2019年九年级上册期末专题复习《第一章特殊平行四边形》单元试卷有答案[精]
- 格式:docx
- 大小:167.28 KB
- 文档页数:13
九年级数学上册第一章特殊的平行四边形单元测试题班级:姓名:成绩:一.选择题(共10小题,每小题3分,共30分)1.下列属于菱形性质的是()A.对角线相等 B.对角线互相垂直C.对角互补 D.四个角都是直角2.如图,AC=AD,BC=BD,则正确的结论是()A.AB 垂直平分CD B.CD垂直平分ABC.AB与CD互相垂直平分D.四边形ABCD是菱形3.如图,四边形ABCD的对角线相交于点O,且点O是BD的中点,若AB=AD=5,BD=8,∠ABD=∠CDB,则四边形ABCD的面积为()A.40 B.24 C.20 D.154.如图,O为矩形ABCD的对角线AC的中点,过点O作AC的垂线EF分别交AD、BC于点E、F,连结CE.若该矩形的周长为20,则△CDE的周长为()A.10 B.9 C.8 D.55.如图,在▱ABCD中,对角线AC与BD 交于点O,添加下列条件不能判定▱ABCD为矩形的只有()A.AC=BD B.AB=6,BC=8,AC=10 C.AC⊥BD D.∠1=∠26.如图,在▱ABCD中,对角线AC、BD相交于点O,且OA=OD,∠OAD=55°,则∠OAB的度数为()A.35°B.40°C.45°D.50°7.如图,在正方形ABCD中,分别以点B,C为圆心,BC长为半径画弧,两弧相交于点E,连接AE,BE得到△ABE,则△ABE与正方形ABCD的面积比为()A.1:2 B.1:3 C.1:4 D.8.已知四边形ABCD中,∠A=∠B=∠C=90°,如添加一个条件,使得该四边形成为正方形,那么所添加的这个条件可以是()A.∠D=90°B.AB=CD C.AB=BC D.AC=BD9.如图,在平面直角坐标系中,菱形ABCD的边长为6,它的一边AB在x轴上,且AB的中点是坐标原点,点D在y轴正半轴上,则点C的坐标为()A.(3,3)B.(3,3)C.(6,3)D.(6,3)二.填空题(共8小题,每小题3分,共24分)10.矩形(非正方形)四个内角的平分线围成的四边形是形.(填特殊四边形)11.如图,E是菱形ABCD的对角线BD上一点,过点E作EF⊥BC于点F.若EF =4,则点E到边AB的距离为.12.在菱形ABCD中,AC=12cm,若菱形ABCD的面积是96cm2,则AB=.13.如图,矩形ABCD的对角线AC与BD相交点O,∠AOB=60°,AB=10,E、F 分别为AO、AD的中点,则EF的长是.14.如图,四边形ABCD是正方形,延长AB到点E,使AE=AC,则∠BCE的度数是.15.如图,菱形ABCD的周长是20,对角线AC、BD相交于点O.若BO=3,则菱形ABCD的面积为.16.已知:如图,在长方形ABCD中,AB=2,AD=3.延长BC到点E,使CE=1,连接DE,动点P从点B出发,以每秒2个单位的速度沿BC﹣CD﹣DA向终点A运动,设点P的运动时间为t秒,当t的值为时,△ABP和△DCE全等.17.如图,在正方形ABCD和正方形CEFG中,BC=1,CE=3,点D是CG边上一点,H是AF 的中点,那么CH的长是.三.解答题(共7小题,共66分)18.已知:如图所示,菱形ABCD中,DE⊥AB于点E,且E为AB的中点,已知BD=4,求菱形ABCD的周长和面积.19.如图,已知四边形ABCD是平行四边形,AE⊥BC,AF⊥DC,垂足分别是E,F,并且BE =DF.求证;四边形ABCD是菱形.20.如图,在矩形ABCD中,AE⊥BD于点E,∠DAE=2∠BAE,求∠EAC的度数.21.如图,在四边形ABCD中,AD∥BC,∠D=90°,E为边BC上一点,且EC=AD,连结AC.(1)求证:四边形AECD是矩形;(2)若AC平分∠DAB,AB=5,EC=2,求AE的长,22.如图,在边长12的正方形ABCD中,点E是CD的中点,点F在边AD上,且AF=3DF,连接BE,BF,EF,请判断△BEF的形状,并说明理由.23.如图,正方形ABCD的对角线AC、BD相交于点O,CE∥BD,DE∥AC.(1)求证:四边形OCED是正方形.(2)若AC =,则点E到边AB 的距离为.24.如图,已知四边形ABCD为正方形,AB=4,点E为对角线AC上一动点,连接DE、过点E作EF⊥DE.交BC点F,以DE、EF为邻边作矩形DEFC,连接CG.(1)求证:矩形DEFG是正方形;(2)探究:CE+CG的值是否为定值?若是,请求出这个定值;若不是,请说明理由.参考答案一.选择题1.解:A、菱形的对角线互相垂直,但不一定相等,故原命题错误,不符合题意;B、菱形的对角线互相垂直,故原命题正确,符合题意;C、菱形的对角相等,故原命题错误,不符合题意;D、矩形的四个角都是直角,菱形不一定是,故原命题错误,不符合题意,故选:B.2.解:∵AC=AD,BC=BD,∴AB垂直平分CD,故选:A.3.解:∵AB=AD,点O是BD的中点,∴AC⊥BD,∠BAO=∠DAO,∵∠ABD=∠CDB,∴AB∥CD,∴∠BAC=∠ACD,∴∠DAC=∠ACD,∴AD=CD,∴AB=CD,∴四边形ABCD是菱形,∵AB=5,BO =BD=4,∴AO=3,∴AC=2AO=6,∴四边形ABCD 的面积=×6×8=24,故选:B.4.解:∵O为矩形ABCD的对角线AC的中点,∴AO=OC,∵过点O作AC的垂线EF分别交AD、BC于点E、F,∴AE=CE,∵矩形的周长为20,∴AD+DC=AB+BC=10,∴△CDE的周长为CD+DE+CE=CD+DE+AE=CD+AD=10,故选:A.5.解:A、正确.对角线相等的平行四边形是矩形.B、正确.∵AB=6,BC=8,AC=10,∴AB2+BC2=62+82=102,∴∠ABC=90°,∴平行四边形ABCD为矩形.C、错误.对角线垂直的平行四边形是菱形,D、正确,∵∠1=∠2,∴AO=BO,∴AC=BD,∴平行四边形ABCD是矩形.故选:C.6.解:∵四边形ABCD是平行四边形,∴OA=OC,OB=OD,∵OA=OD,∴AC=BD,∴四边形ABCD是矩形,∴∠DAB=90°,∵∠OAD=55°,∴∠OAB=∠DAB﹣∠OAD=35°故选:A.7.解:过E作EF⊥AB于F,由题意得,△BCE是等边三角形,∴∠EBC=60°,∵四边形ABCD是正方形,∴∠ABC=90°,∴∠ABE=30°,∴EF =BE,设正方形的边长为a,则AB=BE=BC=a,∴EF =a,∴S△ABE =AB•EF =•a a =a,S正方形ABCD=a2,∴△ABE与正方形ABCD的面积比为1:4,故选:C.8.解:由∠A=∠B=∠C=90°可判定四边形ABCD为矩形,因此再添加条件:一组邻边相等,即可判定四边形ABCD为正方形,故选:C.9.解:过点D作BC的垂线,交BC的延长线于F,∵∠ADC=∠ABC=90°,∴∠A+∠BCD=180°,∵∠FCD+∠BCD=180°,∴∠A=∠FCD,又∠AED=∠F=90°,AD=DC,∴△ADE≌△CDF,∴DE=DF,S四边形ABCD=S正方形DEBF=16,∴DE=4.故选:C.10.解:∵四边形ABCD是菱形∴AB=AD=CD=6,AB∥CD∵AB的中点是坐标原点,∴AO=BO=3,∴DO ==3∴点C坐标(6,3)故选:D.二.填空题11.解:∵AF,BE是矩形的内角平分线.∴∠ABF=∠BAF﹣90°.故∠1=∠2=90°.同理可证四边形GMON四个内角都是90°,则四边形GMON为矩形.又∵有矩形ABCD且AF、BE、DK、CJ为矩形ABCD四角的平分线,∴有等腰直角△DOC,等腰直角△AMD,等腰直角△BNC,AD=BC.∴OD=OC,△AMD≌△BNC,∴NC=DM,∴NC﹣OC=DM﹣OD,即OM=ON,∴矩形GMON为正方形,故答案为:正方.12.解:∵四边形ABCD为菱形,∴BD平分∠ABC,∵E为BD上的一点,EF=4,∴点E到AB的距离=EF=4,故答案为:4.13.解:如图,∵四边形ABCD是菱形∴AO=CO=6cm,BO=DO,AC⊥BD ∵S菱形ABCD =×AC×BD=96∴BD=16cm∴BO=DO=8cm∴AB ==10cm故答案为:10cm14.解:∵四边形ABCD是矩形,∴AO=OC,DO=BO,AC=BD,∴DO=CO=AO=BO,∵∠AOB=60°,∴△AOB是等边三角形,∵AB=10,∴AO=OB=DO=10,∵E、F分别为AO、AD的中点,∴EF =DO ==5,故答案为:5.15.解:∵四边形ABCD是正方形,∴∠CAE=45°=∠ACB.∵AE=AC,∴∠ACE=(180°﹣45°)÷2=67.5°.∴∠BCE=∠ACE﹣∠ACB=67.5°﹣45°=22.5°.故答案为22.5°.16.解:∵菱形ABCD的周长是20,∴AB=5,AC⊥BD,AO=CO,BO=DO=3,∴AO ==4∴AC=8,BD=6∴菱形ABCD 的面积=AC×BD=24,故答案为:2417.解:因为AB=CD,若∠ABP=∠DCE=90°,BP=CE=1,根据SAS证得△ABP≌△DCE,由题意得:BP=2t=1,所以t=0.5,因为AB=CD,若∠BAP=∠DCE=90°,AP=CE=1,根据SAS证得△BAP≌△DCE,由题意得:AP=8﹣2t=1,解得t=3.5.所以,当t的值为0.5或3.5秒时.△ABP和△DCE全等.故答案为:0.5秒或3.5秒.18.解:∵四边形ABCD和四边形CEFG都是正方形,∴∠ACD=45°,∠FCG=45°,AC =BC =,CF =CE=3,∴∠ACF=45°+45°=90°,在Rt△ACF中,由勾股定理得:AF ===2,∵H是AF的中点,∴CH =AF =.故答案为:.三.解答题19.解:∵DE⊥AB于E,且E为AB的中点,∴AD=BD,∵四边形ABCD是菱形,∴AD=BA,∴AB=AD=BD,∴△ABD是等边三角形,∴∠DAB=60°;∵BD=4,∴DO=2,AD=4,∴AO ==2,∴AC=4;∴AB ===4,∴菱形ABCD的周长为4×4=16;菱形ABCD 的面积为:BD•AC =×4×4=8.20.证明:∵四边形ABCD是平行四边形,∴∠B=∠D,∵AE⊥BC,AF⊥DC∴∠AEB=∠AFD=90°.又∵BE=DF,∴△ABE≌△ADF(AAS)∴DA=AB,∴平行四边形ABCD是菱形.21.