武威市第一中学2018-2019学年高二上学期第二次月考试卷数学
- 格式:doc
- 大小:633.50 KB
- 文档页数:17
武威市第二中学2018-2019学年高二上学期第二次月考试卷数学 班级__________ 姓名__________ 分数__________一、选择题1. 某校在高三第一次模拟考试中约有1000人参加考试,其数学考试成绩近似服从正态分布,即()2~100,X N a (0a >),试卷满分150分,统计结果显示数学考试成绩不及格(低于90分)的人数占总人数的110,则此次数学考试成绩在100分到110分之间的人数约为( ) (A ) 400 ( B ) 500 (C ) 600 (D ) 8002. 已知平面向量=(1,2),=(﹣2,m ),且∥,则=( )A .(﹣5,﹣10)B .(﹣4,﹣8)C .(﹣3,﹣6)D .(﹣2,﹣4)3. 已知P (x ,y )为区域内的任意一点,当该区域的面积为4时,z=2x ﹣y 的最大值是( )A .6B .0C .2D .24. 两个圆锥有公共底面,且两圆锥的顶点和底面圆周都在同一个球面上.若圆锥底面面积是球面面积的,则这两个圆锥的体积之比为( ) A .2:1 B .5:2 C .1:4 D .3:15. 若函数)1(+=x f y 是偶函数,则函数)(x f y =的图象的对称轴方程是( )] A .1=x B .1-=x C .2=x D .2-=x6. 若三棱锥S ﹣ABC 的所有顶点都在球O 的球面上,SA ⊥平面ABC ,SA=2,AB=1,AC=2,∠BAC=60°,则球O 的表面积为( ) A .64π B .16π C .12π D .4π7. 执行如图所示的一个程序框图,若f (x )在[﹣1,a]上的值域为[0,2],则实数a 的取值范围是( )A .(0,1]B .[1,]C .[1,2]D .[,2]8. 随机变量x 1~N (2,1),x 2~N (4,1),若P (x 1<3)=P (x 2≥a ),则a=( ) A .1 B .2C .3D .49. 对于函数f (x ),若∀a ,b ,c ∈R ,f (a ),f (b ),f (c )为某一三角形的三边长,则称f (x )为“可构造三角形函数”,已知函数f (x )=是“可构造三角形函数”,则实数t 的取值范围是( )A . C . D .10.一个空间几何体的三视图如图所示,其中正视图为等腰直角三角形,侧视图与俯视图为正方形, 则该几何体的体积为( )A .64B .32C .643 D .32311.已知定义在R 上的奇函数)(x f ,满足(4)()f x f x +=-,且在区间[0,2]上是增函数,则 A 、(25)(11)(80)f f f -<< B 、(80)(11)(25)f f f <<- C 、(11)(80)(25)f f f <<- D 、(25)(80)(11)f f f -<<12.如图是某几何体的三视图,则该几何体任意两个顶点间的距离的最大值为( )A .4B .5C .32D .33二、填空题13.设f (x )是(x 2+)6展开式的中间项,若f (x )≤mx 在区间[,]上恒成立,则实数m 的取值范围是 .14.某校为了了解学生的课外阅读情况,随机调查了50名学生,得到他们在某一天各自课外阅读所用时间的数据,结果用下面的条形图表示.根据条形图可得这50名学生这一天平均的课外阅读时间为 小时.15.定义在R 上的偶函数f (x )在[0,+∞)上是增函数,且f (2)=0,则不等式f (log 8x )>0的解集是 .16.已知x ,y 满足条件,则函数z=﹣2x+y 的最大值是 .17.函数)(x f (R x ∈)满足2)1(=f 且)(x f 在R 上的导数)('x f 满足03)('>-x f ,则不等式1log 3)(log 33-<x x f 的解集为 .【命题意图】本题考查利用函数的单调性解抽象不等式问题,本题对运算能力、化归能力及构造能力都有较高要求,难度大.18.已知x 、y 之间的一组数据如下:x 0 1 23 y 8 2 64则线性回归方程所表示的直线必经过点 .三、解答题19.已知在平面直角坐标系中的一个椭圆,它的中心在原点,左焦点为,且过点D (2,0).(1)求该椭圆的标准方程; (2)设点,若P 是椭圆上的动点,求线段PA 的中点M 的轨迹方程.20.设函数f(x)是定义在R上的奇函数,且对任意实数x,恒有f(x+2)=﹣f(x),当x∈[0,2]时,f(x)=2x﹣x2.(1)求证:f(x)是周期函数;(2)当x∈[2,4]时,求f(x)的解析式;(3)求f(0)+f(1)+f(2)+…+f(2015)的值.21.设函数f(x)=x3﹣6x+5,x∈R(Ⅰ)求f(x)的单调区间和极值;(Ⅱ)若关于x的方程f(x)=a有3个不同实根,求实数a的取值范围.22.某校在一次趣味运动会的颁奖仪式上,高一、高二、高三各代表队人数分别为120人、120人、n人.为了活跃气氛,大会组委会在颁奖过程中穿插抽奖活动,并用分层抽样的方法从三个代表队中共抽取20人在前排就坐,其中高二代表队有6人.(1)求n的值;(2)把在前排就坐的高二代表队6人分别记为a,b,c,d,e,f,现随机从中抽取2人上台抽奖.求a和b 至少有一人上台抽奖的概率.(3)抽奖活动的规则是:代表通过操作按键使电脑自动产生两个[0,1]之间的均匀随机数x,y,并按如图所示的程序框图执行.若电脑显示“中奖”,则该代表中奖;若电脑显示“谢谢”,则不中奖,求该代表中奖的概率.23.已知函数f(x)=log2(x﹣3),(1)求f(51)﹣f(6)的值;(2)若f(x)≤0,求x的取值范围.24.某校高一(1)班的一次数学测试成绩的茎叶图和频率分布直方图都受到不同程度的污损,可见部分如图.(Ⅰ)求分数在[50,60)的频率及全班人数;(Ⅱ)求分数在[80,90)之间的频数,并计算频率分布直方图中[80,90)间矩形的高;(Ⅲ)若要从分数在[80,100)之间的试卷中任取两份分析学生失分情况,求在抽取的试卷中,至少有一份分数在[90,100)之间的概率.武威市第二中学2018-2019学年高二上学期第二次月考试卷数学(参考答案)一、选择题1.【答案】A【解析】P(X≤90)=P(X≥110)=110,P(90≤X≤110)=1-15=45,P(100≤X≤110)=25,1000×25=400. 故选A.2.【答案】B【解析】解:排除法:横坐标为2+(﹣6)=﹣4,故选B.3.【答案】A解析:解:由作出可行域如图,由图可得A(a,﹣a),B(a,a),由,得a=2.∴A(2,﹣2),化目标函数z=2x﹣y为y=2x﹣z,∴当y=2x﹣z过A点时,z最大,等于2×2﹣(﹣2)=6.故选:A.4.【答案】D【解析】解:设球的半径为R,圆锥底面的半径为r,则πr2=×4πR2=,∴r=.∴球心到圆锥底面的距离为=.∴圆锥的高分别为和.∴两个圆锥的体积比为:=1:3.故选:D .5. 【答案】A 【解析】试题分析:∵函数)1(+=x f y 向右平移个单位得出)(x f y =的图象,又)1(+=x f y 是偶函数,对称轴方程为0=x ,∴)(x f y =的对称轴方程为1=x .故选A . 考点:函数的对称性.6. 【答案】A【解析】解:如图,三棱锥S ﹣ABC 的所有顶点都在球O 的球面上, ∵AB=1,AC=2,∠BAC=60°,∴BC=,∴∠ABC=90°.∴△ABC 截球O 所得的圆O ′的半径r=1,∵SA ⊥平面ABC ,SA=2∴球O 的半径R=4,∴球O 的表面积S=4πR 2=64π.故选:A .【点评】本题考查球的表面积的求法,合理地作出图形,数形结合求出球半径,是解题的关键.7. 【答案】B【解析】解:由程序框图知:算法的功能是求f (x )=的值,当a <0时,y=log 2(1﹣x )+1在[﹣1,a]上为减函数,f (﹣1)=2,f (a )=0⇒1﹣a=,a=,不符合题意;当a ≥0时,f ′(x )=3x 2﹣3>⇒x >1或x <﹣1,∴函数在[0,1]上单调递减,又f (1)=0,∴a ≥1; 又函数在[1,a]上单调递增,∴f (a )=a 3﹣3a+2≤2⇒a ≤.故实数a 的取值范围是[1,].故选:B .【点评】本题考查了选择结构的程序框图,考查了导数的应用及分段函数值域的求法,综合性强,体现了分类讨论思想,解题的关键是利用导数法求函数在不定区间上的最值.8.【答案】C【解析】解:随机变量x1~N(2,1),图象关于x=2对称,x2~N(4,1),图象关于x=4对称,因为P(x1<3)=P(x2≥a),所以3﹣2=4﹣a,所以a=3,故选:C.【点评】本题主要考查正态分布的图象,结合正态曲线,加深对正态密度函数的理解.9.【答案】D【解析】解:由题意可得f(a)+f(b)>f(c)对于∀a,b,c∈R都恒成立,由于f(x)==1+,①当t﹣1=0,f(x)=1,此时,f(a),f(b),f(c)都为1,构成一个等边三角形的三边长,满足条件.②当t﹣1>0,f(x)在R上是减函数,1<f(a)<1+t﹣1=t,同理1<f(b)<t,1<f(c)<t,由f(a)+f(b)>f(c),可得2≥t,解得1<t≤2.③当t﹣1<0,f(x)在R上是增函数,t<f(a)<1,同理t<f(b)<1,t<f(c)<1,由f(a)+f(b)>f(c),可得2t≥1,解得1>t≥.综上可得,≤t≤2,故实数t的取值范围是[,2],故选D.【点评】本题主要考查了求参数的取值范围,以及构成三角形的条件和利用函数的单调性求函数的值域,同时考查了分类讨论的思想,属于难题.10.【答案】B【解析】试题分析:由题意可知三视图复原的几何体是一个放倒的三棱柱,三棱柱的底面是直角边长为的等腰直角三角形,高为的三棱柱, 所以几何体的体积为:1444322⨯⨯⨯=,故选B. 考点:1、几何体的三视图;2、棱柱的体积公式.【方法点睛】本题主要考查利几何体的三视图、棱柱的体积公式,属于难题.三视图问题是考查学生空间想象能力及抽象思维能力的最常见题型,也是高考热点.观察三视图并将其“翻译”成直观图是解题的关键,解题时不但要注意三视图的三要素“高平齐,长对正,宽相等”,还要特别注意实线与虚线以及相同图形的不同位置对几何体直观图的影响.11.【答案】D【解析】∵(4)()f x f x +=-,∴(8)(4)f x f x +=-+,∴(8)()f x f x +=, ∴()f x 的周期为8,∴(25)(1)f f -=-,)0()80(f f =,(11)(3)(14)(1)(1)f f f f f ==-+=--=,又∵奇函数)(x f 在区间[0,2]上是增函数,∴)(x f 在区间[2,2]-上是增函数, ∴(25)(80)(11)f f f -<<,故选D. 12.【答案】D 【解析】试题分析:因为根据几何体的三视图可得,几何体为下图,,AD AB AG 相互垂直,面AEFG ⊥面,//,3,1ABCDE BC AE AB AD AG DE ====,根据几何体的性质得:2232,3(32)AC GC ==+222733,345GE ===+=,32,4,10,10BG AD EF CE ====,所以最长为33GC =.考点:几何体的三视图及几何体的结构特征.二、填空题13.【答案】 [5,+∞) .【解析】二项式定理.【专题】概率与统计;二项式定理.【分析】由题意可得 f (x )=x 3,再由条件可得m ≥x 2在区间[,]上恒成立,求得x 2在区间[,]上的最大值,可得m 的范围.【解答】解:由题意可得f(x)=x6=x3.由f(x)≤mx在区间[,]上恒成立,可得m≥x2在区间[,]上恒成立,由于x2在区间[,]上的最大值为5,故m≥5,即m的范围为[5,+∞),故答案为:[5,+∞).【点评】本题主要考查二项式定理的应用,二项展开式的通项公式,求展开式中某项的系数,函数的恒成立问题,属于中档题.14.【答案】0.9【解析】解:由题意,=0.9,故答案为:0.915.【答案】(0,)∪(64,+∞).【解析】解:∵f(x)是定义在R上的偶函数,∴f(log8x)>0,等价为:f(|log8x|)>f(2),又f(x)在[0,+∞)上为增函数,∴|log8x|>2,∴log8x>2或log8x<﹣2,∴x>64或0<x<.即不等式的解集为{x|x>64或0<x<}故答案为:(0,)∪(64,+∞)【点评】本题考查函数奇偶性与单调性的综合,是函数性质综合考查题,熟练掌握奇偶性与单调性的对应关系是解答的关键,根据偶函数的对称性将不等式进行转化是解决本题的关键.16.【答案】4.【解析】解:由约束条件作出可行域如图,化目标函数z=﹣2x+y 为y=2x+z ,由图可知,当直线y=2x+z 过点A (﹣2,0)时, 直线y=2x+z 在y 轴上的截距最大,即z 最大,此时z=﹣2×(﹣2)+0=4. 故答案为:4.【点评】本题考查了简单的线性规划,考查了数形结合的解题思想方法,是中档题.17.【答案】)3,0(【解析】构造函数x x f x F 3)()(-=,则03)(')('>-=x f x F ,说明)(x F 在R 上是增函数,且13)1()1(-=-=f F .又不等式1log 3)(log 33-<x x f 可化为1l o g 3)(l o g 33-<-x x f ,即)1()(l o g 3F x F <,∴1log 3<x ,解得30<<x .∴不等式1log 3)(log 33-<x x f 的解集为)3,0(.18.【答案】 (,5) .【解析】解:∵,=5∴线性回归方程y=a+bx 所表示的直线必经过点(1.5,5)故选C【点评】解决线性回归直线的方程,利用最小二乘法求出直线的截距和斜率,注意由公式判断出回归直线一定过样本中心点.三、解答题19.【答案】【解析】解:(1)由题意知椭圆的焦点在x 轴上,设椭圆的标准方程是∵椭圆经过点D (2,0),左焦点为,∴a=2,,可得b==1因此,椭圆的标准方程为.(2)设点P的坐标是(x0,y0),线段PA的中点为M(x,y),由根据中点坐标公式,可得,整理得,∵点P(x0,y0)在椭圆上,∴可得,化简整理得,由此可得线段PA中点M的轨迹方程是.【点评】本题给出椭圆满足的条件,求椭圆方程并求与之有关的一个轨迹方程,着重考查了椭圆的标准方程、简单几何性质和轨迹方程的求法等知识点,属于中档题.20.【答案】【解析】(1)证明:∵f(x+2)=﹣f(x),∴f(x+4)=f[(x+2)+2]=﹣f(x+2)=f(x),∴y=f(x)是周期函数,且T=4是其一个周期.(2)令x∈[﹣2,0],则﹣x∈[0,2],∴f(﹣x)=﹣2x﹣x2,又f(﹣x)=﹣f(x),∴在x∈[﹣2,0],f(x)=2x+x2,∴x∈[2,4],那么x﹣4∈[﹣2,0],那么f(x﹣4)=2(x﹣4)+(x﹣4)2=x2﹣6x+8,由于f(x)的周期是4,所以f(x)=f(x﹣4)=x2﹣6x+8,∴当x∈[2,4]时,f(x)=x2﹣6x+8.(3)当x∈[0,2]时,f(x)=2x﹣x2.∴f(0)=0,f(1)=1,当x∈[2,4]时,f(x)=x2﹣6x+8,∴f(2)=0,f(3)=﹣1,f(4)=0∴f(1)+f(2)+f(3)+f(4)=1+0﹣1+0=0,∵y=f(x)是周期函数,且T=4是其一个周期.∴2016=4×504∴f(0)+f(1)+f(2)+…+f(2015)=504×[f(0)+f(1)+f(2)+f(3)]=504×0=0,即求f(0)+f(1)+f(2)+…+f(2015)=0.【点评】本题主要考查函数周期性的判断,函数奇偶性的应用,综合考查函数性质的应用.21.【答案】【解析】解:(Ⅰ)∴当,∴f(x)的单调递增区间是,单调递减区间是当;当(Ⅱ)由(Ⅰ)的分析可知y=f(x)图象的大致形状及走向,∴当的图象有3个不同交点,即方程f(x)=α有三解.22.【答案】【解析】解:(1)由题意可得,∴n=160;(2)高二代表队6人,从中抽取2人上台抽奖的基本事件有(a,b),(a,c),(a,d),(a,e),(a,f),(b,c),(b,d),(b,e),(b.f),(c,d),(c,e),(c,f),(d,e),(d,f),(e,f)共15种,其中a和b至少有一人上台抽奖的基本事件有9种,∴a和b至少有一人上台抽奖的概率为=;(3)由已知0≤x≤1,0≤y≤1,点(x,y)在如图所示的正方形OABC内,由条件得到的区域为图中的阴影部分由2x﹣y﹣1=0,令y=0可得x=,令y=1可得x=1∴在x,y∈[0,1]时满足2x﹣y﹣1≤0的区域的面积为=∴该代表中奖的概率为=.23.【答案】【解析】解:(1)∵函数f(x)=log2(x﹣3),∴f(51)﹣f(6)=log248﹣log23=log216=4;(2)若f(x)≤0,则0<x﹣3≤1,解得:x∈(3,4]【点评】本题考查的知识点是对数函数的图象和性质,对数的运算性质,解答时要时时注意真数大于0,以免出错.24.【答案】【解析】解:(Ⅰ)分数在[50,60)的频率为0.008×10=0.08,由茎叶图知:分数在[50,60)之间的频数为2,∴全班人数为.(Ⅱ)分数在[80,90)之间的频数为25﹣22=3;频率分布直方图中[80,90)间的矩形的高为.(Ⅲ)将[80,90)之间的3个分数编号为a1,a2,a3,[90,100)之间的2个分数编号为b1,b2,在[80,100)之间的试卷中任取两份的基本事件为:(a1,a2),(a1,a3),(a1,b1),(a1,b2),(a2,a3),(a2,b1),(a2,b2),(a3,b1),(a3,b2),(b1,b2)共10个,其中,至少有一个在[90,100)之间的基本事件有7个,故至少有一份分数在[90,100)之间的概率是.。
