2017-2018第2学期初1期末考试数学题 昌平
- 格式:doc
- 大小:295.79 KB
- 文档页数:7
2017-2018学年第二学期初三年级质量检测数学(2018年2月)本试卷分为第I 卷(选择题)和第Ⅱ卷(非选择题)两部分,第I 卷为1-12题,共36分,第Ⅱ卷为13-23题,共64分。
全卷共计100分。
考试时间为90分钟。
第I 卷(本卷共计36分)一、单项选择题(本部分共12小题,每小题3分,共36分)1.方程3x 2-8x-10=0的二次项系数和一次项系数分别为( )A.3和8B.3和10C.3和-10D.3和-82.如图所示的工件,其俯视图是( )3.若点A(a,b)在双曲线y=x 3上,则代数式ab-4的值为 A.-12 B.-7 C.-1 D.14.在一个不透明的布袋中,红色、黑色、白色的玻璃球共有40个,除颜色外其他完全相同.小明通过多次摸球试验后发现其中摸到红色球、黑色球的频率分别稳定在0.15和0.45,则口袋中白色球的个数可能是( )A.28B.24C.16D.65.如图,四边形ABCD 是平行四边形,下列说法不正确的是( )第5题 第6题 第7题A.当AC=BD 时,四边形ABCD 是矩形B.当AB=BC 时,四边形ABCD 是菱形C.当AC ⊥BD 时,四边形ABCD 是菱形D.当∠DAB=90°时,四边形ABCD 是正方形6.如图,△ABC 是△ABC 以点O 为位似中心经过位似变换得到的,若△A ′B ′C ′的面积与△ABC 的面积比是4:9,则0B ′:OB 为( )A.2:3B.3:2C.4:5D.4:97.如图,在平行四边形ABCD 中,EF ∥AB,DE:EA=2:3,EF=4,则CD 的长为( )A.6B.8C.10D.128.某小区2014年屋顶绿化面积为2000平方米,计划2016年屋顶绿化面积要达到2880平方米,若设屋顶绿化面积的年平均增长率为x,则依题意所列方程正确的是( )A.2000(1+x)2=2880B.200(1-x)2=2880C.2000(1+2x)=2880D.2000x 2=28809.二次函数y=x 2-3x+2的图像不经过( )A.第一象限B.第二象限C.第三象限D.第四象限10.如图,从点A 看一山坡上的电线杆PQ,观测点P 的仰角是45°,向前走6m 到达B 点,测得顶端点P 和杆底端点Q 的仰角分别是60°和30°,则该电线杆PQ 的高度( )A.326+B.36+C.310-D.38+11.如图,抛物线的顶点为P(-2,2),与y 轴交于点A(0,3).若平移该抛物线使其顶点P 沿直线移动到点P ′(2,-2),点A 的对应点为A ′,则抛物线上PA 段扫过的区域(阴影部分)的面积为( )第11题 第12题A.10B.12C.24D.1612.如图,正方形ABCD 中,O 为BD 中点,以BC 为边向正方方形内作等边△BCE,连接并延长AE 交CD 于F,连接BD 分别交CE 、AF 于G 、H,下列结论:①∠CEH=45°;②GF ∥DE ;③2OH+DH=BD ;④BG=2DG ;⑤213+=BGC BEC S S △△:。
2017—2018学年度第二学期期末考试八年级数学试题温馨提示:1.本试卷分第Ⅰ卷和第Ⅱ卷两部分,共4页.满分150分,考试用时120分钟.考试结束后,只收交答题卡.2.答卷前,考生务必用0.5毫米黑色签字笔将自己的学校、班级、姓名、考试号、座号填写在答题卡规定的位置上.3.第Ⅰ卷每小题选出答案后,必须用0.5毫米黑色签字笔将该答案选项的字母代号填入答题卡的相应表格中,不能答在试题卷上.4.第Ⅱ卷必须用0.5毫米黑色签字笔作答,答案必须写在答题卡各题目指定区域内相应的位置,不能写在试题卷上;如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带.不按以上要求作答的答案无效.第Ⅰ卷(选择题 共36分)一、选择题:本大题共12个小题,在每小题的四个选项中只有一个是正确的,请把正确的选项选出来,并将该选项的字母代号填入答题卡的相应表格中.每小题涂对得3分,满分36分.1.若x 是任意实数,下列各式中一定有意义的是 A.x B.2x C. 2x - D .12-x2.有下列二次根式:(1)12;(2)5.1;(3)23;(4)32.其中能与6合并的是 A .(1)和(2) B .(2)和(3) C .(1)和(3) D .(2)和(4)3.下列各组数中不能作为直角三角形的三边长的是A.5 ,5,10B. 9,12,17C. 7,24,25D. 0.6,0.8,14.在下列命题中,该命题的逆命题成立的是A .线段垂直平分线上的点到这条线段两个端点的距离相等B. 等边三角形是锐角三角形C. 如果两个角是直角,那么它们相等D. 如果两个实数相等,那么它们的平方相等5.顺次连接四边形各边中点得到的四边形一定是A.平行四边形B. 矩形C.菱形D.正方形 6.在□ABCD 中,AB =3,BC =4,当□ABCD 的面积最大时,下列结论中正确的有①AC =5; ②∠A +∠C =180°; ③AC ⊥BD ; ④AC =B D .A. ①②③B. ①②④C. ②③④D. ①③④7.如图,正方形ABCD 的边长为9,将正方形折叠,使顶点D 落在BC 边上的点E 处,折痕为GH .若BE ∶EC =2∶1,则线段CH 的长是 A.3C.5D.6 8.下列式子中表示y 是x 的正比例函数的是A. 2x y = B. 22y x =C.2y x = D.22y x = 9.某油箱容量为60 L 的汽车,加满汽油后行驶了100 km 时,油箱中的汽油大约消耗了15,如果加满汽油后汽车行驶的路程为x km ,油箱中剩油量为y L ,那么y 与x 之间的函数解析式和自变量的取值范围分别是A. y =0.12x ,x >0B. y =60-0.12x ,x >0C. y =0.12x ,0≤x ≤500D. y =60-0.12x ,0≤x ≤50010.下列关于函数32y x =-+的表述中错误的是A. 函数32y x =-+的图象是一条经过点(0,2)的直线B. 函数32y x =-+的图象经过第一、二、四象限C. 函数32y x =-+的y 随x 的增大而增大D. 函数32y x =-+的图象可以由直线3y x =-向上平移2个单位长度而得到11.在期末考试中,某班的数学平均成绩为85分,方差为13.2,如果每名学生都多考5分,下列说法正确的是A.平均分不变,方差不变B. 平均分变大,方差不变C.平均分不变,方差变大D. 平均分变大,方差变大12.若一组数据1x ,2x ,…,n x 的方差是0,则 A.这组数据的中位数为0 B. 1x =2x =…=n x =0 C. 1x =2x =…=n x D. x =0第Ⅱ卷(非选择题 共114分)二、填空题:本大题共10个小题,每小题4分,满分40分.13.如果a 是7的小数部分,那么代数式542++a a 的值是 .14.已知一个等边三角形的边长是6,则这个三角形的面积是 .15.晨光中学规定学生的学期体育成绩满分为100,其中早锻炼及体育课外活动占20%,期中考试成绩占30%,期末考试成绩占50%.小桐的三项成绩(百分制)依次是95,90,85.则小桐这学期的体育成绩是 .16.一组数据7,4,x ,8的平均数为5,则这组数据的中位数是 .17.已知直线6y x =-交x 轴于点A ,与直线y kx =(k>0)交于点B ,若以坐标原点O 及 点A 、B 为顶点的三角形的面积是12,则k = .18.直线3y kx =+经过点A (2,1),则不等式3kx +≥0的解集是 .19.以方程236x y -=的解为坐标(x ,y )的所有点组成的图形是函数 的图象.20.如图,在菱形ABCD 中,对角线AC 与BD 相交于点O ,AC =8,OE ⊥BC ,垂足为点E ,若菱形ABCD 的面积是24,则OE = ___. 21.如图,在正方形ABCD 的外侧,作等边三角形DCE ,则∠AEB = .22.如图,正方形ABCD 的边长为4,E 为BC 上一点,BE =1,F 为AB 上一点,AF =2,P 为AC 上一点,则PF +PE 的最小值为 .三、解答题:本大题共6个小题,满分74分. 解答时请写出必要的演推过程.23.计算:(1)23)6229(27168÷---; (2))2520)(5052()52(2-+--.24.要从甲、乙两名射击运动员中挑选一人参加全国比赛,在最近的5次选拔赛中,他们的成绩如下(单位:环):甲:7 , 8 , 6 , 8 , 9 ; 乙:9 , 7 , 5 , 8 , 6.(1)求甲运动员这5次选拔赛成绩的中位数和众数分别是多少?(2)求乙运动员这5次选拔赛成绩的平均数和方差;(3)若已知甲运动员的选拔赛成绩的方差为 1.04,为了保证稳定发挥,应选哪位运动员参加比赛?25.如图,在△ABC 中,AB =AC ,AD ⊥BC ,垂足为点D ,AN 是△ABC 外角∠CAM 的平分线,CE ⊥AN ,垂足为点E .(1)求证:四边形ADCE 为矩形;(2)当△ABC 满足什么条件时,四边形ADCE 是一个正方形?并给出证明.A C D EB O (第20题图) (第21题图) ACDE B (第22题图)F A C D E B PN A C D E B M (第25题图) (第26题图)26.有一科技小组进行了机器人行走性能试验,在试验场地有A 、B 、C 三点顺次在同一笔直的赛道上,甲、乙两机器人分别从A 、B 两点同时同向出发,历时7分钟同时到达C 点,乙机器人始终以60米/分的速度行走,如图是甲、乙两机器人之间的距离y (米)与他们的行走时间x (分钟)之间的函数图象,请结合图象,回答下列问题:(1)A 、B 两点之间的距离是 米,A 、C 两点之间的距离是 米;若线段FG ∥x 轴,则此段时间中甲机器人的速度为 米/分;(2)若前3分钟甲机器人的速度保持不变,求线段EF 所在直线的函数解析式.27.如图,△ACB 和△ECD 都是等腰直角三角形,CA =CB ,CE =CD ,并且△ACB 的顶点B 在△ECD 的斜边DE 上,连接AE .(1)求证:AE =BD ;(2)若BD =3,BE =15,求BC 的长.28.如图,将矩形ABCD 置于平面直角坐标系中,其中AD 边在x 轴上,点D 的坐标是(-3,0),点B 的坐标是(1,2),过点A 作直线AE ∥OB 交y 轴于点E .(1)求直线AE 的函数解析式;(2)现将直线AE 沿射线AD 的方向以每秒1个单位长度的速度平移,设平移t 秒时该直线能被矩形ABCD 的边截出线段,则t 的取值范围是 ;(3)在(2)的条件下,求t 取何值时,该线段与矩形的边及线段OB 所围成的四边形恰为菱形?并说明理由.(第28题图) A E xO D C B y A C D E B (第27题图)2017—2018学年第二学期八年级数学试题参考答案及评分标准二、填空题:(每题4分,共40分)13.8 ; 14. 15.88.5 ; 16.5.5; 17.2;18.x ≤3; 19.223y x =-; 20. 2.4 ; 21.30°; 22三、解答题:(共74分)23. (1)23)6229(27168÷---=(3- ………………………………………………4分=3; ………………………………………………5分(2))2520)(5052()52(2-+--=72050--() ………………………………………………9分=37-. ………………………………………………10分4分6分 7分9分 10分11分12分∴∠CAD =12CAB ∠, ………………………………………………2分 ∵AN 是△ABC 外角∠CAM 的平分线,∴∠CAE =12CAM ∠, ………………………………………………3分∴∠DAE =∠CAD +∠CAE =12×180°=90°, ……………………5分 又∵AD ⊥BC ,CE ⊥AN ,∴∠ADC =∠CEA =∠DAE =90°, …………………………………6分 ∴四边形ADCE 为矩形. ………………………………………7分(2)当△ABC 满足∠BAC =90°时,四边形ADCE 是正方形. …………9分 证明:∵AB =AC ,AD ⊥BC ,∴DC =BD , ………………………………………10分又∠BAC =90°∴DC =AD . (11)分由(1)知四边形ADCE 为矩形,∴矩形ADCE 是正方形. ………………………………………12分26. 解:(1)70;490;60; ………………………………………6分(2)由图象可知,前3分钟甲机器人的速度为60+70÷2=95(米/分) ………………………………………7分 ∵(3-2)×(95﹣60)=35,∴点F 的坐标为(3,35), ………………………………………9分 又点E 的坐标为(2,0),设线段EF 所在直线的函数解析式为y =kx +b ,则335,20,k b k b +=⎧⎨+=⎩………………………………………11分 解得 35,70.k b =⎧⎨=-⎩………………………………………12分 ∴线段EF 所在直线的函数解析式为y =35x ﹣70. …………………………13分27. (1)证明:∵∠BCA =∠DCE =90°,∴∠BCA -∠BCE =∠DCE -∠BCE ,即∠ACE =∠DCB , …………………………………2分 又CA =CB ,CE =CD ,∴△ACE ≌△BCD , …………………………………4分 ∴AE =BD ; …………………………………5分(2)∵△ECD 都是等腰直角三角形,∴∠CE D =∠D =45°, …………………………………6分 ∵△ACE ≌△BCD ,∴∠CEA =∠D =45°,8分 ∴∠BEA =∠CED +∠CEA =90°, …………………………………9分又∴22231518AB AE BE =+=+=, …………………………………11分 ∵△ACB 是等腰直角三角形,CA =CB ,∴22222AB AC BC BC =+=, …………………………………12分∴2218BC =, ∴BC =3. …………………………………13分28.解:(1)∵点B 的坐标是(1,2),∴OA =1,AB =2,点A 的坐标是(1,0), …………………………………3分 ∵由题意知,AB ∥OE ,AE ∥OB ,∴四边形ABOE 是平行四边形, …………………………………4分 ∴OE =AB =2,∴点E 的坐标是(0,-2), …………………………………5分 设直线AE 的函数解析式为y =kx +b ,则 0,2,k b b +=⎧⎨=-⎩ ………………………………………6分 解得 2,2.k b =⎧⎨=-⎩ ………………………………………7分∴线段AE所在直线的函数解析式为y=2x﹣2. ………………………………8分(2)0<t <5;………………………………………10分(3)当t 1时,所围成的四边形恰为菱形.…………………………12分理由:∵∠OAB=90°,OA=1,AB=2,∴13分设t 与AD、BC分别交于点E、F,根据题意可知,此时OE OB,且OB∥EF,OE∥BF,∴四边形FBOE是菱形,即t OB所围成的四边形恰为菱形.…………………………14分。