解:∵四边形ABCD是矩形,∴AC=BD,AO=OC,OD=OB,∠BAD=90°,∴OA=OB,∵∠BAD=90°,∠DAE=2∠BAE,∴∠BAE=30°,∵AE⊥BD,∴∠AEB=90°,∴∠ABO=90°﹣30°=60°,∵OA=OB,∴△OAB是等边三角形,∴∠BAO=60°,∴∠EAC=∠BAO﹣∠BAE=60°﹣30°=30°.22.解:(1)证明:∵AD∥BC,EC=AD,∴四边形AECD是平行四边形.又∵∠D=90°,∴四边形AECD是矩形.(2)∵AC平分∠DAB.∴∠BAC=∠DAC.∵AD∥BC,∴∠DAC=∠ACB.∴∠BAC=∠ACB.∴BA=BC=5.∵EC=2,∴BE=3.∴在Rt△ABE中,AE ===4.23.解:△BEF是直角三角形,理由如下:∵四边形ABCD是正方形,∴∠A=∠C=∠D=90°.∵点E是CD的中点,∴DE=CE =CD=6.∵AF=3DF,∴DF =AD=3.∴AF=3DF=9.在Rt△ABF中,由勾股定理可得BF2=AB2+AF2=144+81=225,在Rt△BCE中,由勾股定理可得BE2=CB2+CE2=144+36=180,在Rt△DEF中,由勾股定理可得EF2=DF2+DE2=9+36=45,∵BE2+EF2=180+45=225,BF2=225,∴BE2+EF2=BF2.∴△BEF是直角三角形.24.(1)证明:∵CE∥BD,DE∥AC,∴四边形OCED是平行四边形,在正方形ABCD中,AC⊥BD,OD=OC,∴∠COD=90°,∴四边形OCED是正方形.(2)解:如图,连接EO并延长,交AB于G,交CD于H,由(1)知:四边形OCED是正方形,∴CD⊥OE,∵四边形ABCD是正方形,∴AB∥CD,∴EG⊥AB,∵AC =,∴AB=BC=1=GH,Rt△DCE中,∵DE=CE,EH⊥CD,∴DH=CH,∴EH =CD=0.5,∴EG=1+0.5=1.5,∴点E到边AB的距离为1.5;故答案为:1.5.25.解:(1)如图所示,过E作EM⊥BC于M点,过E作EN⊥CD于N点,∵正方形ABCD,∴∠BCD=90°,∠ECN=45°,∴∠EMC=∠ENC=∠BCD=90°,且NE=NC,∴四边形EMCN为正方形,∵四边形DEFG是矩形,∴EM=EN,∠DEN+∠NEF=∠MEF+∠NEF=90°,∴∠DEN=∠MEF,又∠DNE=∠FME=90°,在△DEN和△FEM中,,∴△DEN≌△FEM(ASA),∴ED=EF,∴矩形DEFG为正方形,(2)CE+CG的值为定值,理由如下:∵矩形DEFG为正方形,∴DE=DG,∠EDC+∠CDG=90°,∵四边形ABCD是正方形,∵AD=DC,∠ADE+∠EDC=90°,∴∠ADE=∠CDG,在△ADE和△CDG中,,∴△ADE≌△CDG(SAS),∴AE=CG,∴AC=AE+CE=AB=×4=8,∴CE+CG=8是定值.。
期末复习:北师大版九年级数学上册第一章特殊平行四边形单元检测试卷一、单选题(共10题;共30分)1.对角线互相平分且相等的四边形是()A. 菱形;B. 矩形;C. 正方形;D. 等腰梯形.2.下列判断错误的是()A. 两组对边分别平行的四边形是平行四边形B. 四个内角都相等的四边形是矩形C. 四条边都相等的四边形是菱形D. 两条对角线垂直且平分的四边形是正方形3.在正方形ABCD中,AB=12cm,对角线AC、BD相交于O,则△ABO的周长是()A. 12+12√2B. 12+6√2C. 12+√2D. 24+6√24.如图,在菱形ABCD中,E是AC的中点,EF∥CB,交AB于点F,如果EF=3,那么菱形ABCD的周长为()A. 24B. 18C. 12D. 95.如图,正方形ABCD的面积是()A. 5B. 25C. 7D. 106.如图所示,正方形ABCD的对角线相交于点O,点E是BC上任意一点,EG⊥BD于G,EF⊥AC于F,若AC=10,则EG+EF的值为()A. 10B. 4C. 8D. 57.如图,已知▱ABCD的四个内角的平分线分别相交于点E、F、G、H,连接AC,若EF=2,FG=GC=5,则AC的长是()A. 12B. 13C. 6√5D. 8√38.如图,在矩形ABCD中,∠ADC的平分线与AB交于E,点F在DE的延长线上,∠BFE=90°,连接AF、CF,CF与AB交于G.有以下结论:①AE=BC②AF=CF③BF2=FG•FC④EG•AE=BG•AB其中正确的个数是()A. 1B. 2C. 3D. 49.正方形ABCD的边长AB=2,E为AB的中点,F为BC的中点,AF分别与DE、BD相交于点M、N,则MN的长为()A. 5√56B. 2√53−1 C. 4√515D. √3310.如图矩形ABCD中,折叠矩形一边AD,使点D落在BC边的点F处,已知折痕AE=10√5cm,且CE:CF=3:4,则矩形ABCD的周长为()A. 36cmB. 36√5cmC. 72cmD. 72√5cm二、填空题(共10题;共30分)11.已知菱形的周长为40cm,两条对角线之比3:4,则菱形面积为________cm2.12.如图,菱形ABCD的边长为6,∠ABC=60°,则对角线AC的长是________.13.如图,在四边形ABCD中,AB=BC=CD=DA ,对角线AC与BD相交于点O ,若不增加任何字母与辅助线,要使四边形ABCD是正方形,则还需增加一个条件是________14.在平面直角坐标系中,四边形OABC是边长为2的正方形,顶点A,C分别在x、y轴的正半轴上,以OA为边长作一等边ΔOAD,顶点D在正方形内部,连接CD并延长CD交边AB于点P,则点P的坐标为________ .15.菱形的两条对角线长分别为16和12,则菱形的周长为________.16.如图,由四个直角边分别为5和4的全等直角三角形拼成“赵爽弦图”,其中阴影部分面积为________.17我们把平面内与四边形各边端点构成的三角形都是等腰三角形的点叫做这个四边形的腰点(如矩形的对角线交点是矩形的一个腰点),则正方形的腰点共有________ 个.18.如图,将正方形OEFG放在平面直角坐标系中,O是坐标原点,点E的坐标为(2,3),则点F的坐标为________.19.如图,在矩形ABCD中,AD=6,AB=4,点E、G、H、F分别在AB、BC、CD、AD上,且AF=CG=2,BE=DH=1,点P是直线EF、GH之间任意一点,连结PE、PF、PG、PH,则△PEF和△PGH的面积和等于________.20.如图,在正方形ABCD中,AB=2cm,对角线AC、BD交于点O,点E以一定的速度从A向B移动,点F 以相同的速度从B向C移动,连结OE、OF、EF.则线段EF的最小值是________cm.三、解答题(共8题;共60分)21.如图,在矩形ABCD中,过点B作BE∥AC交DA的延长线于E,求证:BE=BD.22.如图,矩形ABCD中,AC与BD相交于点O.若AO=3,∠OBC=30°,求矩形的周长和面积.23.如图,在△ABC中,AB=AC,D为BC中点,四边形ABDE是平行四边形,求证:四边形ADCE是矩形.24.如图,将一张直角三角形ABC纸片沿斜边AB上的中线CD剪开,得到△ACD,再将△ACD沿DB方向平移到△A′C′D′的位置,若平移开始后点D′未到达点B时,A′C′交CD于E,D′C′交CB于点F,连接EF,当四边形EDD′F为菱形时,试探究△A′DE的形状,并判断△A′DE与△EFC′是否全等?请说明理由.25.如图,过正方形ABCD的顶点B作直线l,过点A,C作直线l的垂线,垂足分别为E,F,直线AE交CD 于点G.(1)求证:△ABE≌△BCF;(2)若∠CBF=65°,求∠AGC的度数.26.如图,已知E、F分别是□ABCD的边BC、AD上的点,且BE=DF.(1)求证:四边形AECF是平行四边形;(2)若BC=10,∠BAC=90º,且四边形AECF是菱形,求BE的长.27.如图,矩形ABCD中,AB=8,AD=6,点E、F分别在边CD、AB上.(1)若DE=BF,求证:四边形AFCE是平行四边形;(2)若四边形AFCE是菱形,求菱形AFCE的周长.28.在正方形ABCD中,点M是射线BC上一点,点N是CD延长线上一点,且BM=DN.直线BD与MN相交于E.(1)如图1,当点M在BC上时,求证:BD-2DE=√2BM;(2)如图2,当点M在BC延长线上时,BD、DE、BM之间满足的关系式是什么?;(3)在(2)的条件下,连接BN交AD于点F,连接MF交BD于点G.若DE=√2,且AF:FD=1:2时,求线段DG的长.答案解析部分一、单选题1.【答案】B【考点】菱形的判定,矩形的判定,正方形的判定,等腰梯形的判定【解析】【分析】根据对角线互相平分得出平行四边形,再加上对角线相等即可得出矩形.【解答】∵OA=OC,OB=OD,∴四边形ABCD是平行四边形,∵AC=BD,∴平行四边形ABCD是矩形.故选B.【点评】本题考查了矩形和平行四边形的判定,主要考查学生的推理能力,题目比较好,难度不大.2.【答案】D【考点】平行四边形的判定,菱形的判定,矩形的判定,正方形的判定【解析】【解答】A. 两组对边分别平行的四边形是平行四边形,不符合题意;B. 四个内角都相等的四边形是矩形,根据四边形内角和是360度可得每一个内角都为90度,所以是矩形,不符合题意;C. 四条边都相等的四边形是菱形,不符合题意;D. 两条对角线垂直且平分的四边形是正方形,错误,根据条件只能判断出是菱形,符合题意;故答案为:D.【分析】(1)平行四边形的定义:两组对边分别平行的四边形是平行四边形;(2)如果四边形的四个内角都相等,根据四边形内角和是360度可得每一个内角都为90度,根据矩形的判定可得四边形是矩形;(3)根据菱形的判定定理可得:四条边都相等的四边形是菱形;(4)对角线垂直平分且相等的四边形是正方形。
