为本,扎扎实实地渗透教材的重点,难点,不忽视有些自己以为无关紧要的知识;又要在教材的基础上,紧密联系生活,让学生多了解生活中的数学。
八年级上学期期末考试数学试卷(附答案解析)一、选择题1.下列各式中,无论x取何值,分式都有意义的是()A. xx2+2x+4B. 2x22x+1C. x+1x2D. x2x2.已知△ABC(如图1),按图2图3所示的尺规作图痕迹,(不需借助三角形全等)就能推出四边形ABCD是平行四边形的依据是()A. 两组对边分别平行的四边形是平行四边形B. 对角线互相平分的四边形是平行四边形C. 一组对边平行且相等的四边形是平行四边形D. 两组对边分别相等的四边形是平行四边形3.某中学篮球队12名队员的年龄情况如下:年龄(单位:岁)1415161718人数15321则这个队队员年龄的众数和中位数分别是()A. 15,16B. 15,15C. 15,15.5D. 16,154.若关于x的方程x−1x−2=mx−2+2产生增根,则m的值是()A. 2B. 0C. 1D. −15.如图,在正方形ABCD内,以BC为边作等边三角形BCM,连接AM并延长交CD于N,则下列结论不正确的是()A. ∠DAN =15°B. ∠CMN =45°C. AM =MND. MN =NC6. 如图,在△ABC 中,点M 为BC 的中点,AD 为∠BAN 的平分线,且AD ⊥BD ,若AB =6,AC =9,则MD 的长为( )A. 3B. 92C. 5D. 152 7. 如图,△ABC 中,AD 垂直BC 于点D ,且AD =BC ,BC 上方有一动点P 满足S △PBC =12S △ABC ,则点P 到B 、C 两点距离之和最小时,∠PBC 的度数为( )A. 30°B. 45°C. 60°D. 90°8. 如图,AD ⊥BC ,BD =DC ,点C 在AE 的垂直平分线上,则AB ,AC ,CE 的长度关系为( )A. AB >AC =CEB. AB =AC >CEC. AB >AC >CED. AB =AC =CE 9. 若x 2=y 7=z 5,则x+y−z x 的值是( ) A. 1 B. 2C. 3D. 4 10. 如图,在△ABC 中,∠A =40°,D 点是∠ABC 和∠ACB 角平分线的交点,则∠BDC =( )A. 110°B. 100°C. 90°D. 80°11. 如果把分式2xy x+y 中的x 和y 都扩大3倍,那么分式的值( )A. 扩大3倍B. 缩小3倍C. 缩小6倍D. 不变 12. 已知x 为整数,且分式2x−2x 2−1的值为整数,满足条件的整数x 的个数有( )A. 1个B. 2个C. 3个D. 4个13. 如图,在△ABC 中,D 、E 分别是AB 、AC 的中点,BC =16,F 是线段DE 上一点,连接AF 、CF ,DE =4DF ,若∠AFC =90°,则AC 的长度是( )A. 6B. 8C. 10D. 12二、填空题14.数学老师计算同学们一学期的平均成绩时,将平时、期中和期末的成绩按3:3:4计算,若小红平时、期中和期末的成绩分别是90分、100分、90分,则小红一学期的数学平均成绩是______分.15.如图(1)是长方形纸带,∠DEF=20°,将纸带沿EF折叠图(2)形状,则∠FGD等于______度.16.若a:b=1:3,b:c=2:5,则a:c=______.17.已知点A(a,1)与点B(5,b)关于y轴对称,则ba +ab=______.18.如图,在梯形ABCD中,AD//BC,若AB=AD=DC=3,∠A=120°,则梯形ABCD的周长为______.19.如图,依据尺规作图的痕迹,计算∠α=______°.三、解答题(20.(1)计算:1−x−2yx+y ÷x2−4xy+4y2x2−y2(2)先化简,再求值:(9x+3+x−3)÷(xx2−9),其中x=−2.21.过矩形ABCD的对角线AC的中点O作EF⊥AC,交BC边于点E,交AD边于点F,分别连接AE,CF.(1)求证:四边形AECF是菱形;(2)若AB=6,AC=10,EC=254,求EF的长.参考答案和解析1.【答案】A【解析】解:A、xx2+2x+4=x(x+1)2+3,(x+1)2≥0,则(x+1)2+3≥3,无论x取何值,分式都有意义,故此选项正确;B、当x=−12时,分式分母=0,分式无意义,故此选项错误;C、x=0时,分式分母=0,分式无意义,故此选项错误;D、x=0时,分式分母=0,分式无意义,故此选项错误;故选:A.2.【答案】B【解析】解:由图可知先作AC的垂直平分线,再连接AC的中点O与B点,并延长使BO=OD,可得:AO=OC,BO=OD,进而得出四边形ABCD是平行四边形,故选:B.3.【答案】C【解析】解:∵这组数据中15出现5次,次数最多,∴众数为15岁,中位数是第6、7个数据的平均数,=15.5岁,∴中位数为15+162故选:C.4.【答案】C【解析】解:分式方程去分母得:x−1=m+2x−4,根据题意得:x−2=0,即x=2,代入整式方程得:2−1=m+4−4,解得:m=1.故选C5.【答案】D【解析】解:作MG⊥BC于G.∵四边形ABCD是正方形,∴BA=BC,∠ABC=∠DAB=°∠DCB=90°∵△MBC是等边三角形,∴MB=MC=BC,∠MBC=∠BMC=60°,∵MG⊥BC,∴BG=GC,∵AB//MG//CD,∴AM=MN,∴∠ABM=30°,∵BA=BM,∴∠MAB=∠BMA=75°,∴∠DAN=90°−75°=15°,∠CMN=180°−75°−60°=45°,故A,B,C正确,故选:D.6.【答案】D【解答】解:延长BD交CA的延长线于E,∵AD为∠BAE的平分线,BD⊥AD,∴BD=DE,AB=AE=6,∴CE=AC+AE=9+6=15,又∵M为△ABC的边BC的中点,∴DM是△BCE的中位线,∴MD=12CE=12×15=7.5.故选:D.7.【答案】B【解析】解:∵S△PBC=12S△ABC,∴P在与BC平行,且到BC的距离为12AD的直线l上,∴l//BC,作点B关于直线l的对称点B′,连接B′C交l于P,如图所示:则BB′⊥l,PB=PB′,此时点P到B、C两点距离之和最小,作PM⊥BC于M,则BB′=2PM=AD,∵AD⊥BC,AD=BC,∴BB′=BC,BB′⊥BC,∴△BB′C是等腰直角三角形,∴∠B′=45°,∵PB=PB′,∴∠PBB′=∠B′=45°,∴∠PBC=90°−45°=45°;故选:B.8.【答案】D【解答】解:∵AD⊥BC,BD=DC,∴AD垂直平分BC,∴AB=AC,又∵点C在AE的垂直平分线上,∴AC=EC,∴AB=AC=CE.故选D.9.【答案】B【解答】解:设x2=y7=z5=k,则x=2k,y=7k,z=5k,把x=2k,y=7k,z=5k代入x+y−zx =2k+7k−5k2k=2,故选B.10.【答案】A【解析】解:∵D点是∠ABC和∠ACB角平分线的交点,∴∠CBD=∠ABD=12∠ABC,∠BCD=∠ACD=12∠ACB,∴∠ABC+∠ACB=180°−40°=140°,∴∠DBC+∠DCB=70°,∴∠BDC=180°−70°=110°,故选:A.11.