2017-2018学年北京市昌平区八年级(上)期末数学试卷一、选择题(本大题共8小题,共16.0分)1.若分式在实数范围内有意义,则x的取值范围是()A. B. C. D.2.的相反数是()A. B. C. D.3.如图,已知∠ACD=60°,∠B=20°,那么∠A的度数是()A. B. C. D.4.下列卡通动物简笔画图案中,属于轴对称图形的是()A. B.C. D.5.用配方法解关于x的一元二次方程x2-2x-5=0,配方正确的是()A.B. C. D.6.小明学了利用勾股定理在数轴上找一个无理数的准确位置后,又进一步进行练习:首先画出数轴,设原点为点O,在数轴上的2个单位长度的位置找一个点A,然后过点A作AB⊥OA,且AB=3.以点O为圆心,OB为半径作弧,设与数轴右侧交点为点P,则点P的位置在数轴上()A. 1和2之间B. 2和3之间C. 3和4之间D. 4和5之间7.如图所示的是某月的日历表,在此日历表上可以用一个正方形圈出3×3个位置相邻的9个数(如6,7,8,13,14,15,20,21,22).如果圈出的9个数中,最小数x与最大数的积为192,那么根据题意可列方程为()A. B.C. D.8.已知:在Rt△ABC中,∠C=90°,BC=1,AC=,点D是斜边AB的中点,点E是边AC上一点,则DE+BE的最小值为()A. 2B.C.D.二、填空题(本大题共8小题,共16.0分)9.若二次根式在实数范围内有意义,则x的取值范围为______.10.若分式的值为0,则x的值为______.11.现在人们锻炼身体的意识日渐增强,但是一些人保护环境的意识却很淡薄.右图是昌平滨河公园的一角,有人为了抄近道而避开横平竖直的路的拐角∠ABC,而走“捷径AC”,于是在草坪内走出了一条不该有的“路AC”.已知AB=40米,BC=30米,他们踩坏了______米的草坪,只为少走______米的路.12.计算+|-|=______.13.在△ABC中,分别以点A和点B为圆心,大于AB的长为半径画弧,两弧相交于M,N,作直线MN,交BC于点D,连接AD.如果BC=5,CD=2,那么AD=______.14.小龙平时爱观察也喜欢动脑,他看到路边的建筑和电线架等,发现了一个现象:一切需要稳固的物品都是由三角形这个图形构成的,当时他就思考,数学王国中不仅只有三角形,为何偏偏用三角形稳固它们呢?请你用所学的数学知识解释这一现象的依据为______.15.勾股定理有着悠久的历史,它曾引起很多人的兴趣,如图所示,AB为Rt△ABC的斜边,四边形ABGM,APQC,BCDE均为正方形,四边形RFHN是长方形,若BC=3,16.阅读下面计算+++…+的过程,然后填空.解:∵=(-),=(-),…,=(-),∴+++…+=(-)+(-)+(-)+…+(-)=(-+-+-+…+-)=(-)=.以上方法为裂项求和法,请参考以上做法完成:(1)+=______;(2)当+++…+x=时,最后一项x=______.三、计算题(本大题共2小题,共11.0分)17.解方程:-=1.18.已知:关于x的一元二次方程x2-(2m+3)x+m2+3m+2=0.(1)已知x=2是方程的一个根,求m的值;(2)以这个方程的两个实数根作为△ABC中AB、AC(AB<AC)的边长,当BC=时,△ABC是等腰三角形,求此时m的值.四、解答题(本大题共10小题,共57.0分)19.计算:2÷×.20.如图,已知△ABC.(1)画出△ABC的高AD;(2)尺规作出△ABC的角平分线BE(要求保留作图痕迹,不用证明).21.计算:-.22.解方程:x2-4x=1.23.已知:如图,点A,F,C,D在同一条直线上,点B和点E在直线AD的两侧,且AF=DC,BC∥FE,∠A=∠D.求证:AB=DE.24.先化简,再求值:÷-,其中x=.25.列方程解应用题.为促进学生健康成长,切实提高学生健康水平,某校为各班用400元购进若干体育用品,接着又用450元购进第二批体育用品,已知第二批所购体育用品数是第一批所购体育用品数的1.5倍,且每件体育用品的进价比第一批的进价少5元,求第一批体育用品每件的进价是多少?26.如图,△ABC中,AB=BC,∠ABC=90°,F为AB延长线上一点,点E在BC上,且AE=CF(1)求证:△ABE≌△CBF;(2)若∠CAE=25°,求∠ACF的度数.27.已知:关于x的方程mx2-3(m+1)x+2m+3=0 (m≠0).(1)若方程有两个相等的实数根,求m的值;(2)求此方程的两个根(若所求方程的根不是常数,就用含m的式子表示);(3)若m为整数,当m取何值时方程的两个根均为正整数?28.在等腰△ABC中,AB=AC,∠BAC=45°,CD是△ABC的高,P是线段AC(不包括端点A,C)上一动点,以DP为一腰,D为直角顶点(D、P、E三点逆时针)作等腰直角△DPE,连接AE.(1)如图1,点P在运动过程中,∠EAD=______,写出PC和AE的数量关系;(2)如图2,连接BE.如果AB=4,CP=,求出此时BE的长.答案和解析1.【答案】C【解析】解:由题意,得x+3≠0,解得x≠-3,故选:C.根据分式的分母不等于零,可得答案.本题考查了分是有意义的条件,利用分母不等于零得出不等式是解题关键.2.【答案】B【解析】解:的相反数是-,故选:B.根据相反数的意义,可得答案.本题考查了实数的性质,在一个数的前面加上负号就是这个数的相反数.3.【答案】A【解析】解:∵∠ACD=60°,∠B=20°,∴∠A=∠ACD-∠B=60°-20°=40°,故选:A.根据三角形的外角性质解答即可.此题考查三角形的外角性质,关键是根据三角形外角性质解答.4.【答案】D【解析】解:A、不是轴对称图形,故本选项错误;B、不是轴对称图形,故本选项错误;C、不是轴对称图形,故本选项错误;D、是轴对称图形,故本选项正确.故选:D.根据轴对称图形的概念对各选项分析判断即可得解.本题考查了轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合.5.【答案】D【解析】解:∵x2-2x-5=0,∴x2-2x=5,则x2-2x+1=5+1,即(x-1)2=6,故选:D.常数项移到方程的左边,两边都加上1配成完全平方式即可得出答案.本题主要考查配方法解一元二次方程的能力,解题的关键是熟练掌握用配方法解一元二次方程的步骤.6.【答案】C【解析】解:由勾股定理得,OB=,∵9<13<16,∴3<<4,∴该点位置大致在数轴上3和4之间.故选:C.利用勾股定理列式求出OB,再根据无理数的大小判断即可.本题考查了勾股定理,估算无理数的大小,熟记定理并求出OB的长是解题的关键.7.【答案】B【解析】解:根据图表可以得出,圈出的9个数,最大数与最小数的差为16,设最小数为x,则最大数为x+16,根据题意得出:x(x+16)=192,故选:B.根据日历上数字规律得出,圈出的9个数,最大数与最小数的差为16,以及利此题主要考查了由实际问题抽象出一元二次方程,根据已知得出最大数与最小数的差为16是解题关键.8.【答案】C【解析】解:作B关于AC的对称点B',连接B′D,∵∠ACB=90°,∠BAC=30°,∴∠ABC=60°,∵AB=AB',∴△ABB'为等边三角形,∴BE+DE=DE+EB'为B'与直线AB之间的连接线段,∴最小值为B'到AB的距离=AC=,故选:C.作B关于AC的对称点B',连接B′D,易求∠ABB'=60°,则AB=AB',且△ABB'为等边三角形,BE+DE=DE+EB'为B'与直线AB之间的连接线段,其最小值为B'到AB的距离=AC=,所以最小值为.本题考查的是最短线路问题及等边三角形的性质,熟知两点之间线段最短的知识是解答此题的关键.9.【答案】x≤3【解析】解:由题意得,3-x≥0,解得x≤3.故答案为:x≤3.根据被开方数大于等于0列式计算即可得解.本题考查的知识点为:二次根式的被开方数是非负数.10.【答案】2【解析】解:由分式的值为零的条件得,由2x-4=0,得x=2,由x+1≠0,得x≠-1.综上,得x=2,即x的值为2.故答案为:2.根据分式的值为零的条件可以得到,从而求出x的值.本题考查了分式的值为零的条件.若分式的值为零,需同时具备两个条件:(1)分子为0;(2)分母不为0.这两个条件缺一不可.11.【答案】50 20【解析】解:在Rt△ABC中,∵AB=40米,BC=30米,∴AC==50,30+40-50=20,∴他们踩坏了50米的草坪,只为少走20米的路.故答案为50,20根据勾股定理求出AC即可解决问题.本题考查勾股定理,解题的关键是理解题意,属于中考基础题.12.【答案】3【解析】解:原式=2+=3,故答案为:3原式利用二次根式性质,以及绝对值的代数意义计算即可求出值.此题考查了实数的性质,熟练掌握各自的性质是解本题的关键.13.【答案】3【解析】解:由作图步骤可得:MN垂直平分AB,则AD=BD,∵BC=5,CD=2,∴BD=AD=BC-DC=5-2=3.故答案为:3.直接利用基本作图方法得出MN垂直平分AB,进而得出答案.此题主要考查了基本作图,正确得出MN垂直平分AB是解题关键.14.【答案】三角形具有稳定性【解析】解:用三角形稳固它们是因为三角形具有稳定性,故答案为:三角形具有稳定性.直接利用三角形具有稳定性得出答案.此题主要考查了三角形的稳定性,正确把握三角形具有稳定性是解题关键.15.【答案】60【解析】解:如图,在Rt△ABC中,BC=3,AC=4,则根据勾股定理得到AB==5.延长CB交FH于O,∵四边形ABGM,APQC,BCDE均为正方形,∴BG=AB=GM,∠ACB=∠ABG=∠F=∠H=∠MGB=90°,BC∥DE,∴∠BOG=∠F=90°,∴∠CAB+∠ABC=90°,∠ABC+∠GBO=180°-90°=90°,∴∠CAB=∠GBO,在△ACB和△BOG中,,∴△ACB≌△BOG(AAS),∴AC=OB=4,OG=BC=3,同理可证△MHG≌△GOB,∴MH=OG=3,HG=OB=4,∴FR=4+3+4=11,FH=3+3+4=10,∴S空白=S长方形HFRN-S正方形BCDE-S正方形ACQP-S正方形ABGM=11×10-3×3-4×4-5×5=60,故答案为:60.根据勾股定理求出AB,求出△ACB≌△BOG≌△GHM,求出AC=OB=HG=4,BC=OG=MH=3,分别求出长方形FHNR,正方形BCDE,正方形ACQP,正方形ABGM的面积,即可求出答案.本题考查了正方形性质,全等三角形的性质和判定,勾股定理的应用,关键是求出长方形HFRN的边长.16.【答案】【解析】解:(1)+=×(-)+×(-)=×(-+-)=×(-)=×=,故答案为:;(2)设x=,则+++…+=,×(1-+-+-+…+-)=,×(1-)=,1-=,=,则2n+1=13,解得:n=6,∴x=,故答案为:.(1)由+=×(-)+×(-)=×(-+-)计算可得;(2)设x=,得+++…+=,裂项求和得出n的值,从而得出答案.本题主要考查数字的变化规律、解一元一次方程,解题的关键是掌握裂项求和的能力和解一元一次方程的技能.17.【答案】解:去分母得:x2-2x+2=x2-x,解得:x=2,检验:当x=2时,方程左右两边相等,所以x=2是原方程的解.【解析】分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.此题考查了解分式方程,利用了转化的思想,解分式方程注意要检验.18.