武威市外国语学校2018-2019学年高二上学期第二次月考试卷数学班级__________ 姓名__________ 分数__________一、选择题1. 若方程x 2﹣mx+3=0的两根满足一根大于1,一根小于1,则m 的取值范围是( )A .(2,+∞)B .(0,2)C .(4,+∞)D .(0,4)2. 复数z=(其中i 是虚数单位),则z 的共轭复数=( )A .﹣iB .﹣﹣iC . +iD .﹣ +i3. 已知 m 、n 是两条不重合的直线,α、β、γ是三个互不重合的平面,则下列命题中 正确的是( ) A .若 m ∥α,n ∥α,则 m ∥n B .若α⊥γ,β⊥γ,则 α∥βC .若m ⊥α,n ⊥α,则 m ∥nD .若 m ∥α,m ∥β,则 α∥β4. 如果集合 ,A B ,同时满足{}{}{}{}1,2,3,41,1,1A B B A B =≠≠,A =,就称有序集对(),A B 为“ 好集对”. 这里有序集对(),A B 是指当A B ≠时,(),A B 和(),B A 是不同的集对, 那么“好集对” 一共有( )个A .个B .个C .个D .个 5. 棱长为2的正方体被一个平面截去一部分后所得的几何体的三视图如图所示,则该几何体的表面积为( )A .B .18C .D .6. 若偶函数f (x )在(﹣∞,0)内单调递减,则不等式f (﹣1)<f (lg x )的解集是( )A .(0,10)B .(,10)C .(,+∞)D .(0,)∪(10,+∞)7. 下列命题中错误的是( )A .圆柱的轴截面是过母线的截面中面积最大的一个B .圆锥的轴截面是所在过顶点的截面中面积最大的一个C .圆台的所有平行于底面的截面都是圆面D .圆锥所有的轴截面是全等的等腰三角形8. 已知函数f (x )=2ax 3﹣3x 2+1,若 f (x )存在唯一的零点x 0,且x 0>0,则a 的取值范围是( ) A .(1,+∞) B .(0,1) C .(﹣1,0) D .(﹣∞,﹣1)9. 已知函数f (x )=a x ﹣1+log a x 在区间[1,2]上的最大值和最小值之和为a ,则实数a 为( ) A.B.C .2D .410.与椭圆有公共焦点,且离心率的双曲线方程为( )A. B. C. D.11.若变量x y ,满足约束条件22024010x y x y x +-≥⎧⎪-+≥⎨⎪-≤⎩,则目标函数32z x y =-的最小值为( )A .-5B .-4 C.-2 D .3 12.过抛物线y 2=﹣4x 的焦点作直线交抛物线于A (x 1,y 1),B (x 2,y 2),若x 1+x 2=﹣6,则|AB|为( ) A .8B .10C .6D .4二、填空题13.一个算法的程序框图如图,若该程序输出的结果为,则判断框中的条件i <m 中的整数m 的值是 .14.用“<”或“>”号填空:30.8 30.7.15.已知直线l :ax ﹣by ﹣1=0(a >0,b >0)过点(1,﹣1),则ab 的最大值是 . 16.下列命题:①集合{},,,a b c d 的子集个数有16个; ②定义在R 上的奇函数()f x 必满足(0)0f =;③2()(21)2(21)f x x x =+--既不是奇函数又不是偶函数;④A R =,B R =,1:||f x x →,从集合A 到集合B 的对应关系f 是映射; ⑤1()f x x=在定义域上是减函数. 其中真命题的序号是 .17.定义某种运算⊗,S=a ⊗b 的运算原理如图;则式子5⊗3+2⊗4= .18.已知f (x ),g (x )都是定义在R 上的函数,g (x )≠0,f ′(x )g (x )>f (x )g ′(x ),且f (x )=a x g(x )(a >0且a ≠1),+=.若数列{}的前n 项和大于62,则n 的最小值为 .三、解答题19.某城市100户居民的月平均用电量(单位:度),以[)160,180,[)180,200,[)200,220,[)220,240,[)240,260,[)260,280,[]280,300分组的频率分布直方图如图.(1)求直方图中的值;(2)求月平均用电量的众数和中位数.1111]20.函数f (x )=sin (ωx+φ)(ω>0,|φ|<)的部分图象如图所示(Ⅰ)求函数f (x )的解析式(Ⅱ)在△ABC 中,角A ,B ,C 所对的边分别是a ,b ,c ,其中a <c ,f (A )=,且a=,b=,求△ABC的面积.21.(本小题满分10分)已知曲线C 的极坐标方程为2sin cos 10ρθρθ+=,将曲线1cos :sin x C y θθ=⎧⎨=⎩,(α为参数),经过伸缩变换32x xy y'=⎧⎨'=⎩后得到曲线2C .(1)求曲线2C 的参数方程;(2)若点M 的在曲线2C 上运动,试求出M 到曲线C 的距离的最小值.22.已知函数.(1)求f(x)的周期.(2)当时,求f(x)的最大值、最小值及对应的x值.23.已知曲线C的参数方程为(y为参数),过点A(2,1)作平行于θ=的直线l 与曲线C分别交于B,C两点(极坐标系的极点、极轴分别与直角坐标系的原点、x轴的正半轴重合).(Ⅰ)写出曲线C的普通方程;(Ⅱ)求B、C两点间的距离.24.已知函数f(x)=alnx+,曲线y=f(x)在点(1,f(1))处的切线方程为y=2.(I)求a、b的值;(Ⅱ)当x>1时,不等式f(x)>恒成立,求实数k的取值范围.武威市外国语学校2018-2019学年高二上学期第二次月考试卷数学(参考答案)一、选择题1. 【答案】C【解析】解:令f (x )=x 2﹣mx+3,若方程x 2﹣mx+3=0的两根满足一根大于1,一根小于1,则f (1)=1﹣m+3<0, 解得:m ∈(4,+∞),故选:C .【点评】本题考查的知识点是方程的根与函数零点的关系,二次函数的图象和性质,难度中档.2. 【答案】C【解析】解:∵z==,∴=.故选:C .【点评】本题考查了复数代数形式的乘除运算,是基础题.3. 【答案】C【解析】解:对于A ,若 m ∥α,n ∥α,则 m 与n 相交、平行或者异面;故A 错误; 对于B ,若α⊥γ,β⊥γ,则 α与β可能相交,如墙角;故B 错误; 对于C ,若m ⊥α,n ⊥α,根据线面垂直的性质定理得到 m ∥n ;故C 正确; 对于D ,若 m ∥α,m ∥β,则 α与β可能相交;故D 错误; 故选C .【点评】本题考查了空间线线关系.面面关系的判断;熟练的运用相关的定理是关键.4. 【答案】B 【解析】试题分析:因为{}{}{}{}1,2,3,41,1,1AB B A B =≠≠,A =,所以当{1,2}A =时,{1,2,4}B =;当{1,3}A =时,{1,2,4}B =;当{1,4}A =时,{1,2,3}B =;当{1,2,3}A =时,{1,4}B =;当{1,2,4}A =时,{1,3}B =;当{1,3,4}A =时,{1,2}B =;所以满足条件的“好集对”一共有个,故选B.考点:元素与集合的关系的判断.【方法点晴】本题主要考查了元素与集合关系的判断与应用,其中解答中涉及到集合的交集和集合的并集运算与应用、元素与集合的关系等知识点的综合考查,着重考查了分类讨论思想的应用,以及学生分析问题和解答问题的能力,试题有一定的难度,属于中档试题,本题的解答中正确的理解题意是解答的关键.1111]5.【答案】D【解析】解:由三视图可知正方体边长为2,截去部分为三棱锥,作出几何体的直观图如图所示:故该几何体的表面积为:3×22+3×()+=,故选:D.6.【答案】D【解析】解:因为f(x)为偶函数,所以f(x)=f(|x|),因为f(x)在(﹣∞,0)内单调递减,所以f(x)在(0,+∞)内单调递增,由f(﹣1)<f(lg x),得|lg x|>1,即lg x>1或lg x<﹣1,解得x>10或0<x<.故选:D.【点评】本题考查了函数的单调性与奇偶性的综合应用,在解对数不等式时注意对数的真数大于0,是个基础题.7.【答案】B【解析】解:对于A,设圆柱的底面半径为r,高为h,设圆柱的过母线的截面四边形在圆柱底面的边长为a,则截面面积S=ah≤2rh.∴当a=2r时截面面积最大,即轴截面面积最大,故A正确.对于B,设圆锥SO的底面半径为r,高为h,过圆锥定点的截面在底面的边长为AB=a,则O到AB的距离为,∴截面三角形SAB的高为,∴截面面积S==≤=.故截面的最大面积为.故B错误.对于C,由圆台的结构特征可知平行于底面的截面截圆台,所得几何体仍是圆台,故截面为圆面,故C正确.对于D,由于圆锥的所有母线长都相等,轴截面的底面边长为圆锥底面的直径,故圆锥所有的轴截面是全等的等腰三角形,故D正确.故选:B.【点评】本题考查了旋转体的结构特征,属于中档题.8.【答案】D【解析】解:若a=0,则函数f(x)=﹣3x2+1,有两个零点,不满足条件.若a≠0,函数的f(x)的导数f′(x)=6ax2﹣6x=6ax(x﹣),若f(x)存在唯一的零点x0,且x0>0,若a>0,由f′(x)>0得x>或x<0,此时函数单调递增,由f′(x)<0得0<x<,此时函数单调递减,故函数在x=0处取得极大值f(0)=1>0,在x=处取得极小值f(),若x0>0,此时还存在一个小于0的零点,此时函数有两个零点,不满足条件.若a<0,由f′(x)>0得<x<0,此时函数递增,由f′(x)<0得x<或x>0,此时函数单调递减,即函数在x=0处取得极大值f(0)=1>0,在x=处取得极小值f(),若存在唯一的零点x0,且x0>0,则f()>0,即2a()3﹣3()2+1>0,()2<1,即﹣1<<0,解得a<﹣1,故选:D【点评】本题主要考查函数零点的应用,求函数的导数,利用导数和极值之间的关系是解决本题的关键.注意分类讨论.9.【答案】A【解析】解:分两类讨论,过程如下:①当a>1时,函数y=a x﹣1和y=log a x在[1,2]上都是增函数,∴f(x)=a x﹣1+log a x在[1,2]上递增,∴f(x)max+f(x)min=f(2)+f(1)=a+log a2+1=a,∴log a2=﹣1,得a=,舍去;②当0<a<1时,函数y=a x﹣1和y=log a x在[1,2]上都是减函数,∴f(x)=a x﹣1+log a x在[1,2]上递减,∴f(x)max+f(x)min=f(2)+f(1)=a+log a2+1=a,∴log a2=﹣1,得a=,符合题意;故选A.10.【答案】A【解析】解:由于椭圆的标准方程为:则c2=132﹣122=25则c=5又∵双曲线的离心率∴a=4,b=3又因为且椭圆的焦点在x 轴上,∴双曲线的方程为:故选A【点评】运用待定系数法求椭圆(双曲线)的标准方程,即设法建立关于a ,b 的方程组,先定型、再定量,若位置不确定时,考虑是否两解,有时为了解题需要,椭圆方程可设为mx 2+ny 2=1(m >0,n >0,m ≠n ),双曲线方程可设为mx 2﹣ny 2=1(m >0,n >0,m ≠n ),由题目所给条件求出m ,n 即可.11.【答案】B 【解析】试题分析:根据不等式组作出可行域如图所示阴影部分,目标函数可转化直线系31y 22x z =+,直线系在可行域内的两个临界点分别为)2,0(A 和)0,1(C ,当直线过A 点时,32224z x y =-=-⨯=-,当直线过C 点时,32313z x y =-=⨯=,即的取值范围为]3,4[-,所以Z 的最小值为4-.故本题正确答案为B.考点:线性规划约束条件中关于最值的计算.12.【答案】A【解析】解:由题意,p=2,故抛物线的准线方程是x=1,∵抛物线y 2=﹣4x 的焦点作直线交抛物线于A (x 1,y 1)B (x 2,y 2)两点∴|AB|=2﹣(x 1+x 2), 又x 1+x 2=﹣6∴∴|AB|=2﹣(x 1+x 2)=8故选A二、填空题13.【答案】6.【解析】解:第一次循环:S=0+=,i=1+1=2;第二次循环:S=+=,i=2+1=3;第三次循环:S=+=,i=3+1=4;第四次循环:S=+=,i=4+1=5;第五次循环:S=+=,i=5+1=6;输出S,不满足判断框中的条件;∴判断框中的条件为i<6?故答案为:6.【点评】本题考查程序框图,尤其考查循环结构.对循环体每次循环需要进行分析并找出内在规律.本题属于基础题14.【答案】>【解析】解:∵y=3x是增函数,又0.8>0.7,∴30.8>30.7.故答案为:>【点评】本题考查对数函数、指数函数的性质和应用,是基础题.15.【答案】.【解析】解:∵直线l:ax﹣by﹣1=0(a>0,b>0)过点(1,﹣1),∴a+b﹣1=0,即a+b=1,∴ab≤=当且仅当a=b=时取等号,故ab的最大值是故答案为:【点评】本题考查基本不等式求最值,属基础题.16.【答案】①② 【解析】试题分析:子集的个数是2n,故①正确.根据奇函数的定义知②正确.对于③()241f x x =-为偶函数,故错误.对于④0x =没有对应,故不是映射.对于⑤减区间要分成两段,故错误. 考点:子集,函数的奇偶性与单调性.【思路点晴】集合子集的个数由集合的元素个数来决定,一个个元素的集合,它的子集的个数是2n个;对于奇函数来说,如果在0x =处有定义,那么一定有()00f =,偶函数没有这个性质;函数的奇偶性判断主要根据定义()()()(),f x f x f x f x -=-=-,注意判断定义域是否关于原点对称.映射必须集合A 中任意一个元素在集合B 中都有唯一确定的数和它对应;函数的定义域和单调区间要区分清楚,不要随意写并集.1 17.【答案】 14 .【解析】解:有框图知S=a ⊗b=∴5⊗3+2⊗4=5×(3﹣1)+4×(2﹣1)=14 故答案为14【点评】新定义题是近几年常考的题型,要重视.解决新定义题关键是理解题中给的新定义.18.【答案】 1 .【解析】解:∵x 为实数,[x]表示不超过x 的最大整数, ∴如图,当x ∈[0,1)时,画出函数f (x )=x ﹣[x]的图象,再左右扩展知f (x )为周期函数. 结合图象得到函数f (x )=x ﹣[x]的最小正周期是1.故答案为:1.【点评】本题考查函数的最小正周期的求法,是基础题,解题时要认真审题,注意数形结合思想的合理运用.三、解答题19.【答案】(1)0.0075x =;(2)众数是230,中位数为224. 【解析】试题分析:(1)利用频率之和为一可求得的值;(2)众数为最高小矩形底边中点的横坐标;中位数左边和右边的直方图的面积相等可求得中位数.1试题解析:(1)由直方图的性质可得(0.0020.00950.0110.01250.0050.0025)201x ++++++⨯=, ∴0.0075x =.考点:频率分布直方图;中位数;众数. 20.【答案】【解析】解:(Ⅰ)∵由图象可知,T=4(﹣)=π,∴ω==2,又x=时,2×+φ=+2k π,得φ=2k π﹣,(k ∈Z )又∵|φ|<,∴φ=﹣,∴f (x )=sin (2x ﹣)…6分(Ⅱ)由f (A )=,可得sin (2A ﹣)=,∵a <c , ∴A 为锐角,∴2A ﹣∈(﹣,),∴2A﹣=,得A=,由余弦定理可得:a2=b2+c2﹣2bccosA,可得:7=3+c2﹣2,即:c2﹣3c﹣4=0,∵c>0,∴解得c=4.∴△ABC的面积S=bcsinA==…12分【点评】本题主要考查了余弦定理,三角形面积公式,由y=Asin(ωx+φ)的部分图象确定其解析式等知识的应用,属于基本知识的考查.21.【答案】(1)3cos2sinxyθθ=⎧⎨=⎩(为参数);(2【解析】试题解析:(1)将曲线1cos :sin xCyαα=⎧⎨=⎩(α为参数),化为221x y+=,由伸缩变换32x xy y'=⎧⎨'=⎩化为1312x xy y⎧'=⎪⎪⎨⎪'=⎪⎩,代入圆的方程211132x y⎛⎫⎛⎫''+=⎪ ⎪⎝⎭⎝⎭,得到()()222:194x yC''+=,可得参数方程为3cos2sinxyαα=⎧⎨=⎩;考点:坐标系与参数方程.22.【答案】【解析】解:(1)∵函数.∴函数f(x)=2sin(2x+).∴f(x)的周期T==π即T=π(2)∵∴,∴﹣1≤sin(2x+)≤2最大值2,2x=,此时,最小值﹣1,2x=此时【点评】本题简单的考察了三角函数的性质,单调性,周期性,熟练化为一个角的三角函数形式即可.23.【答案】【解析】解:(Ⅰ)由曲线C的参数方程为(y为参数),消去参数t得,y2=4x.(Ⅱ)依题意,直线l的参数方程为(t为参数),代入抛物线方程得可得,∴,t1t2=14.∴|BC|=|t1﹣t2|===8.【点评】本题考查了参数方程化为普通方程、参数的意义、弦长公式,考查了计算能力,属于基础题.24.【答案】【解析】解:(I)∵函数f(x)=alnx+的导数为f′(x)=﹣,且直线y=2的斜率为0,又过点(1,2),∴f(1)=2b=2,f′(1)=a﹣b=0,﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣解得a=b=1﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣(II)当x>1时,不等式f(x)>,即为(x﹣1)lnx+>(x﹣k)lnx,即(k﹣1)lnx+>0﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣令g(x)=(k﹣1)lnx+,g′(x)=+1+=,﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣令m(x)=x2+(k﹣1)x+1,①当≤1即k≥﹣1时,m(x)在(1,+∞)单调递增且m(1)≥0,所以当x>1时,g′(x)>0,g(x)在(1,+∞)单调递增,则g(x)>g(1)=0即f(x)>恒成立.﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣②当>1即k<﹣1时,m(x)在上(1,)上单调递减,且m(1)<0,故当x∈(1,)时,m(x)<0即g′(x)<0,所以函数g(x)在(1,)单调递减,﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣当x∈(1,)时,g(x)<0与题设矛盾,综上可得k的取值范围为[﹣1,+∞)﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣。
