八年级数学上册第12章一次函数12.2一次函数第1课时一次函数与正比例函数的概念习题课件(新版)沪科版
- 格式:ppt
- 大小:784.50 KB
- 文档页数:9
沪科版八年级上册数学第12章一次函数含答案一、单选题(共15题,共计45分)1、将直线y= -3x+5向上平移2个单位后得到的直线表达式是()A.y= -3x+2B.y= -3x-2C.y= -3x+7D.y= -3x-72、同一直角坐标系中,一次函数y1=k1x+b与正比例函数y2=k2x的图象如图所示,则满足y1≥y2的x取值范围是()A.x≤﹣2B.x≥﹣2C.x<﹣2D.x>﹣23、y=kx+(k-3)的图象不可能是()A. B. C. D.4、如图,一次函数图象经过点A,且与正比例函数y=-x的图象交于点B,则该一次函数的表达式为()A.y=-x+2B.y=-x-2C.y=x+2D.y=x-25、若正比例函数的图象经过点(-1,2),则这个图象必经过点()A. B. C. D.6、已知一次函数y=kx+b(k,b是常数,且k≠0),x与y的部分对应值如下表所示:则不等式kx+b<bx+k的解集为()A. x>1B. x<1C. x>0D. x<07、如图,在正方形ABCD中,AB=3cm,动点M自A点出发沿AB方向以每秒1cm的速度运动,同时点N自D点出发沿折线DC﹣CB以每秒2cm的速度运动,到达B点时运动同时停止,设△AMN的面积为y(cm2),运动时间为x(秒),则下列图象中能大致反映y与x之间函数关系的是()A. B. C. D.8、港口依次在同一条直线上,甲、乙两艘船同时分别从两港出发,匀速驶向港,甲、乙两船与港的距离(海里)与行驶时间(小时)之间的函数关系如图所示,则下列说法正确的有()① 两港之间的距离为60海里②甲、乙两船在途中只相遇了一次③甲船平均速度比乙船平均速度快30海里/时④甲船到达港时,乙船还需要一个小时才到达港⑤点的坐标为A.1个B.2个C.3个D.4个9、已知一次函数y=kx+b的图象经过第一、二、三象限,则b的值可以是()A.-1B.0C.2D.任意实数10、在同一平面内,两直线的位置关系必是()A.相交B.平行C.相交或平行D.垂直11、若直线y=2x-1与y=x-k的交点在第四象限,则k的取值范围是()A. B. C. 或 D.12、已知点A(1,y1),B(-3,y2)都在直线上,则()A.y1< y2B.y1=y2C.y1>y2D.不能比较13、如图,一次函数图象经过点A,且与正比例函数y=-x的图象交于点B,则该一次函数的表达式为()A.y=-x+2B.y=x+2C.y=x-2D.y=-x-214、如图,爸爸从家(点O)出发,沿着等腰三角形AOB的边OA→AB→BO的路径去匀速散步,其中OA=OB.设爸爸距家(点O)的距离为S,散步的时间为t,则下列图形中能大致刻画S与t之间函数关系的图象是()A. B. C. D.15、一个大烧杯中装有一个小烧杯,在小烧杯中放入一个浮子(质量非常轻的空心小圆球)后再往小烧杯中注水,水流的速度恒定不变,小烧杯被注满后水溢出到大烧杯中,浮子始终保持在容器的正中间.用x表示注水时间,用y表示浮子的高度,则用来表示y与x之间关系的选项是()A. B. C. D.二、填空题(共10题,共计30分)16、已知直线y=kx+b与y=2x+1平行,且经过点(﹣3,4),则函数y=kx+b的图象可以看作由函数y=2x+1的图象向上平移________个单位长度得到的.17、直线与两坐标轴围成的三角形的面积为4,则b的值为________.18、已知一次函数y=kx-2的图象上有两个点P(x1, y1),Q(x2, y2)如果x1>x2, y1<y2,则k________0.19、若函数y= 有意义,则自变量x的取值范围是________.20、函数y=中自变量x的取值范围是________ .21、如图图像反映的过程是:小明从家跑到体育馆,在那里锻炼了﹣阵后又走到新华书店去买书,然后散步走回家,其中表示时间t(分钟)表示小明离家的距离s(千米),那么小明在体育馆锻炼和在新华书店买书共用去的时间是________分钟.22、如图,直线与轴交于点,以为斜边在轴上方作等腰直角,将沿轴向右平移,当点中点落在直线上时,则平移的距离是________.23、直线与平行,且经过(2,1),则+=________。