【答案】解:(1)∵x=2是方程的一个根,∴4-2(2m+3)+m2+3m+2=0,∴m=0或m=1;(2)∵△=(2m+3)2-4(m2+3m+2)=1,=1;∴x=∴x1=m+2,x2=m+1,∵AB、AC(AB<AC)的长是这个方程的两个实数根,∴AC=m+2,AB=m+1.∵BC=,△ABC是等腰三角形,∴当AB=BC时,有m+1=,∴m=-1;当AC=BC时,有m+2=,∴m=-2,综上所述,当m=-1或m=-2时,△ABC是等腰三角形.【解析】(1)把x=2代入方程x2-(2m+3)x+m2+3m+2=0得到关于m的一元二次方程,然后解关于m的方程即可;(2)先计算出判别式,再利用求根公式得到x1=m+2,x2=m+1,则AC=m+2,AB=m+1.然后讨论:当AB=BC时,有m+1=;当AC=BC时,有m+2=,再分别解关于m的一次方程即可.本题考查了一元二次方程的解:能使一元二次方程左右两边相等的未知数的值是一元二次方程的解.也考查了等腰三角形的判定.19.【答案】解:原式=4÷×3=8×3=24.【解析】直接利用二次根式乘除运算法则计算得出答案.此题主要考查了二次根式的乘除运算,正确化简二次根式是解题关键.20.【答案】解:(1)如图,AD即为△ABC的高.(2)如图,BE即为△ABC的角平分线.【解析】(1)根据过直线外一点作已知直线的垂线的尺规作图可得;(2)根据角平分线的尺规作图可得.本题主要考查作图-复杂作图,解题的关键是掌握过直线外一点作已知直线的垂线及角平分线的尺规作图.21.【答案】解:原式=-=-===.【解析】先通分变成同分母的分式,再根据同分母的分式相加减的法则进行计算即可.本题考查了分式的加减法,能灵活运用法则进行计算是解此题的关键,注意:结果化成最简分式或整式.22.【答案】解:配方得x2-4x+4=1+4,即(x-2)2=5,开方得x-2=±,∴x 1=2+,x2=2-.【解析】配方法解一元二次方程,解题时要注意解题步骤的准确应用,把左边配成完全平方式,右边化为常数.此题考查了配方法解一元二次方程,用配方法解一元二次方程的步骤:(1)形如x2+px+q=0型:第一步移项,把常数项移到右边;第二步配方,左右两边加上一次项系数一半的平方;第三步左边写成完全平方式;第四步,直接开方即可.(2)形如ax2+bx+c=0型,方程两边同时除以二次项系数,即化成x2+px+q=0,然后配方.23.【答案】证明:∵BC∥FE,∴∠BCA=∠DFE.∵AF=DC,∴AF+FC=DC+CF.∴AC=DF.在△ABC和△DEF中,,∴△ABC≌△DEF(ASA).∴AB=DE.【解析】根据已知条件得出△ABC≌△DEF,即可得出AB=DE.本题考查了平行线的性质,全等三角形的性质和判定的应用,关键是根据平行线的性质和全等三角形的判定解答.24.【答案】解:原式=•-=•-=-=-=当x=时,原式=【解析】根据分式的运算法则即可求出答案.本题考查分式的运算法则,解题的关键是熟练运用分式的运算法则,本题属于基础题型.25.【答案】解:设第一批体育用品每件的进价是x元.根据题意,得1.5×=,解之,得x=20.经检验,x=20是所列方程的解,并且符合实际问题的意义.答:第一批体育用品每件的进价是20元.【解析】设第一批体育用品每件的进价是x元,则第一批进的数量是:件,第二批进的数量是:件,再根据等量关系:第二批进的数量=第一批进的数量×1.5可得方程.本题考查了分式方程的应用.关键是根据等量关系:第二批进的数量=第一批进的数量×1.5列方程.26.【答案】证明:(1)在Rt△ABE与Rt△CBF中,,∴△ABE≌△CBF(HL).(2)∵△ABE≌△CBF,∴∠BAE=∠BCF=20°;∵AB=BC,∠ABC=90°,∴∠ACB=45°,∴∠ACF=65°.【解析】(1)运用HL定理直接证明△ABE≌△CBF,即可解决问题.(2)证明∠BAE=∠BCF=25°;求出∠ACB=45°,即可解决问题.该题主要考查了全等三角形的判定及其性质的应用问题;准确找出图形中隐含的相等或全等关系是解题的关键.27.【答案】解:(1)∵方程有两个相等的实数根,∴△=[-3(m+1)]2-4m(2m+3)=0,∴(m+3)2=0,∴m1=m2=-3.(2)∵mx2-3(m+1)x+2m+3=0,即[mx-(2m+3)](x-1)=0,解得:x1=1,x2=.(3)∵x1=1、x2==2+均为正整数,且m为整数,∴=1、-1或3.当=1时,m=3,当=-1时,m=-3,当=3时,m=1.∴当m取1、3或-3时,方程的两个根均为正整数.【解析】(1)根据方程的系数结合根的判别式△=0,即可得出关于m的一元二次方程,解之即可得出m的值;(2)利用因式分解法解一元二次方程,即可得出结论;(3)根据(2)的结论结合方程的两个根均为正整数,即可得出的值,解之即可得出m的值.本题考查了根的判别式、因式分解法解一元二次方程以及解分式方程,解题的关键是:(1)牢记“当△=0时,方程有两个相等的实数根”;(2)利用因式分解法解方程;(3)根据(2)的结论结合方程的解为正整数,找出关于m的分式方程.28.【答案】45°【解析】解:(1)PC=AE,∵∠EDP=∠ADC=90°,∴∠ADE+∠ADP=∠ADP+∠CDP=90°,∴∠ADE=∠CDP,在△ADE与△CDP中,∴△ADE≌△CDP(SAS),∴∠EAD=∠PCD=45°,PC=AE;故答案为:45°;(2)如图2,∵CD⊥AB,∴∠ADC=90°.∵∠BAC=45°,∴AD=DC.∵△DEP是等腰直角三角形,∠EDP=90°,∴∠DEP=∠DPE=45°,DE=DP.∵∠EDP=∠ADC=90°,∴∠EDP-∠ADP=∠ADC-∠ADP.∴∠EDA=∠PDC.∴△EDA≌△PDC.(SAS),∴AE=PC=∠EAD=∠ACD=45°,过点E作EF⊥AB于F.∴在Rt△AEF中,利用勾股定理,可得EF=AF=1,∵AB=4,∴BF=AB-AF=3.∴BE==.(1)根据全等三角形的性质即可得到结论;(2)根据等腰直角三角形的性质得到∠DEP=∠DPE=45°,DE=DP.根据全等三角形的性质得到AE=PC=∠EAD=∠ACD=45°,过点E作EF⊥AB于F.根据勾股定理即可得到结论.本题考查了等腰直角三角形的性质,全等三角形的判定和性质,勾股定理,熟练掌握等腰直角三角形的性质是解题的关键.。
2017-2018学年人教版初一(下学期)期末数学测试卷及答案2017-2018学年七年级(下学期)期末数学试卷一、选择题(每题2分)1.为了了解一批电视机的寿命,从中抽取100台电视机进行试验,这个问题的样本是()A.这批电视机B.这批电视机的使用寿命C.所抽取的100台电视机的寿命D.1002.(-6)^2的平方根是()A.-6B.36C.±6D.±3.已知a<b,则下列不等式中不正确的是()A.4a<4bB.a+4<b+4C.-4a<-4bD.a-4<b-44.若点A(m,n),点B(n,m)表示同一点,则这一点一定在()A.第二、四象限的角平分线上B.第一、三象限的角平分线上C.平行于x轴的直线上D.平行于y轴的直线上5.过点A(-3,2)和点B(-3,5)作直线,则直线AB()A.平行于y轴B.平行于x轴C.与y轴相交D.与y轴垂直6.不等式组A.xB.-1<x<1C.x≥-1D.x≤1的解集是()7.已知A.1B.2C.3D.4是二元一次方程组的解,则m-n的值是()8.如图,AD是∠EAC的平分线,AD∥BC,∠B=30°,则∠C为()A.30°B.60°C.80°D.120°9.如图,所提供的信息正确的是()A.七年级学生最多B.九年级的男生是女生的两倍C.九年级学生女生比男生多D.八年级比九年级的学生多10.若a^2=4,b^2=9,且ab<0,则a-b的值为()A.-2B.±5C.5D.-511.若|3x-2|=2-3x,则()A.x=1B.x=2/3C.x≤1/3D.x≥2/312.20位同学在植树节这天共种了52棵树苗,其中男生每人种3棵,女生每人种2棵.设男生有x人,女生有y人,根据题意,列方程组正确的是()A.3x+2y=52,x+y=20B.2x+3y=52,x+y=20C.3x+2y=20,x+y=52D.2x+3y=20,x+y=52二、填空题(每题3分)13.14.计算:2/3)^2÷(4/9) = ______.1/4)^-2×(1/2)^-3 = ______.15.(-5)的立方根是______.16.某校初中三年级共有学生400人,为了了解这些学生的视力情况,抽查20名学生的视力,对所得数据进行整理.在得到的条形统计图中,各小组的百分比之和等于100%,若某一小组的人数为4人,则该小组的百分比为20%.17.若方程mx+ny=6的两个解是(2,0)和(0,3),则m=______,n=______.18.已知关于x的不等式组的整数解有5个,则a的取值范围是什么?19.线段CD是由线段AB平移得到的,点A(-1,4)的对应点为C(4,7),则点B(-4,-1)的对应点D的坐标是什么?20.如图,点D、E分别在AB、BC上,DE∥AC,AF∥BC,∠1=70°,则∠2=多少度?21.求下列式子中的x:28x²-63=0.22.求下列式子中的x:(x-1)³=125.23.解方程组:24.解方程组:25.已知方程组,当m为何值时,x>y?26.解不等式。
2017-2018学年北京市昌平区九年级(上)期末数学试卷一、选择题(共8道小题,每小题2分,共16分)下列各题均有四个选项,其中只有一个是符合题意的.1.(2分)(2017秋•昌平区期末)已知∠A为锐角,且sin A,那么∠A等于()A.15°B.30°C.45°D.60°2.(2分)(2011•泰州)如图是一个几何体的三视图,则这个几何体是()A.圆锥B.圆柱C.长方体D.球体3.(2分)(2018•拉萨一模)如图,点B是反比例函数y(k≠0)在第一象限内图象上的一点,过点B作BA⊥x轴于点A,BC⊥y轴于点C,矩形AOCB的面积为6,则k的值为()A.3B.6C.﹣3D.﹣64.(2分)(2018秋•张家港市期末)如图,⊙O是△ABC的外接圆,∠A=50°,则∠BOC 的度数为()A.40°B.50°C.80°D.100°5.(2分)(2018•资中县一模)将二次函数y=x2﹣6x+5用配方法化成y=(x﹣h)2+k的形式,下列结果中正确的是()A.y=(x﹣6)2+5B.y=(x﹣3)2+5C.y=(x﹣3)2﹣4D.y=(x+3)2﹣9 6.(2分)(2019•下陆区模拟)如图,将△ABC绕点C顺时针旋转,点B的对应点为点E,点A的对应点为点D,当点E恰好落在边AC上时,连接AD,若∠ACB=30°,则∠DAC 的度数是()A.60°B.65°C.70°D.75°7.(2分)(2017秋•昌平区期末)如图,AB为⊙O的直径,点C为⊙O上的一点,过点C 作⊙O的切线,交直径AB的延长线于点D,若∠A=25°,则∠D的度数是()A.25°B.40°C.50°D.65°8.(2分)(2018•内乡县二模)小苏和小林在如图所示的跑道上进行4×50米折返跑.在整个过程中,跑步者距起跑线的距离y(单位:m)与跑步时间t(单位:s)的对应关系如下图所示.下列叙述正确的是()A.两人从起跑线同时出发,同时到达终点B.小苏跑全程的平均速度大于小林跑全程的平均速度C.小苏在跑最后100m的过程中,与小林相遇2次D.小苏前15s跑过的路程小于小林前15s跑过的路程二、填空题(共8道小题,每小题2分,共16分)9.(2分)(2013•常德)请写一个图象在第二、四象限的反比例函数解析式:.10.(2分)(2018•锦州一模)如图,在平面直角坐标系xOy中,点A,点B的坐标分别为(0,2),(﹣1,0),将线段AB沿x轴的正方向平移,若点B的对应点的坐标为B'(2,0),则点A的对应点A'的坐标为.11.(2分)(2018秋•徐闻县期末)如图,P A,PB分别与⊙O相切于A、B两点,点C为劣弧AB上任意一点,过点C的切线分别交AP,BP于D,E两点.若AP=8,则△PDE 的周长为.12.(2分)(2017秋•昌平区期末)抛物线y=x2+bx+c经过点A(0,3),B(2,3),抛物线的对称轴为.13.(2分)(2017秋•昌平区期末)如图,⊙O的半径为3,正六边形ABCDEF内接于⊙O,则劣弧AB的长为.14.(2分)(2017秋•昌平区期末)如图,在直角三角形ABC中,∠C=90°,BC=6,AC =8,点D是AC边上一点,将△BCD沿BD折叠,使点C落在AB边的E点,那么AE 的长度是.15.(2分)(2017秋•昌平区期末)如图,在平面直角坐标系xOy中,△CDE可以看作是△AOB经过若干次图形的变化(平移、轴对称、旋转)得到的,写出一种由△AOB得到△CDE的过程:.16.(2分)(2018•荆门三模)阅读以下作图过程:第一步:在数轴上,点O表示数0,点A表示数1,点B表示数5,以AB为直径作半圆(如图);第二步:以B点为圆心,1为半径作弧交半圆于点C(如图);第三步:以A点为圆心,AC为半径作弧交数轴的正半轴于点M.请你在下面的数轴中完成第三步的画图(保留作图痕迹,不写画法),并写出点M表示的数为.三、解答题(共6道小题,每小题5分,共30分)17.(5分)(2017秋•昌平区期末)计算:2sin30°﹣tan60°+cos60°﹣tan45°.18.