2019 初三数学中考总复习 特殊的平行四边形 专题复习练习1.下列命题中,真命题是( C )A .对角线相等的四边形是矩形B .对角线互相垂直的四边形是菱形C .对角线互相平分的四边形是平行四边形D .对角线互相垂直平分的四边形是正方形2.如图,四边形ABCD 是菱形,AC =8,DB =6,DH ⊥AB 于点H ,则DH 等于( A )A.245B.125C .5D .4 3.如图,四边形ABCD 为平行四边形,延长AD 到E ,使DE =AD ,连接EB ,EC ,DB ,添加一个条件,不能使四边形DBCE 成为矩形的是( B )A .AB =BE B .BE ⊥DC C .∠ADB =90°D .CE ⊥DE4.如图,四边形ABCD 和四边形BEFD 都是矩形,且点C 恰好在EF 上.若AB =1,AD =2,则S △BCE 为( D )A .1 B.255 C.23 D.455.如图,在矩形ABCD 中(AD >AB),点E 是BC 上一点,且DE =DA ,AF ⊥DE ,垂足为点F ,在下列结论中,不一定正确的是( B )A .△AFD ≌△DCEB .AF =12AD C .AB =AF D .BE =AD -DF 6.如图,E 是边长为1的正方形ABCD 的对角线BD 上一点,且BE =BC ,P 为CE 上任意一点,PQ ⊥BC 于点Q ,PR ⊥BE 于点R ,则PQ +PR 的值是( D )A.23B.12C.32D.227.如图,菱形ABCD 的边长为2,∠ABC =45°,则点D 的坐标为.8.如图,在正方形ABCD 外作等腰直角△CDE,DE =CE ,连接BE ,则tan ∠EBC=__13__. 9.将矩形纸片ABCD 按如图所示的方式折叠,得到菱形AECF.若AB =3,则BC的长为.10.如图,在矩形ABCD 中,点E 、F 分别在边CD ,BC 上,且DC =3DE =3a.将矩形沿直线EF 折叠,使点C 恰好落在AD 边上的点P 处,则FP =.11.如图,A ,B ,C 三点在同一条直线上,AB =2BC ,分别以AB ,BC 为边做正方形ABEF 和正方形BCMN ,连接FN ,EC.求证:FN =EC.证明:在正方形ABEF 和正方形BCMN 中,AB =BE =EF ,BC =BN ,∠FEN =∠EBC=90°,∵AB =2BC ,即BC =BN =12AB ,∴BN =12BE ,即N 为BE 的中点,∴EN =NB =BC ,∴△FEN ≌△EBC(SAS),∴FN =EC12.如图,在菱形ABCD 中,对角线AC 与BD 相交于点O ,MN 过点O 且与边AD ,BC 分别交于点M 和点N.(1)请你判断OM 和ON 的数量关系,并说明理由;(2)过点D 作DE∥AC 交BC 的延长线于点E ,当AB =6,AC =8时,求△BDE 的周长.解:(1)∵四边形ABCD 是菱形,∴AD ∥BC ,AO =OC ,∴OM ON =AO OC=1,∴OM =ON (2)∵四边形ABCD 是菱形,∴AC ⊥BD ,AD =BC =AB =6,∴BO =AB 2-AO 2=62-(8÷2)2=25,∴BD =2BO =2×25=45,∵DE ∥AC ,AD ∥CE ,∴四边形ACED 是平行四边形,∴DE =AC =8,∴△BDE 的周长是:BD +DE +BE =BD +AC +(BC +CE)=45+8+(6+6)=20+45,即△BDE 的周长是20+4 513.如图1,四边形ABCD 是正方形,M 是BC 边上的一点,E 是CD 边的中点,AE 平分∠DAM.(1)证明:AM =AD +MC ;(2)AM =DE +BM 是否成立?若成立,请给出证明;若不成立,请说明理由;(3)若四边形ABCD 是长与宽不相等的矩形,其他条件不变,如图2,探究展示(1)、(2)中的结论是否成立?请分别作出判断,不需要证明.解:(1)过点E 作EF⊥AM 交AM 于F 点,连接EM ,由角平分线性质易得AD =AF ,EF =DE =EC ,由HL 易证△EFM≌△ECM,所以FM =MC ,AM =AF +FM =AD +MC(2)AM =DE +BM 成立,证明:将△ADE 绕点A 顺时针旋转90°,得到新△ABF,∴BF =DE ,∠F =∠AED.∵AB∥DC,∴∠AED =∠BAE.∵∠FAB=∠EAD=∠EAM,∴∠AED =∠BAE=∠BAM+∠EAM=∠BAM+∠FAB=∠FAM.∴∠F=∠FAM.∴AM =FM.∴AM=FB +BM =DE +BM(3)①结论AM =AD +MC 仍然成立.②结论AM =DE +BM 不成立14. 如图,正方形ABCD 的对角线AC ,BD 相交于点O ,延长CB 至点F ,使CF =CA ,连接AF ,∠ACF 的平分线分别交AF ,AB ,BD 于点E ,N ,M ,连接EO.(1)已知EO =2,求正方形ABCD 的边长;(2)猜想线段EM 与CN 的数量关系并加以证明.解:(1) ∵四边形ABCD 是正方形,∴CA =2BC 2=2BC ,∵CF =CA ,CE 是∠ACF 的角平分线,∴E 是AF 的中点,∵E ,O 分别是AF ,AC 的中点,∴EO ∥BC ,且EO =12CF ,∴△EOM ∽△CBM ,∴EO CB =EM CM,∵CF =CA =2CB , ∴EO CB =12×2CB CB =22,∵EO =2,∴BC =2,∴正方形ABCD 的边长为2(2) EM =12CN.证明:∵CF =CA ,CE 是∠ACF 的平分线,∴CE ⊥AF , ∴∠AEN =∠CBN =90°,∵∠ANE =∠CNB ,∴∠BAF =∠BCN ,在△ABF 和△CBN 中,⎩⎪⎨⎪⎧∠BAF =∠BCN ,∠ABF =∠CBN =90°,AB =BC ,∴△ABF ≌△CBN(AAS ),∴AF =CN ,∵∠BAF =∠BCN ,∠ACN =∠BCN ,∴∠BAF =∠OCM , ∵四边形ABCD 是正方形,∴AC ⊥BD ,∴∠ABF =∠COM =90°,∴△ABF ∽△COM ,∴CM AF =OC AB ,∴CM CN =OC AB =22,即CM =22CN , 由(1)知EO CB =EM CM =22,∴EM =22CM =22×22CN =12CN。
北师大九年级数学上册第一章特殊平行四边形单元检测试卷考试总分: 120 分考试时间: 120 分钟学校:__________ 班级:__________ 姓名:__________ 考号:__________一、选择题(共 8 小题,每小题 3 分,共 24 分)1.如图,在菱形ABCD中,不一定成立的是()A.四边形ABCD是平行四边形B.AC⊥BDC.△ABD是等边三角形D.∠CAB=∠CAD2.如图,在矩形ABCD中,边AB的长为3,点E、F,分别在AD,BC上,连接BE,DF,EF,BD,若四边形BEDF是菱形,且EF=AE+FC,则边BC的长为()A.2√3B.92√3 C.6√3 D.3√33.四边形ABCD的对角线相交于点O,能判定它是正方形的条件是()A.AB=BC=CD=DAB.AO=CO,BO=DO,AC⊥BDC.AC=BD,AC⊥BD且AC、BD互相平分D.AB=BC,CD=DA4.已知菱形的两条对角线长分别是4和8,则菱形的面积是()A.32B.64C.16D.325.△ABC中,∠C=90∘,点O为△ABC三条角平分线的交点,OD⊥BC于D,OE⊥AC于E,OF⊥AB于F,且AB=10cm,BC=8cm,AC=6cm,则点O到三边AB、AC、BC的距离为()A.2cm,2cm,2cmB.3cm,3cm,3cmC.4cm,4cm,4cmD.2cm,3cm,5cm6.下列说法:①矩形是轴对称图形,两条对角线所在的直线是它的对称轴;②两条对角线相等的四边形是矩形;③有两个角相等的平行四边形是矩形;④两条对角线相等且互相平分的四边形是矩形;⑤两条对角线互相垂直平分的四边形是矩形.其中,正确的有()A.1个B.2个C.3个D.4个7.如图,菱形纸片ABCD中,∠A=60∘,折叠菱形纸片ABCD,使点C落在DP(P为AB中点)所在的直线上,得到经过点D的折痕DE.则∠DEC的大小为()A.78∘B.75∘C.60∘D.45∘8.下列命题中正确的是()A.对角线相等的四边形是平行四边形B.对角线互相垂直的平行四边形是矩形C.对角线相等的平行四边形是菱形D.对角线相等的菱形是正方形二、填空题(共 12 小题,每小题 3 分,共 36 分)9.在平行四边形ABCD中,∠A=90∘,AB=7cm,AD=6cm,则S▫ABCD=________.10.如图,在△ABC中,∠ACB=90∘,CD为AB边上的中线,过点A作AE⊥CD 于点E,过点B作CD平行线,交AE的延长线于点F,在延长线上截得FG=CD,连结CG、DF.若BG=11,AF=8,则四边形CGFD的面积等于________.11.矩形的两条对角线的夹角为60∘,较短的一边长为4cm,则较长的一边为________cm.12.如图是根据四边形的不稳定性制作的可活动的衣架,图中每个菱形的边长为16cm,若墙上相邻的两个钉子AB之间的距离为16√3cm,则∠α=________.13.如图,矩形ABCD和矩形AEFC的面积分别为S1,S2,当点B在EF边上时,则S1与S2之间的数量关系为:________.14.如图,在ABCD中,AC⊥BD于O.若不增加任何字母与辅助线,要使得四边形ABCD是正方形,则还需增加的一个条件是________.15.如图所示,在四边形ABCD中,AB // CD,且AB=CD,对角线AC和BD相交于O,若不增加任何字母与辅助线,要使四边形ABCD为矩形,则还需增加一个条件是________.16.如图,矩形ABCD中,AB=3,B C=4,P是边AD上的动点,PE丄AC于点E,PF丄BD于点F,则PE+PF的值为________.17.如图,在矩形ABCD中,AB=2,AD=6,E.F分别是线段AD,BC上的点,连接EF,使四边形ABFE为正方形,若点G是AD上的动点,连接FG,将矩形沿FG折叠使得点C落在正方形ABFE的对角线所在的直线上,对应点为P,则线段AP的长为________.18.若菱形的周长为20,有一个内角为60∘,则两条对角线的长分别为________、________.19.如图,在Rt△ABC中,∠BAC=90∘,AB=3,AC=4,点P为BC边上一动点,PE⊥AB于点E,PF⊥AC于点F,连结EF,点M为EF的中点,则AM的最小值为________.20.如图,以菱形ABCD各边的中点为顶点作四边形A1B1C1D1,再以A1B1C1D1各边的中点为顶点作四边形A2B2C2D2,…,如此下去,得到四边形A2011B2011C2011D2011,若ABCD对角线长分别为a和b,请用含a、b的代数式表示四边形A2011B2011C2011D2011的周长________.三、解答题(共 6 小题,每小题 10 分,共 60 分)21.在△ABC中,AB=AC,∠BAC的平分线交BC于点D,过点B作BE // AD交∠BAF的平分线于点E.