元素周期律知识点汇总
- 格式:doc
- 大小:38.00 KB
- 文档页数:2
元素周期律知识点总结1.元素周期律的发现历史元素周期律最早由俄国化学家门捷列夫于1869年提出,并且将已知的63个元素按照一定的规律排列。
门捷列夫将元素的性质与其原子量进行比较,发现存在周期性变化的规律。
后来,门捷列夫的周期表不断进行修正和完善,最终发展成为现代元素周期表。
2.元素周期表的结构元素周期表是按照元素原子序数的大小进行排列的,原子序数是指元素原子核中质子的数量,也是元素周期表中元素的标识。
周期表由横行的周期和竖列的族组成。
横行的周期称为周期,竖列的族称为主族。
元素周期表根据元素的电子结构、原子半径、电负性等性质进行划分。
3.元素周期律的主要规律-周期性规律:位于同一周期中的元素,原子量存在递增的趋势,并且许多性质会随着周期数的增加而周期性变化。
例如,金属元素的电子亲和能随周期数的增加而降低。
-垂直规律:位于同一族中的元素,原子量相似,并且许多性质也会有相似之处。
例如,碱金属元素(第一族)都具有相似的反应性和活泼的性质。
-斜线规律:元素周期表中的主要对角线称为斜线规律。
按照斜线方向进行排列的元素,在一些性质上有着相似之处,并且具有一定的趋势。
例如,元素周期表中的碱土金属(第二族)和卤素(第七族)的电子亲和能都随着原子量的增加而增加。
4.元素周期律的应用-预测新元素:元素周期律的周期性规律可以用来预测尚未发现的元素的性质。
例如,门捷列夫在提出元素周期表后,成功预测了后来发现的元素镓、铊和锪。
-元素的共价价态:元素周期表中同一族元素的共价价态具有相似性,例如,氧族元素的共价价态为-2-元素的化合价:元素周期表中主族元素的化合价与其所在的族数有关,例如,第一族的元素的化合价为+1-化学反应的活性和性质:元素周期表中的元素按照周期和族的排列,可以看出元素的活性和性质的变化趋势。
例如,金属元素活动性随周期数的增加而增加。
-过渡元素的性质:元素周期表中的过渡元素具有丰富的氧化态和复合态,具有多种形态的存在。
元素周期律知识点总结一、元素周期律的发现历程元素周期律是指化学元素按照一定规律排列的周期表。
在19世纪末,俄国化学家门捷列夫发现了元素周期律的规律,他将元素按照原子量的大小排列,发现了一些规律性的现象,比如元素的性质会随着原子量的增大而周期性地变化。
这一发现为后来的元素周期表的建立奠定了基础。
二、元素周期律的基本规律1. 原子序数元素周期律是根据元素的原子序数所排列的。
原子序数是指元素原子核中质子的数量,也是元素在周期表中的位置。
原子序数的增大决定了元素的性质的变化。
2. 周期性元素周期律的核心规律是周期性。
即元素的性质会随着原子序数的增大而周期性地变化。
这一规律可以用周期表中元素的位置来很好地解释。
3. 周期性表现元素周期律的周期性表现在以下方面:(1)元素的化学性质:比如金属元素和非金属元素的相互转变,电子亲和力、电负性等性质的周期变化。
(2)物理性质:原子半径、离子半径、电离能等。
(3)氧化物的性质:比如元素氧化物与水的反应性随着周期的增加而发生变化。
(4)化合价:元素的化合价随周期性地增加而变化。
三、周期表的结构元素周期表是由俄国化学家门捷列夫在1869年发现的,现在该表是由7行18列组成。
其中,横着排列的称为周期,纵向排列的称为族。
周期表的左侧是金属元素,右侧是非金属元素,中间是过渡元素。
周期表中有主族元素、副主族元素、过渡元素和稀有元素等。
四、周期表中的规律1. 周期性规律周期表中最基本的规律就是原子量的周期性变化。
比如,原子序数为3、11、19、37、55等元素的性质非常相似,因为它们在同一个周期内。
这些元素的外层电子数相同,因此具有相似的化学性质。
这一规律逐渐得到了发展,形成了更加完备的元素周期律。
2. 周期表的周期性规律周期表中的元素周期性地排列,列代表着元素的性质与它们的电子排布有关。