【答案】A【解析】解:把原分式中的x换成3x,把y换成3y,那么2⋅3x⋅3y 3x+3y =6xyx+y=3×2xyx+y.故选:A.12.【答案】C【解析】解:∵原式=2(x−1)(x+1)(x−1)=2x+1,∴x+1为±1,±2时,2x+1的值为整数,∵x2−1≠0,∴x≠±1,∴x为−2,0,−3,个数有3个.故选:C.13.【答案】D【解析】解:∵D、E分别是AB、AC的中点,BC=8,∴DE=12∵DE=4DF,DE=2,∴DF=14∴EF=DE−DF=6,∵∠AFC=90°,点E是AC的中点,∴AC=2EF=12,故选:D.14.【答案】93【解析】解:根据题意得:90×3+100×3+90×4=93(分),3+3+4答:小红一学期的数学平均成绩是93分;故答案为:93.15.【答案】40【解析】解:根据折叠可知:∠AEG=180°−20°×2=140°,∵AE//BF,∴∠EGB=180°−∠AEG=40°,∴∠FGD=40°.故答案为:40.16.【答案】2:15【解析】解:∵a:b=1:3=2:6,b:c=2:5=6:15,∴a:c=2:15,故答案为:2:1517.【答案】−265【解析】解:∵点A(a,1)与点A′(5,b)关于y轴对称,∴a=−5,b=1,∴ba +ab=−15+(−5)=−265,故答案为:−265.18.【答案】15【解析】解:过点A作AE//CD,交BC于点E,∵AD//BC,∴四边形AECD是平行四边形,∠B=180°−∠BAD=180°−120°=60°,∴AE=CD,CE=AD=3,∵AB=DC,∴△ABE是等边三角形,∴BE=AB=3,∴BC=BE+CE=6,∴梯形ABCD的周长为:AB+BC+CD+AD=15.故答案为:15.首先过点A作AE//CD,交BC于点E,由AB=AD=DC=2,∠A=120°,易证得四边形AECD 是平行四边形,△ABE是等边三角形,继而求得答案.19.【答案】56【分析】本题考查的是作图−基本作图,熟知角平分线及线段垂直平分线的作法是解答此题的关键.先根据矩形的性质得出AD//BC,故可得出∠DAC的度数,由角平分线的定义求出∠EAF的度数,再由EF是线段AC的垂直平分线得出∠AEF的度数,根据三角形内角和定理得出∠AFE的度数,进而可得出结论.【解答】解:∵四边形ABCD是矩形,∴AD//BC,∴∠DAC=∠ACB=68°.∵由作法可知,AF是∠DAC的平分线,∴∠EAF=12∠DAC=34°.∵由作法可知,EF是线段AC的垂直平分线,∴∠AEF=90°,∴∠AFE=90°−34°=56°,∴∠α=56°.故答案为:56.20.【答案】解:(1)原式=1−x−2yx+y ⋅(x+y)(x−y)(x−2y)2=1−x−yx−2y=x−2yx−2y−x−yx−2y=−y2x−y;(2)原式=(9x+3+x2−9x+3)÷x(x+3)(x−3)=x2x+3⋅(x+3)(x−3)x=x(x−3),当x=−2时,原式=(−2)×(−2−3)=10.【解析】(1)根据分式的混合运算顺序和运算法则计算可得;(2)先根据分式的混合运算顺序和运算法则化简原式,再将x的值代入计算可得.21.【答案】解:(1)∵四边形ABCD是矩形,∴AD//BC,∴∠ACB=∠DAC,∵O是AC的中点,∴AO =CO ,在△AOF 和△COE 中,{∠ACB =∠DACAO =CO ∠AOF =∠COE,∴△AOF ≌△COE(ASA),∴OE =OF ,且AO =CO ,∴四边形AECF 是平行四边形,又∵EF ⊥AC ,∴四边形AECF 是菱形;(2)∵菱形AECF 的面积=EC ×AB =12AC ×EF ,又∵AB =6,AC =10,EC =254, ∴254×6=12×10×EF ,解得EF =152.【解析】(1)由矩形的性质可得∠ACB =∠DAC ,然后利用“ASA ”证明△AOF 和△COE 全等,根据全等三角形对应边相等可得OE =OF ,即可证四边形AECF 是菱形;(2)由菱形的性质可得:菱形AECF 的面积=EC ×AB =12AC ×EF ,进而得到EF 的长.。
人教版八年级上册数学期末试卷(Word 版 含解析)一、八年级数学全等三角形解答题压轴题(难)1.如图1,在平面直角坐标系中,点D (m ,m +8)在第二象限,点B (0,n )在y 轴正半轴上,作DA ⊥x 轴,垂足为A ,已知OA 比OB 的值大2,四边形AOBD 的面积为12.(1)求m 和n 的值.(2)如图2,C 为AO 的中点,DC 与AB 相交于点E ,AF ⊥BD ,垂足为F ,求证:AF =DE .(3)如图3,点G 在射线AD 上,且GA =GB ,H 为GB 延长线上一点,作∠HAN 交y 轴于点N ,且∠HAN =∠HBO ,求NB ﹣HB 的值.【答案】(1)42m n =-⎧⎨=⎩(2)详见解析;(3)NB ﹣FB =4(是定值),即当点H 在GB 的延长线上运动时,NB ﹣HB 的值不会发生变化.【解析】【分析】(1)由点D ,点B 的坐标和四边形AOBD 的面积为12,可列方程组,解方程组即可; (2)由(1)可知,AD =OA =4,OB =2,并可求出AB =BD =25,利用SAS 可证△DAC ≌△AOB ,并可得∠AEC =90°,利用三角形面积公式即可求证;(3)取OC =OB ,连接AC ,根据对称性可得∠ABC =∠ACB ,AB =AC ,证明△ABH ≌△CAN ,即可得到结论.【详解】解:(1)由题意()()218122m n n m m --=⎧⎪⎨++-=⎪⎩ 解得42m n =-⎧⎨=⎩; (2)如图2中,由(1)可知,A (﹣4,0),B (0,2),D (﹣4,4),∴AD=OA =4,OB =2,∴由勾股定理可得:AB =BD =25,∵AC =OC =2,∴AC =OB ,∵∠DAC =∠AOB =90°,AD =OA ,∴△DAC ≌△AOB (SAS ),∴∠ADC =∠BAO ,∵∠ADC +∠ACD =90°,∴∠EAC +∠ACE =90°,∴∠AEC =90°,∵AF ⊥BD ,DE ⊥AB ,∴S △ADB =12•AB •AE =12•BD •AF , ∵AB =BD ,∴DE =AF .(3)解:如图,取OC =OB ,连接AC ,根据对称性可得∠ABC =∠ACB ,AB =AC ,∵AG =BG ,∴∠GAB =∠GBA ,∵G 为射线AD 上的一点,∴AG ∥y 轴,∴∠GAB =∠ABC ,∴∠ACB =∠EBA ,∴180°﹣∠GBA =180°﹣∠ACB ,即∠ABG =∠ACN ,∵∠GAN =∠GBO ,∴∠AGB =∠ANC ,在△ABG 与△ACN 中,ABH ACN AHB ANC AB AC ∠=∠⎧⎪∠=∠⎨⎪=⎩, ∴△ABH ≌△ACN (AAS ),∴BF =CN ,∴NB ﹣HB =NB ﹣CN =BC =2OB ,∵OB=2∴NB﹣FB=2×2=4(是定值),即当点H在GB的延长线上运动时,NB﹣HB的值不会发生变化.