甘肃省武威第一中学2018-2019学年高二9月月考数学试题解析 班级__________ 座号_____ 姓名__________ 分数__________一、选择题(本大题共12小题,每小题5分,共60分.每小题给出的四个选项中,只有一项是符合题目要求的.)1. 在《张邱建算经》中有一道题:“今有女子不善织布,逐日所织的布比同数递减,初日织五尺, 末一日织一尺,计织三十日”,由此推断,该女子到第10日时,大约已经完成三十日织布总量的( ) A .33% B .49% C .62% D .88% 2. 已知全集为R ,集合{}|23A x x x =<->或,{}2,0,2,4B =-,则()R A B =I ð( )A .{}2,0,2-B .{}2,2,4-C .{}2,0,3-D .{}0,2,43. 已知点P 是双曲线C :22221(0,0)x y a b a b-=>>左支上一点,1F ,2F 是双曲线的左、右两个焦点,且12PF PF ⊥,2PF 与两条渐近线相交于M ,N 两点(如图),点N 恰好平分线段2PF ,则双曲线的离心率是( ) A.5B.2C.3D.2【命题意图】本题考查双曲线的标准方程及其性质等基础知识知识,意在考查运算求解能力. 4. 已知集合A={x ∈Z|(x+1)(x ﹣2)≤0},B={x|﹣2<x <2},则A ∩B=( ) A .{x|﹣1≤x <2} B .{﹣1,0,1} C .{0,1,2}D .{﹣1,1}5. 在等差数列{}n a 中,11a =,公差0d ≠,n S 为{}n a 的前n 项和.若向量13(,)m a a u r =,133(,)n a a r=-, 且0m n u r r ?,则2163n n S a ++的最小值为( )A .4B .3C .32D .92【命题意图】本题考查等差数列的性质,等差数列的前n 项和,向量的数量积,基本不等式等基础知识,意在考查学生的学生运算能力,观察分析,解决问题的能力.6. 已知集合A={x ∈Z|(x+1)(x ﹣2)≤0},B={x|﹣2<x <2},则A ∩B=( ) A .{x|﹣1≤x <2} B .{﹣1,0,1} C .{0,1,2}D .{﹣1,1}7. 设集合{}|22A x R x =∈-≤≤,{}|10B x x =-≥,则()R A B =I ð( ) A.{}|12x x <≤ B.{}|21x x -≤< C. {}|21x x -≤≤ D. {}|22x x -≤≤【命题意图】本题主要考查集合的概念与运算,属容易题.8. 已知函数f (x )=⎩⎨⎧a x -1,x ≤1log a1x +1,x >1(a >0且a ≠1),若f (1)=1,f (b )=-3,则f (5-b )=( ) A .-14B .-12C .-34D .-549. 已知正三棱柱111ABC A B C -的底面边长为4cm ,高为10cm ,则一质点自点A 出发,沿着三棱 柱的侧面,绕行两周到达点1A 的最短路线的长为( )A .16cmB .123cmC .243cmD .26cm10.利用斜二测画法得到的:①三角形的直观图是三角形;②平行四边形的直观图是平行四边形; ③正方形的直观图是正方形;④菱形的直观图是菱形.以上结论正确的是( )A .①②B .①C .③④D .①②③④ 11.已知等差数列{}n a 中,7916a a +=,41a =,则12a 的值是( )A .15B .30C .31D .64 12.阅读如图所示的程序如图,运行相应的程序,若输出的S 为1112,则判断框中填写的内容可以是] ( )A .6n =B .6n <C .6n ≤D .8n ≤二、填空题(本大题共4小题,每小题5分,共20分.把答案填写在横线上)13.如图所示,圆C 中,弦AB 的长度为4,则AB AC ×u u u r u u u r的值为_______.CAB【命题意图】本题考查平面向量数量积、垂径定理等基础知识,意在考查对概念理解和转化化归的数学思想. 14.在ABC ∆中,角A B C 、、的对边分别为a b c 、、,若1cos 2c B a b ⋅=+,ABC ∆的面积3S =,则边c 的最小值为_______.【命题意图】本题考查正弦定理、余弦定理、三角形面积公式、基本不等式等基础知识,意在考查基本运算能力.15()2423x k x -=-+有两个不等实根,则的取值范围是 .16.已知实数x ,y 满足2330220y x y x y ≤⎧⎪--≤⎨⎪+-≥⎩,目标函数3z x y a =++的最大值为4,则a =______.【命题意图】本题考查线性规划问题,意在考查作图与识图能力、逻辑思维能力、运算求解能力.三、解答题(本大共6小题,共70分。
甘肃省武威市2017-2018学年高二数学上学期第二次月考试题 理一、选择题(共12小题,共60分)1.命题“若a ∉A ,则b ∈B ”的否命题是( ).A .若a ∉A ,则b ∉B B .若a ∈A ,则b ∉BC .若b ∈B ,则a ∉AD .若b ∉B ,则a ∉A2.下列说法中正确的是( ).A .一个命题的逆命题为真,则它的逆否命题一定为真B .“a >b ”与“a +c >b +c ”不等价C .“若a 2+b 2=0,则a ,b 全为0”的逆否命题是“若a ,b 全不为0,则a 2+b 2≠0” D .一个命题的否命题为真,则它的逆命题一定为真 3.“|x |=|y |”是“x =y ”的( ). A .充分不必要条件 B .必要不充分条件 C .充要条件D .既不充分也不必要条件4.下列命题中的假命题是( ).A .∀x ∈R ,2x -1>0 B .∀x ∈N *,(x -1)2>0 C .∃x 0∈R ,lg x 0<1D .∃x 0∈R ,tan x 0=25.以下四个命题既是特称命题又是真命题的是( ).A .锐角三角形的内角是锐角或钝角B .至少有一个实数x ,使x 2≤0 C .两个无理数的和必是无理数 D .存在一个负数x ,使1x>26.若抛物线y 2=8x 上一点P 到其焦点的距离为10,则点P 的坐标为( ).A .(8,8)B .(8,-8)C .(8,±8)D .(-8,±8)7.如图所示,直线l :x -2y +2=0过椭圆的左焦点F1和一个顶点B ,该椭圆的离心率为( ).A.15 B.25 C.55D.2558.椭圆x 2+4y 2=1的离心率为( ).A.32 B.34 C.22 D.239..已知椭圆C 的左、右焦点坐标分别是(-2,0),(2,0),离心率是63,则椭圆C 的方程为( ). A.x 23+y 2=1B .x 2+y 23=1C.x 23+y 22=1 D.x 22+y 23=1 10.如图,在正方体ABCD -A 1B 1C 1D 1中,E 、F 、G 、H 分别为AA 1、AB 、BB 1、BC 1的中点,则异面直线EF 与GH 所成的角等于( )A.45° B .60° C.90° D.120°11.设l ,m ,n 均为直线,其中m ,n 在平面α内,“l α⊥”是l m ⊥且“l n ⊥”的( ) A.充分不必要条件 B.必要不充分条件 C.充分必要条件 D.既不充分也不必要条件12.已知平行六面体''''A B C D A B C D-中,AB=4,AD=3,'5AA =,090BAD ∠=,''060BAA DAA ∠=∠=,则'AC 等于 ( )AB .85C.D .50二、填空题(共4题,每题5分)13.若直线ax -y +1=0经过抛物线=4x 的焦点,则实数a =________.14.命题p :∃x 0∈R ,x 20+2x 0+4<0的否定为:________. 15. 如图,在正四棱柱ABCD -D C B A ''''中(底面是正方形的直棱柱),侧棱A A '=3, 2=AB ,则二面角A BD A --'的大小为16.在正四面体ABCD 中,E 为棱AD 的中点,则CE 与平面BCD所成角的正弦值为_________三、解答题(本大题共4小题,满分40分,解答题写出必要的文字说明、推演步骤。
武威市第一高级中学2018-2019学年上学期高二数学12月月考试题含答案班级__________ 座号_____ 姓名__________ 分数__________一、选择题1. 复数z=(m ∈R ,i 为虚数单位)在复平面上对应的点不可能位于()A .第一象限B .第二象限C .第三象限D .第四象限2. 命题“∀a ∈R ,函数y=π”是增函数的否定是( )A .“∀a ∈R ,函数y=π”是减函数B .“∀a ∈R ,函数y=π”不是增函数C .“∃a ∈R ,函数y=π”不是增函数D .“∃a ∈R ,函数y=π”是减函数3. 下列函数中,与函数的奇偶性、单调性相同的是( )()3x xe ef x --=A .B .C .D .(ln y x =2y x =tan y x =xy e=4. 若等式(2x ﹣1)2014=a 0+a 1x+a 2x 2+…+a 2014x 2014对于一切实数x 都成立,则a 0+1+a 2+…+a 2014=()A .B .C .D .05. 在中,角,,的对边分别是,,,为边上的高,,若ABC ∆A B C BH AC 5BH =,则到边的距离为( )2015120aBC bCA cAB ++=H AB A .2 B .3C.1 D .46. 已知,则f{f[f (﹣2)]}的值为()A .0B .2C .4D .87. 已知命题1:0,2p x x x∀>+≥,则p ⌝为( )A .10,2x x x ∀>+< B .10,2x x x ∀≤+<C .10,2x x x∃≤+<D .10,2x x x∃>+<8. 直线l 将圆x 2+y 2﹣2x+4y=0平分,且在两坐标轴上的截距相等,则直线l 的方程是( )A .x ﹣y+1=0,2x ﹣y=0B .x ﹣y ﹣1=0,x ﹣2y=0C .x+y+1=0,2x+y=0D .x ﹣y+1=0,x+2y=09. 某大学数学系共有本科生1000人,其中一、二、三、四年级的人数比为4:3:2:1,要用分层抽样的方法从所有本科生中抽取一个容量为200的样本,则应抽取三年级的学生人数为( )A .80B .40C .60D .2010.数列中,,对所有的,都有,则等于( ){}n a 11a =2n ≥2123n a a a a n =A A 35a a +A .B .C .D .25925166116311511.若P 是以F 1,F 2为焦点的椭圆=1(a >b >0)上的一点,且=0,tan ∠PF 1F 2=,则此椭圆的离心率为( )A .B .C .D .12.双曲线的焦点与椭圆的焦点重合,则m 的值等于( )A .12B .20C .D .二、填空题13.设f (x )是(x 2+)6展开式的中间项,若f (x )≤mx 在区间[,]上恒成立,则实数m 的取值范围是 . 14.设O 为坐标原点,抛物线C :y 2=2px (p >0)的准线为l ,焦点为F ,过F 斜率为的直线与抛物线C 相交于A ,B 两点,直线AO 与l 相交于D ,若|AF|>|BF|,则= . 15.阅读如图所示的程序框图,则输出结果的值为.S【命题意图】本题考查程序框图功能的识别,并且与数列的前项和相互联系,突出对逻辑判断及基本运算能n 力的综合考查,难度中等.16.下列命题:①函数y=sinx 和y=tanx 在第一象限都是增函数;②若函数f (x )在[a ,b]上满足f (a )f (b )<0,函数f (x )在(a ,b )上至少有一个零点;③数列{a n }为等差数列,设数列{a n }的前n 项和为S n ,S 10>0,S 11<0,S n 最大值为S 5;④在△ABC 中,A >B 的充要条件是cos2A <cos2B ;⑤在线性回归分析中,线性相关系数越大,说明两个量线性相关性就越强.其中正确命题的序号是 (把所有正确命题的序号都写上). 17.抛物线y 2=4x 的焦点为F ,过F 且倾斜角等于的直线与抛物线在x 轴上方的曲线交于点A ,则AF 的长为 .18.【徐州市2018届高三上学期期中】已知函数(为自然对数的底数),若,则实数 的取值范围为______.三、解答题19.(本小题满分16分)给出定义在()+∞,0上的两个函数2()ln f x x a x =-,()g x x =-.(1)若()f x 在1=x 处取最值.求的值;(2)若函数2()()()h x f x g x =+在区间(]0,1上单调递减,求实数的取值范围;(3)试确定函数()()()6m x f x g x =--的零点个数,并说明理由.20..已知定义域为R 的函数f (x )=是奇函数.(1)求a 的值;(2)判断f (x )在(﹣∞,+∞)上的单调性.(直接写出答案,不用证明);(3)若对于任意t ∈R ,不等式f (t 2﹣2t )+f (2t 2﹣k )<0恒成立,求k 的取值范围.21.求点A (3,﹣2)关于直线l :2x ﹣y ﹣1=0的对称点A ′的坐标.22.在极坐标系内,已知曲线C 1的方程为ρ2﹣2ρ(cos θ﹣2sin θ)+4=0,以极点为原点,极轴方向为x 正半轴方向,利用相同单位长度建立平面直角坐标系,曲线C 2的参数方程为(t 为参数).(Ⅰ)求曲线C 1的直角坐标方程以及曲线C 2的普通方程;(Ⅱ)设点P 为曲线C 2上的动点,过点P 作曲线C 1的切线,求这条切线长的最小值. 23.已知直线l 1:(t 为参数),以坐标原点为极点,x 轴的正半轴为极轴建立直角坐标系,圆C 1:ρ2﹣2ρcos θ﹣4ρsin θ+6=0.(1)求圆C 1的直角坐标方程,直线l 1的极坐标方程;(2)设l 1与C 1的交点为M ,N ,求△C 1MN 的面积. 24.已知函数().()()xf x x k e =-k R ∈(1)求的单调区间和极值;()f x (2)求在上的最小值.()f x []1,2x ∈(3)设,若对及有恒成立,求实数的取值范围.()()'()g x f x f x =+35,22k ⎡⎤∀∈⎢⎥⎣⎦[]0,1x ∀∈()g x λ≥λ武威市第一高级中学2018-2019学年上学期高二数学12月月考试题含答案(参考答案)一、选择题1. 【答案】C【解析】解:z====+i ,当1+m >0且1﹣m >0时,有解:﹣1<m <1;当1+m >0且1﹣m <0时,有解:m >1;当1+m <0且1﹣m >0时,有解:m <﹣1;当1+m <0且1﹣m <0时,无解;故选:C .【点评】本题考查复数的几何意义,注意解题方法的积累,属于中档题. 2. 【答案】C【解析】解:因为全称命题的否定是特称命题,所以,命题“∀a ∈R ,函数y=π”是增函数的否定是:“∃a ∈R ,函数y=π”不是增函数.故选:C .【点评】本题考查命题的否定,特称命题与全称命题的否定关系,是基础题. 3. 【答案】A 【解析】试题分析:所以函数为奇函数,且为增函数.B 为偶函数,C 定义域与不相同,D 为非()()f x f x -=-()f x 奇非偶函数,故选A.考点:函数的单调性与奇偶性.4. 【答案】B 【解析】解法一:∵,∴(C 为常数),取x=1得,再取x=0得,即得,∴,故选B .解法二:∵,∴,∴,故选B .【点评】本题考查二项式定理的应用,定积分的求法,考查转化思想的应用. 5. 【答案】D 【解析】考点:1、向量的几何运算及平面向量基本定理;2、向量相等的性质及勾股定理.【方法点睛】本题主要考查向量的几何运算及平面向量基本定理、向量相等的性质及勾股定理,属于难题,平面向量问题中,向量的线性运算和数量积是高频考点,当出现线性运算问题时,注意两个向量的差,这是一个易错点,两个向量的和(点是的中点),另外,要选好基底OA OB BA -= 2OA OB OD +=D AB 向量,如本题就要灵活使用向量,当涉及到向量数量积时,要记熟向量数量积的公式、坐标公式、几,AB AC何意义等.6. 