比如,同一族元素的外层电子数相同,因此它们的化学性质会有相似之处。
周期表中元素的周期性变化也与元素的原子结构有关,因为原子的结构决定了元素的性质。
【化学】《元素周期律》知识点总结元素周期律项目同周期(左→右)同主族(上→下)核电荷数逐渐增大逐渐增大电子层数相同逐渐增多原子半径逐渐减小逐渐增大离子半径阳离子逐渐减小,阴离子逐渐减小r(阴离子)>r(阳离子)逐渐增大化合价最高正化合价由+1→+7(O、F除外),负化合价=-(8-主族序数)相同最高正化合价=主族序数(O、F除外)元素的金属性和非金属性金属性逐渐减弱非金属性逐渐增强金属性逐渐增强非金属性逐渐减弱离子的氧化性、还原性阳离子氧化性逐渐增强阴离子还原性逐渐减弱阳离子氧化性逐渐减弱阴离子还原性逐渐增强气态氢化物稳定性逐渐增强逐渐减弱最高价氧化物对应水化物的酸碱性碱性逐渐减弱酸性逐渐增强碱性逐渐增强酸性逐渐减弱重难突破一、元素金属性、非金属性比较1.元素金属性强弱的判断(1)比较元素的金属性强弱,其实质是看元素原子失去电子的难易程度,越容易失去电子,金属性越强。
(2)金属单质和水或非氧化性酸反应置换出氢越容易,金属性越强;最高价氧化物对应水化物的碱性越强,金属性越强。
2.元素非金属性强弱的判断(1)比较元素的非金属性强弱,其实质是看元素原子得到电子的难易程度,越容易得到电子,非金属性越强。
(2)单质越容易与氢气化合,生成的氢化物越稳定,非金属性越强;最高价氧化物对应水化物的酸性越强,说明其非金属性越强。
典例2X、Y为同周期元素,如果X的原子半径大于Y,则下列判断不正确的是()A.若X、Y均为金属元素,则X的金属性强于YB.若X、Y均为金属元素,则X的阳离子氧化性比Y的阳离子强C.若X、Y均为非金属元素,则Y的非金属性比X强D.若X、Y均为非金属元素,则最高价含氧酸的酸性Y强于X【答案】B典例1已知X、Y、Z是三种原子序数相连的元素,最高价氧化物对应水化物的酸性相对强弱的顺序是HXO4>H2YO4>H3ZO4,则下列判断正确的是()A.气态氢化物的稳定性:HX>H2Y>ZH3B.非金属活泼性:Y<X<ZC.原子半径:X>Y>ZD.原子最外层电子数:X<Y<Z【答案】A二、微粒半径大小的比较1. 同周期元素的微粒同周期元素的原子(稀有气体除外),从左到右原子半径或最高价阳离子的半径随核电荷数增大而逐渐减小。
一、原子结构1、原子是由和组成的,质子电,中子,电子;核内质子数等于核外电子数,因此原子电2、质量数(A)= 质子数(Z)+ 中子数(N)(质量数在数值上等于其相对原子质量)原子中:原子序数= = =阳离子中:质子数=核电荷数=离子核外电子数+ 离子电荷数阴离子中:质子数=核电荷数=离子核外电子数- 离子电荷数3、电子层划分电子层数: 1 2 3 4 5 6 7符号:;离核距离,能量;离核距离,能量4、核外电子排布规律(一低四不超)(1)核外电子总是尽量先排布在能量低的电子层,然后由里向外从能量的电子层逐步向能量的电子层摆布(即排满K层再排L层,排满L层再排M层)。
(2)各电子层再多容纳的电子数是个(n表示电子层)(3)最外层电子数不超过个(K层是最外层时,最多不超过2 个);次外层电子数不超过个;倒数第三层不超过个。
(4)画出18号、33号、82号、114号的原子结构示意图,并描述其在周期表中的位置:5、概念(1)元素:具有相同的同一类原子的总称,核电荷数决定元素种类。
(2)核素:具有一定和一定的一种原子。
(3)同位素:相同而不同一元素的不同之间的互称。
例:氕()、氘()、氚()(4)同素异形体:同种组成结构不同的不同单质之间的互称。
例:与,与,与等6、粒子半径大小的比较(1)同周期元素的原子或最高价阳离子的半径随着核电荷数的增大而(除稀有气体外)。
例:Na Mg Al Si; Na+Mg2+Al3+(2)同主族元素的原子或离子随核电荷数增大而。
例:Li Na K, Li+Na+K+(3)电子层结构相同(核外电子排布相同)的离子半径(包括阴阳离子)随核电荷数的增加而。