(5分)(2017秋•昌平区期末)二次函数图象上部分点的横坐标x,纵坐标y的对应值如下表:(1)求这个二次函数的表达式;(2)在图中画出这个二次函数的图象.19.(5分)(2018秋•临邑县期末)如图,在△ABC中,AB=AC,BD⊥AC于点D.AC=10,cos A,求BC的长.20.(5分)(2017秋•昌平区期末)如图,AB是⊙O的直径,弦CD⊥AB于点E,连接AC,BC.(1)求证:∠A=∠BCD;(2)若AB=10,CD=8,求BE的长.21.(5分)(2018•宜兴市模拟)尺规作图:如图,AC为⊙O的直径.(1)求作:⊙O的内接正方形ABCD.(要求:不写作法,保留作图痕迹);(2)当直径AC=4时,求这个正方形的边长.22.(5分)(2017秋•昌平区期末)某校九年级数学兴趣小组的同学进行社会实践活动时,想利用所学的解直角三角形的知识测量某塔的高度,他们先在点D用高1.5米的测角仪DA测得塔顶M的仰角为30°,然后沿DF方向前行40m到达点E处,在E处测得塔顶M的仰角为60°.请根据他们的测量数据求此塔MF的高.(结果精确到0.1m,参考数据: 1.41, 1.73, 2.45)四、解答题(共4道小题,每小题6分,共24分)23.(6分)(2019•武侯区模拟)如图,是一座古拱桥的截面图,拱桥桥洞的上沿是抛物线形状,当水面的宽度为10m时,桥洞与水面的最大距离是5m.(1)经过讨论,同学们得出三种建立平面直角坐标系的方案(如图),你选择的方案是(填方案一,方案二,或方案三),则B点坐标是,求出你所选方案中的抛物线的表达式;(2)因为上游水库泄洪,水面宽度变为6m,求水面上涨的高度.24.(6分)(2019•禹州市一模)如图,AB为⊙O的直径,C、F为⊙O上两点,且点C为弧BF的中点,过点C作AF的垂线,交AF的延长线于点E,交AB的延长线于点D.(1)求证:DE是⊙O的切线;(2)如果半径的长为3,tan D,求AE的长.25.(6分)(2017秋•昌平区期末)小明根据学习函数的经验,对函数y=x4﹣5x2+4的图象与性质进行了探究.下面是小明的探究过程,请补充完整:(1)自变量x的取值范围是全体实数,x与y的几组对应数值如下表:其中m=;(2)如图,在平面直角坐标系xOy中,描出了以上表中各组对应值为坐标的点,根据描出的点,画出该函数的图象;(3)观察函数图象,写出一条该函数的性质;(4)进一步探究函数图象发现:①方程x4﹣5x2+4=0有个互不相等的实数根;②有两个点(x1,y1)和(x2,y2)在此函数图象上,当x2>x1>2时,比较y1和y2的大小关系为:y1y2(填“>”、“<”或“=”);③若关于x的方程x4﹣5x2+4=a有4个互不相等的实数根,则a的取值范围是.26.(6分)(2017秋•昌平区期末)在平面直角坐标系xOy中,抛物线y=mx2﹣2mx﹣3(m ≠0)与y轴交于点A,其对称轴与x轴交于点B顶点为C点.(1)求点A和点B的坐标;(2)若∠ACB=45°,求此抛物线的表达式;(3)在(2)的条件下,垂直于y轴的直线l与抛物线交于点P(x1,y1)和Q(x2,y2),与直线AB交于点N(x3,y3),若x3<x1<x2,结合函数的图象,直接写出x1+x2+x3的取值范围.五、解答题(共2道小题,每小题7分,共14分)27.(7分)(2017秋•昌平区期末)已知,△ABC中,∠ACB=90°,AC=BC,点D为BC 边上的一点.(1)以点C为旋转中心,将△ACD逆时针旋转90°,得到△BCE,请你画出旋转后的图形;(2)延长AD交BE于点F,求证:AF⊥BE;(3)若AC,BF=1,连接CF,则CF的长度为.28.(7分)(2017秋•昌平区期末)对于平面直角坐标系xOy中的点P,给出如下定义:记点P到x轴的距离为d1,到y轴的距离为d2,若d1≥d2,则称d1为点P的最大距离;若d1<d2,则称d2为点P的最大距离.例如:点P(﹣3,4)到到x轴的距离为4,到y轴的距离为3,因为3<4,所以点P的最大距离为4.(1)①点A(2,﹣5)的最大距离为;②若点B(a,2)的最大距离为5,则a的值为;(2)若点C在直线y=﹣x﹣2上,且点C的最大距离为5,求点C的坐标;(3)若⊙O上存在点M,使点M的最大距离为5,直接写出⊙O的半径r的取值范围.2017-2018学年北京市昌平区九年级(上)期末数学试卷参考答案与试题解析一、选择题(共8道小题,每小题2分,共16分)下列各题均有四个选项,其中只有一个是符合题意的.1.(2分)(2017秋•昌平区期末)已知∠A为锐角,且sin A,那么∠A等于()A.15°B.30°C.45°D.60°【解答】解:由∠A为锐角,且sin A,得∠A=45°,故选:C.2.(2分)(2011•泰州)如图是一个几何体的三视图,则这个几何体是()A.圆锥B.圆柱C.长方体D.球体【解答】解:由于主视图和左视图为三角形可得此几何体为锥体,由俯视图为圆形可得为圆锥.故选:A.3.(2分)(2018•拉萨一模)如图,点B是反比例函数y(k≠0)在第一象限内图象上的一点,过点B作BA⊥x轴于点A,BC⊥y轴于点C,矩形AOCB的面积为6,则k的值为()A.3B.6C.﹣3D.﹣6【解答】解:因为矩形AOCB的面积为6,所以k的值为6,故选:B.4.(2分)(2018秋•张家港市期末)如图,⊙O是△ABC的外接圆,∠A=50°,则∠BOC 的度数为()A.40°B.50°C.80°D.100°【解答】解:∵⊙O是△ABC的外接圆,∠A=50°,∴∠BOC=2∠A=100°.故选:D.5.(2分)(2018•资中县一模)将二次函数y=x2﹣6x+5用配方法化成y=(x﹣h)2+k的形式,下列结果中正确的是()A.y=(x﹣6)2+5B.y=(x﹣3)2+5C.y=(x﹣3)2﹣4D.y=(x+3)2﹣9【解答】解:y=x2﹣6x+5=x2﹣6x+9﹣4=(x﹣3)2﹣4,故选:C.6.(2分)(2019•下陆区模拟)如图,将△ABC绕点C顺时针旋转,点B的对应点为点E,点A的对应点为点D,当点E恰好落在边AC上时,连接AD,若∠ACB=30°,则∠DAC 的度数是()A.60°B.65°C.70°D.75°【解答】解:由题意知△ABC≌△DEC,则∠ACB=∠DCE=30°,AC=DC,∴∠DAC75°,故选:D.7.(2分)(2017秋•昌平区期末)如图,AB为⊙O的直径,点C为⊙O上的一点,过点C 作⊙O的切线,交直径AB的延长线于点D,若∠A=25°,则∠D的度数是()A.25°B.40°C.50°D.65°【解答】解:连接OC.∵OA=OC,∴∠A=∠OCA=25°.∴∠DOC=∠A+∠ACO=50°.∵CD是⊙的切线,∴∠OCD=90°.∴∠D=180°﹣90°﹣50°=40°.故选:B.8.(2分)(2018•内乡县二模)小苏和小林在如图所示的跑道上进行4×50米折返跑.在整个过程中,跑步者距起跑线的距离y(单位:m)与跑步时间t(单位:s)的对应关系如下图所示.下列叙述正确的是()A.两人从起跑线同时出发,同时到达终点B.小苏跑全程的平均速度大于小林跑全程的平均速度C.小苏在跑最后100m的过程中,与小林相遇2次D.小苏前15s跑过的路程小于小林前15s跑过的路程【解答】解:由函数图象可知:两人从起跑线同时出发,先后到达终点,小林先到达终点,故A错误;根据图象两人从起跑线同时出发,小林先到达终点,小苏后到达终点,小苏用的时间多,而路程相同,根据速度路程时间,所以小苏跑全程的平均速度小于小林跑全程的平均速度,故B错误;小林在跑最后100m的过程中,两人相遇时,即实线与虚线相交的地方,由图象可知1次,故C错误;根据图象小苏前15s跑过的路程小于小林前15s跑过的路程,故D正确;故选:D.二、填空题(共8道小题,每小题2分,共16分)9.(2分)(2013•常德)请写一个图象在第二、四象限的反比例函数解析式:y.【解答】解:∵图象在第二、四象限,∴y,故答案为:y.10.(2分)(2018•锦州一模)如图,在平面直角坐标系xOy中,点A,点B的坐标分别为(0,2),(﹣1,0),将线段AB沿x轴的正方向平移,若点B的对应点的坐标为B'(2,0),则点A的对应点A'的坐标为(3,2).【解答】解:∵将线段AB沿x轴的正方向平移,若点B的对应点B′的坐标为(2,0),∵﹣1+3=2,∴0+3=3∴A′(3,2),故答案为:(3,2)11.(2分)(2018秋•徐闻县期末)如图,P A,PB分别与⊙O相切于A、B两点,点C为劣弧AB上任意一点,过点C的切线分别交AP,BP于D,E两点.若AP=8,则△PDE 的周长为16.【解答】解:∵DA、DC、EB、EC分别是⊙O的切线,∴DA=DC,EB=EC;∴DE=DA+EB,∴PD+PE+DE=PD+DA+PE+BE=P A+PB,∵P A、PB分别是⊙O的切线,∴P A=PB=8,∴△PDE的周长=16.故答案为:1612.(2分)(2017秋•昌平区期末)抛物线y=x2+bx+c经过点A(0,3),B(2,3),抛物线的对称轴为直线x=1.【解答】解:∵抛物线y=x2+bx+c经过点A(0,3)和B(2,3),∴此两点关于抛物线的对称轴对称,∴x1.故答案为:直线x=1.13.(2分)(2017秋•昌平区期末)如图,⊙O的半径为3,正六边形ABCDEF内接于⊙O,则劣弧AB的长为π.【解答】解:如图,连接OA、OB,∵ABCDEF为正六边形,∴∠AOB=360°60°,的长为 π.故答案为:π14.(2分)(2017秋•昌平区期末)如图,在直角三角形ABC中,∠C=90°,BC=6,AC =8,点D是AC边上一点,将△BCD沿BD折叠,使点C落在AB边的E点,那么AE 的长度是4.【解答】解:在Rt△ACB中,由勾股定理可知AB10.由折叠的性质得:BE=BC=6,则AE=AB﹣BE=4.故答案为:4.15.(2分)(2017秋•昌平区期末)如图,在平面直角坐标系xOy中,△CDE可以看作是△AOB经过若干次图形的变化(平移、轴对称、旋转)得到的,写出一种由△AOB得到△CDE的过程:将△AOB绕点O顺时针旋转90°,再沿x轴向右平移一个单位.【解答】解:将△AOB绕点O顺时针旋转90°,再沿x轴向右平移一个单位得到△CDE,故答案为:将△AOB绕点O顺时针旋转90°,再沿x轴向右平移一个单位16.(2分)(2018•荆门三模)阅读以下作图过程:第一步:在数轴上,点O表示数0,点A表示数1,点B表示数5,以AB为直径作半圆(如图);第二步:以B点为圆心,1为半径作弧交半圆于点C(如图);第三步:以A点为圆心,AC为半径作弧交数轴的正半轴于点M.请你在下面的数轴中完成第三步的画图(保留作图痕迹,不写画法),并写出点M表示的数为1.【解答】解:如图,点M即为所求,连接AC、BC,由题意知,AB=4、BC=1,∵AB为圆的直径,∴∠ACB=90°,则AM=AC,∴点M表示的数为1,故答案为:1.三、解答题(共6道小题,每小题5分,共30分)17.(5分)(2017秋•昌平区期末)计算:2sin30°﹣tan60°+cos60°﹣tan45°.【解答】解:2sin30°﹣tan60°+cos60°﹣tan45°.18.(5分)(2017秋•昌平区期末)二次函数图象上部分点的横坐标x,纵坐标y的对应值如下表:(1)求这个二次函数的表达式;(2)在图中画出这个二次函数的图象.【解答】解:(1)由题意可得二次函数的顶点坐标为(﹣1,﹣4),设二次函数的解析式为:y=a(x+1)2﹣4,把点(0,3)代入y=a(x+1)2﹣4得a=1∴抛物线解析式为y=(x+1)2﹣4;(2)如图所示:19.(5分)(2018秋•临邑县期末)如图,在△ABC中,AB=AC,BD⊥AC于点D.AC=10,cos A,求BC的长.【解答】解:∵AC=AB,AB=10,∴AC=10.在Rt△ABD中∵cos A,∴AD=8,∴DC=2.∴.∴.20.(5分)(2017秋•昌平区期末)如图,AB是⊙O的直径,弦CD⊥AB于点E,连接AC,BC.(1)求证:∠A=∠BCD;(2)若AB=10,CD=8,求BE的长.【解答】(1)证明:∵直径AB⊥弦CD,∴弧BC=弧BD.∴∠A=∠BCD;(2)连接OC∵直径AB⊥弦CD,CD=8,∴CE=ED=4.∵直径AB=10,∴CO=OB=5.在Rt△COE中,∵OC=5,CE=4,∴OE3,∴BE=OB﹣OE=5﹣3=2.21.(5分)(2018•宜兴市模拟)尺规作图:如图,AC为⊙O的直径.(1)求作:⊙O的内接正方形ABCD.(要求:不写作法,保留作图痕迹);(2)当直径AC=4时,求这个正方形的边长.【解答】解:(1)如图所示:(2)∵直径AC=4,∴OA=OB=2.∵正方形ABCD为⊙O的内接正方形,∴∠AOB=90°,∴.22.(5分)(2017秋•昌平区期末)某校九年级数学兴趣小组的同学进行社会实践活动时,想利用所学的解直角三角形的知识测量某塔的高度,他们先在点D用高1.5米的测角仪DA测得塔顶M的仰角为30°,然后沿DF方向前行40m到达点E处,在E处测得塔顶M的仰角为60°.请根据他们的测量数据求此塔MF的高.(结果精确到0.1m,参考数据: 1.41, 1.73, 2.45)【解答】解:由题意:AB=40,CF=1.5,∠MAC=30°,∠MBC=60°,∵∠MAC=30°,∠MBC=60°,∴∠AMB=30°∴∠AMB=∠MAB∴AB=MB=40,在Rt△BCM中,∵∠MCB=90°,∠MBC=60°,∴∠BMC=30°.