【点睛】本题属于三角形综合题,全等三角形的判定和性质,解题的关键是相结合添加常用辅助线,构造图形解决问题,学会利用参数构建方程解决问题.2.如图1,在正方形ABCD中,P是对角线BD上的一点,点E在AD的延长线上,且PA=PE,PE交CD于F(1)证明:PC=PE;(2)求∠CPE的度数;(3)如图2,把正方形ABCD改为菱形ABCD,其他条件不变,当∠ABC=120°时,连接CE,试探究线段AP与线段CE的数量关系,并说明理由.【答案】(1)证明见解析(2)90°(3)AP=CE【解析】【分析】(1)、根据正方形得出AB=BC,∠ABP=∠CBP=45°,结合PB=PB得出△ABP ≌△CBP,从而得出结论;(2)、根据全等得出∠BAP=∠BCP,∠DAP=∠DCP,根据PA=PE得出∠DAP=∠E,即∠DCP=∠E,易得答案;(3)、首先证明△ABP和△CBP全等,然后得出PA=PC,∠BAP=∠BCP,然后得出∠DCP=∠E,从而得出∠CPF=∠EDF=60°,然后得出△EPC是等边三角形,从而得出AP=CE.【详解】(1)、在正方形ABCD中,AB=BC,∠ABP=∠CBP=45°,在△ABP和△CBP中,又∵ PB=PB ∴△ABP ≌△CBP(SAS),∴PA=PC,∵PA=PE,∴PC=PE;(2)、由(1)知,△ABP≌△CBP,∴∠BAP=∠BCP,∴∠DAP=∠DCP,∵PA=PE,∴∠DAP=∠E,∴∠DCP=∠E,∵∠CFP=∠EFD(对顶角相等),∴180°﹣∠PFC﹣∠PCF=180°﹣∠DFE﹣∠E,即∠CPF=∠EDF=90°;(3)、AP=CE理由是:在菱形ABCD中,AB=BC,∠ABP=∠CBP,在△ABP和△CBP中,又∵ PB=PB ∴△ABP≌△CBP(SAS),∴PA=PC,∠BAP=∠DCP,∵PA=PE,∴PC=PE,∴∠DAP=∠DCP,∵PA=PC ∴∠DAP=∠E,∴∠DCP=∠E∵∠CFP=∠EFD (对顶角相等), ∴180°﹣∠PFC ﹣∠PCF=180°﹣∠DFE ﹣∠E ,即∠CPF=∠EDF=180°﹣∠ADC=180°﹣120°=60°, ∴△EPC 是等边三角形,∴PC=CE ,∴AP=CE考点:三角形全等的证明3.(1)问题发现:如图(1),已知:在三角形ABC ∆中,90BAC ︒∠=,AB AC =,直线l 经过点A ,BD ⊥直线l ,CE ⊥直线l ,垂足分别为点,D E ,试写出线段,BD DE 和CE 之间的数量关系为_________________.(2)思考探究:如图(2),将图(1)中的条件改为:在ABC ∆中, ,,,AB AC D A E =三点都在直线l 上,并且BDA AEC BAC α∠=∠=∠=,其中α为任意锐角或钝角.请问(1)中结论还是否成立?若成立,请给出证明;若不成立,请说明理由.(3)拓展应用:如图(3),,D E 是,,D A E 三点所在直线m 上的两动点,(,,D A E 三点互不重合),点F 为BAC ∠平分线上的一点,且ABF ∆与ACF ∆均为等边三角形,连接,BD CE ,若BDA AEC BAC ∠=∠=∠,试判断DEF ∆的形状并说明理由.【答案】(1)DE=CE+BD ;(2)成立,理由见解析;(3)△DEF 为等边三角形,理由见解析.【解析】【分析】(1)利用已知得出∠CAE=∠ABD ,进而根据AAS 证明△ABD 与△CAE 全等,然后进一步求解即可;(2)根据BDA AEC BAC α∠=∠=∠=,得出∠CAE=∠ABD ,在△ADB 与△CEA 中,根据AAS 证明二者全等从而得出AE=BD ,AD=CE ,然后进一步证明即可;(3)结合之前的结论可得△ADB 与△CEA 全等,从而得出BD=AE ,∠DBA=∠CAE ,再根据等边三角形性质得出∠ABF=∠CAF=60°,然后进一步证明△DBF 与△EAF 全等,在此基础上进一步证明求解即可.【详解】(1)∵BD ⊥直线l ,CE ⊥直线l ,∴∠BDA=∠AEC=90°,∴∠BAD+∠ABD=90°,∵∠BAC=90°,∴∠BAD+∠CAE=90°,∴∠CAE=∠ABD ,在△ABD 与△CAE 中,∵∠ABD=∠CAE ,∠BDA=∠AEC ,AB=AC ,∴△ABD ≌△CAE(AAS),∴BD=AE ,AD=CE ,∵DE=AD+AE ,∴DE=CE+BD ,故答案为:DE=CE+BD ;(2)(1)中结论还仍然成立,理由如下:∵BDA AEC BAC α∠=∠=∠=,∴∠DBA+∠BAD=∠BAD+∠CAE=180°−α,∴∠CAE=∠ABD ,在△ADB 与△CEA 中,∵∠ABD=∠CAE ,∠ADB=∠CEA ,AB=AC ,∴△ADB ≌△CEA(AAS),∴AE=BD ,AD=CE ,∴BD+CE=AE+AD=DE ,即:DE=CE+BD ,(3)DEF ∆为等边三角形,理由如下:由(2)可知:△ADB ≌△CEA ,∴BD=EA ,∠DBA=∠CAE ,∵△ABF 与△ACF 均为等边三角形,∴∠ABF=∠CAF=60°,BF=AF ,∴∠DBA+∠ABF=∠CAE+CAF ,∴∠DBF=∠FAE ,在△DBF 与△EAF 中,∵FB=FA ,∠FDB=∠FAE ,BD=AE ,∴△DBF ≌△EAF(SAS),∴DF=EF ,∠BFD=∠AFE ,∴∠DFE=∠DFA+∠AFE=∠DFA+∠BFD=60°,∴△DEF 为等边三角形.【点睛】本题主要考查了全等三角形性质与判定的综合运用,熟练掌握相关概念是解题关键.4.如图,在ABC ∆中,5BC = ,高AD 、BE 相交于点O , 23BD CD =,且AE BE = . (1)求线段 AO 的长;(2)动点 P 从点 O 出发,沿线段 OA 以每秒 1 个单位长度的速度向终点 A 运动,动点 Q 从 点 B 出发沿射线BC 以每秒 4 个单位长度的速度运动,,P Q 两点同时出发,当点 P 到达 A 点时,,P Q 两点同时停止运动.设点 P 的运动时间为 t 秒,POQ ∆的面积为 S ,请用含t 的式子表示 S ,并直接写出相应的 t 的取值范围;(3)在(2)的条件下,点F是直线AC上的一点且CF BO=.是否存在t值,使以点,,B O P为顶点的三角形与以点,,F C Q为顶点的三角形全等?若存在,请直接写出符合条件的t值; 若不存在,请说明理由.【答案】(1)5;(2)①当点Q在线段BD上时,24QD t=-,t的取值范围是12t<<;②当点Q在射线DC上时,42QD t=-,,t的取值范围是152t<≤;(3)存在,1t=或53.【解析】【分析】(1)只要证明△AOE≌△BCE即可解决问题;(2)分两种情形讨论求解即可①当点Q在线段BD上时,QD=2-4t,②当点Q在射线DC 上时,DQ=4t-2时;(3)分两种情形求解即可①如图2中,当OP=CQ时,BOP≌△FCQ.