(上一周期元素形成的阴离子与下一周期元素形成的阳离子有此规律)(4)同种元素原子形成的粒子半径大小为:阳离子<中性原子<阴离子;价态越高的粒子半径越小。
例:Fe3+Fe2+Fe; H+H H-(5)电子数和核电荷数都不同的,一般可通过一种参照物进行比较。
高中化学元素周期律知识点总结-CAL-FENGHAI.-(YICAI)-Company One1第一节课时1元素周期表的结构一、元素周期表的发展历程二、现行元素周期表的编排与结构1.原子序数(1)含义:按照元素在元素周期表中的顺序给元素编号,得到原子序数。
(2)原子序数与原子结构的关系原子序数=核电荷数=质子数=核外电子数。
2.元素周期表的编排原则(1)原子核外电子层数目相同的元素,按原子序数递增的顺序从左到右排成横行,称为周期。
(2)原子核外最外层电子数相同的元素,按电子层数递增的顺序由上而下排成纵行,称为族。
3.元素周期表的结构(1)周期(横行)①个数:元素周期表中有7个周期。
②特点:每一周期中元素的电子层数相同。
③分类(3短4长)短周期:包括第一、二、三周期(3短)。
长周期:包括第四、五、六、七周期(4长)。
(2)族(纵行)①个数:元素周期表中有18个纵行,但只有16个族。
②特点:元素周期表中主族元素的族序数等于其最外层电子数。
③分类④常见族的特别名称 第ⅠA 族(除H):碱金属元素;第ⅦA 族:卤族元素;0族:稀有气体元素;ⅣA 族:碳族元素;ⅥA 族:氧族元素。
课时2 元素的性质与原子结构一、碱金属元素——锂(Li)、钠(Na)、钾(K)、铷(Rb)、铯(Cs)、钫(Fr) 1.原子结构(1)相似性:最外层电子数都是__1__。
(2)递变性:Li ―→Cs ,核电荷数增加,电子层数增多,原子半径增大。
2.碱金属单质的物理性质3.碱金属元素单质化学性质的相似性和递变性 (1)相似性(用R 表示碱金属元素)单质R —⎩⎪⎨⎪⎧与非金属单质反应:如Cl 2+2R===2RCl 与水反应:如2R +2H 2O===2ROH +H 2↑与酸溶液反应:如2R +2H +===2R ++H 2↑化合物:最高价氧化物对应水化物的化学式为ROH ,且均呈碱性。
(2)递变性具体表现如下(按从Li→Cs 的顺序)①与O 2的反应越来越剧烈,产物越来越复杂,如Li 与O 2反应只能生成Li 2O ,Na 与O 2反应还可以生成Na 2O 2,而K 与O 2反应能够生成KO 2等。
必修2第二章第二节元素周期律17个知识点归纳1、对原子的4点认识(1)原子是构成物质的三种微粒(分子、原子、离子)之一。
(2)原子是化学变化中的最小微粒。
化学变化就是分子拆开成原子,原子重新组合成分子的过程。
(3)原子是由居于原子中心的带正电的原子核和绕核运动的带负电的核外电子构成。
原子核由质子和中子构成,原子的质量几乎全部集中在原子核上,质量数=质子数+中子数。
(4)原子呈电中性,质子数=核电荷数=原子序数=核外电子数。
离子是带电荷的原子,离子所带电荷=离子的质子数—离子的核外电子数。
2、前20号元素原子结构示意图的4种基本模型用Z表示原子序数,将前20号元素的原子结构示意图归纳成四种基本模型如下:3、同周期主族元素性质的递变规律6条(1)核外电子排布:随着核电荷数增大,内层电子数不变,最外层电子数逐渐增多(除第一周期外,每一周期主族元素的最外层电子数都是从1个增加到7个)。
(2)原子半径:随着核电荷数增大,原子半径逐渐减小。
(3)最高正化合价:随着核电荷数增大,最高正化合价从+1 → +7(氧、氟例外)。
(4)非金属元素的最低负价:随着核电荷数增大,从IVA→VIIA,化合价升高,-4 → -1。
(5)金属性、非金属性:随着核电荷数增大,金属性越来越弱、非金属性越来越强。
(6)元素最高价氧化物对应的水化物的酸碱性:随着核电荷数增大,元素最高价氧化物对应的水化物的碱性越来越弱、酸性越来越强。