∴BC20,∴,∴MC≈34.64,∴MF=CF+CM=36.14≈36.1.四、解答题(共4道小题,每小题6分,共24分)23.(6分)(2019•武侯区模拟)如图,是一座古拱桥的截面图,拱桥桥洞的上沿是抛物线形状,当水面的宽度为10m时,桥洞与水面的最大距离是5m.(1)经过讨论,同学们得出三种建立平面直角坐标系的方案(如图),你选择的方案是方案二(填方案一,方案二,或方案三),则B点坐标是(10,0),求出你所选方案中的抛物线的表达式;(2)因为上游水库泄洪,水面宽度变为6m,求水面上涨的高度.【解答】解:(1)选择方案二,根据题意知点B的坐标为(10,0),由题意知,抛物线的顶点坐标为(5,5),且经过点O(0,0),B(10,0),设抛物线解析式为y=a(x﹣5)2+5,把点(0,0)代入得:0=a(0﹣5)2+5,即a,∴抛物线解析式为y(x﹣5)2+5,故答案为:方案二,(10,0);(2)由题意知,当x=5﹣3=2时,(x﹣5)2+5,所以水面上涨的高度为米.24.(6分)(2019•禹州市一模)如图,AB为⊙O的直径,C、F为⊙O上两点,且点C为弧BF的中点,过点C作AF的垂线,交AF的延长线于点E,交AB的延长线于点D.(1)求证:DE是⊙O的切线;(2)如果半径的长为3,tan D,求AE的长.【解答】(1)证明:连接OC,如图,∵点C为弧BF的中点,∴弧BC=弧CF.∴∠BAC=∠F AC,∵OA=OC,∴∠OCA=∠OAC.∴∠OCA=∠F AC,∴OC∥AE,∵AE⊥DE,∴OC⊥DE.∴DE是⊙O的切线;(2)解:在Rt△OCD中,∵tan D,OC=3,∴CD=4,∴OD5,∴AD=OD+AO=8,在Rt△ADE中,∵sin D,∴AE.25.(6分)(2017秋•昌平区期末)小明根据学习函数的经验,对函数y=x4﹣5x2+4的图象与性质进行了探究.下面是小明的探究过程,请补充完整:(1)自变量x的取值范围是全体实数,x与y的几组对应数值如下表:其中m=;(2)如图,在平面直角坐标系xOy中,描出了以上表中各组对应值为坐标的点,根据描出的点,画出该函数的图象;(3)观察函数图象,写出一条该函数的性质函数图象关于y轴对称;(4)进一步探究函数图象发现:①方程x4﹣5x2+4=0有4个互不相等的实数根;②有两个点(x1,y1)和(x2,y2)在此函数图象上,当x2>x1>2时,比较y1和y2的大小关系为:y1<y2(填“>”、“<”或“=”);③若关于x的方程x4﹣5x2+4=a有4个互不相等的实数根,则a的取值范围是<<.【解答】解:(1)观察对应数值表可知:m=0,(2)用平滑的曲线依次连接图中所描的点,如下图所示:(3)观察函数图象,发现该函数图象关于y轴对称,(答案不唯一),故答案为:函数图象关于y轴对称;(4)①∵函数的图象与x轴有4个交点,∴方程x4﹣5x2+4=0有4互不相等的实数根,故答案为4;②函数图象可知,当x2>x1>2时,y1<y2;故答案为<;③观察函数图象,结合对应数值表可知:<<,故答案为:<<.26.(6分)(2017秋•昌平区期末)在平面直角坐标系xOy中,抛物线y=mx2﹣2mx﹣3(m ≠0)与y轴交于点A,其对称轴与x轴交于点B顶点为C点.(1)求点A和点B的坐标;(2)若∠ACB=45°,求此抛物线的表达式;(3)在(2)的条件下,垂直于y轴的直线l与抛物线交于点P(x1,y1)和Q(x2,y2),与直线AB交于点N(x3,y3),若x3<x1<x2,结合函数的图象,直接写出x1+x2+x3的取值范围.【解答】解:(1)∵抛物线y=mx2﹣2mx﹣3 (m≠0)与y轴交于点A,∴点A的坐标为(0,﹣3);∵抛物线y=mx2﹣2mx﹣3 (m≠0)的对称轴为直线x=1,∴点B的坐标为(1,0).(2)∵∠ACB=45°,∴点C的坐标为(1,﹣4),把点C代入抛物线y=mx2﹣2mx﹣3得出m=1,∴抛物线的解析式为y=x2﹣2x﹣3.(3)如图,当直线l1经过点A时,x1=x3=0,x2=2,此时x1+x3+x2=2,当直线l2经过点C时,直线AB的解析式为y=3x﹣3,∴y=﹣4时,x此时,x1=x2=1,x3,此时x1+x3+x2,当直线l在直线l1与直线l2之间时,x3<x1<x2∴<<.五、解答题(共2道小题,每小题7分,共14分)27.(7分)(2017秋•昌平区期末)已知,△ABC中,∠ACB=90°,AC=BC,点D为BC 边上的一点.(1)以点C为旋转中心,将△ACD逆时针旋转90°,得到△BCE,请你画出旋转后的图形;(2)延长AD交BE于点F,求证:AF⊥BE;(3)若AC,BF=1,连接CF,则CF的长度为.【解答】解:(1)如图1,△BCE即为所求;(2)证明:如图2,∵△CBE由△CAD旋转得到,∴△CBE≌△CAD,∴∠CBE=∠CAD,∠BCE=∠ACD=90°,∴∠CBE+∠E=∠CAD+∠E,∴∠BCE=∠AFE=90°,∴AF⊥BE;(3)如图3,在Rt△ABC中,BC=AC,∴AB AC,在Rt△ABF中,根据勾股定理得,AF=3,设AD=x,由旋转知,CE=CD,BE=AD=x由(2)知,∠BFD=90°=∠BCE,∵∠B=∠B,∴△BFD∽△BCE,∴,∴,∴BD x,CD(3﹣x),∵BC=BD+CD,∴x(3﹣x),∴x,∴BD,CD,过点C作CM⊥AD于M,∴S△ACD AC×CD AD×CM,∴CM1,在Rt△AMC中,根据勾股定理得,AM=2,过点F作FN⊥BC于N,∴∠BNF=90°=∠AMC,由旋转知,∠CAM=∠FBN,∴△AMC∽△BNF,∴,∴,∴FN,BN,∴DN=BD﹣BN,∴CN=CD+DN,在Rt△CNF中,CF故答案为:.28.(7分)(2017秋•昌平区期末)对于平面直角坐标系xOy中的点P,给出如下定义:记点P到x轴的距离为d1,到y轴的距离为d2,若d1≥d2,则称d1为点P的最大距离;若d1<d2,则称d2为点P的最大距离.例如:点P(﹣3,4)到到x轴的距离为4,到y轴的距离为3,因为3<4,所以点P的最大距离为4.(1)①点A(2,﹣5)的最大距离为5;②若点B(a,2)的最大距离为5,则a的值为±5;(2)若点C在直线y=﹣x﹣2上,且点C的最大距离为5,求点C的坐标;(3)若⊙O上存在点M,使点M的最大距离为5,直接写出⊙O的半径r的取值范围.【解答】解:(1)①∵点A(2,﹣5)到x轴的距离为5,到y轴的距离为2,∵2<5,∴点A的“最大距离”为5.②∵点B(a,2)的“最大距离”为5,∴a=±5;故答案为5,±5.(2)设点C的坐标(x,y),∵点C的“最大距离”为5,∴x=±5或y=±5,当x=5时,y=﹣7,当x=﹣5时,y=3,当y=5时,x=﹣7,当y=﹣5时,x=3,∴点C(﹣5,3)或(3,﹣5).(3)如图,观察图象可知:当⊙O于直线x=5,直线x=﹣5,直线y=5,直线y=﹣5有交点时,⊙O上存在点M,使点M的最大距离为5,∴.。
2017—2018学年度第二学期期末调研考试八年级数学试题注意:本份试卷共8页,三道大题,26个小题,总分120分,时间120分钟。
题号 一 二 三20 21 22 23 24 25 26 得分一、选择题(本大题共16个小题,共42分.1~10每小题3分,11~16每小题2分,共42分.在每小题给出的四个选项中,只有一项是符合题目要求的.请将正确的选项填在下表中.) 题号1 2 3 4 5 6 7 8 答案 题号 9 10 11 12 13 14 15 16 答案1. 下列根式中,不能与3合并的是………………………….……………………( )A .13 B .13C .23D .12 2.下表记录了甲、乙、丙、丁四名同学参加该市 “我们身边的感动”演讲比赛学校选拔赛,最近几次成绩的平均数与方差如下表:甲 乙 丙 丁 平均数(分) 90 80 85 80方差 2.4 3.6 5.4 2.4根据表中数据,要从中选择一名成绩好且发挥稳定的同学参加市级比赛,应该选择…( ) A .甲 B .乙 C .丙 D .丁3.如图,数轴上表示的是某个函数自变量的取值范围,则这个函数解析式为…………………………………………………………………………( ) A .y=x+2 B .y=x 2+2 C .2y x =+ D .12y x =+ 4.下列计算正确的是…………………………………………………………………( ) A .4646⨯= B .4610+= C .()21515-=- D .40522÷=5.一组数据:2,3,3,4,若添加一个数据3,则发生变化的统计量是………( ) A .平均数 B .中位数 C .众数 D .方差 6.矩形ABCD 的对角线AC 、BD 交于点O ,以下结论不一定...成立的是……………( ) 总分 核分人A .∠BCD=90°B .AC ⊥BD C .AC=BD D .OA=OB7.一组数据:3,2,5,3,7,5,x ,它们的众数为5,则这组数据的中位数是…( ) A .2 B .3 C .5 D .7 8.已知:2xy =,521x y -=-,则(x+1)(y ﹣1)的值为……………………( ) A .42- B .622- C .62 D .无法确定9.在四边形ABCD 中AC 、BD 相交于点O ,下列说法错误..的是……………………( ) A .AB ∥CD ,AD=BC ,则四边形ABCD 是平行四边形B .AO=CO ,BO=DO 且AC ⊥BD ,则四边形ABCD 是菱形 C .AO=OB=OC=OD ,则四边形ABCD 是矩形D .∠A=∠B=∠C=∠D 且AB=BC ,则则四边形ABCD 是正方形10.如图,在四个均由十六个小正方形组成的正方形网格中,各有一个三角形ABC ,那么这四个三角形中,不是..直角三角形的是……………………………………………( ) A . B . C . D .11.关于函数y=﹣x ﹣2的图象,有如下说法:①图象过(0,﹣2)点;②图象与x 轴交点是(﹣2,0);③从图象知y 随x 增大而增大;④图象不过第一象限;⑤图象是与y=﹣x 平行的直线.其中正确说法有………( ) A .2个 B .3个 C .4个 D .5个 12.如图,在△ABC 中,∠ACB=90°,D 在BC 上,E 是AB 的中点,AD 、CE 相交于F ,且AD=DB .若∠B=20°,则∠DFE 等于……( ) A .30° B .40° C .50° D .60° 13.若式子()011k k -+-有意义,则一次函数y=(1﹣k )x+k ﹣1的图象可能是…( )A .B .C .D .14.平面直角坐标系中,O 是坐标原点,点A 的坐标是(4,0),点P 在直线y=﹣x+m 上,且AP=OP=4.则m 的值为……………………………………………………( ) A .223+或223- B .4或﹣4 C .23或23- D .423+或423-15.如图,在Rt△ABC中,∠ACB=90°,D为斜边AB的中点,动点P从B点出发,沿B→C→A运动.如图(1)所示,设S△DPB=y,点P运动的路程为x,若y与x之间的函数图象如图(2)所示,则图(2)中Q点的坐标是……………………………()A.(4,4)B.(4,3)C.(4,6)D.(4,12)16.如图,在一张矩形纸片ABCD中,AB=4,BC=8,点E、F分别在AD,BC上,将纸片ABCD沿直线EF折叠,点C落在AD上的一点H处,点D落在点G处,有以下四个结论:①四边形CFHE是菱形;②EC平分∠DCH;③线段BF的取值范围为3≤BF≤4;④当点H与点A重合时,EF=25.以上结论中,你认为正确的是………………………………………………………()A.①②③B.①③④C.①②④D.②③④二、填空题(本大题共3小题,共10分.17~18小题各3分;19小题有2个空,每空2分.把答案写在题中横线上)17.如图,函数y=ax+m和y=bx的图象相交于点A,则不等式bx≥ax+m的解集为.18.如图,平行四边形ABCD中,AE⊥BD于E,CF⊥BD于F,∠ABC=75°,∠DBC=30°,BC=2,则BD的长度为.19.如图,在平面直角坐标系中,直线l:y=x+2交x轴于点A,交y轴于点A1,点A2,A3,…在直线l上,点B1,B2,B3,…在x轴的正半轴上,若△A1OB1,△A2B1B2,△A3B2B3,…,依次均为等腰直角三角形,直角顶点都在x轴上,则第3个等腰直角三角形A3B2B3顶点B3的横坐标为,第2018个等腰直角三角形A2018B2017B2018顶点B2018的横坐标为.三、解答题(本大题共7小题,共68分.解答应写出文字说明、证明过程或演算步骤)20.计算(本题共2小题,每小题4分,满分8分)(1)11484320.583⎛⎫⎛⎫---⎪ ⎪⎪ ⎪⎝⎭⎝⎭;(2)()()()215225382-+--+⨯.21.(本题满分9分)有一块边长为40米的正方形绿地ABCD,如图所示,在绿地旁边E处有健身器材,BE=9米.由于居住在A 处的居民去健身践踏了绿地(图中AE),小明想在A处树立一个标牌“少走米,踏之何忍”.请你计算后帮小明在标牌的处填上适当的数.22.(本题满分9分)某校260名学生参加植树活动,要求每人植4~7棵,活动结束后随机抽查了20名学生每人的植树量,并分为四种类型,A:4棵;B:5棵;C:6棵;D:7棵.将各类的人数绘制成扇形图(如图1)和条形图(如图2),经确认扇形图是正确的,而条形图尚有一处错误.回答下列问题:(1)写出条形图中存在的错误,并说明理由;(2)这20名学生每人植树量的众数是,中位数是;(3)在求这20名学生每人植树量的平均数时,小宇是这样分析的:①小宇的分析是从哪一步开始出现错误的?②请你帮他计算出正确的平均数,并估计这260名学生共植树多少棵.23.(本题满分9分)如图,在△ABC中,AB=AC,AD是BC边上的中线,AE∥BC,CE⊥AE,垂足为点E.连接DE,则线段DE与线段AC有怎样的数量关系?请证明你的结论.24.(本题满分10分)如图,在平面直角坐标系中,过点B(6,0)的直线AB与直线OA相交于点A(4,2),动点M沿路线O→A→C运动.(1)求直线AB的解析式.(2)求△OAC的面积.(3)当△OMC的面积是△OAC的面积的14时,求出这时点M的坐标.25.(本题满分11分)我们给出如下定义:顺次连接任意一个四边形各边中点所得的四边形叫中点四边形.(1)如图1,四边形ABCD中,点E,F,G,H分别为边AB,BC,CD,DA的中点.求证:中点四边形EFGH是平行四边形;(2)如图2,点P是四边形ABCD内一点,且满足PA=PB,PC=PD,∠APB=∠CPD,点E,F,G,H分别为边AB,BC,CD,DA的中点,猜想中点四边形EFGH的形状,并证明你的猜想;(3)若改变(2)中的条件,使∠APB=∠CPD=90°,其他条件不变,直接写出中点四边形EFGH的形状.(不必证明)。