(1)求证:四边形ADBE是矩形;(2)当∠BAC满足什么条件时,四边形ADBE是正方形.22.如图,四边形ABCD是菱形,对角线AC与BD相交于点O,AC=24,BD= 10,求菱形ABCD的周长.23.如图,正方形ABCD中,E是对角线BD上一点,过E点作矩形EFCG,其中点F在BC上,点G在DC上.(1)求∠DBC的度数;(2)试说明EG=DG,EF=BF;(3)若正方形的面积为25cm2,求矩形EFCG的周长.24.如图,已知菱形ABCD,AB=AC,E、F分别是BC、AD的中点,连接AE、CF.(1)求证:四边形AECF是矩形;(2)若AB=6,求菱形的面积.25.如图,在△ABC中,D、E分别是AB、AC的中点,过点E作EF // AB,交BC 于点F.(1)判断四边形DBFE的形状,并说明理由;(2)试探究当△ABC满足什么条件时,四边形DBEF是菱形?为什么?26.如图所示,在Rt△ABC中,∠ABC=90∘,将Rt△ABC绕点C按顺时针方向旋转60∘得到△DEC,点E在AC上,再将Rt△ABC沿着AB所在的直线翻转180∘得到△ABF.且使C、B、F三点在一条直线上,连接AD.(1)求证:四边形AFCD是菱形;(2)连接BE并延长交AD于G,连接CG,请问:四边形ABCG是什么特殊平行四边形?为什么?答案1.C2.D3.C4.C5.A6.A7.B8.D9.42cm210.2011.4√312.120∘13.S1=S214.AC=BD等(答案不唯一)15.∠A=90∘或AC=BD16.12517.4或4−2√218.5√3519.6520.a+b2100421.(1)证明:∵AB=AC,AD平分∠BAC,∠BAC,AD⊥BC,∴∠BAD=12∵AE是△ABC的外角平分线,∠BAF,∴∠BAE=12∵∠BAC+∠BAF=180∘,∴∠BAD+∠BAE=90∘,即∠DAE=90∘,∴AD⊥AE,∵AD⊥BC,∴AE // BC,又∵BE // AD,∠DAE=90∘,∴四边形ADBE是矩形;(2)解:当∠BAC=90∘时,四边形ADBE是正方形.理由如下:∵AB=AC,AD平分∠BAC,∠BAC=90∘,∴∠ABC=∠C=∠BAD=∠CAD=45∘,∴AD=BD,又∵四边形ADBE是矩形,∴矩形ADBE为正方形.22.解:∵四边形ABCD是菱形,AC=24,BD=10∴AC⊥BD,OA=12AC=12,OD=12BD=5,∴AD=√OA2+OD2=√122+52=13,∴菱形ABCD的周长是:13×4=52.23.解:(1)∵四边形ABCD是正方形,BD为对角线,∴∠DBC=45∘;(2)∵四边形ABCD是正方形,∴∠DBC=45∘,∵四边形EFGH是矩形,∴EG // BC,EF // CD,∴∠DEG=45∘,∠BFE=∠DGE=90∘,∴△DEG与△EBF是等腰直角三角形,∴EG=DG,EF=BF;(3)∵正方形的面积为25cm2,∴DC=5cm,∵由(1)知EG=DG,EF=BF,∴EG+CG=DC=5cm,∴矩形EFCG的周长=2DC=10cm.24.(1)证明:∵四边形ABCD是菱形,∴AB=BC,又∵AB=AC,∴△ABC是等边三角形,∵E是BC的中点,∴AE⊥BC(等腰三角形三线合一),∴∠AEC=90∘,∵E、F分别是BC、AD的中点,∴AF=12AD,EC=12BC,∵四边形ABCD是菱形,∴AD // BC且AD=BC,∴AF // EC且AF=EC,∴四边形AECF是平行四边形(一组对边平行且相等的四边形是平行四边形),又∵∠AEC=90∘,∴四边形AECF是矩形(有一个角是直角的平行四边形是矩形);(2)解:在Rt△ABE中,AE=√62−32=3√3,所以,S菱形ABCD=8×3√3=24√3.25.解:(1)四边形DBFE是平行四边形,理由是:∵D、E分别是AB、AC的中点,∴DE // BF,∵EF // AB,∴四边形DBFE是平行四边形;(2)AB=BC,理由是:∵D、E分别是AB、AC的中点,BC,∴DE=12∵E为AC的中点,EF // AB,∴BF=CF,AB,∴EF=12∵AC=BC,∴DE=EF,∵四边形DBFE是平行四边形,∴四边形DBFE是菱形,即当AB=BC时,四边形DBFE是菱形.26.(1)由旋转60∘得到AC=DC,∠ACB=∠ACD=60∘,△ACD是等边三角形∴AD=DC=AC,又∵Rt△ABC沿着AB所在的直线翻转180∘,易证△AFC是等边三角形,∴AD=DC=FC=AF∴四边形AFCD是菱形(2)四边形ABCG是矩形由(1)知△ACD是等边三角形,DE⊥AC于E∴AE=EC,易证△AEG≅△CEB∴AG=BC∴四边形ABCG是平行四边形,且∠ABC=90∘∴平行四边形ABCG是矩形.。
【新北师大版九年级数学(上)单元测试卷】第一章《特殊平行四边形》(含答案与解析)班级:___________ 姓名:___________ 得分:___________一.选择题:(每小题3分,共36分)1. 已知下列命题:①矩形是轴对称图形,且有两条对称轴;②两条对角线相等的四边形是矩形;③有两个角相等的平行四边形是矩形;④两条对角线相等且互相平分的四边形是矩形.其中正确的有()A. 4个B. 3个C. 2个D. 1个2. 如图,将△ABC沿BC方向平移得到△DCE,连接AD,下列条件能够判定四边形ACED为菱形的是()A. AB=BCB. AC=BCC. ∠B=60°D. ∠ACB=60°3.菱形的对角线长分别为3和4,则该菱形的面积是A. 6B. 8C. 12D. 244. 已知四边形ABCD中,分别是的中点,则四边形EFGH是A. 菱形B. 矩形C. 正方形D. 梯形5.在四边形ABCD中,O是对角线的交点,能判定这个四边形为正方形的是()A. AD∥BC,∠B=∠DB. AC=BD,AB=CD,AD=BCC. OA=OC,OB=OD,AB=BCD. OA=OB=OC=OD,AC⊥BD6. 正方形具有而矩形不一定有的性质是()A. 对角线相等且互相平分B. 对角线互相垂直且平分每一组对角C. 每一内角均为直角D. 对边平行且相等7. 平行四边形ABCD是正方形需增加的条件是()A. 邻边相等B. 邻角相等8.如图,在矩形ABCD中,,则BD的长为A. 5B. 10C. 12D. 139.若一个菱形的两条对角线长分别是5cm和10cm,则与该菱形面积相等的正方形的边长是A. 6cmB. 5cmC.D.10.如图,把矩形ABCD沿EF翻折,点B恰好落在AD边上的点B′处,若AE=2,DE=6,∠EFB=60°,则矩形ABCD的面积是()A. 12B. 24C. 12D. 1611.如图,正方形ABCD中,E,F分别为AB,CD的中点,连接DE,BF,CE,AF,正方形ABCD的面积为1,则阴影部分的面积为()A. B. C. D.12.如图,正方形ABCD的边长为4,点E在对角线BD上,且∠BAE=22.5°,EF⊥AB,垂足为点F,则EF的长为()A. 1B.C. 4-2D. 3-4二.填空题:(每小题3分共12分)13.正方形的一条边长是4,则它的对角线长是_________.15.矩形的对角线相交构成的钝角为120°,短边等于5cm,则对角线的长为__________.16.如图,E为正方形ABCD边BC延长线上一点,且CE=BD,AE交DC于F,则∠AFC=_________.三.解答题:(共52分)17.如图,在四边形ABCD中,∠ABC=∠ADC=90°,点P是AC的中点.求证:∠BDP=∠DBP.18.已知:菱形ABCD中,对角线于点E,求菱形ABCD的面积和BE的长.于点F,且,连接BF.证明:;当满足什么条件时,四边形AFBD是矩形?并说明理由.20.已知中对角线AC的垂直平分线交AD于点F,交BC于点E.求证:四边形AECF是菱形.证明:∵EF是AC的垂直平分线(已知)∴四边形AECF是不正确⑴你能找出小明错误的原因吗?请你指出来.⑵请你给出本题的证明过程.21.如图,在菱形ABCD中,F是BC上任意一点,连接AF交对角线BD于点E,连接EC.(2)当∠ABC=60°,∠CEF=60°时,点F在线段BC上的什么位置?说明理由.22. 如图,已知四边形ABCD是平行四边形,DE⊥AB,DF⊥BC,垂足分别是点E,F,并且DE=DF.求证:(1)△ADE≌△CDF;(2)四边形ABCD是菱形.23.如图,F是正方形ABCD的边BC的中点,CG平分∠DCM,交过F点AF的垂线FG于G,求证:AF=FG.一.选择题:(每小题3分,共36分)1. 已知下列命题:①矩形是轴对称图形,且有两条对称轴;②两条对角线相等的四边形是矩形;③有两个角相等的平行四边形是矩形;④两条对角线相等且互相平分的四边形是矩形.其中正确的有()A. 4个B. 3个C. 2个D. 1个【答案】C【解析】①正确.②等腰梯形是对角线相等,错误.③菱形也两个角相等,错误.④正确.所以选C.2. 如图,将△ABC沿BC方向平移得到△DCE,连接AD,下列条件能够判定四边形ACED为菱形的是()A. AB=BCB. AC=BCC. ∠B=60°D. ∠ACB=60°【答案】B【解析】试题分析:∵将△ABC沿BC方向平移得到△DCE,∴AB CD,∴四边形ABCD为平行四边形,当AC=BC时,平行四边形ACED是菱形.故选B.3.菱形的对角线长分别为3和4,则该菱形的面积是A. 6B. 8C. 12D. 24【答案】A【解析】∵菱形的两条对角线长分别为3和4,∴S菱形=.故选A.4. 已知四边形ABCD中,分别是的中点,则四边形EFGH是A. 菱形B. 矩形C. 正方形D. 梯形【答案】B【解析】如图,∵E、F、G、H分别是AB、BC、CD、DA的中点,∴EF∥AC,HG∥AC,∴EF∥AC,∴四边形EFGH是平行四边形,∵EF∥AC,AC⊥BD,∴EF⊥BD,∵HE∥BD,∴EF⊥HE,∴∠HEF=90°,∴平行四边形EFGH是矩形.故选B.5.在四边形ABCD中,O是对角线的交点,能判定这个四边形为正方形的是()A. AD∥BC,∠B=∠DB. AC=BD,AB=CD,AD=BCC. OA=OC,OB=OD,AB=BCD. OA=OB=OC=OD,AC⊥BD【答案】D【解析】A、不能,只能判定出是平行四边形;B、不能,只能判定出是矩形;C、不能,只能判定出是菱形;D、能,由OA=OB=OC=OD可判断出四边形ABCD是矩形,再根据AC⊥BD,可判断出矩形ABCD 又是菱形,所以可判断出四边形ABCD是正方形,故选D.6. 