4、元素周期律:元素的性质随着原子序数的递增而呈现周期性变化的规律。
5、有关元素周期表的10点认识:(1)元素周期表有多少横行就有多少周期,但是不是有多少列就有多少族。
(2)周期是电子层数相同的元素集合,族是性质相似的元素集合。
(3)族是性质相似的元素集合,所以氦元素排在了0族,而不是IIA。
(4)族是性质相似的元素集合,所以氢元素既可以排在IA也可以排在VIIA(NaH)。
(5)元素种类最少的周期是第一周期,元素种类最多的周期是第六周期(依据现在的元素周期表)。
元素周期律知识点总结1.元素周期律的历史:元素周期表最早由俄罗斯化学家门捷列夫发现,他将已知的元素按照重量递增的顺序进行排列,并注意到一些元素会在一定的重复间隔后再次出现,从而提出了元素周期性的概念。
后来,英国化学家门德里耶夫将元素按照电子结构进行排列,更加完善了元素周期表。
2.元素周期表的结构:元素周期表由横行称为周期,纵列称为族。
周期表中的元素按照原子序数递增排列,每个周期分为两个部分:s区和p区。
s区第一个元素是碱金属,最后一个元素是碱土金属,p区的最后一位元素是卤素。
3.原子序数和原子量:原子序数是元素周期表中每个元素的唯一标识,表示原子核中的质子数量。
原子序数从左到右递增,每增加一个元素,质子数量增加一、原子量是元素中质子和中子的总和,它的单位是原子质量单位(amu)。
4.周期表中的元素周期性:元素周期表的最重要特征之一是元素周期性,即元素性质随着原子序数的增加而周期性变化。
例如,原子半径和离子半径在一个周期内是递减的,而在一个族内则是递增的。
5.元素的分类:元素可以按照性质和位置进行分类。
按性质分类,元素可以分为金属、非金属和半金属。
按位置分类,元素可以分为主族元素、过渡金属和稀土金属。
6.周期表的块:周期表分为s区、p区、d区和f区。
s区包含1A和2A族元素,它们容易失去或共享一个或两个电子成为正离子。
p区包含3A到8A族元素,它们容易获得电子成为负离子。
d区包含过渡金属元素,它们填充在外层d轨道上的电子。
f区包含稀土金属元素,它们填充在内层f轨道上的电子。
7.周期表的周期性规律:周期表中的元素具有许多周期性规律。
其中一些重要的规律包括:-电离能:元素失去一个电子所需的能量。
电离能在周期内是递增的,而在一个族内是递减的。
-电负性:元素吸引和结合电子的能力。
电负性在周期内递增,而在一个族内递减。
-原子半径:元素原子的大小。
原子半径在周期内是递减的,在一个族内是递增的。
-金属性和非金属性:金属元素在左侧,非金属元素在右侧。
元素周期表元素周期律知识点总结元素周期表元素周期律知识点总结一、元素周期表★熟记等式:原子序数=核电荷数=质子数=核外电子数1、元素周期表的编排原则:①按照原子序数递增的顺序从左到右排列;②将电子层数相同的元素排成一个横行——周期;③把最外层电子数相同的元素按电子层数递增的顺序从上到下排成纵行——族2、如何精确表示元素在周期表中的位置:周期序数=电子层数;主族序数=最外层电子数口诀:三短三长一不全;七主七副零八族熟记:三个短周期,第一和第七主族和零族的元素符号和名称3、元素金属性和非金属性判断依据:①元素金属性强弱的判断依据:单质跟水或酸起反应置换出氢的难易;元素最高价氧化物的.水化物——氢氧化物的碱性强弱;置换反应。
②元素非金属性强弱的判断依据:单质与氢气生成气态氢化物的难易及气态氢化物的稳定性;最高价氧化物对应的水化物的酸性强弱;置换反应。
4、核素:具有一定数目的质子和一定数目的中子的一种原子。
①质量数==质子数+中子数:a==z+n②同位素:质子数相同而中子数不同的同一元素的不同原子,互称同位素。