【答案】C 【解析】解:∵﹣2<0∴f (﹣2)=0∴f (f (﹣2))=f (0)∵0=0∴f (0)=2即f (f (﹣2))=f (0)=2∵2>0∴f (2)=22=4即f{f[(﹣2)]}=f (f (0))=f (2)=4故选C . 7. 【答案】D 【解析】考点:全称命题的否定.8. 【答案】C【解析】解:圆x 2+y 2﹣2x+4y=0化为:圆(x ﹣1)2+(y+2)2=5,圆的圆心坐标(1,﹣2),半径为,直线l将圆x 2+y 2﹣2x+4y=0平分,且在两坐标轴上的截距相等,则直线l 经过圆心与坐标原点.或者直线经过圆心,直线的斜率为﹣1,∴直线l 的方程是:y+2=﹣(x ﹣1),2x+y=0,即x+y+1=0,2x+y=0.故选:C .【点评】本题考查直线与圆的位置关系,直线的截距式方程的求法,考查计算能力,是基础题. 9. 【答案】B【解析】解:∵要用分层抽样的方法从该系所有本科生中抽取一个容量为200的样本,∴三年级要抽取的学生是×200=40,故选:B .【点评】本题考查分层抽样方法,本题解题的关键是看出三年级学生所占的比例,本题也可以先做出三年级学生数和每个个体被抽到的概率,得到结果. 10.【答案】C 【解析】试题分析:由,则,两式作商,可得,所以2123n a a a a n =A A 21231(1)n a a a a n -=-A A 22(1)n n a n =-,故选C .22352235612416a a +=+=考点:数列的通项公式.11.【答案】A 【解析】解:∵∴,即△PF 1F 2是P 为直角顶点的直角三角形.∵Rt △PF 1F 2中,,∴=,设PF2=t,则PF1=2t∴=2c,又∵根据椭圆的定义,得2a=PF1+PF2=3t∴此椭圆的离心率为e====故选A【点评】本题给出椭圆的一个焦点三角形为直角三角形,根据一个内角的正切值,求椭圆的离心率,着重考查了椭圆的基本概念和简单几何性质,属于基础题.12.【答案】A【解析】解:椭圆的焦点为(±4,0),由双曲线的焦点与椭圆的重合,可得=4,解得m=12.故选:A.二、填空题13.【答案】 [5,+∞) .【解析】二项式定理.【专题】概率与统计;二项式定理.【分析】由题意可得f(x)=x3,再由条件可得m≥x2在区间[,]上恒成立,求得x2在区间[,]上的最大值,可得m的范围.【解答】解:由题意可得f(x)=x6=x3.由f(x)≤mx在区间[,]上恒成立,可得m≥x2在区间[,]上恒成立,由于x2在区间[,]上的最大值为5,故m≥5,即m的范围为[5,+∞),故答案为:[5,+∞).【点评】本题主要考查二项式定理的应用,二项展开式的通项公式,求展开式中某项的系数,函数的恒成立问题,属于中档题.14.【答案】 .【解析】解:∵O 为坐标原点,抛物线C :y 2=2px (p >0)的准线为l ,焦点为F ,过F 斜率为的直线与抛物线C 相交于A ,B 两点,直线AO 与l 相交于D ,∴直线AB 的方程为y=(x ﹣),l 的方程为x=﹣,联立,解得A (﹣,P ),B (,﹣)∴直线OA 的方程为:y=,联立,解得D (﹣,﹣)∴|BD|==,∵|OF|=,∴ ==.故答案为:.【点评】本题考查两条件线段的比值的求法,是中档题,解题时要认真审题,要熟练掌握抛物线的简单性质. 15.【答案】20172016【解析】根据程序框图可知,其功能是求数列的前1008项的和,即})12)(12(2{+-n n+⨯+⨯=532312S .=-++-+-=⨯+)2017120151(5131()311(201720152 2017201616.【答案】 ②③④⑤ 【解析】解:①函数y=sinx和y=tanx在第一象限都是增函数,不正确,取x=,,但是,,因此不是单调递增函数;②若函数f(x)在[a,b]上满足f(a)f(b)<0,函数f(x)在(a,b)上至少有一个零点,正确;③数列{a n}为等差数列,设数列{a n}的前n项和为S n,S10>0,S11<0,∴=5(a6+a5)>0,=11a6<0,∴a5+a6>0,a6<0,∴a5>0.因此S n最大值为S5,正确;④在△ABC中,cos2A﹣cos2B=﹣2sin(A+B)sin(A﹣B)=2sin(A+B)sin(B﹣A)<0⇔A>B,因此正确;⑤在线性回归分析中,线性相关系数越大,说明两个量线性相关性就越强,正确.其中正确命题的序号是②③④⑤.【点评】本题综合考查了三角函数的单调性、函数零点存在判定定理、等差数列的性质、两角和差化积公式、线性回归分析,考查了推理能力与计算能力,属于难题.17.【答案】 4 .【解析】解:由已知可得直线AF的方程为y=(x﹣1),联立直线与抛物线方程消元得:3x2﹣10x+3=0,解之得:x1=3,x2=(据题意应舍去),由抛物线定义可得:AF=x1+=3+1=4.故答案为:4.【点评】本题考查直线与抛物线的位置关系,考查抛物线的定义,考查学生的计算能力,属于中档题.18.【答案】【解析】令,则所以为奇函数且单调递增,因此即点睛:解函数不等式:首先根据函数的性质把不等式转化为的形式,然后根据函数的单调性去掉“”,转化为具体的不等式(组),此时要注意与的取值应在外层函数的定义域内三、解答题a (2)a≥2(3)两个零点.19.【答案】(1)2【解析】试题分析:(1) 开区间的最值在极值点取得,因此()f x 在1=x 处取极值,即(1)0f =′,解得2a = ,需验证(2) ()h x 在区间(]0,1上单调递减,转化为()0h x ′≤在区间(]0,1上恒成立,再利用变量分离转化为对应函数最值:241x a x +≥的最大值,根据分式函数求最值方法求得()241x F x x =+最大值2(3)先利用导数研究函数()x m 单调性:当()1,0∈x 时,递减,当()+∞∈,1x 时,递增;再考虑区间端点函数值的符号:()10m <,4)0m e ->( , 4()0m e >,结合零点存在定理可得零点个数试题解析:(1) ()2af x x x=-′由已知,(1)0f =′即: 20a -=,解得:2a = 经检验 2a = 满足题意所以 2a = (4)分因为(]0,1x ∈,所以[)11,x ∈+∞,所以2min112x x ⎛⎫⎛⎫+= ⎪ ⎪ ⎪⎝⎭⎝⎭所以()max 2F x =,所以a ≥2 ……………………………………10分(3)函数()()()6m x f x g x =--有两个零点.因为()22ln 6m x x x x =--+所以()221m x x x =--==′ ………12分当()1,0∈x 时,()0<'x m ,当()+∞∈,1x 时,()0>'x m 所以()()min 140m x m ==-<,……………………………………14分3241-e)(1+e+2e )(=0em e -<() ,8424812(21))0e e e m e e -++-=>( 4442()1)2(7)0m e e e e =-+->( 故由零点存在定理可知:函数()x m 在4(,1)e - 存在一个零点,函数()x m 在4(1,)e 存在一个零点,所以函数()()()6m x f x g x =--有两个零点. ……………………………………16分考点:函数极值与最值,利用导数研究函数零点,利用导数研究函数单调性【思路点睛】对于方程解的个数(或函数零点个数)问题,可利用函数的值域或最值,结合函数的单调性、草图确定其中参数范围.从图象的最高点、最低点,分析函数的最值、极值;从图象的对称性,分析函数的奇偶性;从图象的走向趋势,分析函数的单调性、周期性等.20.【答案】【解析】解:(1)因为f (x )为R 上的奇函数所以f (0)=0即=0,∴a=1 …(2)f (x )==﹣1+,在(﹣∞,+∞)上单调递减…(3)f (t 2﹣2t )+f (2t 2﹣k )<0⇔f (t 2﹣2t )<﹣f (2t 2﹣k )=f (﹣2t 2+k ),又f (x )=在(﹣∞,+∞)上单调递减,∴t 2﹣2t >﹣2t 2+k ,即3t 2﹣2t ﹣k >0恒成立,∴△=4+12k <0,∴k <﹣.…(利用分离参数也可). 21.【答案】【解析】解:设点A (3,﹣2)关于直线l :2x ﹣y ﹣1=0的对称点A ′的坐标为(m ,n ),则线段A ′A 的中点B (,),由题意得B 在直线l :2x ﹣y ﹣1=0上,故 2×﹣﹣1=0 ①.再由线段A ′A 和直线l 垂直,斜率之积等于﹣1得 ×=﹣1 ②,解①②做成的方程组可得:m=﹣,n=,故点A ′的坐标为(﹣,).【点评】本题考查求一个点关于直线的对称点的坐标的方法,注意利用垂直及中点在轴上两个条件.22.【答案】【解析】【专题】计算题;直线与圆;坐标系和参数方程.【分析】(Ⅰ)运用x=ρcosθ,y=ρsinθ,x2+y2=ρ2,即可得到曲线C1的直角坐标方程,再由代入法,即可化简曲线C2的参数方程为普通方程;(Ⅱ)可经过圆心(1,﹣2)作直线3x+4y﹣15=0的垂线,此时切线长最小.再由点到直线的距离公式和勾股定理,即可得到最小值.【解答】解:(Ⅰ)对于曲线C1的方程为ρ2﹣2ρ(cosθ﹣2sinθ)+4=0,可化为直角坐标方程x2+y2﹣2x+4y+4=0,即圆(x﹣1)2+(y+2)2=1;曲线C2的参数方程为(t为参数),可化为普通方程为:3x+4y﹣15=0.(Ⅱ)可经过圆心(1,﹣2)作直线3x+4y﹣15=0的垂线,此时切线长最小.则由点到直线的距离公式可得d==4,则切线长为=.故这条切线长的最小值为.【点评】本题考查极坐标方程、参数方程和直角坐标方程、普通方程的互化,考查直线与圆相切的切线长问题,考查运算能力,属于中档题.23.【答案】【解析】解:(1)∵,将其代入C1得:,∴圆C1的直角坐标方程为:.由直线l1:(t为参数),消去参数可得:y=x,可得(ρ∈R).∴直线l1的极坐标方程为:(ρ∈R).(2),可得⇒,∴.【点评】本题考查了极坐标方程化为直角坐标方程、参数方程化为普通方程、三角形面积计算公式,考查了推理能力与计算能力,属于中档题. 24.【答案】(1)的单调递增区间为,单调递减区间为,()f x (1,)k -+∞(,1)k -∞-,无极大值;(2)时,时1()(1)k f x f k e -=-=-极小值2k ≤()(1)(1)f x f k e ==-最小值23k <<,时,;(3).1()(1)k f x f k e -=-=-最小值3k ≥2()(2)(2)f x f k e ==-最小值2e λ≤-【解析】(2)当,即时,在上递增,∴;11k -≤2k ≤()f x []1,2()(1)(1)f x f k e ==-最小值当,即时,在上递减,∴;12k -≥3k ≥()f x []1,22()(2)(2)f x f k e ==-最小值当,即时,在上递减,在上递增,112k <-<23k <<()f x []1,1k -[]1,2k -∴.1()(1)k f x f k e-=-=-最小值(3),∴,()(221)xg x x k e =-+'()(223)xg x x k e =-+由,得,'()0g x =32x k =-当时,;32x k <-'()0g x <当时,,32x k >-'()0g x >∴在上递减,在递增,()g x 3(,)2k -∞-3(,)2k -+∞故,323()()22k g x g k e -=-=-最小值又∵,∴,∴当时,,35,22k ⎡⎤∈⎢⎥⎣⎦[]30,12k -∈[]0,1x ∈323()(22k g x g k e -=-=-最小值∴对恒成立等价于;()g x λ≥[]0,1x ∀∈32()2k g x e λ-=-≥最小值又对恒成立.32()2k g x e λ-=-≥最小值35,22k ⎡⎤∀∈⎢⎥⎣⎦∴,故.132min (2)k ek --≥2e λ≤-考点:1、利用导数研究函数的单调性进而求函数的最值;2、不等式恒成立问题及分类讨论思想的应用.【方法点睛】本题主要考查利用导数研究函数的单调性进而求函数的最值、不等式恒成立问题及分类讨论思想的应用.属于难题. 数学中常见的思想方法有:函数与方程的思想、分类讨论思想、转化与划归思想、数形结合思想、建模思想等等,分类讨论思想解决高中数学问题的一种重要思想方法,是中学数学四种重要的数学思想之一,尤其在解决含参数问题发挥着奇特功效,大大提高了解题能力与速度.运用这种方法的关键是将题设条件研究透,这样才能快速找准突破点. 充分利用分类讨论思想方法能够使问题条理清晰,进而顺利解答,希望同学们能够熟练掌握并应用与解题当中.本题(2)就是根据这种思想讨论函数单调区间的.。
武威市第一中学2018-2019学年高三上学期11月月考数学试卷含答案一、选择题1. 设函数是定义在上的可导函数,其导函数为,且有,则不等式)(x f )0,(-∞)('x f 2')()(2x x xf x f >+的解集为0)2(4)2014()2014(2>--++f x f x A 、 B 、 C 、 D 、)2012,(--∞)0,2012(-)2016,(--∞)0,2016(-2. 在中,,,则等于( )ABC ∆60A =o1b =sin sin sin a b cA BC++++A .BCD3. 已知直线mx ﹣y+1=0交抛物线y=x 2于A 、B 两点,则△AOB ( )A .为直角三角形B .为锐角三角形C .为钝角三角形D .前三种形状都有可能4. 已知三棱锥A ﹣BCO ,OA 、OB 、OC 两两垂直且长度均为6,长为2的线段MN 的一个端点M 在棱OA 上运动,另一个端点N 在△BCO 内运动(含边界),则MN 的中点P 的轨迹与三棱锥的面所围成的几何体的体积为( )A .B .或36+C .36﹣D .或36﹣5. 函数f (x )=Asin (ωx+φ)(A >0,ω>0,)的部分图象如图所示,则函数y=f (x )对应的解析式为()A .B .C .D .6. 定义在R 上的奇函数f (x )满足f (x+3)=f (x ),当0<x ≤1时,f (x )=2x ,则f (2015)=( )A .2B .﹣2C .﹣D .班级_______________ 座号______ 姓名_______________ 分数__________________________________________________________________________________________________________________7. 在等差数列中,首项公差,若,则{}n a 10,a =0d ≠1237k a a a a a =++++L k =A 、B 、C 、D 、222324258. 设x ,y ∈R ,且满足,则x+y=()A .1B .2C .3D .49. 已知椭圆,长轴在y 轴上,若焦距为4,则m 等于()A .4B .5C .7D .8 10.满足条件{0,1}∪A={0,1}的所有集合A 的个数是( )A .1个B .2个C .3个D .4个11.f ()=,则f (2)=( )A .3B .1C .2D .12.若三棱锥S ﹣ABC 的所有顶点都在球O 的球面上,SA ⊥平面ABC ,SA=2,AB=1,AC=2,∠BAC=60°,则球O 的表面积为( )A .64πB .16πC .12πD .4π二、填空题13.已知z ,ω为复数,i 为虚数单位,(1+3i )z 为纯虚数,ω=,且|ω|=5,则复数ω= .14.多面体的三视图如图所示,则该多面体体积为(单位cm ) .15.数列{a n }是等差数列,a 4=7,S 7= .16.一个棱长为2的正方体,被一个平面截去一部分后,所得几何体的三视图如图所示,则该几何体的体积为________.17.如图,正方形的边长为1,它是水平放置的一个平面图形的直观图,则原图的''''O A B C cm 周长为.1111]18.已知f (x )=,则f (﹣)+f ()等于 .三、解答题19.设数列{a n }是等差数列,数列{b n }的前n 项和S n 满足S n =(b n ﹣1)且a 2=b 1,a 5=b 2(Ⅰ)求数列{a n }和{b n }的通项公式;(Ⅱ)设c n =a n •b n ,设T n 为{c n }的前n 项和,求T n .20.在直角坐标系xOy 中,曲线C 1的参数方程为C 1:为参数),曲线C 2: =1.(Ⅰ)在以O 为极点,x 轴的正半轴为极轴的极坐标系中,求C 1,C 2的极坐标方程;(Ⅱ)射线θ=(ρ≥0)与C 1的异于极点的交点为A ,与C 2的交点为B ,求|AB|.21.如图,菱形ABCD的边长为2,现将△ACD沿对角线AC折起至△ACP位置,并使平面PAC⊥平面ABC.(Ⅰ)求证:AC⊥PB;(Ⅱ)在菱形ABCD中,若∠ABC=60°,求直线AB与平面PBC所成角的正弦值;(Ⅲ)求四面体PABC体积的最大值.22.已知{a n}为等比数列,a1=1,a6=243.S n为等差数列{b n}的前n项和,b1=3,S5=35.