高考数学玩转压轴题专题1.1初识极值点偏移
- 格式:doc
- 大小:585.00 KB
- 文档页数:5
极值点偏移“0”开始自古习武由基础动作开始,武术基本功分为肩功、腰功、腿功、手形、手法、步形、步法、跌扑滚翻等。
学习极值点偏移咱们从“0”开始…… 极值点偏移的含义众所周知,函数)(x f 满足定义域内任意自变量x 都有)2()(x m f x f -=,则函数)(x f 关于直线m x =对称;可以理解为函数)(x f 在对称轴两侧,函数值变化快慢相同,且若)(x f 为单峰函数,则m x =必为)(x f 的极值点. 如二次函数)(x f 的顶点就是极值点0x ,若c x f =)(的两根的中点为221x x +,则刚好有0212x x x =+,即极值点在两根的正中间,也就是极值点没有偏移.若相等变为不等,则为极值点偏移:若单峰函数)(x f 的极值点为m ,且函数)(x f 满足定义域内m x =左侧的任意自变量x 都有)2()(x m f x f ->或)2()(x m f x f -<,则函数)(x f 极值点m 左右侧变化快慢不同. 故单峰函数)(x f 定义域内任意不同的实数21,x x 满足)()(21x f x f =,则221x x +与极值点m 必有确定的大小关系:若221x x m +<,则称为极值点左偏;若221x x m +>,则称为极值点右偏.如函数x e x x g =)(的极值点10=x 刚好在方程c x g =)(的两根中点221x x +的左边,我们称之为极值点左偏.极值点偏移问题的一般题设形式:1. 若函数)(x f 存在两个零点21,x x 且21x x ≠,求证:0212x x x >+(0x 为函数)(x f 的极值点);2. 若函数)(x f 中存在21,x x 且21x x ≠满足)()(21x f x f =,求证:0212x x x >+(0x 为函数)(x f 的极值点);3. 若函数)(x f 存在两个零点21,x x 且21x x ≠,令2210x x x +=,求证:0)('0>x f ; 4. 若函数)(x f 中存在21,x x 且21x x ≠满足)()(21x f x f =,令2210x x x +=,求证:0)('0>x f . 问题初现,形神合聚★函数x ae x x x f ++-=12)(2有两极值点21,x x ,且21x x <.证明:421>+x x .所以)2()2(x h x h -<+,所以)4()]2(2[)]2(2[)()(22221x h x h x h x h x h -=--<-+==,因为21<x ,242<-x ,)(x h 在)2,(-∞上单调递减所以214x x ->,即421>+x x .学科&网内练精气神,外练手眼身★【2019江苏无锡高三上学期期末】已知函数f(x) = -ax(a > 0).(1) 当a = 1 时,求证:对于任意x > 0,都有f(x) > 0 成立;(2) 若函数y = f(x) 恰好在x = x1和x = x2两处取得极值,求证:< ln a.【答案】(1)见解析;(2)见解析.【解析】(1)当a=1时,f(x)=e x x2﹣x,则f′(x)=e x﹣x﹣1,∴f″(x)=e x﹣1>0,(x>0),∴f′(x)=e x﹣x﹣1单调递增,∴f′(x)>f′(0)=0,∴f(x)单调递增,∴f(x)>f(0)=1>0,故对于任意x>0,都有f(x)>0成立;(2)∵函数y=f(x)恰好在x=x1和x=x2两处取得极值∴x1,x2是方程f′(x)=0的两个实数根,不妨设x1<x2,∵f′(x)=e x﹣ax﹣a,f″(x)=e x﹣a,当a≤0时,f″(x)>0恒成立,∴f′(x)单调递增,f′(x)=0至多有一个实数解,不符合题意,当a>0时,f″(x)<0的解集为(﹣∞,lna),f″(x)>0的解集为(lna,+∞),∴f′(x)在(﹣∞,lna)上单调递减,在(lna,+∞)上单调递增,∴f′(x)min=f′(lna)=﹣alna,由题意,应有f′(lna)=﹣alna<0,解得a>1,此时f′(﹣1)0,∴存在x1∈(﹣1,lna)使得f′(x1)=0,易知当时,f(x).∴存在x2∈(lna,)使得f′(x2)=0,∴a>1满足题意,∵f′(x1)=f′(x2)=0,∴a a=0,∴a,∴f″()a(),设t>0,∴e t,设g(t)=(2t﹣e t)e t+1,∴g′(t)=2(t+1﹣e t)e t,由(1)可知,g′(t)=2(t+1﹣e t)e t<0恒成立,∴g(t)单调递减,∴g(t)<g(0)=0,即f″()<0,∴∴lna.★过点作曲线f(x)=e x的切线l.(1)求切线l的方程;(2)若直线l与曲线交于不同的两点A(x1,y1),B(x2,y2),求证:.【答案】(1)y=x+1(2)见解析【解析】试题分析:(1)先根据导数几何意义求切线斜率y′|x=0=1,再根据点斜式求切线方程y=x+1.因为,不妨设x1<−2,x2>−2.设g(x)=f(x)−f(−4−x),则g′(x)=f′(x)+f′(−4−x)=(x+2)e x(1−e−2(2+x)),当x>−2时,g′(x)>0,g(x)在单调递增,所以g(x)>g(−2)=0,所以当x>−2时,f(x)>f(−4−x).因为x2>−2,所以f(x2)>f(−4−x2),从而f(x1)>f(−4−x2),因为−4−x2<−2,f(x)在单调递减,所以x1<−4−x2,即x1+x2<−4.学科&网。
高考数学玩转压轴题专题12极值点偏移问题利器极值点偏移判定定理极值点偏移问题利器——极值点偏移判定定理一、极值点偏移的判定定理对于可导函数 $y=f(x)$,在区间 $(a,b)$ 上只有一个极大(小)值点 $x$,方程 $f(x)=0$ 的解分别为 $x_1$、$x_2$,且 $a<x_1<x_2<b$,则:1)若 $f(x_1)<f(2x-x_2)$,则极(小)大值点 $x$ 右(左)偏;2)若 $f(x_1)>f(2x-x_2)$,则极(小)大值点 $x$ 右(左)偏。
证明:1)因为对于可导函数 $y=f(x)$,在区间 $(a,b)$ 上只有一个极大(小)值点 $x$,则函数 $f(x)$ 的单调递增(减)区间为 $(a,x)$,单调递减(增)区间为 $(x,b)$。
由于 $x_1)2x-x_2$,$a)2x$,即函数 $y=f(x)$ 在区间 $(x_1,x_2)$ 上$2x_1+x_2)x$,即函数 $y=f(x)$ 的极(小)大值点 $x$ 右(左)偏。
2)证明略。