— 八年级(初二)数学答案第1页 —2017—2018学年度第二学期期末测试卷八年级(初二)数学参考答案及评分意见一、选择题(本大题共8小题,每小题3分,共24分)1.A ; 2.D ; 3.C ; 4.A ; 5.B ; 6.C ; 7.B ; 8.D .二、填空题(本大题共6小题,每小题3分,共18分)9.1; 10.45 °; 11.2; 12.y =2x -3; 13.; 14.6或三、解答题(本大题共4小题,每小题6分,共24分)15.解:(1)原式=- ……………2分 =9-. ……………3分(2)原式= ……………2分= ……………3分16.解:(1)∵ 3+1=4<6,∴x 为最大值或最小值. ……………1分 当x 为最大值时,有x +1=6,解得x =5. ……………2分 当x 为最小值时,3-x =6,解得x =-3. ……………3分(2)当x 为5时,平均数为 10235955-++++=. ……………4分 当x 为-3时,平均数为10233155-+++-=. ……………6分17.解:(1)图1中△PBC 为所画; ……………3分(2)图2中Y BEDK 为所画. ……………6分18.解:(1)在y x =0时,yy =0时,x =-1.∴A (0,B (-1,0). ……………1分 ∴OAOB =1,AB =2. ……………2分 ∴OB =12AB ,∴∠BAO =30 °,∠ABO =60 °.……………3分(2)∵AB =AC ,且AO ⊥BC ,∴OC =OB =1.∴C (1,0).……4分 设直线AC 的解析式为y =kx +b,则有0.b k b ⎧⎪⎨+=⎪⎩解得k b ⎧=⎪⎨⎪⎩……5分 ∴直线AC的解析式是y =. ……………6分四、解答题(本大题共3小题,每小题8分,共24分)19.解:(1)△BEC 是等腰三角形,其证明过程是:……………1分在矩形ABCD 中,AD ∥BC ,— 八年级(初二)数学答案第2页 —∴∠DEC =∠BCE . ……………2分∵EC 平分∠BED ,∴∠BEC =∠DEC .∴∠BEC =∠BCE . ……………3分∴BE =BC ,∴△BEC 是等腰三角形. ……………4分(2)在矩形ABCD 中,∠A =90°,∴∠ABE =45°.∴△ABE 是等腰直角三角形, ……………5分∴AE=AB=2,∴BE ……………6分由(1)知BC =BE ,∴BC=……………8分20.解:(1)甲班选手进球数的平均数为7,中位为7,众数为7.……………2分 乙班选手进球数的平均数为7,中位为7,众数为7.……………4分(2)甲班2222221[(107)(97)(87)4(77)3(57)] 2.610S =-+-+-+-+-=,………5分 乙班222221[(97)2(87)5(77)2(57)] 1.410S =-+-+-+-=. ……………6分 ∵甲方差>乙方差,∴要争取夺取总进球团体第一名,应选乙班. ……………7分∵甲班有一位百发百中的出色选手,∴要进入学校个人前3名,应选甲班. ……………8分21.解:(1)日销售量的最大值为120kg . ……………2分(2)当012≤≤冀时,设y =kx ,则由(12,120),得120=12k ,解得k =10.∴y =10x . ……………3分当1220x <≤时,设y =ax +b ,则由(12,120)、(20,0),得12120,200k b k b +=⎧⎨+=⎩解得15,300.k b =-⎧⎨=⎩∴y =-15x +300. ……………4分(3)第10天与第12天均在5~15之间,设z =mx +n ,则由(5,32)、(15,12),得532,1512m n m n +=⎧⎨+=⎩解得2,42.m n =-⎧⎨=⎩ ∴z=-2x +42. ……………5分 当x =10时,y =10×10=100,z =-2×10+42=22,销售金额为100×22=2200(元). ……………6分当x =12时,y =10×12=120,z =-2×12+42=18,销售金额为120182160⨯=(元). ……………7分 ∵2200>2160,∴第10天销售金额最多. ……………8分— 八年级(初二)数学答案第3页 — 五、探究题(本大题共1小题,共10分)22.(1)证:①连接ED 、BF ,∵BE ∥DF ,BE =DF ,∴四边形BEDF 是平行四边形.……………1分∴BD 、EF 互相平分. ……………2分②设BD 交EF 于点O ,则OB =OD =12BD ,OE =OF =12EF . ∵EF ⊥BE ,∴∠BEF =90°.在Rt △BEO 中,BE 2+OE 2=OB 2. ……………3分∴(BE +DF )2+EF 2=(2BE )2+(2OE )2=4(BE 2+OE 2)=4OB 2=(2OB )2=BD 2. 在正方形ABCD 中,AB =AD ,BD 2=AB 2+AD 2=2AB 2.∴(BE +DF )2+EF 2=2AB 2. ……………4分(2)解:当BE ≠DF 时,(BE +DF )2+EF 2=2AB 2仍然成立,其证明过程是: ……………5分在图2中,过D 作DM ⊥BE 交BE 的延长线于M ,连接BD . ∵BE ∥DF ,EF ⊥BE ,∴EF ⊥DF .∴四边形EFDM 是矩形.∴EM =DF ,DM =EF ,∠BMD =90°,在Rt △BDM 中,BM 2+DM 2=BD 2. ……………6分∴(BE +EM )2+DM 2=BD 2.即(BE +DF )2+EF 2=2AB 2. ……………7分(3)解:过P 作PE ⊥PD ,过B 作BE ⊥PE 于E ,则由上述结论知,(BE +PD )2+PE 2=2AB 2.∵∠DPB =135°,∴∠BPE =45°,∴∠PBE =45°,∴BE =PE .∴△PBE 是等腰直角三角形,∴BP. ……………8分2PD +=∴22BE PD +=BE PD +=.∵AB =4,∴22224PE +=⨯,解得PE=……………9分 ∴BE=PD= ……………10分。
2017—2018学年度第二学期期末考试七年级数学试题温馨提示:1.本试卷分第Ⅰ卷和第Ⅱ卷两部分,共4页.满分150分,考试用时120分钟.考试结束后,只收交答题卡.2.答卷前,考生务必用0.5毫米黑色签字笔将自己的学校、班级、姓名、考试号、座号填写在答题卡规定的位置上.3.第Ⅰ卷每小题选出答案后,必须用0.5毫米黑色签字笔将该答案选项的字母代号填入答题卡的相应表格中,不能答在试题卷上.4.第Ⅱ卷必须用0.5毫米黑色签字笔作答,答案必须写在答题卡各题目指定区域内相应的位置,不能写在试题卷上;如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带.不按以上要求作答的答案无效.第Ⅰ卷(选择题 共36分)一、选择题:本大题共12个小题,在每小题的四个选项中只有一个是正确的,请把正确的选项选出来,并将该选项的字母代号填入答题卡的相应表格中.每小题涂对得3分,满分36分. 1.下列叙述中,正确的是 A .相等的两个角是对顶角 B .一条直线有且只有一条垂线C .连接直线外一点与这条直线上各点的所有线段中,垂线段最短D .同旁内角互补2.如图所示,直线a ,b 被直线c 所截,∠1与∠2是A .同位角B .内错角C .同旁内角D .邻补角3.如图,若△DEF 是由△ABC 经过平移后得到的,则平移的距离是A .线段BC 的长度B .线段BE 的长度C .线段EC 的长度D .线段EF 的长度 4.下列语言是命题的是A .画两条相等的线段B .等于同一个角的两个角相等吗?C .延长线段AO 到C ,使OC =OAD .两直线平行,内错角相等(第2题图) (第3题图)A .9B .±9C .3D .±36.下列计算结果正确的是A6± B3.6- CD .7.如果12x y =⎧⎨=-⎩和14x y =-⎧⎨=-⎩都是某个二元一次方程的解,则这个二元一次方程是A .x +2y =-3B .2x -y =2C .x -y =3D .y =3x -58.用加减法解方程组时,若要消去y ,则应A .①×3+②×2B .①×3-②×2C .①×5+②×3D .①×5-②×3 9.如果x ≤y ,那么下列结论中正确的是 A .4x ≥4y B .-2x +1≥-2y +1 C .x -2≥y +2D .2-x ≤2-y10.利用数轴求不等式组103x x -≤⎧⎨>-⎩的解集时,下列画图表示正确的是A .B .C .D .11.在调查收集数据时,下列做法正确的是A .电视台为了了解电视节目的收视率,调查方式选择在火车站调查50人B .在医院里调查老年人的健康状况C .抽样调查选取样本时,所选样本可按自己的喜好选取D .检测某城市的空气质量,适宜采用抽样调查的方式12.小宁同学根据全班同学的血型情况绘制了如图所示的扇形统计图,已知该班血型为A 型的有20人,那么该班血型为AB 型的人数为A .2人B .5人C .8人D .10人第Ⅱ卷(非选择题 共114分)二、填空题:本大题共10个小题,每小题4分,满分40分. 13.命题“对顶角相等”的题设是 .14.为了解某山区金丝猴的数量,科研人员在该山区不同的地方捕获了15只金丝猴,并在它们的身上做标记后放回该山区.过段时间后,在该山区不同的地方又捕获了32只金丝猴,其中4只身上有上次做的标记,由此可估计该山区金丝猴的数量约有 只. 15.一个容量为89的样本中,最大值是153,最小值是60,取组距为10,则可分成 组.16.-1.4144,2220.373π-g,,, 2.12112.其中 是无理数.(第12题图)17.如图,∠1=∠2=40°,MN 平分∠EMB ,则∠3= °.18.如图,若棋盘的“将”位于点(0,0),“车”位于点(-4,0),则“马”位于点 .19.甲、乙两人相距42千米,若两人同时相向而行,可在6小时后相遇;而若两人同时同向而行,乙可在14小时后追上甲.设甲的速度为x 千米/时,乙的速度为y 千米/时,列出的二元一次方程组为 .20.某花店设计了若干个甲、乙两种造型的花篮,一个甲种花篮由15朵红花、25朵黄花和20朵紫花搭配而成;一个乙种花篮由10朵红花、20朵黄花和15朵紫花搭配而成.若这些花篮一共用了2900朵红花,4000朵紫花,则黄花一共用了 朵.21.不等式组10324x x x ->⎧⎨>-⎩的非负整数解是 .22.船在静水中的速度是24千米/小时,水流速度是2千米/小时,如果从一个码头逆流而上后,再顺流而下,那么这船最多开出 千米就应返回才能在6小时内回到码头. 三、解答题:本大题共6个小题,满分74分. 解答时请写出必要的演推过程. 23.请先阅读以下内容:,即23, ∴11<2,1的整数部分为1,12. 根据以上材料的学习,解决以下问题:已知a3的整数部分,b3的小数部分,求32()(4)a b -++的平方根. 24.解下列方程组(不等式组): (1)4(1)3(1)2,2;23x y y x y --=--⎧⎪⎨+=⎪⎩ (2)12(1)5;32122x x x --≤⎧⎪⎨-<+⎪⎩.25.某学校为加强学生的安全意识,组织了全校1500名学生参加安全知识竞赛,从中抽取了部分学生成绩(得分取正整数,满分为100分)进行统计.请根据尚未完成的频率分布表和频数分布直方图(如图),解答下列问题:(1)这次抽取了 名学生的竞赛成绩进行统计,其中m = ,n = ; (2)补全频数分布直方图;(3)若成绩在70分以下(含70分)的学生为安全意识不强,有待进一步加强安全教育,则该校安全意识不强的学生约有多少人?(第17题图)(第18题图)26.某商场销售国外、国内两种品牌的智能手机,这两种手机的进价和售价如下表所示:该商场计划购进两种手机若干部,共需14.8万元,预计全部销售后可获毛利润共2.7万元.