(1)求{a n}和{B n}的通项公式;(2)设T n=a1b1+a2b2+…+a n b n,求T n.23.已知椭圆+=1(a>b>0)的离心率为,且过点(,).(1)求椭圆方程;(2)设不过原点O的直线l:y=kx+m(k≠0),与该椭圆交于P、Q两点,直线OP、OQ的斜率依次为k1、k2,满足4k=k1+k2,试问:当k变化时,m2是否为定值?若是,求出此定值,并证明你的结论;若不是,请说明理由.24.(本小题满分10分)选修4-1:几何证明选讲选修:几何证明选讲41-如图,为上的三个点,是的平分线,交,,A B C O e AD BAC ∠O e 于点,过作的切线交的延长线于点.D B O e AD E (Ⅰ)证明:平分;BD EBC ∠(Ⅱ)证明:.AE DC AB BE ⨯=⨯武威市第一中学2018-2019学年高三上学期11月月考数学试卷含答案(参考答案)一、选择题1. 【答案】C.【解析】由,得:,即,令,则当时,,即在是减函数, ,,,在是减函数,所以由得,,即,故选2. 【答案】B【解析】试题分析:由题意得,三角形的面积,所以,又,所011sin sin 6022S bc A bc ====4bc =1b =以,又由余弦定理,可得,所以4c =2222202cos 14214cos 6013a b c bc A =+-=+-⨯⨯=a =,故选B .sin sin sin sin a b c a A B C A ++===++考点:解三角形.【方法点晴】本题主要考查了解三角形问题,其中解答中涉及到三角形的正弦定理和余弦定理、三角形的面积公式等知识点的综合考查,着重考查了学生分析问题和解答问题的能力,以及推理与运算能力,本题的解答中利用比例式的性质,得到是解答的关键,属于中档试题.sin sin sin sin a b c aA B C A++=++3. 【答案】A【解析】解:设A (x 1,x 12),B (x 2,x 22),将直线与抛物线方程联立得,消去y 得:x 2﹣mx ﹣1=0,根据韦达定理得:x 1x 2=﹣1,由=(x 1,x 12),=(x 2,x 22),得到=x 1x 2+(x 1x 2)2=﹣1+1=0,则⊥,∴△AOB 为直角三角形.故选A【点评】此题考查了三角形形状的判断,涉及的知识有韦达定理,平面向量的数量积运算,以及两向量垂直时满足的条件,曲线与直线的交点问题,常常联立曲线与直线的方程,消去一个变量得到关于另外一个变量的一元二次方程,利用韦达定理来解决问题,本题证明垂直的方法为:根据平面向量的数量积为0,两向量互相垂直. 4. 【答案】D【解析】【分析】由于长为2的线段MN 的一个端点M 在棱OA 上运动,另一个端点N 在△BCO 内运动(含边界),有空间想象能力可知MN 的中点P 的轨迹为以O 为球心,以1为半径的球体,故MN 的中点P 的轨迹与三棱锥的面所围成的几何体的体积,利用体积分割及球体的体积公式即可.【解答】解:因为长为2的线段MN 的一个端点M 在棱OA 上运动,另一个端点N 在△BCO 内运动(含边界), 有空间想象能力可知MN 的中点P 的轨迹为以O 为球心,以1为半径的球体,则MN 的中点P 的轨迹与三棱锥的面所围成的几何体可能为该球体的或该三棱锥减去此球体的,即:或.故选D5. 【答案】A【解析】解:由函数的图象可得A=1, =•=﹣,解得ω=2,再把点(,1)代入函数的解析式可得 sin (2×+φ)=1,结合,可得φ=,故有,故选:A . 6. 【答案】B【解析】解:因为f (x+3)=f (x ),函数f (x )的周期是3,所以f (2015)=f (3×672﹣1)=f (﹣1);又因为函数f (x )是定义R 上的奇函数,当0<x ≤1时,f (x )=2x ,所以f (﹣1)=﹣f (1)=﹣2,即f (2015)=﹣2.故选:B .【点评】本题主要考查了函数的周期性、奇偶性的运用,属于基础题,解答此题的关键是分析出f (2015)=f (3×672﹣1)=f (﹣1). 7. 【答案】A【解析】,1237k a a a a a =++++L 17672a d ⨯=+121(221)d a d ==+-∴.22k 8. 【答案】D【解析】解:∵(x ﹣2)3+2x+sin (x ﹣2)=2,∴(x ﹣2)3+2(x ﹣2)+sin (x ﹣2)=2﹣4=﹣2,∵(y ﹣2)3+2y+sin (y ﹣2)=6,∴(y ﹣2)3+2(y ﹣2)+sin (y ﹣2)=6﹣4=2,设f (t )=t 3+2t+sint ,则f (t )为奇函数,且f'(t )=3t 2+2+cost >0,即函数f (t )单调递增.由题意可知f (x ﹣2)=﹣2,f (y ﹣2)=2,即f (x ﹣2)+f (y ﹣2)=2﹣2=0,即f (x ﹣2)=﹣f (y ﹣2)=f (2﹣y ),∵函数f (t )单调递增∴x ﹣2=2﹣y ,即x+y=4,故选:D .【点评】本题主要考查函数奇偶性的应用,利用条件构造函数f (t )是解决本题的关键,综合考查了函数的性质. 9. 【答案】D【解析】解:将椭圆的方程转化为标准形式为,显然m ﹣2>10﹣m ,即m >6,,解得m=8故选D【点评】本题主要考查了椭圆的简单性质.要求学生对椭圆中对长轴和短轴即及焦距的关系要明了. 10.【答案】D【解析】解:由{0,1}∪A={0,1}易知:集合A ⊆{0,1}而集合{0,1}的子集个数为22=4故选D【点评】本题考查两个集合并集时的包含关系,以及求n 个元素的集合的子集个数为2n 个这个知识点,为基础题. 11.【答案】A【解析】解:∵f()=,∴f(2)=f()==3.故选:A.12.【答案】A【解析】解:如图,三棱锥S﹣ABC的所有顶点都在球O的球面上,∵AB=1,AC=2,∠BAC=60°,∴BC=,∴∠ABC=90°.∴△ABC截球O所得的圆O′的半径r=1,∵SA⊥平面ABC,SA=2∴球O的半径R=4,∴球O的表面积S=4πR2=64π.故选:A.【点评】本题考查球的表面积的求法,合理地作出图形,数形结合求出球半径,是解题的关键. 二、填空题13.【答案】 ±(7﹣i) .【解析】解:设z=a+bi(a,b∈R),∵(1+3i)z=(1+3i)(a+bi)=a﹣3b+(3a+b)i为纯虚数,∴.又ω===,|ω|=,∴.把a=3b代入化为b2=25,解得b=±5,∴a=±15.∴ω=±=±(7﹣i).故答案为±(7﹣i).【点评】熟练掌握复数的运算法则、纯虚数的定义及其模的计算公式即可得出.14.【答案】 cm3 .【解析】解:如图所示,由三视图可知:该几何体为三棱锥P﹣ABC.该几何体可以看成是两个底面均为△PCD,高分别为AD和BD的棱锥形成的组合体,由几何体的俯视图可得:△PCD的面积S=×4×4=8cm2,由几何体的正视图可得:AD+BD=AB=4cm,故几何体的体积V=×8×4=cm3,故答案为:cm3【点评】本题考查由三视图求几何体的体积和表面积,根据已知的三视图分析出几何体的形状是关键. 15.【答案】49【解析】解:==7a4=49.故答案:49.【点评】本题考查等差数列的性质和应用,解题时要认真审题,仔细求解.16.【答案】【解析】【知识点】空间几何体的三视图与直观图【试题解析】正方体中,BC中点为E,CD中点为F,则截面为即截去一个三棱锥其体积为:所以该几何体的体积为:故答案为:17.【答案】8cm【解析】考点:平面图形的直观图.18.【答案】 4 .【解析】解:由分段函数可知f()=2×=.f(﹣)=f(﹣+1)=f(﹣)=f(﹣)=f()=2×=,∴f()+f(﹣)=+.故答案为:4.三、解答题19.【答案】【解析】解:(Ⅰ)∵数列{b n}的前n项和S n满足S n=(b n﹣1),∴b1=S1=,解得b1=3.当n≥2时,b n=S n﹣S n﹣1=,化为b n=3b n﹣1.∴数列{b n}为等比数列,∴.∵a2=b1=3,a5=b2=9.设等差数列{a n}的公差为d.∴,解得d=2,a1=1.∴a n=2n﹣1.综上可得:a n=2n﹣1,.(Ⅱ)c n=a n•b n=(2n﹣1)•3n.∴T n=3+3×32+5×33+…+(2n﹣3)•3n﹣1+(2n﹣1)•3n,3T n=32+3×33+…+(2n﹣3)•3n+(2n﹣1)•3n+1.∴﹣2T n=3+2×32+2×33+…+2×3n﹣(2n﹣1)•3n+1=﹣(2n﹣1)•3n+1﹣3=(2﹣2n)•3n+1﹣6.∴.【点评】本题考查了等差数列与等比数列的通项公式、“错位相减法”和等比数列的前n项和公式,考查了推理能力与计算能力,属于中档题.20.【答案】【解析】解:(Ⅰ)曲线为参数)可化为普通方程:(x﹣1)2+y2=1,由可得曲线C1的极坐标方程为ρ=2cosθ,曲线C2的极坐标方程为ρ2(1+sin2θ)=2.(Ⅱ)射线与曲线C1的交点A的极径为,射线与曲线C2的交点B的极径满足,解得,所以.21.【答案】【解析】解:(Ⅰ)证明:取AC中点O,连接PO,BO,由于四边形ABCD为菱形,∴PA=PC,BA=BC,∴PO⊥AC,BO⊥AC,又PO∩BO=O,∴AC⊥平面POB,又PB⊂平面POB,∴AC⊥PB.(Ⅱ)∵平面PAC⊥平面ABC,平面PAC∩平面ABC=AC,PO⊂平面PAC,PO⊥AC,∴PO⊥面ABC,∴OB,OC,OP两两垂直,故以O为原点,以方向分别为x,y,z轴正方向建立空间直角坐标系,∵∠ABC=60°,菱形ABCD 的边长为2,∴,,设平面PBC的法向量,直线AB与平面PBC成角为θ,∴,取x=1,则,于是,∴,∴直线AB与平面PBC成角的正弦值为.(Ⅲ)法一:设∠ABC=∠APC=α,α∈(0,π),∴,,又PO⊥平面ABC,∴=(),∴,∴,当且仅当,即时取等号,∴四面体PABC体积的最大值为.法二:设∠ABC=∠APC=α,α∈(0,π),∴,,又PO⊥平面ABC,∴=(),设,则,且0<t<1,∴,∴当时,V'PABC>0,当时,V'PABC<0,∴当时,V PABC取得最大值,∴四面体PABC体积的最大值为.法三:设PO=x,则BO=x,,(0<x<2)又PO⊥平面ABC,∴,∵,当且仅当x2=8﹣2x2,即时取等号,∴四面体PABC体积的最大值为.【点评】本题考查直线与平面垂直的判定定理以及性质定理的应用,直线与平面所成角的求法,几何体的体积的最值的求法,考查转化思想以及空间思维能力的培养.22.【答案】【解析】解:(Ⅰ)∵{a n}为等比数列,a1=1,a6=243,∴1×q5=243,解得q=3,∴.∵S n为等差数列{b n}的前n项和,b1=3,S5=35.∴5×3+d=35,解得d=2,b n=3+(n﹣1)×2=2n+1.(Ⅱ)∵T n=a1b1+a2b2+…+a n b n,∴①②①﹣②得:,整理得:.【点评】本题考查数列的通项公式的求法,考查数列的前n项和的求法,解题时要认真审题,注意错位相减法的合理运用.23.【答案】【解析】解:(1)依题意可得,解得a=2,b=1所以椭圆C 的方程是…(2)当k 变化时,m 2为定值,证明如下:由得,(1+4k 2)x 2+8kmx+4(m 2﹣1)=0.…设P (x 1,y 1),Q (x 2,y 2).则x 1+x 2=,x 1x 2=…(•) …∵直线OP 、OQ 的斜率依次为k 1,k 2,且4k=k 1+k 2,∴4k==,得2kx 1x 2=m (x 1+x 2),…将(•)代入得:m 2=,…经检验满足△>0.…【点评】本题考查椭圆的方程的求法,直线与椭圆方程的综合应用,考查分析问题解决问题的能力以及转化思想的应用. 24.【答案】【解析】【解析】(Ⅰ)因为是⊙的切线,所以…………2分BE O BAD EBD ∠=∠又因为………………4分CAD BAD CAD CBD ∠=∠∠=∠,所以,即平分.………………5分CBD EBD ∠=∠BD EBC ∠(Ⅱ)由⑴可知,且,BAD EBD ∠=∠BED BED ∠=∠∽,所以,……………………7分BDE ∆ABE ∆ABBDAE BE =又因为,DBC DBE BAE BCD ∠=∠=∠=∠所以,.……………………8分DBC BCD ∠=∠CD BD =所以,……………………9分ABCDAB BD AE BE ==所以.……………………10分BE AB DC AE ⋅=⋅。
优选高中模拟试卷武威市第二中学 2018-2019 学年高二上学期第二次月考试卷数学班级 __________姓名__________分数__________一、选择题1.已知全集U R ,会合 A { x || x | 1, x R} ,会合B{ x | 2x1, x R} ,则会合 A C U B 为()A. [1,1] B.[0,1] C. (0,1] D. [1,0)【命题企图】此题考察会合的运算等基础知识,意在考察运算求解能力.2.若椭圆和圆为椭圆的半焦距),有四个不一样的交点,则椭圆的离心率 e 的取值范围是()A.B.C.D.3.运转如下图的程序框图,输出的全部实数对(x,y)所对应的点都在某函数图象上,则该函数的分析式为()A .y=x+2B y= C.y=3 x D.y=3x 3.4.已知命题p :对随意x 0 ,, log 4 x log 8 x ,命题:存在 x R ,使得tan x 1 3x,则以下命题为真命题的是()A .p q B. p q C. p q D . p q 5.已知等比数列 {a n} 的第 5 项是二项式( x+ )4睁开式的常数项,则a3?a7()A .5B.18 C.24 D.366.在《张邱建算经》中有一道题:“今有女子不善织布,每日所织的布比同数递减,初日织五尺,末一日织一尺,计织三十天”,由此推测,该女子到第10 日时,大概已经达成三十天织布总量的()A .33% B.49% C. 62% D .88%7.某公司为了监控产质量量,从产品流转平均的生产线上每间隔10 分钟抽取一个样本进行检测,这类抽样方法是()A .抽签法B .随机数表法C.系统抽样法D.分层抽样法8.在△ABC 中,,则这个三角形必定是()A.等腰三角形B .直角三角形C.等腰直角三角 D .等腰或直角三角形9.如图,空间四边形ABCD 中, M 、 G 分别是 BC 、 CD 的中点,则等()A.B.C.D.10.某个几何体的三视图如下图,此中正(主)视图中的圆弧是半径为 2 的半圆,则该几何体的表面积为()A.9214B.8214C.9224D.8224【命题企图】此题考察三视图的复原以及特别几何体的面积胸怀.要点考察空间想象能力及对基本面积公式的运用,难度中等.11.下边的构造图,总经理的直接部下是()A.总工程师和专家办公室B.开发部C.总工程师、专家办公室和开发部D.总工程师、专家办公室和全部七个部12.奇函数 f x 知足 f 1 0 ,且 f x 在 0 ,2x 1的解集为()上是单一递减,则0f x f xA . 1 ,1B ., 1 1 ,C., 1 D. 1,二、填空题13 .在( x2﹣)9的二项睁开式中,常数项的值为.14 .以下结论正确的选项是①在某项丈量中,丈量结果ξ听从正态散布20.35,则N( 1,σ)(σ> 0).若ξ在( 0, 1)内取值的概率为ξ在( 0, 2)内取值的概率为0.7 ;②kx去拟合一组数据时,为了求出回归方程,设 z=lny ,其变换后获得线性回归方程z=0.3x+4 ,则以模型 y=ce4c=e ;x mx 0 +∞m 1”“ m 1 f x③已知命题“若函数 f( x)=e ﹣在(,))上是增函数,则≤ 的逆否命题是若>,则函数(x mx 0 +∞”=e ﹣)上是减函数在(,是真命题;2 a+b 1 x+b 0 x 1 a b 1④设常数 a, b∈ R,则不等式 ax ﹣(>对 ? >恒建立的充要条件是.﹣)≥ ﹣15.已知平面上两点 M (﹣ 5, 0)和 N( 5, 0),若直线上存在点 P 使 |PM|﹣ |PN|=6,则称该直线为“单曲型直线”,以下直线中:① y=x+1 ② y=2 ③ y= x ④ y=2x+1是“单曲型直线”的是.16.为了近似预计π的值,用计算机分别产生 90 个在 [﹣ 1,1]的平均随机数 x1,x2,,x90和 y1,y2,,y90,在 90 组数对( x i, y i)( 1≤i≤90, i∈N *)中,经统计有25 组数对知足,则以此预计的π值为.17.方程 4 x2k x 2 3 有两个不等实根,则的取值范围是.18.已知数列 {a n} 中, 2a n, a n+1是方程 x2﹣ 3x+b n=0 的两根, a1=2,则 b5=.三、解答题19.火车站北偏东方向的处有一电视塔,火车站正东方向的处有一小汽车,测得距离为31, 该小汽车从处以 60的速度前去火车站,20 分钟后抵达处,测得离电视塔21,问小汽车到火车站还需多长时间?20.已知函数f( x)=x3+ax+2 .(Ⅰ)求证:曲线 =f ( x)在点( 1, f( 1))处的切线在 y 轴上的截距为定值;(Ⅱ)若 x≥0 时,不等式 xe x+m[f ′( x)﹣ a]≥m2x 恒建立,务实数 m 的取值范围.21.如图,边长为 2 的等边△ PCD 所在的平面垂直于矩形ABCD 所在的平面, BC=,M为BC的中点.(Ⅰ)证明: AM ⊥PM;(Ⅱ)求点 D 到平面 AMP 的距离.22.如图,在三棱锥 A ﹣BCD 中, AB ⊥平面 BCD ,BC⊥ CD,E,F,G 分别是 AC,AD ,BC 的中点.