第12章一次函数12.2一次函数第2课时一次函数的图象及其性质教学反思教学目标1.会用两点法画一次函数图象.2.利用数形结合的思想,分析一次函数与正比例函数的联系及一次函数的性质.教学重难点重点:分析一次函数与正比例函数解析式和图象之间的联系难点:画一次函数图象,掌握一次函数的图象及其性质教学过程知识回顾提问:1.什么是一次函数?一般地,形如y=kx+b ( k,b为常数,且k≠0)的函数叫做一次函数.2.什么是正比例函数?形如y=kx(k为常数,且k≠0) 的函数,叫做正比例函数.3.正比例函数与一次函数有什么关系?正比例函数是一次函数一般式b=0时的特殊情形 .即:正比例函数一定是一次函数,而一次函数不一定是正比例函数.4.正比例函数y=kx ( k为常数,且k≠0 ) 的图象有什么性质?对于正比例函数y=kx,当k>0时,y=kx的图象在一、三象限,且y随x的增大而增大;当k<0时,y=kx的图象在二、四象限,且y随x的增大而减小.新课导入正比例函数y=kx(k为常数,且k≠0) 的函数图象是一条经过原点的直线,对于一次函数y=kx+b (k,b为常数,且k≠0),当b≠0时,它的图象又是什么呢?下面,我们一起来研究一次函数的图象及其性质.探究新知一、正比例函数图象与一次函数图象之间的联系典型例题例1在同一坐标系中画出y=2x和y=2x+3的图象.解:列表思考:(1)通过填表你发现这两个函数之间有什么关系?学生思考回答,教师引导得出结论:从表中可以看出,对于自变量x的同一个值,一次函数y=2x+3 的函数值要比函数y=2x的函数值大3个单位.(2)现在我们通过描点、连线画出它们的函数图象,看看它们的图象有什教学反思么关系.学生独立画出函数图象(如图),观察思考,在教师引导下得出结论:对于相同的横坐标,一次函数y=2x+3的图象上点的纵坐标要比正比例函数y=2x图象上点的纵坐标大3.因此,把直线y=2x向上平移3个单位,就得到一次函数y=2x+3 的图象.教师讲解:由此可见,一次函数y=2x+3的图象,是平行于直线y=2x的一条直线.拓展探究:1.在右图中,把直线y=2x向下平移3个单位,这时直线应是哪个函数解析式的图象?2.观察右图中,三个函数的解析式有什么共同点呢?3.观察右图中,三个函数的图象,你发现了什么?4.观察三个函数的图象和解析式,你能得到什么结论?学生独立完成,小组交流讨论,并展示成果.1.y=2x-3;2.三个函数解析式k值相等,b值不同;3.三个函数图象都是直线,且互相平行;4.当两个一次函数的k值相等,b值不同时,这两个一次函数的图象是互相平行的.教师讲解:一般地,一次函数y=kx+b(k,b为常数,且k≠0) 的图象是平行于直线y =kx的一条直线,因此,我们以后把一次函数y=kx+b (k,b为常数,且k≠0) 的图象叫做直线y=kx+b.拓展:(1)所有一次函数y=kx+b的图象都是直线.(2)直线y=kx+b与直线y=kx相互平行.(3)直线y=kx+b可以看作由直线y=kx平移得到:当b>0时,向上平移b个单位长度;当b<0时,向下平移b个单位长度.典型例题例2已知直线y=kx+b (k≠0) 平行于直线y=-2x+1,且过点(-2,4),分别求出k和b.解:因为直线y=kx+b (k≠0) 与直线y=-2x+1平行,所以k=-2.又因为直线y=kx+b (k≠0) 经过点(-2,4),所以4=-2×(-2)+b,解得b=0.综上所述,k=-2,b=0.二、两点法画一次函数图象探究:完成下列填空,思考怎样快速作出一个一次函数的图象?直线y=2x+3与y轴的交点坐标是,与x轴的交点坐标是.直线y=2x-3与y轴的交点坐标是,与x轴的交点坐标是.(3)y=kx+b与y轴的交点坐标是,与x轴的交点坐标是.教师讲解:画一次函数y=kx+b (k≠0)的图象,若b≠0,通常取该直线与y轴的交点(0,教学反思b )和与x 轴的交点,0b k ⎛⎫- ⎪⎝⎭,由两点确定一条直线得一次函数的图象.直线 y =kx +b 与y 轴相交于点(0,b ),b 叫做直线y =kx +b 在y 轴上的截距,简称截距.