正方形具有而矩形不一定有的性质是()A. 对角线相等且互相平分B. 对角线互相垂直且平分每一组对角C. 每一内角均为直角D. 对边平行且相等【答案】B【解析】根据正方形和矩形的性质知,它们具有相同的特征有:四个角都是直角、对边平行且相等、对角线相等、对角线互相平分,但矩形的对角线不互相垂直,故选B.7. 平行四边形ABCD是正方形需增加的条件是()A. 邻边相等B. 邻角相等C. 对角线互相垂直D. 对角线互相垂直且相等【解析】如图所示:添加的条件是AC=BD且AC⊥BD,平行四边形ABCD为正方形;理由如下:添加的条件时AC=BD且AC⊥BD时;∵四边形ABCD是平行四边形.又AC=BD,∴四边形ABCD是矩形,∵AC⊥BD,∴四边形ABCD是菱形,∴四边形ABCD是正方形;故选:D.8.如图,在矩形ABCD中,,则BD的长为A. 5B. 10C. 12D. 13【答案】B【解析】∵四边形ABCD是矩形,∠BOC=120°,∴AO=BO,∠BAD=90°,∠AOB=60°,∴△AOB是等边三角形,∴∠ABD=60°,∴∠BDA=30°,∴BD=2AB=10.故选B.9.若一个菱形的两条对角线长分别是5cm和10cm,则与该菱形面积相等的正方形的边长是A. 6cmB. 5cmC.D.【解析】∵菱形的两条对角线分别为5cm和10cm,∴菱形的面积为:(cm2),设正方形的边长为cm,则,解得:(cm).故选B.10.如图,把矩形ABCD沿EF翻折,点B恰好落在AD边上的点B′处,若AE=2,DE=6,∠EFB=60°,则矩形ABCD的面积是()A. 12B. 24C. 12D. 16【答案】D【解析】试题分析:根据题意可得:AD=2+6=8,根据折叠图形的性质可得:AB=2,然后根据矩形的面积计算公式求出矩形的面积.11.如图,正方形ABCD中,E,F分别为AB,CD的中点,连接DE,BF,CE,AF,正方形ABCD的面积为1,则阴影部分的面积为()A. B. C. D.【答案】C【解析】DE BF,AF EC,EGFH是平行四边形,E,F是中点,易得,四边形对角线垂直,1∴EGFH是菱形。
第一章特殊平行四边形测试卷(时间:100分钟满分:120分)一、选择题(本大题10小题,每小题3分,共30分)1. 如图S1-1,四边形ABCD是平行四边形,下列说法不正确的是( D )图S1-1A. 当AC=BD时,四边形ABCD是矩形B. 当AB=BC时,四边形ABCD是菱形C. 当AC⊥BD时,四边形ABCD是菱形D. 当∠DAB=90°时,四边形ABCD是正方形2. 相邻边长分别为2和3的平行四边形,若边长保持不变,其内角大小变化,则它可以变为( A )A. 矩形B. 菱形C. 正方形D. 矩形或菱形3. 如图S1-2,在矩形ABCD中,AB=2AD,E是CD上一点,且AE=AB,则∠CBE 等于( C )A. 30°B. 22.5°C. 15°D. 以上答案都不对图S1-24.菱形ABCD的一条对角线长为6,边AB的长是方程x2-7x+12=0的一个根,则菱形ABCD的周长为( C )A.10B.12C.16D.205. 如图S1-3,在菱形ABCD中,∠BAD=82°,AB的垂直平分线交对角线AC于点F,垂足为E,连接DF,则∠CDF等于( B )A. 67°B. 57°C. 60°D. 87°图S1-36. 如图S1-4,在矩形ABCD中,有以下结论:①△AOB是等腰三角形;②S△ABO=S △ADO;③AC=BD;④AC⊥BD;⑤当∠ABD=45°时,矩形ABCD会变成正方形. 正确结论的个数是( C )A. 2个B. 3个C. 4个D. 5个图S1-47.如图S1-5,从边长为(a+4) cm的正方形纸片中剪去一个边长为(a+1) cm的正方形(a>0),剩余部分沿虚线又剪拼成一个矩形(不重叠无缝隙),则矩形的面积为( D )A.(2a2+5a) cm2B.(3a+15) cm2C.(6a+9) cm2D.(6a+15) cm28. 如图S1-6,顺次连接四边形ABCD各边中点得到四边形EFGH,要使四边形EFGH 为矩形,应添加的条件是( C )A. AB∥DCB. AC=BDC. AC⊥BDD. AB=DC图S1-69. 如图S1-7,在中,AB=4,AD=2 2,E,F分别为边AB,CD上的点,若四边形AECF为正方形,则∠D的度数为( B )A. 30°B. 45°C. 60°D. 75°图S1-710. 如图S1-8,在正方形ABCD中,AB=4,P是线段AD上的动点,PE⊥AC于点E,PF⊥BD于点F,则PE+PF的值为( A )。
【单元复习】第一章特殊平行四边形知识精讲第一章特殊平行四边形一、平行四边形1.平行四边形的定义:两组对边分别平行的四边形叫做平行四边形。
2.平行四边形的性质(1)平行四边形的对边平行且相等。
(对边)(2)平行四边形相邻的角互补,对角相等(对角)(3)平行四边形的对角线互相平分。
(对角线)(4)平行四边形是中心对称图形,对称中心是对角线的交点。
常用点:(1)若一直线过平行四边形两对角线的交点,则这条直线被一组对边截下的线段的中点是对角线的交点,并且这条直线二等分此平行四边形的面积。
(2)推论:夹在两条平行线间的平行线段相等。
3.平行四边形的判定(1)定义:两组对边分别平行的四边形是平行四边形。
(对边)(2)定理1:两组对边分别相等的四边形是平行四边形。
(对边)(3)定理2:一组对边平行且相等的四边形是平行四边形。
(对边)(4)定理3:两组对角分别相等的四边形是平行四边形。
(对角)(5)定理4:对角线互相平分的四边形是平行四边形。
(对角线)4.两条平行线的距离两条平行线中,一条直线上的任意一点到另一条直线的距离,叫做这两条平行线的距离。
注意:平行线间的距离处处相等。
5.平行四边形的面积: S平行四边形=底边长×高=ah二、菱形1.菱形的定义:有一组邻边相等的平行四边形叫做菱形2.菱形的性质(1)菱形的四条边相等,对边平行。
(边)(2)菱形的相邻的角互补,对角相等。
(对角)(3)菱形的对角线互相垂直平分,并且每一条对角线平分一组对角。
(对角线)(4)菱形既是中心对称图形又是轴对称图形;对称中心是对角线的交点(对称中心到菱形四条边的距离相等);对称轴有两条,是对角线所在的直线。
3.菱形的判定(1)定义:有一组邻边相等的平行四边形是菱形。
(2)定理1:四边都相等的四边形是菱形。
(边)(3)定理2:对角线互相垂直的平行四边形是菱形。
(对角线)(4)定理3:对角线垂直且平分的四边形是菱形。
(对角线)4.菱形的面积:S菱形=底边长×高=两条对角线乘积的一半三、矩形1.矩形的定义:有一个角是直角的平行四边形叫做矩形。
一、选择题1.正方形具有而矩形没有的性质是( )A .对角线互相平分B .每条对角线平分一组对角C .对角线相等D .对边相等2.如图,在长方形ABCD 中,AF BD ⊥,垂足为E ,AF 交BC 于点F ,连接DF ,且DF 平分BDC ∠.下列结论中:①ABD CDB ≅;②ADE BDF S S =△△;③90ABD CDF ∠+∠=︒;④AD DF =.其中正确的个数有( )A .4个B .3个C .2个D .1个3.给出下列命题,其中错误命题的个数是( )①四条边相等的四边形是正方形;②四边形具有不稳定性;③有两个锐角对应相等的两个直角三角形全等;④一组对边平行的四边形是平行四边形.A .1B .2C .3D .44.如图,小红在作线段AB 的垂直平分线时,是这样操作的:分别以点A ,B 为圆心,大于线段AB 长度一半的长为半径画弧,相交于点C ,D ,则直线CD 即为所求.连结AC ,BC ,AD ,BD ,根据她的作图方法可知,四边形ADBC 定是..( )A .梯形B .矩形C .菱形D .正方形 5.如图,在正方形ABCD 的边AB 上取一点E ,连接CE ,将BCE 沿CE 翻折,点B 恰好与对角线AC 上的点F 重合,连接DF ,若1BE =,则CDF 的面积是( )A.3214+B.628+C.324+D.3226.如图,Rt△ABC中,∠ACB=90°,AC=6,BC=8,D是AB的中点,E是BC的中点,EF⊥CD于点F,则EF的长是()A.3 B.4 C.5 D.12 57.如图,正方形ABCD中,6AB=,G是BC的中点.将ABG沿AG对折至AFG,延长GF交DC于点E,则DE的长是()A.2 B.2.5 C.3.5 D.48.下列四个命题中真命题是()A.对角线互相垂直平分的四边形是正方形B.对角线垂直且相等的四边形是菱形C.对角线相等且互相平分的四边形是矩形D.四边都相等的四边形是正方形9.如图,将n个边长都为2的正方形按如图所示摆放,点A1,A2,…A n分别是正方形的中心,则这n个正方形重叠部分的面积之和是()A .nB .n -1C .(14)n -1D .14n 10.如图所示,将矩形纸片ABCD 折叠,使点D 与点B 重合,点C 落在点C '处,折痕为EF ,若122EFC '∠=︒,那么ABE ∠的度数为( )A .24︒B .32︒C .30D .26︒11.如图所示,正方形ABCD 中,E ,F 是对角线AC 上两点,连接BE ,BF ,DE ,DF ,则添加下列哪一个条件可以判定四边形BEDF 是菱形( )A .∠1=∠2B .BE =DFC .∠EDF =60°D .AB =AF 12.如图,菱形ABCD 的边长是5,O 是两条对角线的交点,过O 点的三条直线将菱形分成阴影部分和空白部分,若菱形的一条对角线的长为4,则阴影部分的面积为( )A .21B .21C .12D .24二、填空题13.已知,在△ABC 中,∠BAC =45°,AB =1,AC 8AC 为一边作等腰直角△ACD ,使∠CAD =90°,连接BD ,则线段BD 的长度为________.14.如图,把一张长方形的纸沿对角线折叠,若118ABC ∠=︒,则BAC ∠=_______.15.如图,Rt△ABC中,∠ACB=90°,点D是斜边AB的中点,连接CD.若BC=5,CD=3,则AC=______.16.如图,四边形ABCD是菱形,对角线AC,BD相交于点O,DH⊥AB于点H,连接OH,若∠DHO=20°,则∠HDB的度数是________.17.如图,在平面直角坐标系中,长方形OABC的边OA 在x轴上,OC在y轴上,OA=1,OC=2,对角线 AC的垂直平分线交AB 于点E,交AC于点D.