②如图3中,当OP=CQ时,△BOP≌△FCQ;【详解】解:(1)∵AD是高,∴90ADC∠=∵BE是高,∴90AEB BEC∠=∠=∴90EAO ACD∠+∠=,90EBC ECB∠+∠=,∴EAO EBC∠=∠在AOE∆和BCE∆中,EAO EBCAE BEAEO BEC∠=∠⎧⎪=⎨⎪∠=∠⎩∴AOE∆≌BCE∆∴5AO BC==;(2)∵23BD CD=,=5BC∴=2BD,=3CD,根据题意,OP t=,4BQ t=,①当点Q在线段BD上时,24QD t=-,∴21(24)22S t t t t =-=-+,t 的取值范围是102t <<. ②当点Q 在射线DC 上时,42QD t =-, ∴21(42)22S t t t t =-=-,t 的取值范围是152t <≤ (3)存在. ①如图2中,当OP=CQ 时,∵OB=CF ,∠POB=∠FCQ ,∴△BOP ≌△FCQ .∴CQ=OP ,∴5-4t ═t ,解得t=1,②如图3中,当OP=CQ 时,∵OB=CF ,∠POB=∠FCQ ,∴△BOP ≌△FCQ .∴CQ=OP ,∴4t-5=t ,解得t=53. 综上所述,t=1或53s 时,△BOP 与△FCQ 全等. 【点睛】本题考查三角形综合题、全等三角形的判定和性质、三角形的面积等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.5.(1)如图(1),已知:在△ABC 中,∠BAC=90°,AB=AC ,直线m 经过点A ,BD ⊥直线m ,CE ⊥直线m ,垂足分别为点D 、E .求证:DE=BD+CE .(2)如图(2),将(1)中的条件改为:在△ABC 中,AB=AC ,D 、A 、E 三点都在直线m 上,并且有∠BDA=∠AEC=∠BAC=α,其中α为任意锐角或钝角.请问结论DE=BD+CE 是否成立?如成立,请你给出证明;若不成立,请说明理由.(3)如图(3),D 、E 是D 、A 、E 三点所在直线m 上的两动点(D 、A 、E 三点互不重合),点F 为∠BAC 平分线上的一点,且△ABF 和△ACF 均为等边三角形,连接BD 、CE ,若∠BDA=∠AEC=∠BAC ,求证:△DEF 是等边三角形.【答案】(1)见解析;(2)成立,理由见解析;(3)见解析 【解析】【分析】(1)因为DE=DA+AE ,故通过证BDA AEC ≅△△,得出DA=EC ,AE=BD ,从而证得DE=BD+CE.(2)成立,仍然通过证明BDA AEC ≅△△,得出BD=AE ,AD=CE ,所以DE=DA+AE=EC+BD.(3)由BDA AEC ≅△△得BD=AE ,=BDA AEC ∠∠,ABF 与ACF 均等边三角形,得==60BA AC ︒∠F ∠F ,FB=FA ,所以=BA BA AC AC ∠F +∠D ∠F +∠E ,即FBD FAB ≅∠∠,所以BDF AEF ≅△△,所以FD=FE ,BFD AFE ≅∠∠,再根据=60BFD FA BFA =︒∠+∠D ∠,得=60AF FA =︒∠E +∠D ,即=60FE =︒∠D ,故DFE △是等边三角形.【详解】证明:(1)∵BD⊥直线m,CE⊥直线m∴∠BDA=∠CEA=90°,∵∠BAC=90°∴∠BAD+∠CAE=90°,∵∠BAD+∠ABD=90°∴∠CAE=∠ABD,又AB=AC ,∴△ADB≌△CEA∴AE=BD,AD=CE,∴DE=AE+AD= BD+CE(2)∵∠BDA =∠BAC=α,∴∠DBA+∠BAD=∠BAD +∠CAE=180°—α∴∠DBA=∠CAE ,∵∠BDA=∠AEC=α,AB=AC∴△ADB≌△CEA,∴AE=BD,AD=CE∴DE=AE+AD=BD+CE(3)由(2)知,△ADB≌△CEA, BD=AE,∠DBA =∠CAE∵△ABF和△ACF均为等边三角形,∴∠ABF=∠CAF=60°∴∠DBA+∠ABF=∠CAE+∠CAF,∴∠DBF=∠FAE∵BF=AF,∴△DBF≌△EAF∴DF=EF,∠BFD=∠AFE∴∠DFE=∠DFA+∠AFE=∠DFA+∠BFD=60°∴△DEF为等边三角形.【点睛】利用全等三角形的性质证线段相等是证两条线段相等的重要方法.二、八年级数学轴对称解答题压轴题(难)6.如图,在△ABC中,AB=AC,BD平分∠ABC交AC于点D,点E是BC延长线上的一点,且BD=DE.点G是线段BC的中点,连结AG,交BD于点F,过点D作DH⊥BC,垂足为H.(1)求证:△DCE为等腰三角形;(2)若∠CDE=22.5°,DC=2,求GH的长;(3)探究线段CE,GH的数量关系并用等式表示,并说明理由.【答案】(1)证明见解析;(2)22;(3)CE=2GH,理由见解析.【解析】【分析】(1)根据题意可得∠CBD=12∠ABC=12∠ACB,,由BD=DE,可得∠DBC=∠E=1 2∠ACB,根据三角形的外角性质可得∠CDE=12∠ACB=∠E,可证△DCE为等腰三角形;(2)根据题意可得CH=DH=1,△ABC是等腰直角三角形,由等腰三角形的性质可得BG=GC,2+1,即可求GH的值;(3)CE=2GH,根据等腰三角形的性可得BG=GC,BH=HE,可得GH=GC﹣HC=GC﹣(HE﹣CE)=12BC﹣12BE+CE=12CE,即CE=2GH【详解】证明:(1)∵AB=AC,∴∠ABC=∠ACB,∵BD平分∠ABC,∴∠CBD=12∠ABC=12∠ACB,∵BD=DE,∴∠DBC=∠E=12∠ACB,∵∠ACB=∠E+∠CDE,∴∠CDE=12∠ACB=∠E,∴CD=CE,∴△DCE是等腰三角形(2)∵∠CDE=22.5°,CD=CE2,∴∠DCH=45°,且DH⊥BC,∴∠HDC=∠DCH=45°∴DH=CH,∵DH2+CH2=DC2=2,∴DH=CH=1,∵∠ABC=∠DCH=45°∴△ABC是等腰直角三角形,又∵点G是BC中点∴AG⊥BC,AG=GC=BG,∵BD=DE,DH⊥BC∴BH=HE2+1∵BH=BG+GH=CG+GH=CH+GH+GH2+1∴1+2GH2+1∴GH=2 2(3)CE=2GH理由如下:∵AB=CA,点G是BC的中点,∴BG=GC,∵BD=DE,DH⊥BC,∴BH=HE,∵GH=GC﹣HC=GC﹣(HE﹣CE)=12BC﹣12BE+CE=12CE,∴CE=2GH【点睛】本题是三角形综合题,考查了角平分线的性质,等腰三角形的性质,灵活运用相关的性质定理、综合运用知识是解题的关键.7.如图,在△ABC中,AB=BC=AC=20 cm.动点P,Q分别从A,B两点同时出发,沿三角形的边匀速运动.已知点P,点Q的速度都是2 cm/s,当点P第一次到达B点时,P,Q两点同时停止运动.设点P的运动时间为t(s).(1)∠A=______度;(2)当0<t <10,且△APQ 为直角三角形时,求t 的值;(3)当△APQ 为等边三角形时,直接写出t 的值.