二、运用判定定理判定极值点偏移的方法1、方法概述:1)求出函数 $f(x)$ 的极值点 $x$;2)构造一元差函数 $F(x)=f(x+x)-f(x-x)$;3)确定函数 $F(x)$ 的单调性;4)结合 $F(x)=0$,判断 $F(x)$ 的符号,从而确定$f(x+x)$、$f(x-x)$ 的大小关系。
口诀:极值偏离对称轴,构造函数觅行踪;四个步骤环相扣,两次单调紧跟随。
2、抽象模型答题模板:若已知函数 $f(x)$ 满足 $f(x_1)=f(x_2)$,$x$ 为函数 $f(x)$ 的极值点,求证:$x_1+x_2<2x$。
1)讨论函数$f(x)$ 的单调性并求出$f(x)$ 的极值点$x$;假设此处 $f(x)$ 在 $(-\infty,x)$ 上单调递减,在$(x,+\infty)$ 上单调递增。
三招解决极值点偏移问题极值点偏移问题简介:极值点偏移问题是咱们高中非常常见的导数问题,其中解法与题型也非常非常多,比如比值换元,差值换元,对称化构造,同构方程,对数均值不等式,切线夹,割线放缩,零点差一次拟合,飘带函数放缩,泰勒二次拟合,零点差一次拟合等等。
很多学生看了题不知道从哪里入手,在此总结了三大类题型,包括了大部分方法,看起来更加清晰明了,这三类题型也是必须掌握的题型,前两种较基础要掌握,最后一种难度偏高可以选择性记忆。
一.最常见的方法--构造函数极值点偏移模型:考点1.利用韦达定理,进行构造函数1已知函数f x =12x2+a ln x-4x a>0.(1)当a=3时,试讨论函数f x 的单调性;(2)设函数f x 有两个极值点x1,x2x1<x2,证明:f x1+f x2>ln a-10.2已知函数f x =ln x +x 2-ax a ∈R .(1)若a =1,求函数f x 图象在点1,f 1 处的切线方程;(2)设f x 存在两个极值点x 1,x 2且x 1<x 2,若0<x 1<12,求证:f x 1 -f x 2 >34-ln2.考点2. 利用分析法,进行对称构造3已知函数f (x )=ln x +m x -1.(1)若存在实数x ,使f (x )<-1成立,求实数m 的取值范围;(2)若f (x )有两个不同零点x 1,x 2,求证:x 1+x 2>2.4已知函数f x =ln x-a x-2a∈R.(1)讨论f x 的单调性;(2)若f x 有两个零点x1,x2x1<x2,证明:x1+3x2>3a+2.5已知函数f x =2ln x+ax a∈R(1)若f x ≤0在0,+∞上恒成立,求a的取值范围;(2)设g x =x3-f x ,x₁,x₂为函数g(x)的两个零点,证明:x₁x₂<1.二.对数均值不等式飘带函数模型:考点1.同构方程,利用比值换元构造函数6已知函数f x =x -2 e x -ax a ∈R .(1)若a =2,讨论f x 的单调性.(2)已知关于x 的方程f x =x -3 e x +2ax 恰有2个不同的正实数根x 1,x 2.(i )求a 的取值范围;(ii )求证:x 1+x 2>4.7已知函数f x =2ln x-ax2+2x-1,g x =f x -2ax+3a∈R.(1)若f1 =-1,求函数y=f x 的极值;(2)若关于x的不等式g x ≤0恒成立,求整数a的最小值;(3)当0<a<1时,函数g x 恰有两个不同的零点x1,x2,且x I<x2,求证:x1+x2>2a.考点2.和积转化(差积转化)8已知函数f x =xe x-ax+1,x∈-1,+∞,a>0,g x =bx-ln x x,(1)当b=1,f x 和g x 有相同的最小值,求a的值;(2)若g x 有两个零点x1,x2,求证:x1x2>e.考点3.消参减元9已知函数f x =ax2-ln x+1a∈R.(1)讨论函数f x 极值点的个数;(2)若函数f x 在定义域内有两个不同的零点x1,x2,①求a的取值范围;②证明:x1+x2>2a a.三.零点差--放缩法筷子夹汤圆模型:考点1.零点差,切线夹10已知函数f x =3x-e x+1,其中e=2.71828⋯是自然对数的底数.(1)设曲线y=f x 与x轴正半轴相交于点P x0,0,曲线在点P处的切线为l,求证:曲线y=f x 上的点都不在直线l的上方;(2)若关于x的方程f x =m(m为正实数)有两个不等实根x1,x2x1<x2,求证:x2-x1<2-34 m.11已知函数f x =x +b e x -a (b >0)在点-1,f -1 处的切线方程为e -1 x +ey +e -1=0.(1)求a 、b ;(2)设曲线y =f (x )与x 轴负半轴的交点为P ,曲线在点P 处的切线方程为y =h (x ),求证:对于任意的实数x ,都有f (x )≥h (x );(3)若关于x 的方程f x =m (m >0)有两个实数根x 1、x 2,且x 1<x 2,证明:x 2-x 1≤1+m 1-2e 1-e .考点2.割线放缩12已知f x =x ln x 与y =a 有两个不同的交点A ,B ,其横坐标分别为x 1,x 2(x 1<x 2).(1)求实数a 的取值范围;(2)求证:ae +1<x 2-x 1.考点3.二次拟合13已知m∈R,函数f(x)=xe x-m有两个不同的零点x1,x2.(I)证明:0<m<1e;(Ⅱ)证明:x2-x1>21-em.三招解决极值点偏移问题极值点偏移问题简介:极值点偏移问题是咱们高中非常常见的导数问题,其中解法与题型也非常非常多,比如比值换元,差值换元,对称化构造,同构方程,对数均值不等式,切线夹,割线放缩,零点差一次拟合,飘带函数放缩,泰勒二次拟合,零点差一次拟合等等。
2022年高考压轴大题:极值点的偏移问题解题方法极值点偏移问题常作为压轴题出现,题型复杂多变.解决此类问题,先需理解此类问题的实质,例1 已知函数f (x )=x e -x . (1)求函数f (x )的单调区间;(2)若x 1≠x 2且f (x 1)=f (x 2),求证:x 1+x 2>2.(1)解 f ′(x )=e -x (1-x ),令f ′(x )>0得x <1;令f ′(x )<0得x >1,∴函数f (x )在(-∞,1)上单调递增,在(1,+∞)上单调递减. (2)证明 方法一 (对称化构造法)构造辅助函数F (x )=f (x )-f (2-x ),x >1,则F ′(x )=f ′(x )+f ′(2-x )=e -x (1-x )+e x -2(x -1)=(x -1)(e x -2-e -x ),∴当x >1时,x -1>0,e x -2-e -x >0,∴F ′(x )>0, ∴F (x )在(1,+∞)上单调递增,∴F (x )>F (1)=0, 故当x >1时,f (x )>f (2-x ),(*)由f (x 1)=f (x 2),x 1≠x 2,可设x 1<1<x 2, 将x 2代入(*)式可得f (x 2)>f (2-x 2), 又f (x 1)=f (x 2), ∴f (x 1)>f (2-x 2).