求证:(I) AB ∥平面 EFG;(II )平面 EFG⊥平面 ABC .23.已知函数f( x)=.(1)求 f (x)的定义域;(2)判断并证明 f (x)的奇偶性;(3)求证: f() =﹣ f( x).24.设数列 {a n} 的前 n 项和为 S n, a1=1, S n=na n﹣ n( n﹣ 1).( 1)求证:数列 {a n} 为等差数列,并分别求出a n的表达式;( 2 )设数列的前 n 项和为 P n,求证: P n<;( 3 )设 C n= , T n=C1+C2+ +C n,试比较 T n与的大小.武威市第二中学 2018-2019 学年高二上学期第二次月考试卷数学(参照答案)一、选择题1.【答案】 C.【分析】由题意得, A [ 11],, B (,0] ,∴A C U B(0,1] ,应选 C.2.【答案】 A∵【分析】解:椭圆和圆为椭圆的半焦距)的中心都在原点,且它们有四个交点,∴ 圆的半径,由,得 2c> b,再平方, 4c2> b2,在椭圆中, a2=b 2+c2< 5c2,∴;由,得 b+2c< 2a,再平方, b2+4c2+4bc < 4a2,∴3c2+4bc <3a2,∴4bc<3b2,∴4c< 3b,∴16c2< 9b2,∴16c2< 9a2﹣ 9c2,∴9a2> 25c2,∴,∴.综上所述,.应选 A.3.【答案】 C【分析】解:模拟程序框图的运转过程,得;该程序运转后输出的是实数对(1, 3),( 2,9),( 3, 27),( 4, 81);这组数对对应的点在函数 y=3 x的图象上.应选: C.【评论】此题考察了程序框图的应用问题,是基础题目.4.【答案】 D【解析】考点:命题的真假.5.【答案】 D【分析】解:二项式(x+)4睁开式的通项公式为T r+1 =?x4﹣2r,令 4﹣2r=0 ,解得 r=2,∴睁开式的常数项为 6=a5,∴ a3a7=a52=36,应选: D.【评论】此题主要考察二项式定理的应用,二项式睁开式的通项公式,求睁开式中某项的系数,属于中档题.6.【答案】 B【解析】7.【答案】 C【分析】解:由题意知,这个抽样是在传递带上每隔10 分钟抽取一产品,是一个拥有同样间隔的抽样,而且整体的个数比许多,∴ 是系统抽样法,应选: C.【评论】此题考察了系统抽样.抽样方法有简单随机抽样、系统抽样、分层抽样,抽样采纳哪一种抽样形式,要依据题目所给的整体状况来决定,若整体个数较少,可采纳抽签法,若整体个数许多且个体各部分差别不大,可采纳系统抽样,若整体的个体差别较大,可采纳分层抽样.属于基础题.8.【答案】 A【分析】解:∵,又∵cosC=,∴=,整理可得:b2=c2,∴解得: b=c.即三角形必定为等腰三角形.应选: A.9.【答案】 C【分析】解:∵M 、 G 分别是 BC、CD 的中点,∴=,=∴= + + = + =应选 C【评论】此题考察的知识点是向量在几何中的应用,此中将化为++,是解答此题的关键.10.【答案】 A11.【答案】 C【分析】解:依据构造图的表示了如指掌,就是总工程师、专家办公室和开发部.读构造图的次序是依据从上到下,从左到右的次序.应选 C.【评论】此题是一个已知构造图,经过解读各部分进而获得系统拥有的功能,在解读时,要从大的部分读起,一般而言,是从左到右,从上到下的过程解读.12.【答案】 B【分析】试题剖析:由f2x 1 0 2 x 1 2 x 1 f x 0 ,即整式 2 x 1 的值与函数 f x 的值符号相反,当x f x 2 f xx 0 时, 2 x 1 0 ;当 x 0 时, 2x 1 0 ,联合图象即得, 1 1 ,.考点: 1、函数的单一性;2、函数的奇偶性;3、不等式 .二、填空题13.【答案】84 .【分析】解:(x2 9的二项睁开式的通项公式为T r+1 = 1 r x 18﹣3r,﹣)?(﹣)?令 18﹣ 3r=0 ,求得 r=6 ,可得常数项的值为 T7= = =84 ,故答案为: 84.【评论】此题主要考察二项式定理的应用,二项睁开式的通项公式,属于基础题.14.【答案】①②④【分析】解:① 在某项丈量中,丈量结果2x=1 对称.ξ听从正态散布 N (1,σ)(σ> 0)则正态曲线对于若ξ在( 0,1 )内取值的概率为0.35,则ξ在( 0, 2)内取值的概率P=2×0.35=0.7;故①正确,② ∵y=ce kx,∴两边取对数,可得lny=ln ( ce kx)=lnc+lne kx=lnc+kx ,令 z=lny ,可得 z=lnc+kx ,∵z=0.3x+4 ,∴lnc=4 ,∴c=e4.故②正确,③已知命题“若函数 f( x) =e x﹣ mx 在( 0, +∞)上是增函数,则 m≤1”的逆否命题是“若 m> 1,则函数 f ( x) =e x﹣mx 在( 0, +∞)上不是增函数”,若函数 f (x) =e x﹣ mx 在( 0, +∞)上是增函数,则 f ′( x)≥0 恒建立,即 f ′(x) =e x﹣ m≥0 在( 0, +∞)上恒建立,即 m≤e x,∵x> 0,∴e x>1,则 m≤1.故原命题是真命题,则命题的逆否命题也是真命题,故③ 错误,④设 f( x)=ax2﹣( a+b﹣ 1) x+b ,则 f ( 0) =b> 0, f( 1)=a﹣( a+b﹣ 1) +b=1> 0,∴要使? x> 1 恒建立,则对称轴x=,即 a+b﹣ 1≤2a,即 a≥b﹣ 1,2即不等式 ax ﹣( a+b﹣ 1) x+b> 0 对 ? x> 1 恒建立的充要条件是 a≥b﹣ 1.故④正确,故答案为:①②④15.【答案】①②.【分析】解:∵ |PM|﹣ |PN|=6∴点 P 在以 M 、 N 为焦点的双曲线的右支上,即,(x>0).对于①,联立,消y得7x2﹣18x﹣153=0,∵△ =(﹣ 18)2﹣ 4×7×(﹣ 153)> 0,∴ y=x+1 是“单曲型直线”.对于②,联立,消y得x2=,∴ y=2是“单曲型直线”.对于③,联立,整理得144=0,不建立.∴不是“单曲型直线”.对于④,联立,消y得20x2+36x+153=0,2∵△ =36 ﹣4×20×153< 0∴ y=2x+1 不是“单曲型直线”.故答案为:①②.【评论】此题考察“单曲型直线”的判断,是中档题,解题时要仔细审题,注意双曲线定义的合理运用.16.【答案】.【分析】设 A ( 1, 1), B (﹣ 1,﹣ 1),则直线 AB 过原点,且暗影面积等于直线AB 与圆弧所围成的弓形面积S1,由图知,,又,因此【评论】此题考察了随机数的应用及弓形面积公式,属于中档题.17. 【答案】5 , 312 4【分析】试题剖析: 作出函数 y 4 x 2 和 yk x 2 3的图象,如下图, 函数 y4 x 2 的图象是一个半圆,直线 yk x 23 的图象恒过定点2,3 ,联合图象,可知,当过点2,03 0 3时, k2,当直线k(02)32 4y k x255 , 3 .111]3与圆相切时,即1 k 22 ,解得 k,因此实数的取值范围是1212 4考点:直线与圆的地点关系的应用.【方法点晴】 此题主要考察了直线与圆的地点关系的应用,此中解答中波及到点到直线的距离公式、 两点间的斜率公式, 以及函数的图像的应用等知识点的综合考察,侧重考察了转变与化归思想和学生的剖析问题和解答问题的能力,属于中档试题,此题的解答中把方程的根转变为直线与半圆的交点是解答的要点 .18. 【答案】﹣ 1054 .2【分析】 解:∵ 2a n , a n+1 是方程 x ﹣ 3x+b n =0 的两根,∵a 1=2 ,∴a 2=﹣ 1,同理可得 a 3=5,a 4=﹣ 7, a 5=17,a 6=﹣31.则 b 5=2×17×(﹣ 31) =1054.故答案为:﹣ 1054.【评论】此题考察了一元二次方程的根与系数的关系、递推关系,考察了推理能力与计算能力,属于中档题.三、解答题19.【答案】【分析】解:由条件=,设,在中 ,由余弦定理得.=.在中 ,由正弦定理 ,得()(分钟)答到火车站还需15分钟.20.【答案】2【分析】(Ⅰ)证明: f ( x)的导数f ′( x) =x +a,即有 f ( 1)=a+,f′(1)=1+a,则切线方程为y﹣( a+)=(1+a)(x﹣1),令 x=0 ,得 y=为定值;(Ⅱ)解:由xe x+m[f ′(x)﹣ a]≥m2 x 对 x≥0 时恒建立,得 xe x+mx 2﹣ m2x≥0 对 x≥0 时恒建立,即 e x+mx ﹣ m2≥0 对 x≥0 时恒建立,则( e x+mx ﹣ m2)min≥0,记 g(x) =e x+mx ﹣ m2,g′( x) =e x+m ,由 x≥0, e x≥1,若 m≥﹣ 1, g′( x)≥0, g( x)在 [0,+∞)上为增函数,∴,则有﹣ 1≤m≤1,若 m<﹣ 1,则当 x∈( 0, ln(﹣ m))时, g′( x)< 0, g( x)为减函数,则当 x∈( ln(﹣ m), +∞)时, g′(x)> 0,g( x)为增函数,∴,∴1﹣ ln(﹣ m)+m≥0,令﹣ m=t ,则 t+lnt ﹣1≤0( t> 1),φ( t)=t+lnt ﹣ 1,明显是增函数,由 t> 1,φ( t)>φ( 1) =0,则 t >1 即 m<﹣ 1,不合题意.综上,实数 m 的取值范围是﹣ 1≤m≤1.【评论】此题为导数与不等式的综合,主要考察导数的应用,考察考生综合运用知识的能力及分类议论的思想,考察考生的计算能力及剖析问题、解决问题的能力、化归与转变思想.21.【答案】【分析】(Ⅰ)证明:取CD 的中点 E,连结 PE、EM 、 EA∵△ PCD 为正三角形∴PE⊥ CD , PE=PDsin∠ PDE=2sin60 °=∵平面 PCD⊥平面 ABCD∴PE⊥平面 ABCD∵四边形 ABCD 是矩形∴△ ADE 、△ ECM 、△ ABM 均为直角三角形由勾股定理得EM=,AM=,AE=3∴EM 2+AM 2=AE 2,∴∠ AME=90 °∴AM ⊥PM(Ⅱ)解:设D 点到平面PAM 的距离为d,连结 DM ,则 V P﹣ADM =V D﹣PAM∴而在 Rt△ PEM 中,由勾股定理得PM=∴∴∴,即点 D 到平面 PAM 的距离为22.【答案】【分析】证明:( I)在三棱锥 A ﹣BCD 中, E,G 分别是 AC , BC 的中点.因此 AB ∥EG由于 EG? 平面 EFG, AB ? 平面 EFG因此 AB ∥平面 EFG(II )由于 AB ⊥平面 BCD , CD ? 平面 BCD因此 AB ⊥CD又 BC ⊥ CD 且 AB ∩BC=B因此 CD ⊥平面 ABC又 E, F 分别是 AC , AD ,的中点因此 CD ∥EF因此 EF⊥平面 ABC又 EF? 平面 EFG,因此平面平面EFG⊥平面 ABC .【评论】此题考察线面平行,考察面面垂直,掌握线面平行,面面垂直的判断是要点.23.【答案】【分析】解:( 1)∵1+x 2≥1 恒建立,∴ f( x)的定义域为(﹣∞,+∞);( 2)∵f(﹣ x) ===f ( x),∴f( x)为偶函数;( 3)∵f( x) =.∴f()===﹣=﹣ f (x).即 f () =﹣ f( x)建立.【评论】此题主要考察函数定义域以及函数奇偶性的判断,比较基础.24.【答案】【分析】解:( 1)证明:∵ S n=na n﹣ n( n﹣1)∴S n+1=( n+1 )a n+1﹣( n+1 ) n∴a n+1=S n+1﹣S n=( n+1 ) a n+1﹣ na n﹣2n∴na n+1﹣ na n﹣ 2n=0a n+1 n∴﹣ a =2 ,{a n 12 的等差数列∴ } 是以首项为 a =1 ,公差为由等差数列的通项公式可知:a n=1+( n﹣1)×2=2n﹣ 1,数列 {a n} 通项公式na =2n ﹣1;( 2)证明:由(1)可得,=( 3)∴,= ,两式相减得= ,=,=,=*n N第18页,共18页。
甘肃省武威市2019版高二上学期数学10月月考试卷(II)卷姓名:________ 班级:________ 成绩:________一、单选题 (共12题;共24分)1. (2分)如图中的直线l1、l2、l3的斜率分别为k1、k2、k3 ,则()A . k1<k2<k3B . k3<k1<k2C . k3<k2<k1D . k1<k3<k22. (2分)以点(3,﹣1)为圆心且与直线3x+4y=0相切的圆的方程是()A .B .C .D .3. (2分)命题“若x>0,则x2>0”的否命题是()A . 若x>0,则≤0B . 若>0,则x>0C . 若x≤0,则≤0D . 若≤0,则x≤04. (2分) (2018高二上·拉萨月考) 如下图,在同一直角坐标系中表示直线y=ax与y=x+a,正确的是()A .B .C .D .5. (2分)(2017·东北三省模拟) 祖暅原理:“幂势既同,则积不容异”.它是中国古代一个设计几何体体积的问题.意思是如果两个等高的几何体在同高处处截得两几何体的截面面积恒等,那么这两个几何体的体积相等.设A,B为两个等高的几何体,p:A,B的体积不相等,q:A,B在同高处的截面面积不恒相等,根据祖暅原理可知,p是q的()A . 充分不必要条件B . 必要不充分条件C . 充要条件D . 既不充分也不必要条件6. (2分)如图,已知,从点射出的光线经直线AB反射后再射到直线OB上,最后经直线OB反射又回到P点,则光线所经过的路程是()A .B . 6C .D .7. (2分) (2019高二下·上虞期末) 双曲线的焦点到渐近线的距离为()A .B . 2C .D . 18. (2分)直线与圆C:交于E,F两点,则的面积为()A .B .C .D .9. (2分)下列命题中真命题的是()A . 在同一平面内,动点到两定点的距离之差(大于两定点间的距离)为常数的点的轨迹是双曲线B . 在平面内,F1 , F2是定点,|F1F2|=6,动点M满足|MF1|+|MF2|=6,则点M的轨迹是椭圆C . “若-3<m<5则方程是椭圆”D . 在直角坐标平面内,到点(1,1)和直线x+2y=3距离相等的点的轨迹是直线10. (2分) (2015高一上·柳州期末) 已知圆C:x2+y2﹣4x=0,直线l:kx﹣3k﹣y=0,则直线l与圆C的位置关系是()A . 相交B . 相切C . 相离D . 以上三种均有可能11. (2分) (2020高二下·杭州期末) 已知不等式组表示的平面区域S的面积为9,若点,则z=2x+y的最大值为()A . 3B . 6C . 9D . 1212. (2分) (2018高一下·张家界期末) 某企业生产甲、乙两种产品,已知生产每吨甲产品要用原料3吨,原料2吨,生产每吨乙产品要用原料1吨,原料3吨,销售每吨甲产品可获得利润5万元,销售每吨乙产品可获得利润3万元.若该企业在一个生产周期内消耗原料不超过13吨,原料不超过18吨,该企业一个生产周期可获得的最大利润是()(单位:万元)A .B .C .D .二、填空题 (共4题;共8分)13. (1分) (2016高二上·南城期中) ①一个命题的逆命题为真,它的否命题也一定为真;②在△ABC中,“∠B=60°”是“∠A,∠B,∠C三个角成等差数列”的充要条件.③ 是的充要条件;④“am2<bm2”是“a<b”的充分必要条件.以上说法中,判断错误的有________.14. (1分)(2018·益阳模拟) 已知斜率为,且在轴上的截距为正的直线与圆交于,两点,为坐标原点,若的面积为,则 ________.15. (5分) (2019高二上·辽宁月考) 直线的倾斜角的大小是________.16. (1分)某所学校计划招聘男教师x名,女教师y名,x和y须满足约束条件则该校招聘的教师最多是________ 名.三、解答题 (共6题;共70分)17. (10分)已知:实数满足,其中,:实数满足(1)当,且为真时,求实数的取值范围;(2)若是的充分不必要条件,求实数的取值范围.18. (15分)若点P为区域|x|+|y|≤1上的动点,试求z=ax+y(a为常数)的最大值和最小值.19. (5分) (2018高一下·石家庄期末) 已知直线过点,且与轴正半轴、轴正半轴分别交于、两点,为坐标原点,若的面积为,求直线的方程.20. (15分)已知直线l过直线l1:3x﹣5y﹣10=0和l2:x+y+1=0的交点,且平行与l3:x+2y﹣5=0,求直线l的方程.21. (10分)已知圆C的方程是(x-1)2+(y-1)2=4,直线l的方程为y=x+m ,求当m为何值时,(1)直线平分圆;(2)直线与圆相切.22. (15分)(2016·赤峰模拟) 已知F1 , F2分别是椭圆的左、右焦点F1 , F2关于直线x+y﹣2=0的对称点是圆C的一条直径的两个端点.(1)求圆C的方程;(2)设过点F2的直线l被椭圆E和圆C所截得的弦长分别为a,b.当ab最大时,求直线l的方程.参考答案一、单选题 (共12题;共24分)1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、9-1、10-1、11-1、12-1、二、填空题 (共4题;共8分)13-1、14-1、15-1、16-1、三、解答题 (共6题;共70分)17-1、17-2、18-1、19-1、20-1、21-1、21-2、22-1、22-2、。