【答案】(1)60;(2)103或203;(3)5或20 【解析】【分析】(1)根据等边三角形的性质即可解答;(2)需分∠APQ=90°和∠AQP=90°两种情况进行解答;(3)需分以下两种情况进行解答:①由∠A=60°,则当AQ=AP 时,△APQ 为等边三角形;②当P 于B 重合,Q 与C 重合时,△APQ 为等边三角形.【详解】解:(1)60°.(2)∵∠A=60°,当∠APQ=90°时,∠AQP=90°-60°=30°.∴QA=2PA .即2022 2.t t -=⨯ 解得 10.3t = 当∠AQP=90°时,∠APQ=90°-60°=30°.∴PA=2QA .即2(202)2.t t -= 解得 20.3t = ∴当0<t <10,且△APQ 为直角三角形时,t 的值为102033或. (3)①由题意得:AP=2t ,AQ=20-2t∵∠A=60°∴当AQ=AP 时,△APQ 为等边三角形∴2t=20-2t ,解得t=5②当P 于B 重合,Q 与C 重合,则所用时间为:4÷2=20综上,当△APQ 为等边三角形时,t=5或20.【点睛】本题考查了等边三角形和直角三角形的判定以及动点问题,解答的关键在于正确的分类讨论以及对所学知识的灵活应用.8.如图,在等边△ABC中,线段AM为BC边上的高,D是AM上的点,以CD为一边,在CD的下方作等边△CDE,连结BE.(1)填空:∠ACB=____;∠CAM=____;(2)求证:△AOC≌△BEC;(3)延长BE交射线AM于点F,请把图形补充完整,并求∠BFM的度数;(4)当动点D在射线AM上,且在BC下方时,设直线BE与直线AM的交点为F.∠BFM 的大小是否发生变化?若不变,请在备用图中面出图形,井直接写出∠BFM的度数;若变化,请写出变化规律.【答案】(1)60°,30°;(2)答案见解析;(3)60°;(4)∠BFM=60°.【解析】【分析】(1)根据等边三角形的性质即可进行解答;(2)根据等边三角形的性质就可以得出AC=AC,DC=EC,∠ACB=∠DCE=60°,由等式的性质就可以∠BCE=∠ACD,根据SAS就可以得出△ADC≌△BEC;(3)补全图形,由△ADC≌△BEC得∠CAM=∠CBE=30°,由三角形内角和定理即可求得∠BFM的度数;(4)画出相应图形,可知当点D在线段AM的延长线上且在BC下方时,如图,可以得出△ACD≌△BCE,进而得到∠CBE=∠CAD=30°,据此得出结论.【详解】(1)∵△ABC是等边三角形,∴∠ACB=60°;∴线段AM为BC边上的高,∴∠CAM=12∠BAC=30°,故答案为60,30°;(2)∵△ABC与△DEC都是等边三角形,∴AC=BC,CD=CE,∠ACB=∠DCE=60°,∴∠ACD+∠DCB=∠DCB+∠BCE,∴∠ACD=∠BCE.在△ADC和△BEC中,AC BCACD BCECD CE=⎧⎪∠=∠⎨⎪=⎩,∴△ACD≌△BCE(SAS);(3)补全图形如下:由(1)(2)得∠CAM=30°,△ADC≌△BEC,∴∠CBE=∠CAM=30°,∵∠BMF=90°,∴∠BFM=60°;(4)当动点D在射线AM上,且在BC下方时,画出图形如下:∵△ABC与△DEC都是等边三角形,∴AC=BC,CD=CE,∠ACB=∠DCE=60°,∴∠ACB+∠DCB=∠DCB+∠DCE,∴∠ACD=∠BCE,在△ACD和△BCE中,AC BCACD BCECD CE=⎧⎪∠=∠⎨⎪=⎩,∴△ACD≌△BCE(SAS),∴∠CBE=∠CAD=30°,又∵∠AMC=∠BMO,∴∠AOB=∠ACB=60°.即动点D在射线AM上时,∠AOB为定值60°.【点睛】本题考查了等边三角形的性质的运用,直角三角形的性质的运用,等式的性质的运用,全等三角形的判定及性质的运用,解答时证明三角形全等是关键.解题时注意:全等三角形的对应角相等,等边三角形的三个内角都相等,等边三角形的三个内角相等,且都等于60°.9.如图,△ABC中,AB=BC=AC=12cm,现有两点M、N分别从点A.点B同时出发,沿三角形的边运动,已知点M的速度为2cm/s,点N的速度为3cm/s.当点N第一次到达B点时,M、N同时停止运动.(1)点M、N运动秒后,△AMN是等边三角形?(2)点M、N在BC边上运动时,运动秒后得到以MN为底边的等腰三角形△AMN?(3)M、N同时运动几秒后,△AMN是直角三角形?请说明理由.【答案】(1)125;(2)485;(3)点M、N运动3秒或127秒或10秒或9秒后,△AMN为直角三角形.【解析】【分析】(1)当AM=AN时,△MNA是等边三角形.设运动时间为t秒,构建方程即可解决问题;(2)点M、N在BC边上运动时,满足CM=BN时,可以得到以MN为底边的等腰三角形△AMN.构建方程即可解决问题;(3)据题意设点M、N运动t秒后,可得到直角三角形△AMN,分四种情况讨论即可.【详解】(1)当AM=AN时,△MNA是等边三角形,设运动时间为t秒则有:2t=12﹣3t解得t=12 5故点M、N运动125秒后,△AMN是等边三角形;(2)点M、N在BC边上运动时,满足CM=BN时,可以得到以MN为底边的等腰三角形△AMN则有:2t﹣12=36﹣3t解得t=48 5故运动485秒后得到以MN为底边的等腰三角形△AMN;(3)设点M、N运动t秒后,可得到直角三角形△AMN ①当M在AC上,N在AB上,∠ANM=90°时,如图∵∠A=60°∴∠AMN=30°∴AM=2AN则有2t=2(12﹣3t)∴t=3;②当M在AC上,N在AB上,∠AMN=90°时,如图∵∠A=60°∴∠ANM=30°∴2AM=AN∴4t=12﹣3t∴t=127;③当M、N都在BC上,∠ANM=90°时,如图CN=3t﹣24=6解得t=10;④当M、N都在BC上,∠AMN=90°时,则N与B重合,M正好处于BC的中点,如图此时2t=12+6解得t=9;综上所述,点M、N运动3秒或127秒或10秒或9秒后,△AMN为直角三角形.【点睛】本题主要考查了等边三角形的性质、等腰三角形的判定、全等三角形的判定与性质,熟练掌握相关知识点是解决本题的关键.10.如图1,△ABD,△ACE都是等边三角形,(1)求证:△ABE≌△ADC;(2)若∠ACD=15°,求∠AEB的度数;(3)如图2,当△ABD与△ACE的位置发生变化,使C、E、D三点在一条直线上,求证:AC∥BE.【答案】(1)见解析(2) ∠AEB=15°(3) 见解析【解析】试题分析:(1)由等边三角形的性质可得AB=AD,AE=AC,∠DAB=∠EAC=60°,即可得∠DAC=∠BAE,利用SAS即可判定△ABE≌△ADC;(2)根据全等三角形的性质即可求解;(3)由(1)的方法可证得△ABE≌△ADC,根据全等三角形的性质和等边三角形的性质可得∠AEB=∠ACD =60°,即可得∠AEB=∠EAC,从而得AC∥BE.试题解析:(1)证明:∵△ABD,△ACE都是等边三角形∴AB=AD,AE=AC,∠DAB=∠EAC=60°,∴∠DAC=∠BAE,在△ABE和△ADC中,∴,∴△ABE ≌△ADC ;(2)由(1)知△ABE ≌△ADC ,∴∠AEB=∠ACD ,∵∠ACD=15°,∴∠AEB=15°;(3)同上可证:△ABE ≌△ADC ,∴∠AEB=∠ACD ,又∵∠ACD=60°,∴∠AEB=60°,∵∠EAC=60°,∴∠AEB=∠EAC ,∴AC ∥BE .