[注:毛利润=(售价-进价)×销售量](1)该商场计划购进国外品牌、国内品牌两种手机各多少部?(2)通过市场调研,该商场决定在原计划的基础上,减少国外品牌手机的购进数量,增加国内品牌手机的购进数量.已知国内品牌手机增加的数量是国外品牌手机减少数量的3倍,而且用于购进这两种手机的总资金不超过15.6万元,问该商场最多减少购进多少部国外品牌手机?27.如图,在长方形OABC 中,O 为平面直角坐标系的原点,点A 坐标为(a ,0),点C 的坐标为(0,b ),且a 、b 60b -=,点B 在第一象限内,点P 从原点出发,以每秒2个单位长度的速度沿着O →C →B →A →O 的线路移动. (1)a = ,b = ,点B 的坐标为 ; (2)求移动4秒时点P 的坐标;(3)在移动过程中,当点P 到x 轴的距离为5个单位长度时,求点P 移动的时间.28.如图,已知直线AB∥CD ,∠A =∠C =100°,点E ,F 在CD 上,且满足∠DBF =∠ABD ,BE 平分∠CBF . (1)求证:AD ∥BC ; (2)求∠DBE 的度数;(3)若平移AD 使得∠ADB =∠BEC ,请直接写出此时∠ADB 的度数是 .(第28题图)(第27题图)2017—2018学年第二学期七年级数学试题参考答案及评分标准二、填空题:(每题4分,共40分)13. 两个角是对顶角;14.120;15. 10;16.23π-,;17.110;18. (3,3);19.6642,141442x yy x+=⎧⎨-=⎩;20.5100 ;21.0;22.71.5.三、解答题:(共74分)23. 解:∵<<,……………………………………………………1分∴4<<5,…………………………………………………………………2分∴1<﹣3<2,…………………………………………………………………3分∴a=1,…………………………………………………………………………4分b=﹣4,………………………………………………………………………6分∴(﹣a)3+(b+4)2=(﹣1)3+(﹣4+4)2=﹣1+17 …………………………………………………………………………8分=16,…………………………………………………………………………9分∴(﹣a)3+(b+4)2的平方根是±4.………………………………………10分24. (1)解:化简,得………………………………………2分①×2+②得1122,x=③………………………………………3分2x=,………………………………………4分②①把2x =代入③,得3.y = ……………………………………5分所以这个方程组的解是23.x y =⎧⎨=⎩,……………………………………6分 (2)解:由①得:1﹣2x +2≤5 ………………………………………7分∴2x ≥﹣2即x ≥﹣1 ………………………………………8分 由②得:3x ﹣2<2x +1 ………………………………………9分∴x <3. ………………………………………10分∴原不等式组的解集为:﹣1≤x <3. ……………………………………12分25. 解:(1)200, ………………………………………3分70;0.12; ………………………………………7分(2)如图,…………………………………9分(3)1500×(0.08+0.2)=420, ……………………………………11分 所以该校安全意识不强的学生约有420人. …………………………………12分 26. 解:(1)设商场计划购进国外品牌手机x 部,国内品牌手机y 部,由题意得 0.440.214.8,0.060.05 2.7,x y x y +=⎧⎨+=⎩…………………………………4分解得 20,30.x y =⎧⎨=⎩…………………………………6分答:商场计划购进国外品牌手机20部,国内品牌手机30部. ………7分(2)设国外品牌手机减少a部,由题意得-++≤15.6 …………………………………10分a a0.44(20)0.2(303)解得a≤5 …………………………………12分答:该商场最多减少购进5部国外品牌手机. ……………………………13分27. (1)a= 4 ,b= 6 ,点B的坐标为(4,6);………………6分(2)∵P从原点出发以每秒2个单位长度的速度沿O→C→B→A→O的线路移动,∴2×4=8,……………………………………7分∵OA=4,OC=6,∴当点P移动4秒时,在线段CB上,离点C的距离是8﹣6=2,…………8分∴点P的坐标是(2,6);……………………………………9分(3)由题意可知存在两种情况:第一种情况,当点P在OC上时,点P移动的时间是:5÷2=2.5秒,……………………………………11分第二种情况,当点P在BA上时.点P移动的时间是:(6+4+1)÷2=5.5秒,……………………………………12分故在移动过程中,当点P到x轴的距离为5个单位长度时,点P移动的时间是2.5秒或5.5秒.……………………………………13分28. 证明:(1)∵AB∥CD,∴∠A+∠ADC=180°,……………………………………2分又∵∠A=∠C∴∠ADC+∠C=180°,……………………………………4分∴AD∥BC;……………………………………6分(2)∵AB∥CD,∴∠ABC+∠C=180°………………………………8分又∠C=100°,∴∠ABC=180°﹣100°=80°,………………………………9分∵∠DBF=∠ABD,BE平分∠CBF,∴∠DBF=∠ABF,∠EBF=∠CBF,…………………10分∴∠DBE=∠ABF+∠CBF=∠ABC=40°;……………12分(3)∠ADB=60°.……………………………………14分。
2017~2018学年度第二学期期末考试八年级数学答案1.B 2. D 3. D 4. C 5. C 6.D 7 .A 8.B 9.B 10.A11.x≥512.26 13.5, 18 14.3 215.216.y x a=-,-3≤a≤117.解:(1)设一次函数的解析式y=kx+b, ……………………………………………………………1分∵经过点(1,3)与(﹣1,﹣1),∴31k bk b+=⎧⎨-+=-⎩……………………………………………………………3分∴解得:k=2;b=1……5分∴直线的解析式为y=2x+1……………6分(2)∵在y=2x+1中,当x=12-时,y=0 ∴一次函数的图象是经过点12-(,)…8分18. 证明:∵□ABCD,∴AD=CB,AD∥CB ∴∠ADE=∠CBF又∵AE⊥BD,CF⊥BD ∴∠AED=∠CFB=90°∴△AED≌△CFB(AAS)……………………………………………………………………………5分∴AE=CF∵AE⊥BD,CF⊥BD ∴∠AEF=∠CFE=90°AE∥CF∴四边形AFCE是平行四边形…………………………………………………………………………8分19.解:(1)方式一:y=0.3x+30方式二:y=0.4x………………………………………………………………………………………4分(2) ∵0.3x+30=0.4x ∴x=300答:通话300分钟时,两种计费方式费用相等…………………………………………………………8分20. (1) 12 图略(2) 72°(3) 中位数是2 ……………………………………………………6分(4) (1102203124652)50 2.4⨯+⨯+⨯+⨯+⨯÷=…………………………………………8分21.解:(1)∵80x+60(100-x)≤7500 ∴x≤75……………………………….……………………………2分y=40x+30(100-x)=10x+3000 (65≤x≤75)……………………….……………………………………5分(2)∵y =(40-a)x+30(100-x)=(10-a)x+3000 ……………………….…………………………………………………….…………6分方案1:当0<a<10时,10-a>0,y随x的增大而增大所以当x=75时,y有最大值,则购进甲种服装75件,乙种服装25件;方案2:当a=10时,所有方案获利相同,所以按哪种方案进货都可以;方案3:当10<a<20时,10-a<0,w随x的增大而减小所以当x=65时,y有最大值,则购进甲种服装65件,乙种服装35件..……………………….….….8分22.解:(1)B (2,0),A (0,4) …………….……………………………………………….3分 (2)∵直线y =2x ﹣2k 经过A (0,4) ∴k=﹣2………….…………………………………………………………4分 作CF ⊥x 轴于点F, 证△AOB ≌△BFC(AAS) ………….………………………………………………………5分 CF=BO=2, BF=AO=4,∴OF=6 ,∴OF=6 ∴C (6,2)………………………………………………6分 ∵DC ∥AB ,设DC :y =﹣2x +b ∵直线y =﹣2x +b 经过C (6,2) ∴b=14∴直线DC 的解析式为y =﹣2x +14………….………………………………………………………………………7分 (3) ﹣3<x <0或x >3 …….……………………………………………………………………………………10分23.(1)∵正方形ABCD 中 BA=AD=CD, ∠BAE =D=90° 又DE=CF ∴AE=DF∴△BAE ≌△ADF(SAS) …………………………….………………………………………………………………1分 ∴BE=AF …………………………….………………………………………………………………2分 ∠1=∠2∴∠1+∠BAG=∠2+∠BAG=90° ∴∠BGA=90°即BE ⊥AF……………………………………………………………………………………………………………3分 (2)过点D 作DN ⊥AF 于N,DM ⊥BE 交BE 延长线于M 在Rt △ADF 中,∵1122ADF S AD FD AF DN =⋅=⋅△∴DN =分 ∵△BAE ≌△ADF(已证)∴BAE S △=ADF S △ ,BE=AF ∴AG=DN又∵△AEG ≌△DEM(AAS) ∴AG=DM……………………………………………………………………………5分 ∴DN=DM ∴GD 平分∠MGN ∴∠DGN=12∠MGN=45°…………………………………………………………………………………………6分 ∴有等腰直角△DGNGD==…………………………………………………………………………………………………7分 (3)FQ 分24. (1)令x=0,则 y=6,∴A (0,6)………………………………………….…………………………1分令y=0,则3064x =-+,解得x=8, ∴D (8,0)………………………………………………2分∴AC=AO=6,OD=8=10 ∴CD=AD-AC=4设BC=BO=x ,则BD=8-x,CD=4 在Rt △BCD 中,222BC CD BD += ∴2224(8x)x +=-,解得x=3∴点B 的坐标为(3,0) ……………………………………………………………………………4分(2)设直线AB 的解析式为y=kx+6 ∵点B 的坐标为(3,0) ∴0=3k+6 解得:k= -2∴直线AB 的解析式为y=-2x+6……………………………………………………………………5分 过点G 、F 作GM ⊥x 轴于M ,FN ⊥x 轴于N ∵△DFG 为等腰直角三角形∴DG=FD ∠1=∠2, ∠DMG =∠FND,∴△DMG ≌△FND (AAS )………………………………………………………………………6分 ∴设GM=DN=m ,DM=FN=n 求出G(8-n , m), F(8-m , -n) ∵点G 、F 在直线AB 上 ∴2(8n)62(8)6m n m =--+⎧⎨-=--+⎩ 解得 m=2,n=6∴点G 的坐标为(2,2) ……………………………………8分(3)如图, 设点3(,6)4Q a a -+,∵PQ ∥x 轴,且点P 在直线26y x =-+上∴点P 坐标为33(,6)84P a a -+…………………………………9分∴PQ=58a = DQ作QH ⊥x 轴于点H,∴DH=a -8, QH=364a -∴34QH DH = 由勾股定理可知 QH :DH :DQ= 3:4:5 …………………………………………10分 ∴QH=35DQ =38a即38a = 364a -,解得a=16∴点Q 、P 的坐标为 (16,6)Q - (6,6)P -∵ED ∥PQ ,ED=PQ D(8,0)∴E(2,0)-…………………………………………………………………………………………12分。