注意:截距不同于距离,截距可正可负,也可以为零.截距不同,图象与y 轴的交点就不同.典型例题例3 画出直线 y =23x -2,并求它的截距. 解:列表:过点(0,-2)和点(3,0)画一线, 就得直线y =23x -2. 它的截距是-2.三、一次函数的性质探究1:在同一平面直角坐标系中,画下列函数的图象: y =3x +1,y =2x -3,y =21x +4. (1)学生独立完成,画出函数图象.(2)观察函数图象,分析这三个函数解析式有什么共同的特点? (3)结合正比例函数的性质,想一想一次函数的图象有什么特征? 学生独立完成,并展示探究成果,教师引导纠正,得出正确答案.(1)教学反思(2)这三个解析式k>0,b不相同.(3)当k>0时,y=kx+b的图象经过的象限中必有一、三象限,且y随x的增大而增大(图象是自左向右上升的).探究2:观察右图中的三个函数的解析式和图象,你能得到什么结论?学生独立思考,回答问题,教师引导得出正确结论:当k<0时,y=kx+b的图象经过的象限中必有二、四象限,且y随x的增大而减小(图象是自左向右下降的).思考:一次函数解析式y=kx+b(k,b是常数,k≠0)中,k,b的正负对函数图象及性质有什么影响?观察下列图象分析k、b的取值.学生独立思考,小组讨论,回答问题.教师讲解:(1)当k >0时,直线y =kx +b 由左到右逐渐上升,y 随x 的增大而增大. ① b >0时,直线经过第一、二、三象限; ② b <0时,直线经过第一、三、四象限.(2)当k <0时,直线y =kx +b 由左到右逐渐下降,y 随x 的增大而减小. ① b >0时,直线经过第 一、二、四象限;② b <0时,直线经过第二、三、四象限. 典型例题例4 已知一次函数 y =(1-2m )x +m -1,求满足下列条件的m 的值: (1)函数值y 随x 的增大而增大; (2)函数图象与y 轴的负半轴相交; (3)函数的图象过第二、三、四象限.解:(1)由题意得1-2m >0,解得m <21.(2)由题意得1-2m ≠0且m -1<0,即m <1且m ≠21.(3)由题意得1-2m <0且m -1<0,解得21<m <1. 课堂练习1.在平面直角坐标系中,函数y =-2x +3的图象经过( ) A .一、二、三象限 B .二、三、四象限 C .一、三、四象限 D .一、二、四象限2.一次函数 y =x -2 的大致图象为( )A B C D3.一次函数y =(m 2+1)x +a +1(m ,a 为常数)的图象不可能经过的象限为( )A .一、二、三B .一、三C .一、二、四D .一、三、四4.若一次函数y =kx +1(k 为常数,k ≠0)的图象经过第一、二、三象限,则k 的取值范围是_______ .5.直线y =2x -3 与x 轴交点的坐标为_______;与y 轴交点的坐标为______;图象经过第 象限, y 随x 的增大而________.6.若直线y =kx +2与y =3x -1平行,则k = .7.点A (-1,y 1),B (3,y 2)是直线y =kx +b (k <0)上的两点,则y 1-y 2 0(填教学反思“>”或“<”).参考答案1.D2.C3.C4.k >05.(1.5,0) (0,-3) 一、三、四 增大6.k =37.>课堂小结布置作业教材38页练习1,2,3题; 教材39页练习1,2,3,4,5题.板书设计第2课时 一次函数的图象及其性质(1)当k >0,b >0时,直线经过第一、二、三象限; (2)当k >0,b <0时,直线经过第一、三、四象限; (3)当k <0,b >0时,直线经过第一、二、四象限; (4)当k <0,b <0时,直线经过第二、三、四象限.例 已知一次函数 y =(1-2m )x +m -1 , 求满足下列条件的m 的值: (1)函数值y 随x 的增大而增大; (2)函数图象与y 轴的负半轴相交; (3)函数的图象过第二、三、四象限. 解:(1)由题意得1-2m >0,解得m <21. (2)由题意得1-2m ≠0且m -1<0,即m <1且m ≠21教学反思(3)由题意得1-2m <0且m -1<0,解得21<m <1.。