又x 1<1,2-x 2<1,而f (x )在(-∞,1)上单调递增, ∴x 1>2-x 2, ∴x 1+x 2>2.方法二 (比值代换法) 设0<x 1<1<x 2,f (x 1)=f (x 2)即11ex x -=22ex x -,取对数得ln x 1-x 1=ln x 2-x 2.令t =x 2x 1>1,则x 2=tx 1,代入上式得ln x 1-x 1=ln t +ln x 1-tx 1,得x 1=ln t t -1,x 2=t ln t t -1.∴x 1+x 2=t +1ln t t -1>2∴ln t -2t -1t +1>0,设g (t )=ln t -2t -1t +1(t >1),∴g ′(t )=1t -2t +1-2t -1t +12=t -12t t +12>0,∴当t >1时,g (t )单调递增,∴g (t )>g (1)=0,∴ln t -2t -1t +1>0,故x 1+x 2>2.例2 已知函数f (x )=ln x -ax 有两个零点x 1,x 2. (1)求实数a 的取值范围; (2)求证:x 1·x 2>e 2.(1)解 f ′(x )=1x -a =1-ax x(x >0),∴若a ≤0,则f ′(x )>0,不符合题意;∴若a >0,令f ′(x )=0,解得x =1a.当x ∴⎝⎛⎭⎫0,1a 时,f ′(x )>0; 当x ∴⎝⎛⎭⎫1a ,+∞时,f ′(x )<0. 由题意知f (x )=ln x -ax 的极大值f ⎝⎛⎭⎫1a =ln 1a -1>0,解得0<a <1e. 所以实数a 的取值范围为⎝⎛⎭⎫0,1e . (2)证明 因为f (1)=-a <0,所以1<x 1<1a<x 2.构造函数H (x )=f ⎝⎛⎭⎫1a +x -f ⎝⎛⎭⎫1a -x =ln ⎝⎛⎭⎫1a +x -ln ⎝⎛⎭⎫1a -x -2ax ,0<x <1a. H ′(x )=11a +x +11a-x -2a =2a 3x21-a 2x 2>0,所以H (x )在⎝⎛⎭⎫0,1a 上单调递增, 故H (x )>H (0)=0,即f ⎝⎛⎭⎫1a +x >f ⎝⎛⎭⎫1a -x .由1<x 1<1a <x 2,知2a -x 1>1a,故f (x 2)=f (x 1)=f ⎝⎛⎭⎫1a -⎝⎛⎭⎫1a -x 1<f ⎝⎛⎭⎫1a +⎝⎛⎭⎫1a -x 1=f ⎝⎛⎭⎫2a -x 1. 因为f (x )在⎝⎛⎭⎫1a ,+∞上单调递减, 所以x 2>2a -x 1,即x 1+x 2>2a.故ln x 1x 2=ln x 1+ln x 2=a (x 1+x 2)>2, 即x 1·x 2>e 2.例3已知函数f (x )=x 2-2x +1+a e x 有两个极值点x 1,x 2,且x 1<x 2. 证明:x 1+x 2>4.解析 证明:令g (x )=f ′(x )=2x -2+a e x ,则x 1,x 2是函数g (x )的两个零点. 令g (x )=0,得a =-2(x -1)e x .令h (x )=-2(x -1)e x , 则h (x 1)=h (x 2),h ′(x )=2x -4e x ,可得h (x )在区间(-∞,2)上单调递减,在区间(2,+∞)上单调递增, 所以x 1<2<x 2.令H (x )=h (2+x )-h (2-x ),则H ′(x )=h ′(2+x )-h ′(2-x )=2x (e 2-x -e 2+x )e 2+x ·e 2-x ,当0<x <2时,H ′(x )<0,H (x )单调递减,有H (x )<H (0)=0, 所以h (2+x )<h (2-x ).所以h (x 1)=h (x 2)=h (2+(x 2-2))<h (2-(x 2-2))=h (4-x 2). 因为x 1<2,4-x 2<2,h (x )在(-∞,2)上单调递减, 所以x 1>4-x 2,即x 1+x 2>4.例4已知f (x )=x ln x -12mx 2-x ,m ∈R .若f (x )有两个极值点x 1,x 2,且x 1<x 2. 求证:x 1x 2>e 2(e 为自然对数的底数).一题多解解法1思路参考:转化为证明ln x 1+ln x 2>2,根据x 1,x 2是方程f ′(x )=0的根建立等量关系. 令t =x 2x 1将ln x 1+ln x 2变形为关于t 的函数,将ln x 1+ln x 2>2转化为关于t 的不等式进行证明. 证明:欲证x 1x 2>e 2,需证ln x 1+ln x 2>2.若f (x )有两个极值点x 1,x 2,即函数f ′(x )有两个零点.又f ′(x )=ln x -mx ,所以x 1,x 2是方程f ′(x )=0的两个不等实根.于是,有⎩⎪⎨⎪⎧ln x 1-mx 1=0,ln x 2-mx 2=0,解得m =ln x 1+ln x 2x 1+x 2. 另一方面,由⎩⎪⎨⎪⎧ln x 1-mx 1=0,ln x 2-mx 2=0,得ln x 2-ln x 1=m (x 2-x 1), 从而得ln x 2-ln x 1x 2-x 1=ln x 1+ln x 2x 1+x 2.于是,ln x 1+ln x 2=(ln x 2-ln x 1)(x 2+x 1)x 2-x 1=⎝⎛⎭⎫1+x 2x 1ln x 2x 1x 2x 1-1.又0<x 1<x 2,设t =x 2x 1,则t >1. 因此,ln x 1+ln x 2=(1+t )ln tt -1,t >1. 要证ln x 1+ln x 2>2,即证(t +1)ln tt -1>2,t >1. 即当t >1时,有ln t >2(t -1)t +1. 设函数h (t )=ln t -2(t -1)t +1,t >1, 则h ′(t )=1t -2(t +1)-2(t -1)(t +1)2=(t -1)2t (t +1)2≥0, 所以,h (t )为(1,+∞)上的增函数.注意到,h (1)=0,因此,h (t )>h (1)=0. 于是,当t >1时,有ln t >2(t -1)t +1. 所以ln x 1+ln x 2>2成立,即x 1x 2>e 2. 解法2思路参考:将证明x 1x 2>e 2转化为证明x 1>e 2x 2.依据x 1,x 2是方程f ′(x )=0的两个不等实根构造函数g (x )=ln x x ,结合函数g (x )的单调性,只需证明g (x 2)=g (x 1)<g ⎝⎛⎭⎫e 2x 1.证明:由x 1,x 2是方程f ′(x )=0的两个不等实根,所以mx 1=ln x 1,mx 2=ln x 2. 