武威市高级中学2018-2019学年高二上学期第二次月考试卷数学班级__________ 姓名__________ 分数__________一、选择题1.已知点P(1,﹣),则它的极坐标是()A.B.C.D.2.棱长为2的正方体被一个平面截去一部分后所得的几何体的三视图如图所示,则该几何体的表面积为()A.B.18 C.D.3.函数y=|a|x﹣(a≠0且a≠1)的图象可能是()A. B.C.D.4.(理)已知tanα=2,则=()A.B.C.D.5.已知圆C:x2+y2﹣2x=1,直线l:y=k(x﹣1)+1,则l与C的位置关系是()A.一定相离 B.一定相切C.相交且一定不过圆心D.相交且可能过圆心6.下列关系式中正确的是()A.sin11°<cos10°<sin168°B.sin168°<sin11°<cos10°C.sin11°<sin168°<cos10°D.sin168°<cos10°<sin11°7.设S n为等比数列{a n}的前n项和,若a1=1,公比q=2,S k+2﹣S k=48,则k等于()A.7 B.6 C.5 D.48. 已知α,β为锐角△ABC 的两个内角,x ∈R ,f (x )=()|x ﹣2|+()|x ﹣2|,则关于x 的不等式f (2x ﹣1)﹣f (x+1)>0的解集为( )A .(﹣∞,)∪(2,+∞)B .(,2)C .(﹣∞,﹣)∪(2,+∞)D .(﹣,2)9. 设l ,m ,n 表示不同的直线,α,β,γ表示不同的平面,给出下列四个命题: ①若m ∥l ,m ⊥α,则l ⊥α; ②若m ∥l ,m ∥α,则l ∥α;③若α∩β=l ,β∩γ=m ,γ∩α=n ,则l ∥m ∥n ; ④若α∩β=l ,β∩γ=m ,γ∩α=n ,n ∥β,则l ∥m . 其中正确命题的个数是( ) A .1 B .2C .3D .410.已知函数()cos()3f x x π=+,则要得到其导函数'()y f x =的图象,只需将函数()y f x =的图象( )A .向右平移2π个单位 B .向左平移2π个单位 C. 向右平移23π个单位 D .左平移23π个单位11.已知x ,y 满足约束条件,使z=ax+y 取得最小值的最优解有无数个,则a 的值为( )A .﹣3B .3C .﹣1D .112.若一个底面为正三角形、侧棱与底面垂直的棱柱的三视图如下图所示,则这个棱柱的体积为( )A .B .C .D .6二、填空题13.如图:直三棱柱ABC ﹣A ′B ′C ′的体积为V ,点P 、Q 分别在侧棱AA ′和CC ′上,AP=C ′Q ,则四棱锥B ﹣APQC 的体积为 .14.函数2()2(1)2f x x a x =+-+在区间(,4]-∞上递减,则实数的取值范围是 .15.函数f (x )=﹣2ax+2a+1的图象经过四个象限的充要条件是 .16.直线l :(t 为参数)与圆C :(θ为参数)相交所得的弦长的取值范围是 .17.下列说法中,正确的是 .(填序号)①若集合A={x|kx 2+4x+4=0}中只有一个元素,则k=1;②在同一平面直角坐标系中,y=2x 与y=2﹣x 的图象关于y 轴对称; ③y=()﹣x是增函数;④定义在R 上的奇函数f (x )有f (x )•f (﹣x )≤0. 18.定义:分子为1且分母为正整数的分数叫做单位分数.我们可以把1拆分为无穷多个不同的单位分数之和.例如:1=++,1=+++,1=++++,…依此方法可得:1=++++++++++++,其中m ,n ∈N *,则m+n= .三、解答题19.已知椭圆C :=1(a >2)上一点P 到它的两个焦点F 1(左),F 2 (右)的距离的和是6.(1)求椭圆C 的离心率的值;(2)若PF 2⊥x 轴,且p 在y 轴上的射影为点Q ,求点Q 的坐标.205(Ⅱ)若同一次考试成绩之差的绝对值不超过5分,则称该次考试两人“水平相当”.由上述5次摸底考试成绩统计,任意抽查两次摸底考试,求恰有一次摸底考试两人“水平相当”的概率.21.【徐州市2018届高三上学期期中】已知函数(,是自然对数的底数).(1)若函数在区间上是单调减函数,求实数的取值范围;(2)求函数的极值;(3)设函数图象上任意一点处的切线为,求在轴上的截距的取值范围.22.在直角坐标系xOy中,过点P(2,﹣1)的直线l的倾斜角为45°.以坐标原点为极点,x轴正半轴为极坐标建立极坐标系,曲线C的极坐标方程为ρsin2θ=4cosθ,直线l和曲线C的交点为A,B.(1)求曲线C的直角坐标方程;(2)求|PA|•|PB|.23.等差数列{a n} 中,a1=1,前n项和S n满足条件,(Ⅰ)求数列{a n} 的通项公式和S n;(Ⅱ)记b n=a n2n﹣1,求数列{b n}的前n项和T n.24.已知函数f(x)=lnx+ax2+b(a,b∈R).(Ⅰ)若曲线y=f(x)在x=1处的切线为y=﹣1,求函数f(x)的单调区间;(Ⅱ)求证:对任意给定的正数m,总存在实数a,使函数f(x)在区间(m,+∞)上不单调;(Ⅲ)若点A(x1,y1),B(x2,y2)(x2>x1>0)是曲线f(x)上的两点,试探究:当a<0时,是否存在实数x0∈(x1,x2),使直线AB的斜率等于f'(x0)?若存在,给予证明;若不存在,说明理由.武威市高级中学2018-2019学年高二上学期第二次月考试卷数学(参考答案)一、选择题1.【答案】C【解析】解:∵点P的直角坐标为,∴ρ==2.再由1=ρcosθ,﹣=ρsinθ,可得,结合所给的选项,可取θ=﹣,即点P的极坐标为(2,),故选C.【点评】本题主要考查把点的直角坐标化为极坐标的方法,属于基础题.2.【答案】D【解析】解:由三视图可知正方体边长为2,截去部分为三棱锥,作出几何体的直观图如图所示:故该几何体的表面积为:3×22+3×()+=,故选:D.3.【答案】D【解析】解:当|a|>1时,函数为增函数,且过定点(0,1﹣),因为0<1﹣<1,故排除A,B当|a|<1时且a≠0时,函数为减函数,且过定点(0,1﹣),因为1﹣<0,故排除C.故选:D.4.【答案】D【解析】解:∵tanα=2,∴===.故选D.5.【答案】C【解析】【分析】将圆C方程化为标准方程,找出圆心C坐标与半径r,利用点到直线的距离公式表示出圆心到直线的距离d,与r比较大小即可得到结果.【解答】解:圆C方程化为标准方程得:(x﹣1)2+y2=2,∴圆心C(1,0),半径r=,∵≥>1,∴圆心到直线l的距离d=<=r,且圆心(1,0)不在直线l上,∴直线l与圆相交且一定不过圆心.故选C6.【答案】C【解析】解:∵sin168°=sin(180°﹣12°)=sin12°,cos10°=sin(90°﹣10°)=sin80°.又∵y=sinx在x∈[0,]上是增函数,∴sin11°<sin12°<sin80°,即sin11°<sin168°<cos10°.故选:C.【点评】本题主要考查诱导公式和正弦函数的单调性的应用.关键在于转化,再利用单调性比较大小.7.【答案】D【解析】解:由题意,S k+2﹣S k=,即3×2k=48,2k=16,∴k=4.故选:D.【点评】本题考查等比数列的通项公式,考查了等比数列的前n项和,是基础题.8.【答案】B【解析】解:∵α,β为锐角△ABC的两个内角,可得α+β>90°,cosβ=sin(90°﹣β)<sinα,同理cosα<sinβ,∴f(x)=()|x﹣2|+()|x﹣2|,在(2,+∞)上单调递减,在(﹣∞,2)单调递增,由关于x的不等式f(2x﹣1)﹣f(x+1)>0得到关于x的不等式f(2x﹣1)>f(x+1),∴|2x﹣1﹣2|<|x+1﹣2|即|2x﹣3|<|x﹣1|,化简为3x2﹣1x+8<0,解得x∈(,2);故选:B.9.【答案】B【解析】解:∵①若m ∥l ,m ⊥α,则由直线与平面垂直的判定定理,得l ⊥α,故①正确; ②若m ∥l ,m ∥α,则l ∥α或l ⊂α,故②错误; ③如图,在正方体ABCD ﹣A 1B 1C 1D 1中, 平面ABB 1A 1∩平面ABCD=AB , 平面ABB 1A 1∩平面BCC 1B 1=BB 1, 平面ABCD ∩平面BCC 1B 1=BC , 由AB 、BC 、BB 1两两相交,得:若α∩β=l ,β∩γ=m ,γ∩α=n ,则l ∥m ∥n 不成立,故③是假命题; ④若α∩β=l ,β∩γ=m ,γ∩α=n ,n ∥β,则由α∩γ=n 知,n ⊂α且n ⊂γ,由n ⊂α及n ∥β,α∩β=m , 得n ∥m ,同理n ∥l ,故m ∥l ,故命题④正确. 故选:B .【点评】本题考查命题真假的判断,是中档题,解题时要认真审题,注意空间思维能力的培养.10.【答案】B 【解析】试题分析:函数()cos ,3f x x π⎛⎫=+∴ ⎪⎝⎭()5'sin cos 36f x x x ππ⎛⎫⎛⎫=-+=+ ⎪ ⎪⎝⎭⎝⎭,所以函数 ()cos 3f x x π⎛⎫=+ ⎪⎝⎭,所以将函数函数()y f x =的图象上所有的点向左平移2π个单位长度得到5cos cos 326y x x πππ⎛⎫⎛⎫=++=+ ⎪ ⎪⎝⎭⎝⎭,故选B.考点:函数()sin y A x ωϕ=+的图象变换. 11.【答案】D【解析】解:作出不等式组对应的平面区域如图:(阴影部分). 由z=ax+y ,得y=﹣ax+z ,若a=0,此时y=z,此时函数y=z只在B处取得最小值,不满足条件.若a>0,则目标函数的斜率k=﹣a<0.平移直线y=﹣ax+z,由图象可知当直线y=﹣ax+z和直线x+y=1平行时,此时目标函数取得最小值时最优解有无数多个,此时﹣a=﹣1,即a=1.若a<0,则目标函数的斜率k=﹣a>0.平移直线y=﹣ax+z,由图象可知当直线y=﹣ax+z,此时目标函数只在C处取得最小值,不满足条件.综上a=1.故选:D.【点评】本题主要考查线性规划的应用,利用数形结合是解决此类问题的基本方法,利用z的几何意义是解决本题的关键.注意要对a进行分类讨论.12.【答案】B【解析】解:此几何体为一个三棱柱,棱柱的高是4,底面正三角形的高是,设底面边长为a,则,∴a=6,故三棱柱体积.故选B【点评】本题考点是由三视图求几何体的面积、体积,考查对三视图的理解与应用,主要考查三视图与实物图之间的关系,用三视图中的数据还原出实物图的数据,再根据相关的公式求表面积与体积,本题求的是本棱柱的体积.三视图的投影规则是:“主视、俯视长对正;主视、左视高平齐,左视、俯视宽相等”.三视图是新课标的新增内容,在以后的高考中有加强的可能.二、填空题13.【答案】V【解析】【分析】四棱锥B ﹣APQC 的体积,底面面积是侧面ACC ′A ′的一半,B 到侧面的距离是常数,求解即可. 【解答】解:由于四棱锥B ﹣APQC 的底面面积是侧面ACC ′A ′的一半,不妨把P 移到A ′,Q 移到C , 所求四棱锥B ﹣APQC 的体积,转化为三棱锥A ′﹣ABC 体积,就是:故答案为:14.【答案】3a ≤- 【解析】试题分析:函数()f x 图象开口向上,对称轴为1x a =-,函数在区间(,4]-∞上递减,所以14,3a a -≥≤-. 考点:二次函数图象与性质.15.【答案】 ﹣ .【解析】解:∵f (x )=﹣2ax+2a+1,∴求导数,得f ′(x )=a (x ﹣1)(x+2). ①a=0时,f (x )=1,不符合题意;②若a >0,则当x <﹣2或x >1时,f ′(x )>0;当﹣2<x <1时,f ′(x )<0, ∴f (x )在(﹣2,1)是为减函数,在(﹣∞,﹣2)、(1,+∞)上为增函数; ③若a <0,则当x <﹣2或x >1时,f ′(x )<0;当﹣2<x <1时,f ′(x )>0, ∴f (x )在(﹣2,1)是为增函数,在(﹣∞,﹣2)、(1,+∞)上为减函数因此,若函数的图象经过四个象限,必须有f (﹣2)f (1)<0,即()()<0,解之得﹣.故答案为:﹣【点评】本题主要考查了利用导数研究函数的单调性与极值、函数的图象、充要条件的判断等知识,属于基础题.16.【答案】 [4,16] .【解析】解:直线l :(t 为参数),化为普通方程是=,即y=tanα•x+1;圆C的参数方程(θ为参数),化为普通方程是(x﹣2)2+(y﹣1)2=64;画出图形,如图所示;∵直线过定点(0,1),∴直线被圆截得的弦长的最大值是2r=16,最小值是2=2×=2×=4∴弦长的取值范围是[4,16].故答案为:[4,16].【点评】本题考查了直线与圆的参数方程的应用问题,解题时先把参数方程化为普通方程,再画出图形,数形结合,容易解答本题.17.【答案】②④【解析】解:①若集合A={x|kx2+4x+4=0}中只有一个元素,则k=1或k=0,故错误;②在同一平面直角坐标系中,y=2x与y=2﹣x的图象关于y轴对称,故正确;③y=()﹣x是减函数,故错误;④定义在R上的奇函数f(x)有f(x)•f(﹣x)≤0,故正确.故答案为:②④【点评】本题以命题的真假判断与应用为载体,考查了集合,指数函数的,奇函数的图象和性质,难度中档.18.【答案】33.【解析】解:∵1=++++++++++++,∵2=1×2,6=2×3,30=5×6,42=6×7,56=7×8,72=8×9,90=9×10,110=10×11,132=11×12,∴1=++++++++++++=(1﹣)+++(﹣)+,+==﹣+﹣=,∴m=20,n=13,∴m+n=33,故答案为:33【点评】本题考查的知识点是归纳推理,但本题运算强度较大,属于难题.三、解答题19.【答案】【解析】解:(1)根据椭圆的定义得2a=6,a=3;∴c=;∴;即椭圆的离心率是;(2);∴x=带入椭圆方程得,y=;所以Q(0,).20.【答案】【解析】解:(Ⅰ)解法一:依题意有,答案一:∵∴从稳定性角度选甲合适.(注:按(Ⅱ)看分数的标准,5次考试,甲三次与乙相当,两次优于乙,所以选甲合适.答案二:∵乙的成绩波动大,有爆发力,选乙合适.解法二:因为甲5次摸底考试成绩中只有1次90,甲摸底考试成绩不低于90的概率为;乙5次摸底考试成绩中有3次不低于90,乙摸底考试成绩不低于90的概率为.所以选乙合适.(Ⅱ)依题意知5次摸底考试,“水平相当”考试是第二次,第三次,第五次,记为A,B,C.“水平不相当”考试是第一次,第四次,记为a,b.从这5次摸底考试中任意选取2次有ab,aA,aB,aC,bA,bB,bC,AB,AC,BC共10种情况.恰有一次摸底考试两人“水平相当”包括共aA,aB,aC,bA,bB,bC共6种情况.∴5次摸底考试成绩统计,任意抽查两次摸底考试,恰有一次摸底考试两人“水平相当”概率.【点评】本题主要考查平均数,方差,概率等基础知识,运算数据处理能力、运算求解能力、应用意识,考查化归转化思想、或然与必然思想.21.【答案】(1)(2)见解析(3)【解析】试题分析:(1)由题意转化为在区间上恒成立,化简可得一次函数恒成立,根据一次函数性质得不等式,解不等式得实数的取值范围;(2)导函数有一个零点,再根据a的正负讨论导函数符号变化规律,确定极值取法(3)先根据导数得切线斜率再根据点斜式得切线方程,即得切线在x轴上的截距,最后根据a的正负以及基本不等式求截距的取值范围.试题解析:(1)函数的导函数,则在区间上恒成立,且等号不恒成立,又,所以在区间上恒成立,记,只需,即,解得.(2)由,得,①当时,有;,所以函数在单调递增,单调递减,所以函数在取得极大值,没有极小值.②当时,有;,所以函数在单调递减,单调递增,所以函数在取得极小值,没有极大值.综上可知: 当时,函数在取得极大值,没有极小值;当时,函数在取得极小值,没有极大值.(3)设切点为,则曲线在点处的切线方程为,当时,切线的方程为,其在轴上的截距不存在.当时,令,得切线在轴上的截距为,当时,,当且仅当,即或时取等号;当时,,当且仅当,即或时取等号.所以切线在轴上的截距范围是.点睛:函数极值问题的常见类型及解题策略(1)知图判断函数极值的情况.先找导数为0的点,再判断导数为0的点的左、右两侧的导数符号.(2)已知函数求极值.求→求方程的根→列表检验在的根的附近两侧的符号→下结论.(3)已知极值求参数.若函数在点处取得极值,则,且在该点左、右两侧的导数值符号相反.22.【答案】【解析】(1)∵ρsin2θ=4cosθ,∴ρ2sin2θ=4ρcosθ,…∵ρcosθ=x,ρsinθ=y,∴曲线C的直角坐标方程为y2=4x …(2)∵直线l过点P(2,﹣1),且倾斜角为45°.∴l的参数方程为(t为参数).…代入y2=4x 得t2﹣6t﹣14=0…设点A,B对应的参数分别t1,t2∴t1t2=﹣14…∴|PA|•|PB|=14.…23.【答案】【解析】解:(Ⅰ)设等差数列的公差为d,由=4得=4,所以a2=3a1=3且d=a2﹣a1=2,所以a n=a1+(n﹣1)d=2n﹣1,=(Ⅱ)由b n=a n2n﹣1,得b n=(2n﹣1)2n﹣1.所以T n=1+321+522+…+(2n﹣1)2n﹣1①2T n=2+322+523+…+(2n﹣3)2n﹣1+(2n﹣1)2n②①﹣②得:﹣T n=1+22+222+…+22n﹣1﹣(2n﹣1)2n=2(1+2+22+…+2n﹣1)﹣(2n﹣1)2n﹣1=2×﹣(2n﹣1)2n﹣1=2n(3﹣2n)﹣3.∴T n=(2n﹣3)2n+3.【点评】本题主要考查数列求和的错位相减,错位相减法适用于通项为一等差数列乘一等比数列组成的新数列.此方法是数列求和部分高考考查的重点及热点.24.【答案】【解析】解:(Ⅰ)由已知得解得…此时,(x>0).(Ⅱ)(x>0).(1)当a≥0时,f'(x)>0恒成立,此时,函数f(x)在区间(0,+∞)上单调递增,不合题意,舍去.…(2)当a<0时,令f'(x)=0,得,f(x),f'(x)的变化情况如下表:)所以函数f(x)的增区间为(0,),减区间为(,+∞).…要使函数f(x)在区间(m,+∞)上不单调,须且只须>m,即.所以对任意给定的正数m,只须取满足的实数a,就能使得函数f(x)在区间(m,+∞)上不单调.…(Ⅲ)存在实数x0∈(x1,x2),使直线AB的斜率等于f'(x0).…证明如下:令g(x)=lnx﹣x+1(x>0),则,易得g(x)在x=1处取到最大值,且最大值g(1)=0,即g(x)≤0,从而得lnx≤x﹣1.(*)…由,得.…令,,则p(x),q(x)在区间[x1,x2]上单调递增.且,,结合(*)式可得,,.令h(x)=p(x)+q(x),由以上证明可得,h(x)在区间[x1,x2]上单调递增,且h(x1)<0,h(x2)>0,…所以函数h(x)在区间(x1,x2)上存在唯一的零点x0,即成立,从而命题成立.…(注:在(Ⅰ)中,未计算b的值不扣分.)【点评】本小题主要考查函数导数的几何意义、导数的运算及导数的应用,考查运算求解能力、抽象概括能力、推理论证能力,考查函数与方程思想、化归与转化思想、分类与整合思想.。