一次函数的图象教学设计(第一课时)一、教学设计思想本节课共两课时,第1课时本节交代了函数图象的概念和作图的一般步骤,目的是为后继学习反比例函数、二次函数的图像作必要的知识准备。
根据教学目标,结合学生心理特点,这节课采用在教师引导下,学生主动探索发现的教学方法.即教师创设问题情景,引导学生观察、比较、自学、思考并展开讨论,使学生作为学习主体参与知识发生、发展的全过程,体验揭示规律,发现真理的乐趣,从而产生巨大的内驱力,提高课堂教学效率,充分发挥教师主导作用和学生的主体作用.二、教学目标知识与技能1.总结作一次函数图像的一般步骤,能熟练作出一次函数图像.2.总结归纳出一次函数的性质———k>0或k<0时图像变化的情况.过程与方法经历作图过程,归纳总结作作函数图像的一般步骤,发展总结概括能力,培养数形结合的意识.情感态度与价值观加强新旧知识的联系,促进新的认知结构的建构.三、教学重点1.能熟练地作出一次函数的图象.2.归纳作函数图象的一般步骤.3.理解一次函数的代数表达式与图象之间的对应关系.四、教学难点理解一次函数的代数表达式与图象之间的对应关系.五、教学方法讲、议结合法.六、教具准备投影片两张:第一张:补充练习(§6.3.1 A );第二张:补充练习(§6.3.1 B).七、教学过程Ⅰ.导入新课[师]上节课我们学习了一次函数及正比例函数的概念,正比例函数与一次函数的关系,并能根据已知信息列出x 与y 的函数关系式,本节课我们来研究一下一次函数的图象及性质.Ⅱ.讲授新课 一、函数图象的概念[师]要研究一次函数的图象,首先应知道什么叫图象?把一个函数的自变量x 与对应的因变量y 的值作为点的横坐标和纵坐标,在直角坐标系内描出它的对应点,所有这些点组成的图形叫做该函数的图象(graph ). 假设在代数表达式y =2x 中,自变量x 取1时,对应的因变量y =2,则我们可在直角坐标系内或描出表示(1,2)的点,再给x 的另一个值,对应又一个y ,又可知直角坐标系内描出一个点,所有这些点组成的图形叫该函数y =2x 的图象.由此看来,函数图象是满足函数表达式的所有点的集合.那么应如何作函数的图象呢? 二、作一次函数的图象 [例1]作出一次函数y =21x +1的图象. [师]根据图象的定义,需要先找点.所以要先列表,找满足条件的点,再描点,连线. 解:列表描点:以表中各组对应值作为点的坐标,在直角坐标系内描出相应的点. 连线:把这些点依次连接起来,得到y =21x +1的图象如下,它是一条直线.[师]从刚才我们作图的情况来总结一下,作一次函数的图象有哪些步骤呢?[生]①列表;②描点;③连线.三、做一做(1)作出一次函数y=-2x+5的图象.(2)在所作的图象上取几个点,找出它们的横坐标和纵坐标,并验证它们是否满足关系式y=-2x+5.[生]列表描点:以表中各组对应值作为点的坐标,在直角坐标系内描出相应的点.连线:把这些点依次连接起来,得到y=-2x+5的图象,它是一条直线.图象如下:在图象上找点A(3,-1),B(4,-3)当x=3时,y=-2×3+5=-1.当x=4时,y=-2×4+5=-3.∴(3,-1),(4,-3)满足关系式y=-2x+5.四、议一议(1)满足关系式y=-2x+5的x、y所对应的点(x,y)都在一次函数y=-2x+5的图象上吗?(2)一次函数y=-2x+5的图象上的点(x,y)都满足关系式y=-2x+5吗?(3)一次函数y=kx+b的图象有什么特点?[师]请大家分组讨论,然后回答.[生]满足关系式y=-2x+5的x,y所对应的点(x,y)都在一次函数y=-2x+5的图象上.(2)一次函数y =-2x +5的图象上的点(x ,y )都满足关系式y =-2x +5.[师]由此看来,满足函数关系式y =-2x +5的x ,y 所对应的点(x ,y )都在一次函数y = -2x +5的图象上;反过来,一次函数y =-2x +5的图象上的点(x ,y )都满足关系式y =-2x +5.所以,一次函数的代数表达式与图象是一一对应的.即满足一次函数的代数表达式的点在图象上,图象上的每一点的横坐标x ,纵坐标y 都满足一次函数的代数表达式.(3)[生]一次函数的图象是一条直线. [师]非常正确.一次函数的图象是一条直线.