点睛:本题主要考查了等边三角形的性质、全等三角形的判定及性质,证得△ABE ≌△ADC 是解决本题的关键.三、八年级数学整式的乘法与因式分解解答题压轴题(难)11.如图1是一个长为4a 、宽为b 的长方形,沿图中虚线用剪刀平均分成四块小长方形,然后用四块小长方形拼成一个“回形”正方形(如图2)(1)观察图2请你写出2()a b +、2()a b -、ab 之间的等量关系是______;(2)根据(1)中的结论,若5x y +=,94x y ⋅=,则x y -=______; (3)拓展应用:若22(2019)(2020)7m m -+-=,求(2019)(2020)m m --的值.【答案】(1)22()()4a b a b ab +=-+;(2)4,-4:(3)-3【解析】【分析】(1)观察图2,大正方形由4个矩形和一个小正方形组成,根据面积即可得到他们之间的关系.(2)由(1)的结论可得(x-y) ²=16,然后利用平方根的定义求解即可.(3)从已知等式的左边看,左边配成两数和的平方来求解.【详解】解:(1)由题可得,大正方形的面积2()a b =+,大正方形的面积2()4a b ab =-+,∴22()()4a b a b ab +=-+,(2)∵22()()4x y x y xy +=-+, ∴229()()4254164x y x y xy -=+-=-⨯=, ∴4x y -=或-4, (3)∵22(2019)(2020)7m m -+-=,又2(20192020)m m -+-22(2019)(2020)2(2019)(2020)m m m m =-+-+-- ∴172(2019)(2020)m m =+--∴(2019)(2020)3m m --=-故答案为:(1)22()()4a b a b ab +=-+;(2) 4,-4:(3)-3 【点睛】本题通过观察图形发现规律,并运用规律求值,使问题简单化是解题关键.12.先阅读下列材料:我们已经学过将一个多项式分解因式的方法有提公因式法和运用公式法,其实分解因式的方法还有分组分解法、十字相乘法等等,其中十字相乘法在高中应用较多.十字相乘法:先分解二次项系数,分别写在十字交叉线的左上角和左下角;再分解常数项,分别写在十字交叉线的右上角和右下角;然后交叉相乘,求代数和,使其等于一次项系数(如图),如:将式子232x x ++和223x x +-分解因式,如图:()()23212x x x x ++=++;()()223123x x x x +-=-+.请你仿照以上方法,探索解决下列问题:(1)分解因式:2712y y ;(2)分解因式:2321x x --.【答案】(1)(x ﹣3)(x ﹣4);(2)(x ﹣1)(3x+1).【解析】【分析】(1)将1分成1乘以1,12分成-3乘以-4,交叉相乘的结果为-7,即可得到答案; (2)将3分成1乘以3,-1分成-1乘以1,由此得到分解因式的结果.【详解】(1)y 2﹣7y+12=(x ﹣3)(x ﹣4);(2)3x 2﹣2x ﹣1=(x ﹣1)(3x+1).【点睛】此题考查十字相乘法分解因式,将二次项系数及常数项分解成两个因数相乘,交叉相乘的结果相加得到一次项的系数,能准确分解因数是解题的关键.13.任何一个正整数n 都可以进行这样的分解:n =p ×q (p 、q 是正整数,且p ≤q ).如果p ×q 在n 的所有这种分解中两因数之差的绝对值最小,我们就称p ×q 是n 的最佳分解,并且规定F (n )=p q .例如18=1×18=2×9=3×6,这时就有F (18)=3162=.请解答下列问题:(1)计算:F (24);(2)当n 为正整数时,求证:F (n 3+2n 2+n )=1n . 【答案】(1)23;(2) 1n . 【解析】分析:(1)根据最佳分解的意义,把24分解成两数的积,找出差的绝对值最小的两数,求比值即可;(2)根据(1)的求法,确定差的绝对值最小的两数的特点,然后根据要求变形即可. 详解:(1)∵24=1×24=2×12=3×8=4×6,其中4与6的差的绝对值最小,∴F(24)=46=23. (2)∵n 3+2n 2+n =n(n +1)2,其中n(n +1)与(n +1)的差的绝对值最小,且(n +1)≤n(n +1),∴F(n 3+2n 2+n)=()n 1n n 1++=1n . 点睛: 本题主要考查实数的运算,理解最佳分解的定义,并将其转化为实数的运算是解题的关键.14.由多项式的乘法:(x +a)(x +b)=x 2+(a +b)x +ab ,将该式从右到左使用,即可得到用“十字相乘法”进行因式分解的公式:x 2+(a +b)x +ab =(x +a)(x +b).实例 分解因式:x 2+5x +6=x 2+(2+3)x +2×3=(x +2)(x +3).(1)尝试 分解因式:x 2+6x +8;(2)应用 请用上述方法解方程:x 2-3x -4=0.【答案】(1) (x+2)(x +4);(2) x =4或x =-1.【解析】【分析】(1)类比题干因式分解方法求解可得;(2)利用十字相乘法将左边因式分解后求解可得.【详解】(1)原式=(x+2)(x +4);(2)x 2-3x -4=(x -4)(x +1)=0,所以x -4=0或x +1=0,即x =4或x =-1.【点睛】本题主要考查解一元二次方程的能力,熟练掌握解一元二次方程的几种常用方法:直接开平方法、因式分解法、公式法、配方法,结合方程的特点选择合适、简便的方法是解题的关键.15.下面是某同学对多项式()()22676114x x x x -+-++进行因式分解的过程.解:设26x x y -=,原式(7)(11)4y y =+++(第一步) 21881y y =++(第二步)2(9)y =+(第三步)()2269x x =-+.(第四步) 请你回答下列问题:(1)该同学第二步到第三步运用了因式分解的_______;A .提公因式法B .平方差公式C .两数和的完全平方公式D .两数差的完全平方公式(2)该同学因式分解的结果不彻底,请直接写出因式分解的最后结果_______;(3)仿照以上方法因式分解:()()222221x x x x --++.【答案】(1)C ;(2)4(3)-x ;(3)4(1)x -【解析】【分析】(1)根据公式法分解因式可得答案;(2)先将269x x -+分解因式得2(3)x -,由此得到答案;(3)设22x x y -=,得到原式()21y =+,将22x x y -=代回得到()2221x x -+,再将括号内根据完全平方公式分解即可得到答案.