令g (x )=ln xx ,g (x 1)=g (x 2), 由于g ′(x )=1-ln xx 2,因此,g (x )在(0,e)上单调递增,在(e ,+∞)上单调递减. 又x 1<x 2,所以0<x 1<e<x 2.令h (x )=g (x )-g ⎝⎛⎭⎫e 2x (x ∈(0,e)),h ′(x )=(1-ln x )(e 2-x 2)x 2e 2>0, 故h (x )在(0,e)上单调递增,故h (x )<h (e)=0,即g (x )<g ⎝⎛⎭⎫e 2x .令x =x 1,则g (x 2)=g (x 1)<g ⎝⎛⎭⎫e 2x 1.因为x 2,e 2x 1∈(e ,+∞),g (x )在(e ,+∞)上单调递减,所以x 2>e 2x 1,即x 1x 2>e 2. 解法3思路参考:设t 1=ln x 1∈(0,1),t 2=ln x 2∈(1,+∞),推出t 1t 2=e t 1-t 2.将证明x 1x 2>e 2转化为证明t 1+t 2>2,引入变量k =t 1-t 2<0构建函数进行证明. 证明:设t 1=ln x 1∈(0,1),t 2=ln x 2∈(1,+∞),由⎩⎪⎨⎪⎧ln x 1-mx 1=0,ln x 2-mx 2=0得⎩⎪⎨⎪⎧t 1=m e t1,t 2=m et 2⇒t 1t 2=e t 1-t 2.设k =t 1-t 2<0,则t 1=k e k e k -1,t 2=k e k -1. 欲证x 1x 2>e 2, 需证ln x 1+ln x 2>2.即只需证明t 1+t 2>2,即k (1+e k )e k -1>2⇔k (1+e k )<2(e k -1)⇔k (1+e k )-2(e k -1)<0. 设g (k )=k (1+e k )-2(e k -1)(k <0),g ′(k )=k e k -e k +1, g ″(k )=k e k <0,故g ′(k )在(-∞,0)上单调递减, 故g ′(k )>g ′(0)=0,故g (k )在(-∞,0)上单调递增, 因此g (k )<g (0)=0,命题得证. 解法4思路参考:设t 1=ln x 1∈(0,1),t 2=ln x 2∈(1,+∞),推出t 1t 2=e t 1-t 2.将证明x 1x 2>e 2转化为证明t 1+t 2>2,引入变量t 1t 2=k ∈(0,1)构建函数进行证明.证明:设t 1=ln x 1∈(0,1),t 2=ln x 2∈(1,+∞),由⎩⎪⎨⎪⎧ln x 1-mx 1=0,ln x 2-mx 2=0得⎩⎪⎨⎪⎧t 1=m e t1,t 2=m et 2⇒t 1t 2=e t 1-t 2.设t 1t 2=k ∈(0,1),则t 1=k ln k k -1,t 2=ln k k -1.欲证x 1x 2>e 2,需证ln x 1+ln x 2>2,即只需证明t 1+t 2>2,即(k +1)ln kk -1>2⇔ln k <2(k -1)k +1⇔ln k -2(k -1)k +1<0. 设g (k )=ln k -2(k -1)k +1(k ∈(0,1)),g ′(k )=(k -1)2k (k +1)2>0, 故g (k )在(0,1)上单调递增,因此g (k )<g (1)=0,命题得证.思维升华1.本题考查应用导数研究极值点偏移问题,基本解题方法是把双变量的等式或不等式转化为一元变量问题求解,途径都是构造一元函数.2.基于课程标准,解答本题一般需要熟练掌握转化与化归能力、运算求解能力、逻辑思维能力,体现了逻辑推理、数学运算的核心素养.3.基于高考数学评价体系,本题涉及函数与方程、不等式、导数的计算与应用等知识,渗透着函数与方程、转化与化归、分类讨论等思想方法,有一定的综合性,属于能力题,在提升学生思维的灵活性、创造性等数学素养中起到了积极的作用.多维训练1.已知函数f (x )=e x (e x -ax +a )有两个极值点x 1,x2. (1)求a 的取值范围; (2)求证:2x 1x 2<x 1+x 2.(1)解:因为f (x )=e x (e x -ax +a ),所以f ′(x )=e x (e x -ax +a )+e x (e x -a )=e x (2e x -ax ). 令f ′(x )=0,则2e x =ax . 当a =0时,不成立; 当a ≠0时,2a =xe x .令g (x )=xe x ,所以g ′(x )=1-x e x .当x <1时,g ′(x )>0;当x >1时,g ′(x )<0.所以g (x )在(-∞,1)上单调递增,在(1,+∞)上单调递减. 又因为g (1)=1e ,当x →-∞时,g (x )→-∞,当x →+∞时,g (x )→0,因此,当0<2a <1e 时,f (x )有2个极值点,即a 的取值范围为(2e ,+∞).(2)证明:由(1)不妨设0<x 1<1<x 2,且⎩⎨⎧2e x 1=ax 1,2e x 2=ax 2,所以⎩⎪⎨⎪⎧ln 2+x 1=ln a +ln x 1,ln 2+x 2=ln a +ln x 2, 所以x 2-x 1=ln x 2-ln x 1. 要证明2x 1x 2<x 1+x 2,只要证明2x 1x 2(ln x 2-ln x 1)<x 22-x 21,即证明2ln ⎝⎛⎭⎫x 2x 1<x 2x 1-x 1x 2.设x 2x 1=t (t >1),即要证明2ln t -t +1t <0在t ∈(1,+∞)上恒成立. 记h (t )=2ln t -t +1t (t >1),h ′(t )=2t -1-1t 2=-t 2+2t -1t 2=-(t -1)2t 2<0, 所以h (t )在区间(1,+∞)上单调递减,所以h (t )<h (1)=0,即2ln t -t +1t <0,即2x 1x 2<x 1+x 2. 2.已知函数f (x )=x ln x -2ax 2+x ,a ∈R .(1)若f (x )在(0,+∞)内单调递减,求实数a 的取值范围; (2)若函数f (x )有两个极值点分别为x 1,x 2,证明x 1+x 2>12a . (1)解:f ′(x )=ln x +2-4ax . 因为f (x )在(0,+∞)内单调递减,所以 f ′(x )=ln x +2-4ax ≤0在(0,+∞)内恒成立, 即4a ≥ln x x +2x 在(0,+∞)内恒成立. 令g (x )=ln x x +2x ,则g ′(x )=-1-ln x x 2. 所以,当0<x <1e 时,g ′(x )>0,即g (x )在⎝⎛⎭⎫0,1e 内单调递增; 当x >1e 时,g ′(x )<0,即g (x )在⎝⎛⎭⎫1e ,+∞内单调递减.所以g (x )的最大值为g ⎝⎛⎭⎫1e =e , 所以实数a 的取值范围是⎣⎡⎭⎫e 4,+∞.