若y轴上有一点P(不与点C 重合),能使△AEP是以为 AE 为腰的等腰三角形,则点 P的坐标为____.18.如图,正方形ABCD的边长为8,点E为边BC的中点,点P在对角线BD上移动,则PE+PC的最小值是_____.19.如图,正方形ABCD的边长为6,点E,F分别是边AB,CD上的点,且'',点C'恰好落在AD边上,∠=︒.将四边形BCFE沿EF翻折,得到B C FECFE60B C''交AB于点G,则GE的长是_______.20.矩形的一条边长为2cm,且两条对角线夹角为60︒,则矩形的周长为____.三、解答题21.在正方形ABCD中,点E、F分别在BC边和CD上,且满足AEF是等边三角形,连接AC交EF于点G.;(1)求证:CE CF(2)若等边AEF边长为2,求AC的长.22.如图一,在平行四边形ABCD中,AB⊥AC,AB=1,BC=5,对角线AC,BD相交于O,将直线AC绕点O顺时针旋转,分别交BC,AD于点E,F.(所需图形须在备用图中画出)(1)试说明在旋转过程中,线段AF与EC总保持相等;(2)求证:当旋转角为90°时,四边形ABEF是平行四边形;(3)在旋转过程中,当EF⊥BD,旋转的角度小于180°时,求出此时绕点O顺时针旋转的度数.23.(1)如图1,点E,F分别在正方形ABCD的边上,且∠EAF=45°,求证:EF=BE+DF;(2)如图2,四边形ABCD中,AD//BC,∠D=90°,AD=DC=10,BC=6,点E在CD上,∠BAE=45°,在(1)的基础上求DE长.24.如图,点E是正方形ABCD的边DC上一点,把ADE顺时针旋转ABF的位置.(1)旋转中心是点 ,旋转角度是 度:(2)若连结EF ,则AEF 是 三角形,并证明你的结论.25.如图,在ABC 中,90ACB ∠=︒,30A ∠=︒,2BC =,点P 是AB 上的动点,联结CP ,并以CP 为边作等边CPE △(点E 在线段CP 上方),M 是线段AB 的中点,联结EM .(1)请猜想:线段EM 与PB 的数量关系?线段EM 与CB 的位置关系?(2)请证明上题中你的猜想;(3)请猜想:点P 在BM 上移动时,四边形ECPM 的面积是否发生变化?并加以说明.26.如图1、图2都是由边长为1的小菱形构成的网格,每个小菱形的顶点称为格点.已知点O ,M ,N ,A ,B 均在格点上,请按要求完成下列问题:(1)在图①中,仅用无刻度直尺在网格中画出∠MON 的平分线OP ,并简要说明画图的依据;(2)在图②中,仅用无刻度直尺在网格中画一个Rt △ABC ,使点C 在格点上,并简要说明画图的依据.【参考答案】***试卷处理标记,请不要删除一、选择题1.B解析:B【分析】首先要知道正方形和矩形的性质,正方形是四边相等的矩形,正方形对角线平分对角,且对角线互相垂直.【详解】解:A 、正方形和矩形对角线都互相平分,故A 不符合题意,B 、正方形对角线平分对角,而矩形对角线不平分对角,故B 符合题意,C 、正方形和矩形对角线都相等,故C 不符合题意,D 、正方形和矩形的对边都相等,故D 不符合题意.故选:B .【点睛】本题主要考查正方形对角线相互垂直平分相等的性质和长方形对角线平分相等性质的比较.2.C解析:C【分析】由长方形的性质可得:,,90,AB CD AD BC BAD BCD ==∠=∠=︒从而可判断①;由面积公式可得,ADF BDC S S =再利用角平分线的性质证明,Rt DFE Rt DFC ≌再利用面积差可判断②;由90ABD DBC ∠+∠=︒,结合90ABD CDF ∠+∠=︒,证明,DBC CDF ∠=∠ 再证明30,DBC EDF CDF ∠=∠=∠=︒ 可得AF 是BD 的垂直平分线,可得,AB AD = 则四边形ABCD 为正方形,与已知互相矛盾,可判断③;由,AF BD ⊥ 结合AD DF =,可证明BD 是AF 的垂直平分线,可得,BA BF = 从而可证明45ABE ADB ∠=∠=︒,可得,AB AD = 则四边形ABCD 为正方形,与已知互相矛盾,可判断④.【详解】 解: 长方形ABCD ,,,90,AB CD AD BC BAD BCD ∴==∠=∠=︒(),ABD CDB SAS ∴≌ 故①符合题意; 11,,22ADF BDC SAD CD S BC CD == ,ADF BDC SS ∴= ,,ADE ADF DEF BDF BCD DCFS S S S S S =-=- DF 平分BDC ∠,,90,AF BD BCD ⊥∠=︒,FE FC ∴=,DF DF =(),Rt DFE Rt DFC HL ∴≌,DEF DCF SS ∴= ,ADE BDF S S ∴= 故②符合题意;长方形ABCD ,90ABD DBC ∴∠+∠=︒,若90ABD CDF ∠+∠=︒,,DBC CDF ∴∠=∠,Rt DFE Rt DFC ≌,EDF CDF ∴∠=∠ ,DE DC =30,DBC EDF CDF ∴∠=∠=∠=︒2,BD DC ∴=E ∴是BD 的中点,AF ∴是BD 的垂直平分线,,AB AD ∴=则四边形ABCD 为正方形,与已知互相矛盾,故③不符合题意;,AF BD ⊥若AD DF =,,AE EF ∴=BD ∴是AF 的垂直平分线,,BA BF ∴=90ABC ∠=°,45BAF BFA ∴∠=∠=︒,45ABE ADB ∴∠=∠=︒,,AB AD ∴=则四边形ABCD 为正方形,与已知互相矛盾,故④不符合题意;故选:.C【点睛】本题考查全等三角形的判定与性质,矩形的性质,正方形的判定,角平分线的性质,垂直平分线的定义与判定,等腰三角形的判定与性质,含30的直角三角形的性质,掌握以上知识是解题的关键.3.C解析:C【分析】利用正方形的判定、直角三角形全等的判定、平行四边形的判定定理对每个选项依次判定解答.【详解】①四条边相等的四边形是菱形,故①错误;②四边形具有不稳定性,故②正确;③两直角三角形隐含一个条件是两直角相等,两个锐角对应相等,因此构成了AAA ,不能判定全等,故③错误;④一组对边平行且相等的四边形是平行四边形,故④错误;综上,错误的命题有①③④共3个.故选:C .【点睛】本题考查了命题与定理的知识,解题的关键是了解正方形的判定、平行四边形的判定及直角三角形全等的判定.4.C解析:C【分析】根据垂直平分线的画法得出四边形ADBC 四边的关系进而得出四边形一定是菱形.【详解】∵分别以A 和B 为圆心,大于12AB 的长为半径画弧,两弧相交于C 、D , ∴AC=AD=BD=BC ,∴四边形ADBC 一定是菱形,故选C .【点睛】考查了线段垂直平分线的性质以及菱形的判定,得出四边形四边关系是解决问题的关键. 5.A解析:A【分析】由折叠可得1EF BE ==,90CFE ABC ∠=∠=︒,且 45FAE ∠=︒,可得1AF =, 2AE =,即可求对角线BD 的长,则可求 CDF 的面积.【详解】如图连结BD 交AC 于点O ,∵ABCD 为正方形,∴90ABC ∠=︒,AB=BC ,AC BD ⊥, DO BO =,45BAC ∠=︒,∵BCE 沿CE 翻折, ∴1BE EF ==,BC CF =, 90EFC ∠=︒, ∵45BAC ∠=︒,90EFC ∠=︒, ∴45EAF AEF ∠=∠=︒, ∴1AF EF ==, ∴AE = ∴1AB BC CF ===, ∴2BD ==∴22OD +=, ∴12CDF SCF DO =⨯⨯,∴)(1241444CDF S ++===+.故选:A .【点睛】本题考查翻折变换、正方形的性质、勾股定理、等腰三角形的判定和性质等知识,解题的关键是熟练应用所学知识解决问题.6.D解析:D【分析】根据勾股定理得出AB ,进而利用直角三角形的性质得出:BD=DC=AD=5,利用三角形面积公式解答即可.【详解】∵在Rt △ABC 中,∠ACB =90°,AC =6,BC =8,∴10AB =,∵D 是AB 的中点,∴BD=DC=AD=5,1116812222BDC BAC SS ==⨯⨯⨯=, 连接DE ,∵E 是BC 的中点,∴162DEC BDC SS ==, ∵115622DEC S DC EF EF ==⨯⨯=∴125EF=故选:D.【点睛】本题主要考查的是勾股定理,直角三角形斜边上的中线,关键是根据勾股定理解出AB,进而利用直角三角形的性质解答.7.A解析:A【分析】连接AE,根据翻折变换的性质和正方形的性质可证Rt△AFE≌Rt△ADE,在直角△ECG中,根据勾股定理求出DE的长.【详解】解:连接AE,∵正方形ABCD中,6AB=∴AB=AD=BC=CD6=,∠B=∠D=90°,由折叠的性质得:AB =AF6=,∠B=∠AFG=90°,BG=GF∴AD=AF,∠AFE=180°-∠AFG=90°=∠D在Rt△AFE和Rt△ADE中,∵AE AE AF AD=⎧⎨=⎩∴Rt△AFE≌Rt△ADE,∴EF=DE,设DE=FE=x,EC=6−x.∵G是BC的中点∴BG=CG=12BC=3,∴GF=BG=3在Rt△ECG中,根据勾股定理,得:(6−x)2+9=(x+3)2,解得x=2.则DE=2故选A.【点睛】本题考查了正方形的性质,折叠的性质,全等三角形的判定与性质,勾股定理的应用.证明Rt△AFE≌Rt△ADE是解答本题的关键.8.C解析:C【分析】根据正方形、菱形、矩形的判定分别判断得出即可.【详解】A、对角线互相垂直平分且相等的四边形是正方形,故原命题是假命题;B、对角线垂直平分的四边形是菱形,故原命题是假命题;C、对角线相等且互相平分的四边形是矩形,故原命题是真命题;D、四边都相等的四边形是菱形,故原命题是假命题;故选:C.【点睛】本题考查了命题与定理的知识,解题的关键是了解正方形的判定定理、矩形的判定定理、菱形的判定定理.9.B解析:B【分析】过中心作阴影另外两边的垂线可构建两个全等三角形(ASA),由此可知阴影部分的面积是正方形的面积的14,已知两个正方形可得到一个阴影部分,则n个这样的正方形重叠部分即为(n-1)个阴影部分的和,即可求解.【详解】如图作正方形边的垂线,由ASA可知同正方形中两三角形全等,利用割补法可知一个阴影部分面积等于正方形面积的14,即是12214⨯⨯=, n 个这样的正方形重叠部分(阴影部分)的面积和为:()111n n ⨯-=-.故选:B .【点睛】本题考查了正方形的性质、全等三角形的判定与性质.解题的关键是得到n 个这样的正方形重叠部分(阴影部分)的面积和的计算方法,难点是求得一个阴影部分的面积. 