昌平区2018—2018学年第一学期初二年级质量监控数学试卷参考答案及评分标准2018.1一、选择题<共8个小题,每小题4分,共32分)二、填空题<共4个小题,每小题4分,共16分),三、解答题<共6 道小题,每小题5分,共 30 分) 13.解:原式=………………………………………………………………… 4分 =. ………………………………………………………………… 5分 14.解:原式=a(x2-2x+1> ……………………………………………………………… 2分LqaDcxkOjw=a(x -1>2 .……………………………………………………………… 5分LqaDcxkOjw15.解:原式=……………………………………………………………… 2分=……………………………………………………… 3分=………………………………………………………… 4分=.………………………………………………… 5分16.证明:∵ C是线段AB的中点,∴AC=BC.……………………… 2分∵∠ACE =∠BCD,∴∠ACD=∠BCE.………………………………………3分∵∠A=∠B,∴△ADC≌△BEC.………………………………… 4分LqaDcxkOjw∴ AD = BE.……………………………………………………………………… 5分17.解:2(x+2>+x(x+2>=x2 …………………………………………………………………… 2分LqaDcxkOjw2x+4+x2+2x=x24x=-4.……………………………………………………………………… 3分LqaDcxkOjwx=-1.……………………………………………………………………… 4分LqaDcxkOjw经检验x=-1是原方程的解. (5)分∴ 原方程的解为x =-1.18.解:原式=4x2-9-4x2+4x+x2-4x+4 ………………………………………… 3分LqaDcxkOjw =x2-5. ………………………………………………………… 4分LqaDcxkOjw 当x2=3时,原式=3-5=-2. ………………………………………………… 5分LqaDcxkOjw 四、解答题<共 4 道小题,每小题5分,共 20 分) 19.解:画出一种方法,给2分,画出两种方法给5分.20.解:∵ △ABC 中,AB=AC ,∠A = 50°,∴ ∠ABC =∠C=6 5°. ……………… 2分 由折叠可知:∠ABD =∠A=50°. ……………… 4分∴ ∠DBC=6 5°-50°=15°. ……………… 5分21.解:设甲、乙两人的速度分别为每小时3x 千M 和每小时4x 千M . ………………………… 1分图2(A )ABCD E根据题意,得.………………………………3分解这个方程,得x=6.……………………………… 4分LqaDcxkOjw经检验:x=6是所列方程的根,且符合题意.∴ 3x=18,4x=24.答:甲、乙两人的速度分别为每小时18千M和每小时24千M.……………… 5分22.解:如图,延长CD交AB于点E. ……………… 1分∵ AD平分∠BAC,CD⊥AD于点D,∴∠EAD= ∠CAD,∠ADE=∠ADC =90°.∴∠AED=∠ACD. ……………… 2分∴ AE=AC.∵ AC=10,AB=26,∴ AE=10,BE=16. ……………… 3分∵∠DCB=∠B,∴ EB= EC=16.∵ AE= AC ,CD⊥AD,∴ ED=CD=8. ……………………………………………… 4分LqaDcxkOjw在Rt△ADC中,∠ADC=90°,∴==6.……………………………………… 5分五、解答题<共3道小题,23,24小题每题7分,25小题8分,共22 分)23.解:<1)如图,延长CD到点E使DE=CD,连接BE交AD于点P.……………… 2分LqaDcxkOjwPB+PC的最小值即为BE的长.<2)过点E作EH⊥AB,交BA∵∠A =∠ADC = 90°,∴ CD∥AB.∵ AD=2,∴ EH=AD=2.……………… 4分∵ CD∥AB,∴∠1=∠3.∵ BC=2CD,CE=2CD,∴ BC= CE.∴∠1=∠2.∴∠3=∠2.∵∠ABC = 60°,∴∠3=30°.……………… 6分在Rt△EHB中,∠H=90°,∴BE=2HE=4.………………………………………………… 7分即 PB+PC的最小值为4.24.解:<1)在AB上截取AG=AF.∵AD是△ABC的角平分线,∴∠FAD=∠DAG.又∵AD=AD,∴△AFD≌△AGD.∴∠AFD=∠AGD,FD=GD.∵FD=BD,∴BD=GD,∴∠DGB=∠B,∴∠B+∠AFD=∠DGB+∠AGD=180°.………………………………………………… 4分<2)AE=AF+FD.………………………………………………… 5分LqaDcxkOjw过点E作∠DEH=∠DEA,点H在BC上.∵∠B+2∠DEA=180°,∴∠HEB=∠B.∵∠B+∠AFD=180°,∴∠AFD=∠AGD=∠GEH,∴GD∥EH.∴∠GDE=∠DEH=∠DEG.∴GD=GE.又∵AF=AG,∴AE=AG+GE=AF+FD.………………………………………………… 7分LqaDcxkOjw25.解:<1)如图1,依题意,C<1,0),OC=1.由D<0,1),得OD=1.在△DOC中,∠DOC=90°,OD=OC=1.可得∠CDO=45°. …………………1分∵ BF⊥CD于F,Array∴∠BFD=90°.∴∠DBF=90°-∠CDO =45°.∴ FD=FB。
1 昌平区2017 - 2018学年第二学期初一年级期末质量抽测 数 学 试 卷 2018.7 考生须知
1. 本试卷共7页,三道大题,28个小题,满分100分,考试时间120分钟。 2. 请在试卷上准确填写学校名称、姓名和考试编号。 3. 试题答案一律填涂或书写在答题卡上,在试卷上作答无效。 4. 在答题卡上,选择题、作图题用2B铅笔作答,其他试题用黑色字迹签字笔作答。 5. 考试结束后,请交回答题卡、试卷和草稿纸。
一、选择题(本题共8道小题,每小题2分,共16分) 下面各题均有四个选项,其中只有一个....是符合题意的. 1. 叶绿体是植物进行光合作用的场所,叶绿体DNA最早发现于衣藻叶绿体,长约0.00005米.其中,0.00005用科学记数法表示为
A.5510 B.4510 C.40.510 D.35010 2. 若a
A.22ba B.22ba C.ba22 D.22ba 3. 下列计算正确的是
A.325aaa B.325aaa C.236(2)6aa D.623aaa 4. 下列调查中,不适合用抽样调查方式的是 A.调查“神舟十一号”飞船重要零部件的产品质量 B.调查某电视剧的收视率 C.调查一批炮弹的杀伤力 D.调查一片森林的树木有多少棵 5. 如图,已知直线a//b,∠1=100°,则∠2等于 A.60° B.70° C.80° D.100° 6. 若方程234mxy=x+- 是关于xy,的二元一次方程,则m满足 A.2m- B. 0m C. 3m D. 4m 7.某健步走运动爱好者用手机软件记录了某个月(30天)每天健步
走的步数(单位:万步),将记录结果绘制成了如图所示的统计 图.在每天所走的步数这组数据中,众数和中位数分别是 A.1.2,1.3 B.1.3,1.3 C.1.4,1.35 D.1.4,1.3
ba2
1
1.51.21.11.31.4步数/万步
天数28107
3
121086
0422
8.观察下列等式: ① 32 - 12 = 2 × 4 ② 52 - 32 = 2 × 8 ③ 72 - 52 = 2 × 12 ...... 那么第n(n为正整数)个等式为 A.n2 - (n-2)2 = 2 × (2n-2) B.(n+1)2 - (n-1)2 = 2 × 2n C.(2n)2 - (2n-2)2 = 2 ×(4n -2) D.(2n+1)2 - (2n-1)2 = 2 × 4n 二、填空题(本题共8道小题,每小题2分,共16分) 9. 因式分解:21x .
10. 在一个布口袋里装有白、红、黑三种颜色的小球,它们除颜色外没有任何区别,其中白球2只,红
球6只,黑球4只,将袋中的球搅匀,闭上眼睛随机从袋中取出1只球,则取出黑球的概率是 .
11. 写出不等式组11xx≥,的整数解为 .
12. 在①11x=y=-,, ②23x=y=,,-- ③30x=y=,- 中,①和②是方程235xy=-的解; 是方程39x+y=-的解;不解方程组,可写出方程组23539xy=x+y=--, 的解为 .
13. 程大位,明代商人,珠算发明家,被称为珠算之父、卷尺之父. 少年时,读书极为 广博,对数学颇感兴趣,60岁时完成其杰作《直指算法统宗》(简称《算法统 宗》). 在《算法统宗》里记载了一道趣题:一百馒头一百僧,大僧三个更无争, 小僧三人分一个,大小和尚各几丁?意思是:有100个和尚分100个馒头,如果大 和尚1人分3个,小和尚3人分1个,正好分完.试问大、小和尚各多少人? 如果设大和尚有x人, 小和尚有y人,那么根据题意可列方程组为 .
14. 在实数范围内定义一种新运算“⊕”,其运算规则为:a⊕b=2a+3b.如:1⊕5=2×1+3×5=17.则不等式x⊕4<0的解集为 .
15. 若3ab,则226abb的值为 . 16. 数学课上, 老师要求同学们利用三角板画两条平行线.老师说苗苗和小华两位同学画法都是正确的,两位同学的画法如下: 苗苗的画法: 3
baa
①将含30°角的三角尺的最长边与直线a重合,另一块三角尺最长边与含30°角的三角尺的最短边紧贴; ②将含30°角的三角尺沿贴合边平移一段距离,画出最长边所在直线b,则b//a. 小华的画法:
b
aa ①将含30°角三角尺的最长边与直线a重合,用虚线做出一条最短边所在直线; ②再次将含30°角三角尺的最短边与虚线重合,画出最长边所在直线b,则b//a. 请在苗苗和小华两位同学画平行线的方法中选出你喜欢的一种,并写出这种画图的依据. 答:我喜欢 同学的画法,画图的依据是 . 三、解答题(本题共12道小题,第17-22题,每小题5分,第23-26题,每小题6分,第27、28题,每小题7分,共68分) 17. 因式分解:(1)269xx; (2)22mnmn.
18. 解不等式:12x≥13x,并把它的解集在数轴上表示出来
.
19. 解不等式组:3(1)51924xxxx≤,. –1–2–3–4123404
20. 解方程组:135.x+y=x+y=, 21. 已知关于x,y的二元一次方程组231ax+by=axby=-,的解为11x=y=,. 求2a+b的值. 22.已知:如图,OA⊥OB, 点C在射线OB上,经过C点的直线DF∥OE,∠BCF=60°. 求∠AOE的度数.
FOEDCB
A
23. 已知2870xx,求2)12()1(4)2)(2(xxxxx的值. 5
24. 某电子品牌商下设台式电脑部、平板电脑部、手机部等.2018年的前五个月该品牌全部商品销售额共计600万元.下表表示该品牌商2018年前五个月的月销售额(统计信息不全).图1表示该品牌手机..部.各月销售额占该..品牌所有商品......当月销售额的百分比情况统计图.
品牌月销售额统计表(单位:万元) 月份 1月 2月 3月 4月 5月
品牌月销售额 180 90 115 95
D 5% E25%
C17% B
28%
A25%
5月份手机部各机型销售额占5月份手机部 销售额的百分比统计图
图1 图2手机部各月销售额占品牌当月销售额的 百分比统计图
32%46%
30%28%
24%
10%20%
0%
30%40%50%
4月3月1月2月5月百分比
月份 (1) 该品牌5月份的销售额是 万元; (2)手机部5月份的销售额是 万元; 小明同学观察图1后认为,手机部5月份的销售额比手机部4月份的销售额减少了,你同意他的看法吗?请说明理由; (3)该品牌手机部有A、B、C、D、E五个机型,图2表示在5月份手机部各.机型..销售额...占5月份手机部销售额的百分比情况统计图.则5月份 机型的销售额最高,销售额最高的机型占5月份该品牌销售额的百分比是 .
25. 如图,已知BD平分∠ABC. 请补全图形后,依条件完成解答. (1)在直线BC下方画∠CBE,使∠CBE与∠ABC互补; (2)在射线BE上任取一点F,过点F画直线FG∥BD交BC于点G; (3)判断∠BFG与∠BGF的数量关系,并说明理由. D
CB
A6
26. 某小区准备新建50个停车位,用以解决小区停车难的问题.已知新建1个地上停车位和1个地下停车位共需0.6万元;新建3个地上停车位和2个地下停车位共需1.3万元.
(1)该小区新建1个地上停车位和1个地下停车位各需多少万元? (2)该小区物业部门预计投资金额超过12万元而不超过13万元,那么共有几种建造停车位的方案?
27. 在三角形ABC中,点D在线段AB上,DE∥BC交AC于点E,点F在直线BC上,作直线EF,过点D作直线DH∥AC交直线EF于点H.
(1)在如图1所示的情况下,求证:∠HDE=∠C; (2)若三角形ABC不变,D,E两点的位置也不变,点F在直线BC上运动. ①当点H在三角形ABC内部时,直接写出∠DHF与∠FEC的数量关系; ②当点H在三角形ABC外部时,①中结论是否依然成立?请在图2中画图探究,并说明理由.
图22ABCDE图21ABCDEFHEDCBA图1 7
28. 如果一元一次方程的解也是一元一次不等式组的解,则称该一元一次方程为该不等式组的关联方程. 例如:方程260x=- 的解为3x= ,不等式组205xx-, 的解集为25x ,因为235 ,所以,称方程260x=-为不等式组205xx-,的关联方程.
(1) 在方程①520x,②3104x,③315xx中,不等式组2538434xxxx, 的关联方程是 ;(填序号)
(2)若不等式组1144275xxx<,>-的一个关联方程的根是整数,则这个关联方程可以是 ;(写出一个即可) (3)若方程21+2xx,1322xx都是关于x的不等式组22xxmxm<,≤的关联方程,求m的取值范围.