(2)证明:若函数f (x )有两个极值点分别为x 1,x 2,则f ′(x )=ln x +2-4ax =0在(0,+∞)内有两个不等根x 1,x 2. 由(1),知0<a <e4.由⎩⎪⎨⎪⎧ln x 1+2-4ax 1=0,ln x 2+2-4ax 2=0,两式相减, 得ln x 1-ln x 2=4a (x 1-x 2). 不妨设0<x 1<x 2, 所以要证明x 1+x 2>12a ,只需证明x 1+x 24a (x 1-x 2)<12a (ln x 1-ln x 2). 即证明2(x 1-x 2)x 1+x 2>ln x 1-ln x 2,亦即证明2⎝⎛⎭⎫x 1x 2-1x 1x 2+1>ln x 1x 2.令函数h (x )=2(x -1)x +1-ln x,0<x <1. 所以h ′(x )=-(x -1)2x (x +1)2<0, 即函数h (x )在(0,1)内单调递减. 所以当x ∈(0,1)时,有h (x )>h (1)=0, 所以2(x -1)x +1>ln x .即不等式2⎝⎛⎭⎫x 1x 2-1x 1x 2+1>ln x 1x 2成立.综上,x 1+x 2>12a ,命题得证.3.已知函数f (x )=ln x -ax (a ∴R ).(1)讨论函数f (x )在(0,+∞)上的单调性; (2)证明:e x -e 2ln x >0恒成立. (1)解 f (x )的定义域为(0,+∞),f ′(x )=1x -a =1-ax x,当a ≤0时,f ′(x )>0,∴f (x )在(0,+∞)上单调递增,当a >0时,令f ′(x )=0,得x =1a,∴x ∴()0,1a 时,f ′(x )>0;x ∴()1a ,+∞时,f ′(x )<0,∴f (x )在()0,1a 上单调递增,在()1a ,+∞上单调递减.(2)证明 方法一 要证e x -e 2ln x >0,即证e x -2>ln x , 令φ(x )=e x -x -1,∴φ′(x )=e x -1.令φ′(x )=0,得x =0,∴x ∴(-∞,0)时,φ′(x )<0; x ∴(0,+∞)时,φ′(x )>0,∴φ(x )在(-∞,0)上单调递减,在(0,+∞)上单调递增, ∴φ(x )min =φ(0)=0,即e x -x -1≥0,即e x ≥x +1,当且仅当x =0时取“=”. 同理可证ln x ≤x -1,当且仅当x =1时取“=”. 由e x ≥x +1(当且仅当x =0时取“=”),可得e x -2≥x -1(当且仅当x =2时取“=”),又ln x ≤x -1,即x -1≥ln x ,当且仅当x =1时取“=”,所以e x -2≥x -1≥ln x 且两等号不能同时成立,故e x -2>ln x .即证原不等式成立.方法二 令φ(x )=e x -e 2ln x ,φ(x )的定义域为(0,+∞),φ′(x )=e x -e 2x ,令h (x )=e x-e 2x,∴h ′(x )=e x+e 2x2>0,∴φ′(x )在(0,+∞)上单调递增.又φ′(1)=e -e 2<0,φ′(2)=e 2-12e 2=12e 2>0,故∴x 0∴(1,2),使φ′(x 0)=0,即0e x -e 2x 0=0,即0e x =e 2x 0,∴当x ∴(0,x 0)时,φ′(x )<0; 当x ∴(x 0,+∞)时,φ′(x 0)>0,∴φ(x )在(0,x 0)上单调递减,在(x 0,+∞)上单调递增,∴φ(x )min =φ(x 0)=0ex -e 2ln x 0=e 2x 0-e 2ln x 0=e 2x 0-022e e ln e x =e 2x 0-e 2(2-x 0)=e 2()1x 0+x 0-2=e 2·x 0-12x 0>0,故φ(x )>0,即e x -e 2ln x >0,即证原不等式成立.4.(2018·全国∴)已知函数f (x )=1x-x +a ln x .(1)讨论f (x )的单调性;(2)若f (x )存在两个极值点x 1,x 2,证明:f x 1-f x 2x 1-x 2<a -2.(1)解 f (x )的定义域为(0,+∞),f ′(x )=-1x 2-1+ax =-x 2-ax +1x 2.∴若a ≤2,则f ′(x )≤0,当且仅当a =2,x =1时,f ′(x )=0, 所以f (x )在(0,+∞)上单调递减. ∴若a >2,令f ′(x )=0,得 x =a -a 2-42或x =a +a 2-42.当x ∴⎝⎛⎭⎫0,a -a 2-42∴⎝⎛⎭⎫a +a 2-42,+∞时, f ′(x )<0;当x ∴⎝⎛⎭⎫a -a 2-42,a +a 2-42时,f ′(x )>0.所以f (x )在⎝⎛⎭⎫0,a -a 2-42,⎝⎛⎭⎫a +a 2-42,+∞上单调递减,在⎝⎛⎭⎫a -a 2-42,a +a 2-42上单调递增. (2)证明 由(1)知,f (x )存在两个极值点当且仅当a >2. 由于f (x )的两个极值点x 1,x 2满足x 2-ax +1=0, 所以x 1x 2=1,不妨设x 1<x 2,则x 2>1.由于f x 1-f x 2x 1-x 2=-1x 1x 2-1+a ln x 1-ln x 2x 1-x 2=-2+a ln x 1-ln x 2x 1-x 2=-2+a -2ln x 21x 2-x 2,所以f x 1-f x 2x 1-x 2<a -2等价于1x 2-x 2+2ln x 2<0.设函数g (x )=1x-x +2ln x ,由(1)知,g (x )在(0,+∞)上单调递减.又g (1)=0,从而当x ∴(1,+∞)时,g (x )<0.所以1x 2-x 2+2ln x 2<0,即f x 1-f x 2x 1-x 2<a -2.。
高考数学压轴题--------极值点偏移问题的三种解法
在高考和模考中.极值点偏移问题都是一个热点问题.这类试题设问新颖多变,难度较大,综合性强,能较好考查学生的逻辑推理能力、数据处理能力、转化与化归思想、函数与方程思想等.往往作为压轴题出现,对于这类问题,学生通常会望而却步,甚至不敢解、不想解.笔者通过对极值点偏移问题的探究,总结出解决这类问题三种方法,希望可以帮助学生克服畏难心理,迎难而上.
下面通过典型试题介绍这类问题的三种求解策略.
一 .构造法
构造法是解决极值点偏移问题最基本的方法。
对函数y =f(x),要考虑它在极值点x0附近偏移问题,可以通过构造并判断函数F(x) =f(x0+x)-f(x0-x)在x >0时的符号.确定x >0时f(x0+x)与f(x0-x)的大小关系;再将x = x0-x1代人上式,结合F(x1)=f(x2),得到f(2x0-x1)与f(x2)的大小关系;最后结合函数f(x)的单调性解决问题.