【详解】解:(1)由21881y y ++2(9)y =+是运用了因式分解的两数和的完全平方公式,故选:C ;(2)∵269x x -+=2(3)x -,∴()2269x x -+=4(3)-x ,故答案为:4(3)-x ;(3)设22x x y -=, 原式()21y y =++,221y y =++,()21y =+, ()2221x x =-+, 4(1)x =-.【点睛】此题考查特殊方法分解因式,完全平方公式分解因式法,分解因式时注意应分解到不能再分解为止.四、八年级数学分式解答题压轴题(难)16.阅读下面材料并解答问题 材料:将分式322231x x x x --++-+拆分成一个整式与一个分式(分子为整数)的和的形式. 解:由分母为21x -+,可设()322231()x x x x x a b --++=-+++,则323223x x x x ax x a b --++=--+++∵对任意x 上述等式均成立,∴2a =且3a b +=,∴2a =,1b = ∴()2322221(2)12312111x x x x x x x x x -+++--++==++-+-+-+ 这样,分式322231x x x x --++-+被拆分成了一个整式2x +与一个分式211x -+的和 解答:(1)将分式371x x +-拆分成一个整式与一个分式(分子为整数)的和的形式 (2)求出422681x x x --+-+的最小值. 【答案】(1)3+101x -;(2)8 【解析】【分析】(1)直接把分子变形为3(x-1)+10解答即可;(2)由分母为-x 2+1,可设-x 4-6x 2+8=(-x 2+1)(x 2+a)+b ,按照题意,求出a 和b 的值,即可把分式422681x x x --+-+拆分成一个整式与一个分式(分子为整数)的和的形式. 【详解】解:(1)371x x +-=33101x x -+- =()31101x x -+- =3+101x -; (2)由分母为21x -+,可设4268x x --+()()221x x a b =-+++,则4268x x --+ ()()221x x a b =-+++422x ax x a b =--+++ 42(1)()x a x a b =---++.∵对于任意的x ,上述等式均成立,∴168a a b -=⎧⎨+=⎩解得71a b =⎧⎨=⎩∴422681x x x --+-+ ()()2221711x x x -+++=-+ ()()222217111x x x x -++=+-+-+ 22171x x =++-+. ∴当x=0时,22171x x ++-+取得最小值8,即 422681x x x --+-+的最小值是8. 【点睛】 本题主要考查分式的混合运算,解答本题的关键是理解阅读材料中的方法,并能加以正确应用.17.某小麦改良品种后平均每公顷增加产量a 吨,原来产m 吨小麦的一块土地,现在小麦的总产量增加了20吨.(1)当a =0.8,m =100时,原来和现在小麦的平均每公顷产量各是多少?(2)请直接接写出原来小麦的平均每公顷产量是 吨,现在小麦的平均每公顷产量是 吨;(用含a 、m 的式于表示)(3)在这块土地上,小麦的改良品种成熟后,甲组收割完需n 小时,乙组比甲组少用0.5小时就能收割完,求两组一起收割完这块麦田需要多少小时?【答案】(1)原来和现在小麦的平均每公顷产量各是4吨,4.8吨;(2)20ma ,+2020ma a ;(3)两组一起收割完这块麦田需要2241n n n --小时. 【解析】【分析】(1)设原来小麦平均每公顷产量是x 吨,根据题意列出分式方程求解并验根即可;(2)设原来小麦平均每公顷产量是y 吨,根据题意列出分式方程求解并验根即可;(3)由题意得知,工作总量为m+20,甲的工作效率为:20m n +,乙的工作效率为:200.5m n +-,再由工作总量除以甲乙的工作效率和即可得出工作时间. 【详解】解:(1)设原来平均每公顷产量是x 吨,则现在平均每公顷产量是(x +0.8)吨, 根据题意可得:100100200.8x x +=+ 解得:x =4,检验:当x =4时,x (x +0.8)≠0,∴原分式方程的解为x =4,∴现在平均每公顷产量是4.8吨,答:原来和现在小麦的平均每公顷产量各是4吨,4.8吨.(2)设原来小麦平均每公顷产量是y 吨,则现在玉米平均每公顷产量是(y +a )吨, 根据题意得:20m m y y a +=+ 解得;y =20ma , 经检验:y =20ma 是原方程的解, 则现在小麦的平均每公顷产量是:202020ma ma a a ++= 故答案为:20ma ,2020ma a +;(3)根据题意得:()20.5202202020.5410.5n n m n n m m n n n n -+-==++--+- 答:两组一起收割完这块麦田需要2241n n n --小时. 【点睛】本题考查的知识点主要是根据题意列分式方程并求解,找出题目中的等量关系式是解题的关键.18.已知分式A=2344(1)11a a a a a -++-÷--. (1) 化简这个分式;(2) 当a >2时,把分式A 化简结果的分子与分母同时..加上3后得到分式B ,问:分式B 的值较原来分式A 的值是变大了还是变小了?试说明理由.(3) 若A 的值是整数,且a 也为整数,求出符合条件的所有a 值的和.【答案】(1)22a A a +=-;(2)变小了,理由见解析;(3)符合条件的所有a 值的和为11.【解析】分析:(1)分解因式,再通分化简.(2)用作差法比较二者大小关系.(3)先分离常数,再尝试让分子能被分母整除.详解: (1)A =2344111a a a a a -+⎛⎫+-÷ ⎪--⎝⎭=()()()2113211a a a a a -+--÷--=22a a +-. (2)变小了,理由如下:()()()()()()()()21522512212121a a a a a a A B a a a a a a ++-+-++-=-==-+-+-+ . ∵a >2 ∴a -2>0,a+1>0,∴()()1221A B a a -=-+>0,即A >B (3) 24122a A a a +==+-- 根据题意,21,2,4a -=±±± 则a =1、0、-2、3、4、6, 又1a ≠ ∴0+(-2)+3+4+6=11 ,即:符合条件的所有a 值的和为11.点睛:比较大小的方法:(1)作差比较法:0a b a b ->>;0a b a b -<⇒<(a b ,可以是数,也可以是一个式子)(2)作商比较法:若a >0,b >0,且1a b >,则a >b ;若a <0,b <0,且1a b>,则a <b.19.某公司开发的960件新产品必须加工后才能投放市场,现有甲、乙两个工厂都想加工这批产品,已知甲工厂单独加工48件产品的时间与乙工厂单独加工72件产品的时间相等,而且乙工厂每天比甲工厂多加工8件产品,在加工过程中,公司需每天支付50元劳务费请工程师到厂进行技术指导.(1)甲、乙两个工厂每天各能加工多少件产品?(2)该公司要选择既省时又省钱的工厂加工产品,乙工厂预计甲工厂将向公司报加工费用为每天800元,请问:乙工厂向公司报加工费用每天最多为多少元时,有望加工这批产品?