(同一元素的各种同位素物理性质不同,化学性质相同)二、元素周期律1、影响原子半径大小的因素:①电子层数:电子层数越多,原子半径越大(最主要因素)②核电荷数:核电荷数增多,吸引力增大,使原子半径有减小的趋向(次要因素)③核外电子数:电子数增多,增加了相互排斥,使原子半径有增大的倾向2、元素的化合价与最外层电子数的关系:最高正价等于最外层电子数(氟氧元素无正价)负化合价数=8—最外层电子数(金属元素无负化合价)3、同主族、同周期元素的结构、性质递变规律:同主族:从上到下,随电子层数的递增,原子半径增大,核对外层电子吸引能力减弱,失电子能力增强,还原性(金属性)逐渐增强,其离子的氧化性减弱。
同周期:左→右,核电荷数——→逐渐增多,最外层电子数——→逐渐增多原子半径——→逐渐减小,得电子能力——→逐渐增强,失电子能力——→逐渐减弱氧化性——→逐渐增强,还原性——→逐渐减弱,气态氢化物稳定性——→逐渐增强最高价氧化物对应水化物酸性——→逐渐增强,碱性——→逐渐减弱化学键含有离子键的化合物就是离子化合物;只含有共价键的化合物才是共价化合物。
周期律知识点总结一、周期律的基本概念周期律是描述元素周期表中元素性质规律的概念,它最早由门捷列夫在1869年提出,并在之后得到了孟德莱耶夫、莫丹塔夫、门捷列夫等科学家的深入研究和发展。
周期律的基本概念包括元素周期表的构造原则和元素周期性规律。
1. 元素周期表的构造原则元素周期表是按元素的原子序数大小依次排列的一种表格,最早由门捷列夫提出。
元素周期表的构造遵循以下原则:(1) 按原子序数大小排列。
原子序数是元素的重要标识,它代表了元素原子核中质子的数量,也是元素在同一周期内的位置标识。
元素周期表中元素的排列顺序与它们的原子序数大小呈正比,原子序数从左到右逐渐增加。
(2) 周期表的主要构造原则是周期律规则。
元素周期表的构造中,周期律规则是构造的基础原则。
周期律规则包括:周期性规律、元素周期法则、主族元素和次族元素等。
2. 元素周期性规律元素周期性规律是指元素周期表中相邻元素化学性质的变化规律。
周期性规律主要有原子半径周期性规律、电子亲和能周期性规律、离子化能周期性规律和原子量周期性规律。
(1) 原子半径周期性规律。
原子半径是指原子的外层电子云的平均距离,原子半径的大小与原子核电荷数和外层电子数有关。
元素周期表中原子半径随着原子序数的增加而呈现规律性的变化,整体呈现出周期性变化。
(2) 电子亲和能周期性规律。
电子亲和能是指原子或原子离子吸收外层电子形成负离子的能力,电子亲和能的大小与原子核吸引外层电子的能力有关。
元素周期表中电子亲和能也随着原子序数的增加呈现规律性的变化,整体呈现出周期性变化。
(3) 离子化能周期性规律。
离子化能是指原子或原子离子失去一个或多个外层电子形成正离子的能力,离子化能的大小与原子核吸引外层电子的能力有关。
元素周期表中离子化能随着原子序数的增加呈现规律性的变化,整体呈现出周期性变化。
(4) 原子量周期性规律。
原子量是指元素的相对原子质量,原子量的大小与原子核的质子和中子数量有关,元素周期表中原子量也呈现出周期性变化规律。
第一章 物质结构 元素周期律中子N(核素) 原子核质子Z → 元素符号原子结构 : 最外层电子数决定主族元素的决定原子呈电中性电子数(Z 个):化学性质及最高正价和族序数 体积小, 运动速率高(近光速), 无固定轨道核外电子 运动特征电子云(比喻) 小黑点的意义、小黑点密度的意义。
排布规律 → 电子层数 周期序数及原子半径表示方法 → 原子(离子)的电子式、原子结构示意图随着原子序数(核电荷数)的递增: 元素的性质呈现周期性变化:①、原子最外层电子数呈周期性变化元素周期律 ②、原子半径呈周期性变化③、元素主要化合价呈周期性变化④、元素的金属性与非金属性呈周期性变化①、按原子序数递增的顺序从左到右排列; 元素周期律和 排列原则 ②、将电子层数相同的元素排成一个横行; 元素周期表 ③、把最外层电子数相同的元素(个别除外)排成一个纵行。