由直线的公理可知:两点确定一条直线,所以作一次函数的图象时,只要确定两个点,再过这两个点作直线就可以了,一次函数y =kx +b 的图象也称为直线y =kx +b .Ⅲ.课堂练习 分别作出一次函数y =31x 与y =-3x +9的图象. [师]根据刚才的讨论可知,我们在画一次函数的图象时,只要确定两个点就可以了. [生]作函数y =31x 的图象时,找点(3,1),(6,2)图象如下.作函数y =-3x +9的图象时,找点(1,6),(2,3) 图象如下:补充练习投影片(§6.3.1A )[生](1)作一次函数y =-x +21的图象时,取点(0, 21)和(1,-21),然后过这两点作直线即可.图象如下:(2)在图象上取点A (23,-1),B (-1,23) 当x =23时,y =-23+ 21=-1 当x =-1时,y =1+21=23∴A 、B 两点的坐标都满足关系式y =-x +21. 投影片(§6.3.1 B )[生]解:(1)作一次函数y =4x +3的图象时,找点(0,3),(1,7),然后过这两点作直线即可.图象如下:(2)当x =0时,y =4×0+3=3; 当x =-1时,y =4×(-1)+3=-1; 当x =21时,y =4×21+3=5; 当x =1时,y =4×1+3=7; 当x =-23时,y =4×(-23)+3=-3. ∴每对数都满足关系式y =4x +3.由前面的议一议可知,以这些数对为坐标的点在所作的函数图象上. Ⅳ.课时小结本节课主要学习了以下内容: 1.函数图象的概念;2.作一次函数图象的步骤以及熟练地作出一次函数的图象,并能验证某些数对是否在函数图象上.3.明确一次函数的图象是一条直线,因此在作一次函数的图象时,不需要列表,只要确定两点就可以了.Ⅴ.课后作业 习题6.3 Ⅵ.活动与探究1.已知函数y =(m -2)x 552+-m m+m -4,问当m 为何值时,它是一次函数?解:根据一次函数的定义,有⎩⎨⎧≠-=+-021552m m m解得⎩⎨⎧≠==241m m m 或∴m =1或m =42.如果y +3与x +2成正比例,且x =3时,y =7. ①写出y 与x 之间的函数关系式; ②求当x =-1时,y 的值; ③求当y =0时,x 的值.分析:①y +3与x +2成正比例,就是y +3=k ·(x +2),根据x =3时,y =7,求k 的值,从而确定y 与x 之间的函数关系式.②把x =-1代入所求函数关系式,求出y 的值. ③把y =0代入函数关系式,求出x 的值. 解:①∵y +3与x +2成正比例 ∴y +3=k (x +2)把x =3,y =7代入得:7+3=k (3+2) ∴k =2,∴y =2x +1②把x =-1代入y =2x +1中,得y =-2+1=-1③把y =0代入y =2x +1中,得 0=2x +1,∴x =-21. 说明:若y 与x 成一次函数关系式,那么函数关系式要写成y =kx +b (k ≠0)的形式. 3.如果y =mx 82-m是正比例函数,而且对于它的每一组非零的对应值(x ,y )有xy <0,求m 的值.分析:按正比例函数y =kx (k ≠0)中对于k 及x 的指数的要求决定m 的值. 解:根据题意得,y =mx 82-m 是正比例函数,故有:m 2-8=1且m ≠0即m =3或m =-3又∵xy <0,∴x ,y 是异号.∴m =xy<0 ∴m =3不合题意,舍去. ∴m =-3.常见错误:忽略m ≠0的要求,在解题过程不写这一条件. 4.已知y +b 与x +a (a ,b 是常数)成正比例. 求证:y 是x 的一次函数.分析:由y +b 与x +a 成正比例,设立解析式,分析此解析式为x 的一次函数. 解:∵y +b 与x +a 成正比例 ∴可设y +b =k (x +a )(k ≠0) 整理,得y =kx +ka -b =kx +(ka -b ) ∵k ,a ,b 都是常数. ∴ka -b 也是常数. 又∵k ≠0∴y 是x 的一次函数.常见错误:整理得到y =kx +ka -b 时不会把ka -b 看作一个整式.说明:在叙述函数的,一定要说清楚谁是谁的什么名称函数,否则容易发生混淆现象.如本题中,y +b 是x +a 的正比例这个说法是正确的,同时,y 是x 的一次函数的说法也是正确的.八、板书设计。