二、利用对称性
三、增量法
解决极值点偏移的方法有很多,以上三种方法各有优劣,不同
题目使用三种方法的繁简程度不一样,我们应该根据题目的实际情况,择优选择.。
作者的话(可作为编者按):极值点偏移,在近几年的数学圈里可谓是一个时髦的名词.特别地,它作为2016年高考新课标Ⅰ卷导数压轴题第(2)问出现,更是引起了人们的广泛关注和讨论.一时间,全国上下竞相效仿,各地的模拟题都呈现出大偏移状态.说起极值点偏移,必然要提到对称化构造的处理策略,这可一直追溯到7年前,2010年高考天津卷理数第21题,之后在高考中时有出现,如2011年辽宁卷理数第21题,2013年湖南卷文数第21题等.笔者决定发布极值点偏移问题的系列短文,一期一个解题方法或操作细节,敬请关注.希望对此已有所了解的朋友能认识得更加深入,还不甚了解的朋友能由此入门.极值点偏移问题(1)——对称化构造(解题方法)杨春波(高新区枫杨街 郑州外国语学校,河南 郑州 450001)三张图教你直观认识极值点偏移:xx 0=2(左右对称,无偏移,如二次函数;若()()12f x f x =,则1202x x x +=)x2(左陡右缓,极值点向左偏移;若()()12f x f x =,则1202x x x +>)2x(左缓右陡,极值点向右偏移;若()()12f x f x =,则1202x x x +<) 例1 (2010天津)已知函数()x f x xe -=. (1)求函数()f x 的单调区间和极值;(2)已知函数()g x 的图象与()f x 的图象关于直线1x =对称,证明:当1x >时,()()f x g x >;(3)如果12x x ≠,且()()12f x f x =,证明:122x x +>. 解:(1)()()1xf x e x -'=-,得()f x 在(),1-∞上递增,在()1,+∞上递减,()f x 有极大值()11f e=,无极小值; (2)由()g x 的图象与()f x 的图象关于直线1x =对称,得()g x 的解析式为()2y f x =-,构造辅助函数()()()()()2F x f x g x f x f x =-=--,()1,x ∈+∞,求导得()()()()()()()222111x x x x F x f x f x e x e x x e e ----'''=+-=-+-=--,当1x >时,10x ->,20x x ee --->,则()0F x '>,得()F x 在()1,+∞上单增,有()()10F x F >=,即()()f x g x >.(3)由()()12f x f x =,结合()f x 的单调性可设121x x <<,将2x 代入(2)中不等式得()()222f x f x >-,又()()12f x f x =,故()()122f x f x >-,又11x <,221x -<,()f x 在(),1-∞上单增,故122x x >-,122x x +>.点评:该题的三问由易到难,层层递进,完整展现了处理极值点偏移问题的一般方法——对称化构造的全过程,直观展示如下:x例1是这样一个极值点偏移问题:对于函数x f x xe -=,已知()12f x f x =,且21x x ≠,证明122x x +>.再次审视解题过程,发现以下三个关键点:(1)1x ,2x 的范围()1201x x <<<; (2)不等式()()()21f x f x x >->;(3)将2x 代入(2)中不等式,结合()f x 的单调性获证结论. 把握以上三个关键点,就可以轻松解决一些极值点偏移问题.例2 (2016新课标1卷)已知函数()()()221xf x x e a x =-+-有两个零点.(1)求a 的取值范围;(2)设1x ,2x 是()f x 的两个零点,证明:122x x +<.解:(1)()0,+∞,过程略;(2)由(1)知()f x 在(),1-∞上递减,在()1,+∞上递增,由()()120f x f x ==,可设121x x <<.构造辅助函数()()()2F x f x f x =--,求导得()()()()()()()2221(2)1(2)1x x x x F x f x f x x e a x e a x e e --'''=+-=-++-+=--,当1x <时,10x -<,20xxe e --<,则()0F x '>,得()F x 在(),1-∞上单增,又()10F =,故()()01F x x <<,即()()()21f x f x x <-<.将1x 代入上述不等式中,得()()()1212f x f x f x =<-,又21x >,121x ->,()f x 在()1,+∞递增,故212x x <-,122x x +<.通过以上两例,相信读者对极值点偏移问题以及对称化构造的一般步骤已有所了解.但极值点偏移问题的结论不一定总是()1202x x x +><,也可能是()2120x x x ><,借鉴前面的解题经验,我们就可以给出类似的过程.例 3 已知函数()ln f x x x =的图象与直线y m =交于不同的两点()11,A x y ,()22,B x y ,求证:1221x x e<. 证明:()ln 1f x x '=+,得()f x 在10,e ⎛⎫ ⎪⎝⎭上递减,在1,e⎛⎫+∞ ⎪⎝⎭上递增;当01x <<时,()0f x <;()10f =;当1x >时,()0f x >;当0x +→时,()0f x →(洛必达法则);当x →+∞时,()f x →+∞.于是()f x 的图象如下,得12101x x e<<<<. x构造函数()()21F x f x f e x ⎛⎫=-⎪⎝⎭,求导得 ()()()22222222111111ln 1ln 1ln 1F x f x f x x e x e x e x e x e x ⎛⎫⎛⎫⎛⎫'''=+=+++=+- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭, 当10x e <<时,1ln 0x +<,22110e x -<,则()0F x '>,得()F x 在10,e ⎛⎫⎪⎝⎭上递增,有()10F x F e ⎛⎫<= ⎪⎝⎭,即()2110f x f x e x e ⎛⎫⎛⎫<<< ⎪⎪⎝⎭⎝⎭.将1x 代入(2)中不等式得()1211f x f e x ⎛⎫<⎪⎝⎭,又()()12f x f x =,故()2211fx f e x ⎛⎫<⎪⎝⎭,又21x e >,2111e x e >,()f x 在1,e ⎛⎫+∞ ⎪⎝⎭上递增,故2211x e x <,1221x x e<. 小结:用对称化构造的方法解决极值点偏移问题大致分为以下三步:Step 1. 求导,获得()f x 的单调性,极值情况,作出()f x 的图象,由()()12f x f x =得1x ,2x 的取值范围(数形结合);Step 2. 构造辅助函数(对结论()1202x x x ><,构造()()()02F x f x f x x =--;对结论()2120x x x ><,构造()()20x F x f x f x ⎛⎫=- ⎪⎝⎭),求导,限定范围(1x 或2x 的范围),判定符号,获得不等式;Step 3. 代入1x (或2x ),利用()()12f x f x =及()f x 的单调性证明最终结论. 练习1 已知函数()ln f x x =和()g x ax =,若存在两个实数1x ,2x 且12x x ≠,满足()()11f x g x =,()()22f x g x =,求证:(1)122x x e +>;(2)212x x e >.。