①、短周期(一、二、三周期) 周期(7个横行) ②、长周期(四、五、六周期) 周期表结构 ③、不完全周期(第七周期) ①、主族(ⅠA ~ⅦA 共7个) 元素周期表 族(18个纵行) ②、副族(ⅠB ~ⅦB 共7个) ③、Ⅷ族(8、9、10纵行) ④、零族(稀有气体)同周期同主族元素性质的递变规律①、核电荷数, 电子层结构, 最外层电子数②、原子半径性质递变 ③、主要化合价④、金属性与非金属性⑤、气态氢化物的稳定性⑥、最高价氧化物的水化物酸碱性决定 编排依据 具体表现形式七主七副零和八三长三短一不全电子层数: 相同条件下, 电子层越多, 半径越大。
判断的依据核电荷数相同条件下, 核电荷数越多, 半径越小。
最外层电子数相同条件下, 最外层电子数越多, 半径越大。
微粒半径的比较 1.同周期元素的原子半径随核电荷数的增大而减小(稀有气体除外)如: Na>Mg>Al>Si>P>S>Cl.2.同主族元素的原子半径随核电荷数的增大而增大。
如: Li<Na<K<Rb<Cs具体规律: 3.同主族元素的离子半径随核电荷数的增大而增大。
第一章 物质结构 元素周期律基础知识回顾
一、原子结构
质子(Z 个)
原子核
注意:
中子(N 个) 质量数(A)=质子数(Z)+中子数(N)
原子序数=核电荷数=质子数=原子的核外电子数
核外电子(Z 个)
★熟背前20号元素,熟悉1~20号元素原子核外电子的排布:
H He Li Be B C N O F Ne Na Mg Al Si P S Cl Ar K Ca 2、原子核外电子的排布规律:
①电子总是尽先排布在能量最低的电子层里; ②各电子层最多容纳的电子数是2n 2;
③最外层电子数不超过8个(K 层为最外层不超过2个),次外层不超过18个,倒数第三层电子数不超过32个。
电子层: 一(能量最低) 二 三 四 五 六 七 对应表示符号: K L M N O P Q 3、元素、核素、同位素
元素:具有相同核电荷数的同一类原子的总称。
核素:具有一定数目的质子和一定数目的中子的一种原子。
同位素:质子数相同而中子数不同的同一元素的不同原子互称为同位素。
(对于原子来说) 二、元素周期表 1、编排原则:
①按原子序数递增的顺序从左到右排列 ②将电子层数相同......的各元素从左到右排成一横行..。
(周期序数=原子的电子层数) ③把最外层电子数相同........的元素按电子层数递增的顺序从上到下排成一纵行..。
主族序数=原子最外层电子数 2、结构特点:
核外电子层数 元素种类
第一周期 1 2种元素
短周期 第二周期 2 8种元素
周期 第三周期 3 8种元素
元 (7个横行) 第四周期 4 18种元素 素 (7个周期) 第五周期 5 18种元素 周 长周期 第六周期 6 32种元素
期 第七周期 7 未填满(已有26种元素) 表 主族:ⅠA ~ⅦA 共7个主族
族 副族:ⅢB ~ⅦB 、ⅠB ~ⅡB ,共7个副族 (18个纵行) 第Ⅷ族:三个纵行,位于ⅦB 和ⅠB 之间 (16个族) 零族:稀有气体 三、元素周期律
1、元素周期律:元素的性质(核外电子排布、原子半径、主要化合价、金属性、非金属性)随着核电荷数的递增而呈周期性变化的规律。
元素性质的周期性变化实质是元素原子核外电子排布的周期性变化...................的必然结果。
1、A Z X
第ⅦA族卤族元素:F Cl Br I At(F是非金属性最强的元素,位于周期表右上方)★判断元素金属性和非金属性强弱的方法:
(1)金属性强(弱):
①单质与水或酸反应生成氢气容易(难);
②氢氧化物碱性强(弱);
③相互置换反应(强制弱)Fe+CuSO4=FeSO4+Cu。
(2)非金属性强(弱):
①单质与氢气易(难)反应;
②生成的氢化物稳定(不稳定);
③最高价氧化物的水化物(含氧酸)酸性强(弱);
④相互置换反应(强制弱)2NaBr+Cl2=2NaCl+Br2。
(1)先比较电子层数,电子层数多的半径大。
(2)电子层数相同时,再比较核电荷数,核电荷数多的半径反而小;
(3)当电子层数和核电荷数都相等时,则看核外电子数,核外电子数多的则半径大。