武威市第一中学2018-2019学年高二上学期第二次月考试卷数学 班级__________ 姓名__________ 分数__________一、选择题1. 设集合A={x|x+2=0},集合B={x|x 2﹣4=0},则A ∩B=( ) A .{﹣2} B .{2} C .{﹣2,2} D .∅2. 已知点A (﹣2,0),点M (x ,y )为平面区域上的一个动点,则|AM|的最小值是( )A .5B .3C .2D .3. 下列各组函数中,表示同一函数的是( )A 、()f x =x 与()f x =2x xB 、()1f x x =- 与()f x =C 、()f x x =与()f x =D 、()f x x =与2()f x =4. 设集合( )A .B .C .D .5. 下列推断错误的是( )A .命题“若x 2﹣3x+2=0,则x=1”的逆否命题为“若x ≠1则x 2﹣3x+2≠0”B .命题p :存在x 0∈R ,使得x 02+x 0+1<0,则非p :任意x ∈R ,都有x 2+x+1≥0C .若p 且q 为假命题,则p ,q 均为假命题D .“x <1”是“x 2﹣3x+2>0”的充分不必要条件 6. (﹣6≤a ≤3)的最大值为( )A .9B .C .3D .7. 函数2-21y x x =-,[0,3]x ∈的值域为( ) A. B. C. D.8. 如图,在正六边形ABCDEF 中,点O 为其中心,则下列判断错误的是( )A . =B .∥C .D .9. 下列结论正确的是( )A .若直线l ∥平面α,直线l ∥平面β,则α∥β.B .若直线l ⊥平面α,直线l ⊥平面β,则α∥β.C .若直线l 1,l 2与平面α所成的角相等,则l 1∥l 2D .若直线l 上两个不同的点A ,B 到平面α的距离相等,则l ∥α10.已知抛物线关于x 轴对称,它的顶点在坐标原点O ,并且经过点M (2,y 0).若点M 到该抛物线焦点的距离为3,则|OM|=( )A .B .C .4D .11.若复数(a ∈R ,i 为虚数单位位)是纯虚数,则实数a 的值为( )A .﹣2B .4C .﹣6D .612.设曲线y=ax 2在点(1,a )处的切线与直线2x ﹣y ﹣6=0平行,则a=( )A .1B .C .D .﹣1二、填空题13.计算sin43°cos13°﹣cos43°sin13°的值为 .14.在ABC ∆中,90C ∠=,2BC =,M 为BC 的中点,1sin 3BAM ∠=,则AC 的长为_________. 15.在ABC ∆中,已知角C B A ,,的对边分别为c b a ,,,且B c C b a sin cos +=,则角B为 .16.在△ABC 中,点D 在边AB 上,CD ⊥BC ,AC=5,CD=5,BD=2AD ,则AD 的长为 .17.已知函数f (x )=恰有两个零点,则a 的取值范围是 .18.在空间直角坐标系中,设)1,3(,m A ,)1,1,1(-B ,且22||=AB ,则=m . 三、解答题19.在直角坐标系xOy 中,已知一动圆经过点(2,0)且在y 轴上截得的弦长为4,设动圆圆心的轨迹为曲线C .(1)求曲线C 的方程;111](2)过点(1,0)作互相垂直的两条直线,,与曲线C 交于A ,B 两点与曲线C 交于E ,F 两点, 线段AB ,EF 的中点分别为M ,N ,求证:直线MN 过定点P ,并求出定点P 的坐标.20.已知a ,b ,c 分别为△ABC 三个内角A ,B ,C 的对边,c=asinC ﹣ccosA .(1)求A ;(2)若a=2,△ABC 的面积为,求b ,c .21.(本题满分14分)已知函数x a x x f ln )(2-=.(1)若)(x f 在]5,3[上是单调递减函数,求实数a 的取值范围;(2)记x b x a x f x g )1(2ln )2()()(--++=,并设)(,2121x x x x <是函数)(x g 的两个极值点,若27≥b , 求)()(21x g x g -的最小值.22.如图,在四棱锥P ﹣ABCD 中,PA ⊥平面ABCD ,底面ABCD 是菱形,AB=2,∠BAD=60°.(Ⅰ)求证:BD ⊥平面PAC ;(Ⅱ)若PA=AB ,求PB 与AC 所成角的余弦值; (Ⅲ)当平面PBC 与平面PDC 垂直时,求PA 的长.23.(本小题12分)在多面体ABCDEFG 中,四边形ABCD 与CDEF 是边长均为a 正方形,CF ⊥平面ABCD ,BG ⊥平面ABCD ,且24AB BG BH ==.(1)求证:平面AGH ⊥平面EFG ; (2)若4a =,求三棱锥G ADE -的体积.【命题意图】本题主要考查空间直线与平面间的垂直关系、空间向量、二面角等基础知识,间在考查空间想象能力、逻辑推理能力,以及转化的思想、方程思想.24.长方体ABCD﹣A1B1C1D1中,AB=2,AA1=AD=4,点E为AB中点.(1)求证:BD1∥平面A1DE;(2)求证:A1D⊥平面ABD1.武威市第一中学2018-2019学年高二上学期第二次月考试卷数学(参考答案)一、选择题1.【答案】A【解析】解:由A中的方程x+2=0,解得x=﹣2,即A={﹣2};由B中的方程x2﹣4=0,解得x=2或﹣2,即B={﹣2,2},则A∩B={﹣2}.故选A【点评】此题考查了交集及其运算,熟练掌握交集的定义是解本题的关键.2.【答案】D【解析】解:不等式组表示的平面区域如图,结合图象可知|AM|的最小值为点A到直线2x+y﹣2=0的距离,即|AM|min=.故选:D.【点评】本题考查了不等式组表示的平面区域的画法以及运用;关键是正确画图,明确所求的几何意义.3.【答案】C【解析】试题分析:如果两个函数为同一函数,必须满足以下两点:①定义域相同,②对应法则相同。
选项A中两个函数定义域不同,选项B中两个函数对应法则不同,选项D中两个函数定义域不同。
故选C。
考点:同一函数的判定。
4.【答案】B【解析】解:集合A中的不等式,当x>0时,解得:x>;当x<0时,解得:x<,集合B 中的解集为x >,则A ∩B=(,+∞). 故选B【点评】此题考查了交集及其运算,熟练掌握交集的定义是解本题的关键.5. 【答案】C【解析】解:对于A ,命题“若x 2﹣3x+2=0,则x=1”的逆否命题为“若x ≠1则x 2﹣3x+2≠0”,正确;对于B ,命题p :存在x 0∈R ,使得x 02+x 0+1<0,则非p :任意x ∈R ,都有x 2+x+1≥0,正确;对于C ,若p 且q 为假命题,则p ,q 至少有一个为假命题,故C 错误;对于D ,x 2﹣3x+2>0⇒x >2或x <1,故“x <1”是“x 2﹣3x+2>0”的充分不必要条件,正确.综上所述,错误的选项为:C , 故选:C .【点评】本题考查命题的真假判断与应用,着重考查全称命题与特称命题的理解与应用,考查复合命题与充分必要条件的真假判断,属于中档题.6. 【答案】B【解析】解:令f (a )=(3﹣a )(a+6)=﹣+,而且﹣6≤a ≤3,由此可得函数f(a )的最大值为,故(﹣6≤a ≤3)的最大值为=,故选B .【点评】本题主要考查二次函数的性质应用,体现了转化的数学思想,属于中档题.7. 【答案】A 【解析】试题分析:函数()222112y x x x =--=--在区间[]0,1上递减,在区间[]1,3上递增,所以当x=1时,()()min 12f x f ==-,当x=3时,()()max 32f x f ==,所以值域为[]2,2-。
故选A 。
考点:二次函数的图象及性质。
8. 【答案】D【解析】解:由图可知,,但不共线,故,故选D .【点评】本题考查平行向量与共线向量、相等向量的意义,属基础题.9.【答案】B【解析】解:A选项中,两个平面可以相交,l与交线平行即可,故不正确;B选项中,垂直于同一平面的两个平面平行,正确;C选项中,直线与直线相交、平行、异面都有可能,故不正确;D中选项也可能相交.故选:B.【点评】本题考查平面与平面,直线与直线,直线与平面的位置关系,考查学生分析解决问题的能力,比较基础.10.【答案】B【解析】解:由题意,抛物线关于x轴对称,开口向右,设方程为y2=2px(p>0)∵点M(2,y0)到该抛物线焦点的距离为3,∴2+=3∴p=2∴抛物线方程为y2=4x∵M(2,y0)∴∴|OM|=故选B.【点评】本题考查抛物线的性质,考查抛物线的定义,解题的关键是利用抛物线的定义求出抛物线方程.11.【答案】C【解析】解:复数=,它是纯虚数,则a=﹣6.故选C.【点评】本题考查复数代数形式的乘除运算,复数的分类,是基础题.12.【答案】A【解析】解:y'=2ax,于是切线的斜率k=y'|x=1=2a,∵切线与直线2x﹣y﹣6=0平行∴有2a=2∴a=1故选:A【点评】本题考查导数的几何意义:曲线在切点处的导数值是切线的斜率.二、填空题13.【答案】.【解析】解:sin43°cos13°﹣cos43°sin13°=sin(43°﹣13°)=sin30°=,故答案为.14.【答案】2【解析】考点:1、正弦定理及勾股定理;2诱导公式及直角三角形的性质.【方法点睛】本题主要考查正弦定理及勾股定理、诱导公式及直角三角形的性质,属于难题,高考三角函数的考查主要以三角恒等变形,三角函数的图象和性质,利用正弦定理、余弦定理解三角形为主,难度中等,因此只要掌握基本的解题方法与技巧即可,对于三角函数与解三角形相结合的题目,要注意通过正余弦定理以及面积公式实现边角互化,求出相关的边和角的大小,有时也要考虑特殊三角形的特殊性质(如正三角形,直角三角形等).π15.【答案】4【解析】考点:正弦定理.【方法点晴】本题考查正余弦定理,根据正弦定理,将所给的含有边和角的等式化为只含有角的等式,再利用180,消去多余的变量,从而解出B角.三角函数题目在高考中的难度逐渐增加,以考查三三角形的三角和是︒角函数的图象和性质,以及三角形中的正余弦定理为主,在2016年全国卷()中以选择题的压轴题出现.16.【答案】5.【解析】解:如图所示:延长BC,过A做AE⊥BC,垂足为E,∵CD⊥BC,∴CD∥AE,∵CD=5,BD=2AD,∴,解得AE=,在RT△ACE,CE===,由得BC=2CE=5,在RT△BCD中,BD===10,则AD=5,故答案为:5.【点评】本题考查平行线的性质,以及勾股定理,做出辅助线是解题的关键,属于中档题.17.【答案】 (﹣3,0) .【解析】解:由题意,a ≥0时,x <0,y=2x 3﹣ax 2﹣1,y ′=6x 2﹣2ax >0恒成立, f (x )在(0,+∞)上至多一个零点; x ≥0,函数y=|x ﹣3|+a 无零点, ∴a ≥0,不符合题意;﹣3<a <0时,函数y=|x ﹣3|+a 在[0,+∞)上有两个零点,函数y=2x 3﹣ax 2﹣1在(﹣∞,0)上无零点,符合题意;a=﹣3时,函数y=|x ﹣3|+a 在[0,+∞)上有两个零点, 函数y=2x 3﹣ax 2﹣1在(﹣∞,0)上有零点﹣1,不符合题意;a <﹣3时,函数y=|x ﹣3|+a 在[0,+∞)上有两个零点,函数y=2x 3﹣ax 2﹣1在(﹣∞,0)上有两个零点,不符合题意;综上所述,a 的取值范围是(﹣3,0). 故答案为(﹣3,0).18.【答案】1 【解析】 试题分析:()()()()2213111222=-+--+-=m AB ,解得:1=m ,故填:1.考点:空间向量的坐标运算三、解答题19.【答案】(1) 24y x =;(2)证明见解析;(3,0). 【解析】(2)易知直线,的斜率存在且不为0,设直线的斜率为,11(,)A x y ,22(,)B x y , 则直线:(1)y k x =-,1212(,)22x x y y M ++, 由24,(1),y x y k x ⎧=⎨=-⎩得2222(24)0k x k x k -++=, 2242(24)416160k k k ∆=+-=+>,考点:曲线的轨迹方程;直线与抛物线的位置关系.【易错点睛】导数法解决函数的单调性问题:(1)当)(x f 不含参数时,可通过解不等式)0)((0)(''<>x f x f 直接得到单调递增(或递减)区间.(2)已知函数的单调性,求参数的取值范围,应用条件),(),0)((0)(''b a x x f x f ∈≤≥恒成立,解出参数的取值范围(一般可用不等式恒成立的理论求解),应注意参数的取值是)('x f 不恒等于的参数的范围. 20.【答案】【解析】解:(1)c=asinC ﹣ccosA ,由正弦定理有:sinAsinC ﹣sinCcosA ﹣sinC=0,即sinC •(sinA ﹣cosA ﹣1)=0,又,sinC ≠0,所以sinA ﹣cosA ﹣1=0,即2sin (A ﹣)=1,所以A=;(2)S△ABC =bcsinA=,所以bc=4,a=2,由余弦定理得:a 2=b 2+c 2﹣2bccosA ,即4=b 2+c 2﹣bc ,即有,解得b=c=2.21.【答案】【解析】【命题意图】本题综合考查了利用导数研究函数的单调问题,利用导数研究函数的最值,但本题对函数的构造能力及运算能力都有很高的要求,判别式的技巧性运用及换元方法也是本题的一大亮点,本题综合性很强,难度大,但有梯次感.(2)∵x b x x x b x a x a x x g )1(2ln 2)1(2ln )2(ln )(22--+=--++-=,22.【答案】【解析】解:(I)证明:因为四边形ABCD是菱形,所以AC⊥BD,又因为PA⊥平面ABCD,所以PA⊥BD,PA∩AC=A所以BD⊥平面PAC(II)设AC∩BD=O,因为∠BAD=60°,PA=AB=2,所以BO=1,AO=OC=,以O 为坐标原点,分别以OB ,OC 为x 轴、y 轴,以过O 且垂直于平面ABCD 的直线为z 轴,建立空间直角坐标系O ﹣xyz ,则P (0,﹣,2),A (0,﹣,0),B (1,0,0),C (0,,0)所以=(1,,﹣2),设PB 与AC 所成的角为θ,则cos θ=|(III )由(II )知,设,则设平面PBC 的法向量=(x ,y ,z )则=0,所以令,平面PBC 的法向量所以,同理平面PDC 的法向量,因为平面PBC ⊥平面PDC ,所以=0,即﹣6+=0,解得t=,所以PA=.【点评】本小题主要考查空间线面关系的垂直关系的判断、异面直线所成的角、用空间向量的方法求解直线的夹角、距离等问题,考查数形结合、化归与转化的数学思想方法,以及空间想象能力、推理论证能力和运算求解能力23.【答案】【解析】(1)连接FH ,由题意,知CD BC ⊥,CD CF ⊥,∴CD ⊥平面BCFG . 又∵GH ⊂平面BCFG ,∴CD ⊥GH . 又∵EFCD ,∴EF GH ⊥……………………………2分由题意,得14BH a =,34CH a =,12BG a =,∴2222516GH BG BH a =+=, 22225()4FG CF BG BC a =-+=,22222516FH CF CH a =+=,则222FH FG GH =+,∴GH FG ⊥.……………………………4分又∵EFFG F =,GH ⊥平面EFG .……………………………5分∵GH ⊂平面AGH ,∴平面AGH ⊥平面EFG .……………………………6分24.【答案】【解析】证明:(1)连结A1D,AD1,A1D∩AD1=O,连结OE,∵长方体ABCD﹣A1B1C1D1中,ADD1A1是矩形,∴O是AD1的中点,∴OE∥BD1,∵OE∥BD1,OE⊂平面ABD1,BD1⊄平面ABD1,∴BD1∥平面A1DE.(2)∵长方体ABCD﹣A1B1C1D1中,AB=2,AA1=AD=4,点E为AB中点,∴ADD1A1是正方形,∴A1D⊥AD1,∵长方体ABCD﹣A1B1C1D1中,AB⊥平面ADD1A1,∴A1D⊥AB,又AB∩AD1=A,∴A1D⊥平面ABD1.。