10.D解析:D【分析】由折叠的性质知:∠EBC′、∠BC′F 都是直角,∠BEF=∠DEF ,因此BE ∥C′F ,那么∠EFC′和∠BEF 互补,这样可得出∠BEF 的度数,进而可求得∠AEB 的度数,则∠ABE 可在Rt △ABE 中求得.【详解】解:由折叠的性质知,∠BEF=∠DEF ,∠EBC′、∠BC′F 都是直角,∴BE ∥C′F ,∴∠EFC′+∠BEF=180°,又∵∠EFC′=122°,∴∠BEF=∠DEF=58°,∴∠AEB=180°-∠BEF-∠DEF=64°,在Rt △ABE 中,∠ABE=90°-∠AEB=26°.故选D .【点睛】本题考查图形的翻折变换,解题过程中应注意折叠是一种对称变换,它属于轴对称,根据轴对称的性质,折叠前后图形的形状和大小不变,如本题中折叠前后角相等.11.B解析:B【分析】由正方形的性质,可判定△CDF ≌△CBF ,则BF=FD=BE=ED ,故四边形BEDF 是菱形.【详解】由正方形的性质知,∠ACD=∠ACB=45°,BC=CD ,CF=CF ,∴△CDF ≌△CBF ,∴BF=FD ,同理,BE=ED ,∴当BE=DF ,有BF=FD=BE=ED ,四边形BEDF 是菱形.故选B .【点睛】考查了菱形的判定,解题关键是灵活运用全等三角形的判定和性质,及菱形的判定. 12.A解析:A【分析】连接AC 、BD ,由菱形的性质得出5AB =,122OB OD BD ===,OA OC =,AC BD ⊥,由勾股定理求出OA ,得出221AC =,求出菱形的面积,再由中心对称的性质判断出阴影部分的面积等于菱形的面积的一半解答.【详解】解:连接AC 、BD ,如图所示:菱形ABCD 的边长是5,O 是两条对角线的交点,4BD =,5AB ∴=,122OB OD BD ===,OA OC =,AC BD ⊥,22225221OA AB OB ∴=--2221AC OA ∴== ∴菱形ABCD 的面积11221442122AC BD =⨯=⨯= O 是菱形两条对角线的交点,∴阴影部分的面积12=菱形ABCD 的面积221;故选:A .【点睛】本题考查了菱形的性质,中心对称,熟记性质并判断出阴影部分的面积等于菱形的面积的一半是解题的关键. 二、填空题13.或【分析】AC 作为直角边有两种情况需要分情况讨论画出图后进行计算【详解】解:情况一:延长AB 交CD 于E ∠BAC =45°∠CAD =90°所以AE 是等腰直角△ACD 的高线中线所以CE=DE 因为∠BAC =513【分析】AC 作为直角边,有两种情况,需要分情况讨论,画出图后进行计算.【详解】解:情况一:延长AB 交CD 于E∠BAC =45°,∠CAD =90°所以AE 是等腰直角△ACD 的高线,中线所以,AE CD ⊥,CE=DE 因为8AC =,AE CD ⊥,∠BAC =45°所以△ACE 也是等腰直角三角形,根据勾股定理,AE=CE=2所以BE=AE-AB=2-1=1又因为DE=CE=2,AE CD ⊥所以,BD=22145BE DE +=+=情况二:延长直线AB ,分别过C 、D 作垂线,交直线AB 于F 、E .与情况一类似,可以证出CF=AF=2,BF=AF-AB=2-1=1所以,BE=EF-BF ;因为∠BAC =45°,CF AB ⊥所以,∠ACF =180°-∠BAC-∠F=45°因为△ACD 是等腰直角三角形,∠CAD =90°所以∠ACD =45°所以 ,∠FCD =∠ACD+∠ACF=45°+45°=90°又因为,DE AB CF AB ⊥⊥所以四边形DEFC 是矩形所以DE=CF=2,EF=DC ;因为在等腰直角△ACD 中,∠CAD =90°,8AC =所以,根据勾股定理,CD=4所以,BE=EF-BF=DC-BF=4-1=3因此,BD ===【点睛】这道题考察的是等腰直角三角形的性质,勾股定理,矩形的判定和性质.熟练掌握这些知识点,画出辅助线,是解题的关键.14.【分析】根据折叠的性质可以判断出三角形ABC 是等腰三角形继而根据三角形内角和为180°求解即可;【详解】将翻折后的图形如图所示:∵四边形ADCF 是矩形三角形ACE 是由三角形ACF 翻折得到的∴∠D=∠解析:31︒【分析】根据折叠的性质可以判断出三角形ABC 是等腰三角形,继而根据三角形内角和为180°求解即可;【详解】将翻折后的图形如图所示:∵ 四边形ADCF 是矩形,三角形ACE 是由三角形ACF 翻折得到的,∴ ∠D=∠E=90°,AD=CE在△ABD 和△BCE 中:AD CE D EABD CBE =⎧⎪⎨⎪=⎩∠=∠∠∠ ∴△ABD ≌△BCE (AAS )∴AB=BC∵∠ABC=118°,∴∠BAC=∠BCA=()11180118=62=3122︒-︒⨯︒︒ , 故答案为:31°.【点睛】本题考查了矩形的性质,全等三角形的判定,以及等腰三角形的性质,正确理解知识点是解题的关键;15.【分析】先根据直角三角形斜边上的中线等于斜边的一半求得AB然后运用勾股定理解答即可【详解】解:∵在Rt△ABC中∠ACB=90°点D是斜边AB 的中点∴CD==3即AB=6∴AC=故答案为【点睛】本题11【分析】先根据直角三角形斜边上的中线等于斜边的一半求得AB,然后运用勾股定理解答即可.【详解】解:∵在Rt△ABC中,∠ACB=90°,点D是斜边AB的中点∴CD=1AB=3,即AB=62∴2222-=-=.AB BC651111【点睛】本题主要考查了直角三角形的性质和勾股定理,掌握直角三角形斜边上的中线等于斜边的一半成为解答本题的关键.16.20°【分析】根据菱形的性质得出OB=OD根据直角三角形斜边的一半等于斜边的一半得出OH=OD即可得出∠HDB=∠DHO=20°【详解】解:∵四边形ABCD是菱形∴OB=OD∵DH⊥AB于点H∴OH解析:20°【分析】根据菱形的性质得出OB=OD,根据直角三角形斜边的一半等于斜边的一半,得出OH=OD,即可得出∠HDB=∠DHO=20°.【详解】解:∵四边形ABCD是菱形,∵ DH⊥AB于点H,∴OH=12BD=OD,∴∠HDB=∠DHO=20°.故答案为:20°.【分析】此题考查了菱形的性质、直角三角形的性质以及等腰三角形的判定与性质.注意证得△OBH是等腰三角形是关键.17.或【分析】设AE=m根据勾股定理求出m的值得到点E(1)设点P坐标为(0y)根据勾股定理列出方程即可得到答案【详解】∵对角线AC的垂直平分线交AB于点E∴AE=CE∵OA=1OC=2∴AB=OC=2解析:3(0,)4,3(0,)4-或1(0,)2【分析】设AE=m,根据勾股定理求出m的值,得到点E(1,54),设点P坐标为(0,y),根据勾股定理列出方程,即可得到答案.【详解】∵对角线 AC的垂直平分线交AB 于点E,∴AE=CE,∵OA=1,OC=2,∴AB=OC=2,BC=OA=1,∴设AE=m,则BE=2-m,CE=m,∴在Rt∆BCE中,BE2+ BC2=CE2,即:(2-m)2+12=m2,解得:m=54,∴E(1,54),设点P坐标为(0,y),∵△AEP是以为 AE 为腰的等腰三角形,当AP=AE,则(1-0)2+(0-y)2= (1-1)2+(0-54)2,解得:y=34±,当EP=AE,则(1-0)2+(54-y)2= (1-1)2+(0-54)2,解得:y=12,∴点 P的坐标为3(0,)4,3(0,)4-,1(0,)2,故答案是:3(0,)4,3(0,)4-,1(0,)2.本题主要考查等腰三角形的定义,勾股定理,矩形的性质,垂直平分线的性质,掌握勾股定理,列出方程,是解题的关键.18.4【分析】要求PE+PC的最小值PEPC不能直接求可考虑通过作辅助线转化PEPC的值从而找出其最小值求解【详解】解:如图连接AE∵点C关于BD的对称点为点A∴PE+PC=PE+AP根据两点之间线段最解析:45【分析】要求PE+PC的最小值,PE,PC不能直接求,可考虑通过作辅助线转化PE,PC的值,从而找出其最小值求解.【详解】解:如图,连接AE,∵点C关于BD的对称点为点A,∴PE+PC=PE+AP,根据两点之间线段最短可得AE就是AP+PE的最小值,∵正方形ABCD的边长为8,E是BC边的中点,∴BE=4,∴AE224845=+=,故答案为:45.【点睛】此题主要考查了正方形的性质和轴对称及勾股定理等知识的综合应用.根据已知得出两点之间线段最短可得AE就是AP+PE的最小值是解题关键.19.【分析】由正方形的性质得出∠A=∠B=∠C=∠D=90°AB=AD=3由折叠的性质得出FC′=FC∠C′FE=∠CFE=60°∠FC′B′=∠C=90°B′E=BE∠B′=∠B=90°求出∠DC′F解析:843-【分析】由正方形的性质得出∠A=∠B=∠C=∠D=90°,AB=AD=3,由折叠的性质得出FC′=FC,∠C′FE=∠CFE=60°,∠FC′B′=∠C=90°,B′E=BE,∠B′=∠B=90°,求出∠DC′F=30°,得出FC′=FC=2DF,求出DF=2,33,则C′A=3,AG=3 6,设EB=x,则GE=2x,得出方程,解方程即可.【详解】∵四边形ABCD 是正方形,∴∠A =∠B =∠C =∠D =90°,AB =AD =3,由折叠的性质得:FC′=FC ,∠C′FE =∠CFE =60°,∠FC′B′=∠C =90°,B′E =BE ,∠B′=∠B =90°,∴∠DFC′=180°-60°-60°=60°,∴∠DC′F =30°,∴FC′=FC =2DF ,∵DF +CF =CD =6,∴DF +2DF =6,解得:DF =2,∴∴C′A =∵∠AC′G=180°-30°-90°=60°,∠AGC′=90°-60°=30°,∴-6,设EB =E′B=x ,∵∠B′GE =∠AGC′=30°,∴GE =2x ,则+3x =6,解得:x =∴GE =故答案是:【点睛】本题考查了翻折变换的性质、正方形的性质、勾股定理、含30°角的直角三角形的性质等知识;熟练掌握翻折变换和正方形的性质,根据题意得出方程是解决问题的关键. 20.或【分析】由矩形的性质得出证明是等边三角形然后分AB=2cm 和AD=2cm 分别计算相应边长可得周长【详解】解:如图所示:四边形是矩形是等边三角形当AB=2cm 时OA=OB=2cm 则AC=BD=4cm解析:4)cm +或4)cm 【分析】由矩形的性质得出OA OB =,证明AOB ∆是等边三角形,然后分AB=2cm 和AD=2cm 分别计算相应边长,可得周长.