极值点偏移问题的处理策略所谓极值点偏移问题,是指对于单极值函数,由于函数极值点左右的增减速度不同,使得函数图像没有对称性。
若函数()f x 在0x x =处取得极值,且函数()y f x =与直线y b =交于1(,)A x b ,2(,)B x b 两点,则AB 的中点为12(,)2x x M b +,而往往1202x xx +≠.如下图所示.极值点没有偏移此类问题在近几年高考及各种模考,作为热点以压轴题的形式给出,很多学生对待此类问题经常是束手无策。
而且此类问题变化多样,有些题型是不含参数的,而更多的题型又是含有参数的。
不含参数的如何解决?含参数的又该如何解决,参数如何来处理?是否有更方便的方法来解决?其实,处理的手段有很多,方法也就有很多,我们先来看看此类问题的基本特征,再从几个典型问题来逐一探索! 【问题特征】【处理策略】一、不含参数的问题.例1.(2010天津理)已知函数()()xf x xe x R -=∈ ,如果12x x ≠,且12()()f x f x = , 证明:12 2.x x +>【解析】法一:()(1)xf x x e -'=-,易得()f x 在(,1)-∞上单调递增,在(1,)+∞上单调递减,x →-∞时,()f x →-∞,(0)0f =,x →+∞时,()0f x →, 函数()f x 在1x =处取得极大值(1)f ,且1(1)f e=,如图所示. 由1212()(),f x f x x x =≠,不妨设12x x <,则必有1201x x <<<, 构造函数()(1)(1),(0,1]F x f x f x x =+--∈, 则21()(1)(1)(1)0x x xF x f x f x e e+'''=++-=->,所以()F x 在(0,1]x ∈上单调递增,()(0)0F x F >=,也即(1)(1)f x f x +>-对(0,1]x ∈恒成立.由1201x x <<<,则11(0,1]x -∈,所以11112(1(1))(2)(1(1))()()f x f x f x f x f x +-=->--==,即12(2)()f x f x ->,又因为122,(1,)x x -∈+∞,且()f x 在(1,)+∞上单调递减, 所以122x x -<,即证12 2.x x +>法二:欲证122x x +>,即证212x x >-,由法一知1201x x <<<,故122,(1,)x x -∈+∞,又因为()f x 在(1,)+∞上单调递减,故只需证21()(2)f x f x <-,又因为12()()f x f x =, 故也即证11()(2)f x f x <-,构造函数()()(2),(0,1)H x f x f x x =--∈,则等价于证明()0H x <对(0,1)x ∈恒成立.由221()()(2)(1)0x x x H x f x f x e e--'''=+-=->,则()H x 在(0,1)x ∈上单调递增,所以()(1)0H x H <=,即已证明()0H x <对(0,1)x ∈恒成立,故原不等式122x x +>亦成立.法三:由12()()f x f x =,得1212x x x ex e --=,化简得2121x x x e x -=… ,不妨设21x x >,由法一知,121o x x <<<.令21t x x =-,则210,t x t x >=+,代入①式,得11tt x e x +=,反解出11t t x e =-,则121221t tx x x t t e +=+=+-,故要证:122x x +>,即证:221ttt e +>-,又因为10t e ->,等价于证明:2(2)(1)0t t t e +-->…②, 构造函数()2(2)(1),(0)tG t t t e t =+-->,则()(1)1,()0ttG t t e G t te '''=-+=>, 故()G t '在(0,)t ∈+∞上单调递增,()(0)0G t G ''>=,从而()G t 也在(0,)t ∈+∞上单调递增,()(0)0G t G >=,即证②式成立,也即原不等式122x x +>成立. 法四:由法三中①式,两边同时取以e 为底的对数,得221211lnln ln x x x x x x -==-,也即2121ln ln 1x x x x -=-,从而221212121212221211111ln ln ()ln ln 1x x x x x x x x x x x x x x x x x x x x +-++=+==---, 令21(1)x t t x =>,则欲证:122x x +>,等价于证明:1ln 21t t t +>-…③, 构造(1)ln 2()(1)ln ,(1)11t t M t t t t t +==+>--,则2212ln ()(1)t t t M t t t --'=-, 又令2()12ln ,(1)t t t t t ϕ=-->,则()22(ln 1)2(1ln )t t t t t ϕ'=-+=--,由于1ln t t ->对(1,)t ∀∈+∞恒成立,故()0t ϕ'>,()t ϕ在(1,)t ∈+∞上单调递增,所以()(1)0t ϕϕ>=,从而()0M t '>,故()M t 在(1,)t ∈+∞上单调递增,由洛比塔法则知:1111(1)ln ((1)ln )1lim ()limlim lim(ln )21(1)x x x x t t t t t M t t t t t→→→→'+++===+='--,即证()2M t >,即证③式成立,也即原不等式122x x +>成立.【点评】以上四种方法均是为了实现将双变元的不等式转化为单变元不等式,方法一、二利用构造新的函数来达到消元的目的,方法三、四则是利用构造新的变元,将两个旧的变元都换成新变元来表示,从而达到消元的目的. 二、含参数的问题.例2.已知函数xae x x f -=)(有两个不同的零点12,x x ,求证:221>+x x .【解析】思路1:函数()f x 的两个零点,等价于方程xxea -=的两个实根,从而这一问题与例1完全等价,例1的四种方法全都可以用;思路2:也可以利用参数a 这个媒介去构造出新的函数.解答如下:因为函数()f x 有两个零点12,x x ,所以⎩⎨⎧==)2()1(2121x x aex ae x , 由)2()1(+得:)(2121xx e e a x x +=+, 要证明122x x +>,只要证明12()2x x a e e +>,由)2()1(-得:1212()xxx x a e e -=-,即1212x x x x a e e -=-,即证:121212()2x x xx e e x x e e+->-211)(212121>-+-⇔--x x x x e e x x , 不妨设12x x >,记12t x x =-,则0,1tt e >>,因此只要证明:121t te t e +⋅>-01)1(2>+--⇔t t e e t , 再次换元令x t x e t ln ,1=>=,即证2(1)ln 0(1,)1x x x x -->∀∈+∞+ 构造新函数2(1)()ln 1x F x x x -=-+,0)1(=F求导2'2214(1)()0(1)(1)x F x x x x x -=-=>++,得)(x F 在),1(+∞递增, 所以0)(>x F ,因此原不等式122x x +>获证.【点评】含参数的极值点偏移问题,在原有的两个变元12,x x 的基础上,又多了一个参数,故思路很自然的就会想到:想尽一切办法消去参数,从而转化成不含参数的问题去解决;或者以参数为媒介,构造出一个变元的新的函数。