【答案】(1)甲工厂每天加工16件产品,则乙工厂每天加工24件;(2)乙工厂向公司报加工费用每天最多为1225元时,有望加工这批产品.【解析】【分析】(1)此题的等量关系为:乙工厂每天加工产品的件数=甲工厂每天加工产品的件数+8;甲工厂单独加工48件产品的时间=乙工厂单独加工72件产品的时间,设未知数,列方程求出方程的解即可;(2)先分别求出甲乙两工厂单独加工这批新产品所需时间,再求出甲工厂所需费用,然后根据乙工厂所需费用要小于甲工厂所需费用,设未知数,列不等式,再求出不等式的最大整数解即可.【详解】(1)设甲工厂每天加工x件产品,则乙工厂每天加工(x+8)件产品,根据题意得:48728x x=+,解得:x=16,检验:x(x+8)=16(16+8)≠0,∴x=16是原方程的解,∴x+8=16+8=24,答:甲工厂每天加工16件产品,则乙工厂每天加工24件.(2)解:甲工厂单独加工这批新产品所需时间为:960÷16=60,所需费用为:60×800+50×60=51000,乙工厂单独加工这批新产品所需时间为:960÷24=40,解:设乙工厂向公司报加工费用每天最多为y元时,有望加工这批产品则:40y+40×50≤51000解之y≤1225∴y的最大整数解为:y=1225答:乙工厂向公司报加工费用每天最多为1225元时,有望加工这批产品.【点睛】本题考查分式方程的应用,涉及到的公式:工作总量=工作效率×工作时间;分析题意,找到关键描述语,找到合适的等量关系是解决问题的关键.20.某商场在一楼与二楼之间装有一部自动扶梯,以均匀的速度向上行驶,一男孩与一女孩同时从自动扶梯上走到二楼(扶梯本身也在行驶).如果二人都做匀速运动,且男孩每分钟走动的级数是女孩的两倍.又已知男孩走了27级到达顶部,女孩走了18级到达顶部(二人每步都只跨1级).(1)扶梯在外面的部分有多少级.(2)如果扶梯附近有一从二楼下到一楼的楼梯,台阶级数与扶梯级数相等,这两人各自到扶梯顶部后按原速度走下楼梯,到一楼后再乘坐扶梯(不考虑扶梯与楼梯间的距离).则男孩第一次追上女孩时,他走了多少台阶?【答案】(1)楼梯有54级(2) 198级【解析】【试题分析】(1)设女孩速度为x 级/分,电梯速度为y 级/分,楼梯(扶梯)为s 级,则男孩速度为2x 级/分, 根据时间相等列方程,有:2727,21818.s x y s xy -⎧=⎪⎪⎨-⎪=⎪⎩ ①两式相除,得327418s s -=-,解方程得54s =即可. 因此楼梯有54级.(2)设男孩第一次追上女孩时,走过扶梯m 次,走过楼梯n 次,则这时女孩走过扶梯()1m -次,走过楼梯()1n -次.将54s = 代入方程组①,得2y x =,即男孩乘扶梯上楼的速度为4x 级/分,女孩乘扶梯上楼的速度为3x 级/分.于是有()()5415415454.423m n m n x x x x--+=+ 从而114231m n m n --+=+,即616n m +=. 无论男孩第一次追上女孩是在扶梯上还是在下楼时,,m n 中必有一个为正整数,且01m n ≤-≤,经试验知只有13,26m n ==符合要求. 这时,男孩第一次追上女孩所走过的级数是:13272541986⨯+⨯=(级).【试题解析】(1)设女孩速度为x 级/分,电梯速度为y 级/分,楼梯(扶梯)为s 级,则男孩速度为2x 级/分,依题意有2727,21818.s x y s x y -⎧=⎪⎪⎨-⎪=⎪⎩①。
八年级上册数学期末考试试卷分析
一、 基本情况
成绩率62.5%,平均成绩43.6
1、题型与题量
全卷共有三种题型,分别为选择题、填空题和解答题。选择题有10小题,
每题3分,共30,空题有6个小题,每题3分,共18分;解答题有10个大题,
共102分,全卷合计26题,满分150分,考试用时120分。
2、内容与范围
从考查内容看,几乎覆盖了湘教版七年级上册册数学教材中所有主要的知识
点,而且试题偏重于考查教材中的主要章节,如有理数、代数式、一元一次方程
等。
3、试卷特点等方面:
从整体上看,本次试题难度适中,符合学生的认知水平。试题注重基础,内
容紧密联系生活实际,注重了趣味性、实践性和创新性。突出了学科特点,以水
平立意命题,体现了数学课程标准精神。有利于考察数学基础和基本技能的掌握
水准,有利于教学方法和学法的引导和培养。考查学生基础知识的掌握水准,是
检验教师教与学生学的重要目标之一。学生基础知识和基本技能水平的高低,关
系到今后各方面水平水平的发展。本次试题以基础知识为主,既注意全面更注意
突出重点,对主干知识的考查保证了较高的比例,并保持了必要的深度。
二、学生答题分析:
1、基本功不扎实。
综观整套试题,能够说体现了对学生计算水平、综合分析水平、解决实际问
题水平等方面的综合测试。尤其是本套试题提升了实践水平,是对学生学习的全
方面情况实行了测查。
2 知识的水平比较差。
使用数学基础知识,解决数学和生活中的数学问题,是数学课标中提出的
最基本教学目标。本次试题比较集中地体现了这个思想。(1)部分学生审题水平
较差。一个学生知识不懂,老师能够再讲,可如果养成了做题不认真的习惯,那
不过谁也帮不了。所以在今后的教学中,不光要注意知识的培养,还要注意一些
好习惯的培养。(2)学生的知识应用水平不强。学生对基本的知识和概念掌握的
不够牢固,应用基本概念和基本知识解决问题的水平不强.缺乏独立思考的习惯.
三、对今后教学工作的建议
1.立足教材,夯实“双基”。
立足教材。试卷中绝大部分题相当于教材中的随堂练习题,我们在教学中,
要立足教材,重视教材,研究教材,挖掘教材,创造性地使用教材。特别要注意
教材中典型例题和习题的研究与延伸,讲清、讲深、讲透初中数学中的基础知识,
锤炼学生扎实熟练的基本功;同时,我们在教学中也要注意,有些内容的难度有
所下降,但水平的要求没有下降,需要通过一定的综合培养实行提升。一是注意
表达要有逻辑性,推理要严谨、严密,不要漏掉重要的得分点,否则即使答案准
确,也会被阅卷老师视为理由不够充分而扣分。二是书写、作图要整洁规范。2.重
视过程,培养水平。
(1)重视数学阅读过程,培养数学阅读水平。学习语文知识要阅读,学习数学
知识也要阅读,在阅读中掌握概念,在阅读中体会定理内涵,在阅读中理解题意,
在阅读中体会证明题的推理过程、寻找逻辑关系。审题就是一个阅读过程,教师
要在“细”字上做文章。
(2)重视数学运算过程,培养运算水平。数学离不开运算,运算离不开法则,
法则离不开算理。运算的过程,就是法则的展开过程,算理的充实过程。在教学
中,要充分展示运算过程,让学生明白每一步的算理。
(3)重视数学分析过程,培养分析水平。
(4)重视解题过程,培养解决问题的水平。解题是理论指导下的实践活动,是
一项系统的工作。在教学中,教师要有意识地培养学生解题的目标性和过程性,
指导学生准确定位落点。
(5)重视实际操作过程,培养实践探究能力。,在平时的教学中,我们应该按照
新课程标准的要求,该让学生动手的就得让学生动手,重视操作过程,培养实践
探究的习惯。