一:极值点偏移问题的表述是:已知函数()y f x 是连续函数,在区间12(,)x x 内有且只有一个极值点0x ,且12()()f x f x ,若极值点左右的“增减速度”相同,常常有极值点122x x x ,我们称这种状态为极值点不偏移;若极值点左右的“增减速度”不同,函数的图象不具有对称性,常常有极值点122x x x 的情况,我们称这种状态为“极值点偏移”(左移或右移).二:极值点偏移问题常用两种方法证明:一是函数的单调性,. 二是利用“对数平均不等式”证明(证明方法见例题).那么什么是对数平均不等式呢?三:对数平均不等式:已知,a b 为两不等的正实数,我们称ln ln ab a b 为,a b 的“对数平均数”.它与,a b 的“几何平均数ab ”及“算术平均数2b a ”之间有如下不等关系:ln ln 2a b a babab(a=b 的情况几乎不研究,可自行补充)。
证明:不妨设0a b .先证ln ln a b aba b ,即证ab ba ba ln,令(1)a t tb,设1()2ln (1)f t tt tt,则0)1(112)(222t t ttt f ,所以()f t 在),1(递减,而(1)0f ,因此当1t时,1()2ln 0f t tt t恒成立,即ab ba ba ln成立.再证ln ln 2a b a bab,即证1)1-(2>ln +ba b a ba ,令(1)a t tb,2(1)g()ln (1)1t t ttt ,。
专题1.1初识极值点偏移一、极值点偏移的含义众所周知,函数f(x)满足定义域内任意自变量x都有f (x) = f (2m—x),则函数f(x)关于直线x=m对称;可以理解为函数f(x)在对称轴两侧,函数值变化快慢相同,且若f(x)为单峰函数,则x = m必为f(x)的极值点.如二次函数f(x)的顶点就是极值点x0,若f (x) =c的两根的中点为x1 +x2 ,则刚好有x1 +x2 = x0,即极值点在两根的正中间,2 2也就是极值点没有偏移.若相等变为不等,则为极值点偏移:若单峰函数f(x)的极值点为m ,且函数f(x)满足定义域内x=m左侧的任意自变量x都有f (x) a f (2m-x)或f (x) < f (2m - x),则函数f (x)极值点m左右侧变化快慢不同.故单峰函数f (x)定义域内任意不同的实数x1, x2 满足f(x i)=f (x2),则叱区与极值点m必有确定的大小关系:2若m < x1 +x2 ,则称为极值点左偏;若m> x1 +x2 ,则称为极值点右偏.2 2如函数g(x)=等的极值点x o =1刚好在方程g (x) =c的两根中点— -的左边,我们称e 2之为极值点左偏二、极值点偏移问题的一般题设形式:1.若函数f (x)存在两个零点不?2且%#x2,求证:X1十x2 A 2x0 (x0为函数f(x)的极值点);2.若函数f (x)中存在x1, *2且x1 # x2满足f (x1) = f (x2),求证:x1+x2 A 2x0 ( x0 为函数f (x)的极值点);3.若函数f (x)存在两个零点x1 ?2且x1 # x2,令x0 = ~x x2 ,求证:f'(x0)>0;24.若函数f (x)中存在*1?2且x1 # x2满足f (x1) = f (x2),令x0 = 配产,求证:f'(x0) 0.三、问题初现,形神合聚★函数f (x) =x2—2x+1+ae x有两极值点x i ,x2,且x i < x2.证明:x1 x2 4.【解析】令鼠冗)=/(力=2/-2 +醒\则不,巧是函数小»的两个零点.令欧工)=0,得。
专题1.1 初识极值点偏移
一、极值点偏移的含义
众所周知,函数)(x f 满足定义域内任意自变量x 都有)2()(x m f x f -=,则函数)(x f 关于直线m x =对称;可以理解为函数)(x f 在对称轴两侧,函数值变化快慢相同,且若)(x f 为单峰函数,则m x =必为)(x f 的极值点. 如二次函数)(x f 的顶点就是极值点0x ,若c x f =)(的两根的中点为
221x x +,则刚好有0212
x x x =+,即极值点在两根的正中间,也就是极值点没有偏移.
若相等变为不等,则为极值点偏移:若单峰函数)(x f 的极值点为m ,且函数)(x f 满足定义域内m x =左侧的任意自变量x 都有)2()(x m f x f ->或)2()(x m f x f -<,则函数)(x f 极值点m 左右侧变化快慢不同. 故单峰函数)(x f 定义域内任意不同的实数2
1,x x 满足)()(21x f x f =,则
2
21x x +与极值点m 必有确定的大小关系: 若221x x m +<,则称为极值点左偏;若2
21x x m +>,则称为极值点右偏. 如函数x e x x g =)(的极值点10=x 刚好在方程c x g =)(的两根中点221x x +的左边,我们称之为极值点左偏.
二、极值点偏移问题的一般题设形式:
1. 若函数)(x f 存在两个零点21,x x 且21x x ≠,求证:0212x x x >+(0x 为函数)(x f 的极值点);
2. 若函数)(x f 中存在21,x x 且21x x ≠满足)()(21x f x f =,求证:0212x x x >+(0x 为函数)(x f 的极值点);
3. 若函数)(x f 存在两个零点21,x x 且21x x ≠,令2
210x x x +=
,求证:0)('0>x f ; 4. 若函数)(x f 中存在21,x x 且21x x ≠满足)()(21x f x f =,令2210x x x +=,求证:0)('0>x f .
三、问题初现,形神合聚
★函数x
ae x x x f ++-=12)(2有两极值点21,x x ,且21x x <.
证明:421>+x x .
所以)2()2(x h x h -<+,
所以)4()]2(2[)]2(2[)()(22221x h x h x h x h x h -=--<-+==,
因为21<x ,242<-x ,)(x h 在)2,(-∞上单调递减
所以214x x ->,即421>+x x .
★已知函数x x f ln )(=的图象1C 与函数)0(2
1)(2≠+=a bx ax x g 的图象2C 交于Q P ,,过PQ 的中点R 作x 轴的垂线分别交1C ,2C 于点N M ,,问是否存在点R ,使1C 在M 处的切线与2C 在N 处的切线平行?若存在,求出R 的横坐标;若不存在,请说明理由.
四、招式演练
★过点作曲线的切线.
(1)求切线的方程;
(2)若直线与曲线交于不同的两点,,求证:.【答案】(1)(2)见解析
【解析】
试题分析:(1)先根据导数几何意义求切线斜率,再根据点斜式求切线方程.
因为,不妨设,.
设,则,
当时,,在单调递增,
所以,所以当时,.
因为,所以,
从而,因为,在单调递减,所以,即
极值点偏移问题在近几年高考及各种模考,作为热点以压轴题的形式给出,很多学生对待此类问题经常是束手无策,而且此类问题变化多样,有些题型是不含参数的,而更多的题型又是含有参数的. 其实,此类问题处理的手段有很多,方法也就有很多,下面我们来逐一
探索!。