【详解】解:如图所示:四边形ABCD 是矩形,AB CD ∴=,AD BC =,90ABC ∠=︒,12OA AC =,12OB BD =,AC BD =, OA OB ∴=,60AOB ∠=︒,AOB ∴∆是等边三角形,∴当AB=2cm 时,OA=OB=2cm ,则AC=BD=4cm ,∴AD=2242-=23cm , 则矩形ABCD 的周长2()443()AB BC cm =+=+,当AD 2cm =时,设AB=CD=x ,∵∠CAD=90°-60°=30°,∴AC=BD=2x ,则()22222x x =+,解得:x=23, ∴AB=CD=233, 则矩形ABCD 的周长434()cm =+, 故答案为:443()cm +或434()cm +.【点睛】本题考查了矩形的性质、等边三角形的判定与性质、勾股定理;熟练掌握矩形的性质,并能进行推理计算是解决问题的关键.三、解答题21.(1)见解析 (231【分析】(1)根据正方形和等边三角形的性质,证Rt ABE Rt ADF △≌△即可;(2)由(1)可知,AC 垂直平分EF ,根据勾股定理和斜边中线等于斜边的一半求AG 、CG 即可.【详解】(1)证明:正方形ABCD ,∴AB AD =,B D ∠=∠=90°,BC CD =.AEF 是等边三角形,AE AF ∴=.(HL)Rt ABE Rt ADF ∴△≌△.BE DF ∴=.CE CF ∴=.(2)由(1)得,CE=CF ,AE=AF=2,AC ∴垂直平分EF .1EG FG ∴==. 2222213AG AE EG ∴=-=-=,∵∠ECF=90°,EG=GF ,∴112CG EF ==, 31AC AG CG ∴=+=+.【点睛】本题考查了正方形、等边三角形、全等三角形的判定与性质、勾股定理等知识,解题关键是准确把握已知,熟练运用全等三角形、勾股定理等知识进行证明和计算.22.(1)答案见解析;(2)证明见解析;(3)45°.【分析】(1)根据平行四边形的对边平行可得AD ∥BC ,对角线互相平分可得OA=OC ,再根据两直线平行,内错角相等求出∠FAO=∠ECO ,然后利用“角边角”证明△AOF 和△COE 全等,根据全等三角形对应边相等即可得到AF=CE ;(2)根据垂直的定义可得∠BAO=90°,然后求出∠BAO=∠AOF ,再根据内错角相等,两直线平行可得AB ∥EF ,然后根据平行四边形的对边平行求出AF ∥BE ,再根据两组对边分别平行的四边形是平行四边形证明;(3)根据(1)的结论可得AF=CE ,再求出DF ∥BE ,DF=BE ,然后根据一组对边平行且相等的四边形是平行四边形求出四边形BEDF 平行四边形,再求出对角线互相垂直的平行四边形是菱形可得EF ⊥BD 时,四边形BEDF 是菱形;根据勾股定理列式求出AC=2,再根据平行四边形的对角线互相平分求出AO=1,然后求出∠AOB=45°,再根据旋转的定义求出旋转角即可.【详解】解:(1)如图一∵四边形ABCD 是平行四边形,∴AO =CO ,AD ∥BC ,∴∠FAO=∠ECO,又∵∠AOF=∠COE,∴△AOF≌△COE(ASA),∴AF=EC,∴在旋转过程中,线段AF与EC总保持相等.(2)如备用图一:证明:∵AB⊥AC,∴∠BAC=90°.∵∠AOF=90°,∴∠BAC=∠AOF,∴AB∥EF.∵四边形ABCD是平行四边形,∴AD∥BC,∴四边形ABEF是平行四边形.(3)如备用图二:在Rt△ABC中,AC22.BC AB∵AO=OC,∴AO=1=AB.∵∠BAO=90°,∴∠AOB=45°∵EF⊥BD,∴∠BOF=90°,∴∠AOF=45°,即AC绕点O顺时针旋转45°.【点睛】本题考查了平行四边形的性质和判定,菱形的性质和判定,旋转的性质,勾股定理的应用,能综合运用知识点进行推理是解此题的关键.23.(1)见解析;(2)307【分析】 (1)延长EB 至点G ,使BG =DF ,连接AG ,根据题意易证△ADF ≌△ABG (SAS ),即可得到AG =AF ,∠GAB =∠FAD .即可证明△GAE ≌△FAE (SAS ),即得到EF =BE +DF .(2)作AM ⊥BC 点M ,连接BE ,易证四边形AMCD 是正方形,即可得到AD =CD =MC =10,MB =4.再由(1)的结论得BE =MB +DE ,设DE =x ,则EC =10x -,BE =4x +.在Rt △BCE 中,结合勾股定理即可列出关于x 的方程,求出x 即可.【详解】(1)如图,延长EB 至点G ,使BG =DF ,连接AG .在△ADF 和△ABG 中,90AD AB ADF ABG DF BG =⎧⎪∠=∠=︒⎨⎪=⎩,∴△ADF ≌△ABG (SAS ).∴AG =AF ,∠GAB =∠FAD ,∵45EAF ∠=︒,∴45FAD BAE ∠+∠=︒,∴45GAB BAE ∠+∠=︒,即45GAE EAF ∠=∠=︒.在△GAE 和△FAE 中,45AG AF GAE EAF AE AE =⎧⎪∠=∠=︒⎨⎪=⎩,∴△GAE ≌△FAE (SAS ),∴EG=EF ,即EF=BE+BG=BE+DF .(2)如图,作AM ⊥BC 点M ,连接BE ,由题意可知四边形AMCD 是正方形,∴AD =CD =MC =10,MB =4.由(1)知BE =MB +DE .设DE =x ,则EC =10x -,BE =4x +.在Rt △BCE 中,222BC EC BE +=,即()222610=(4)x x +-+,解得:307x =,即DE = 307【点睛】本题考查三角形全等的判定和性质,正方形的判定和性质以及勾股定理.作出常用的辅助线是解答本题的关键.24.(1)A ,90;(2)等腰直角,证明过程见解析.【分析】(1)根据旋转中心及旋转角的定义,即可得出结论;(2)利用旋转的性质与正方形的性质,并结合等腰直角三角形的判定方法,即可判断出△AEF 的形状.【详解】(1)解:∵四边形ABCD 是正方形,∴∠BAD =90°,∵△ADE 顺时针旋转到△ABF 的位置,∴旋转中心是点A ,旋转角是∠BAD =90°.故答案为A ,90.(2)△AEF 等腰直角三角形.证明:∵△ADE 顺时针旋转到△ABF 的位置,∴AF =AE ,∠FAE =∠BAD ,∵四边形ABCD 是正方形∴∠FAE =∠BAD =90°∴△AEF 是等腰直角三角形故答案为:等腰直角.【点睛】本题主要考查了旋转变换的性质、正方形的性质等知识,解题的关键是掌握旋转变换及正方形的性质.25.(1)EM PB =;//EM CB ;(2)见解析;(3)面积不变;见解析【分析】(1)连接CM ,利用直角三角形斜边中线等于斜边一半的性质可得CM=CB ,然后根据题意运用SAS 定理证明△ECM ≌△PCB ,从而求得EM 与PB 的数量及位置关系;(2)利用(1)中的思路进行推理证明;(3)结合全等三角形的的性质可得△ECM 与△PCB 面积相等,从而四边形ECPM 的面积即△MCB 的面积,根据题意可求其面积为定值,从而得出结论【详解】解:(1)EM PB =;//EM CB(2)连接CM∵在ABC 中,90ACB ∠=︒,30A ∠=︒,M 是线段AB 的中点∴CM=12AB BM =,∠B=60° ∴△CBM 是等边三角形∴CM=CB ,∠MCB=60° 又∵以CP 为边作等边CPE △∴CE=CP ,∠ECP=60°∴∠ECM+∠MCP=∠PCB+∠MCP∴∠ECM =∠PCB在△ECM 和△PCB 中EC PC ECM PCB MC BC =⎧⎪∠=∠⎨⎪=⎩∴△ECM ≌△PCB∴EM=PB ,∠EMC=∠B=60°又∵∠MCB=60°∴∠EMC=∠MCB∴//EM CB(3)过点M 作MN ⊥BC由(2)已证△MCB 为等边三角形∴MB=BC=2∵MN ⊥BC∴∠BMN=1302BMC ∠=∴BN=112BM = ∴在Rt △MCB 中,223MN BM BN =-= ∴1123322BCM S BC MN ==⨯=△ 又∵△ECM ≌△PCB∴点P 在BM 上移动时,3ECM MCP PCB MCP BCM ECPM S S S S S S =+=+==△△△△△四边形即四边形ECPM 的面积不会发生变化.【点睛】本题考查全等三角形的判定和性质,直角三角形斜边中线及含30°的直角三角形的性质,题目难度不大有一定的综合性,掌握相关性质定理正确推理论证是解题关键. 26.(1)见解析;(2)见解析【分析】(1)构造全等三角形,利用全等三角形的性质即可解决问题;(2)利用菱形以及平行线的性质即可解决问题.【详解】解:(1)如图1,射线OP 即为所求的∠MON 的平分线.作图依据是:可判定△MOP ≌△NOP ,于是有∠MOP =∠NOP .(2)如图2,△ABC 即为所求作的直角三角形,其中∠ACB =90°.作图依据是:①菱形的对角线互相垂直,即BC ⊥EF ;②可判定AC ∥EF ,则AC ⊥BC ,所以∠ACB =90°.【点睛】本题考查作图−应用与设计、菱形的性质等知识,解题的关键是掌握菱形的性质并灵活运用所学知识解决问题.。
北师大版九年级数学上册单元测试卷第一章 特殊平行四边形1.下列说法正确的是A .对角线垂直的四边形是菱形B .对角线互相平分的四边形是菱形C .菱形的对角线相等且互相平分D .菱形的对角线互相垂直且平分 2.下列说法中,你认为正确的是( )A .四边形具有稳定性B .等边三角形是中心对称图形C .任意多边形的外角和是360D .矩形的对角线一定互相垂直 3.已知下列命题:①矩形是轴对称图形,且有两条对称轴;①两条对角线相等的四边形是矩形;①有两个角相等的平行四边形是矩形;①两条对角线相等且互相平分的四边形是矩形.其中正确的有( )A .4个B .3个C .2个D .1个 4.如图,下列条件中①AC BD ⊥①BAD 90∠=①AB BC =①AC BD =,能使平行四边形ABCD 是菱形的是( )A .①①B .①①C .①①D .①①① 5.已知菱形ABCD ,对角线5AC =,12BD =,则菱形的面积为( )A .60B .50C .40D .30 6.在数学活动课上,为探究四边形瓷砖是否为菱形,以下拟定的测量方案,正确的是( )A .测量一组对边是否平行且相等B .测量四个内角是否相等C .测量两条对角线是否互相垂直D .测量四条边是否相等一、单选题(共30分,每小题3分)7.如图,把长方形ABCD 沿对角线BD 折叠,下列结论:①①ABD 与△EDB 全等;①①ABF 与△EDF 全等;①AF EF =;①①BDF 是等腰三角形.其中正确的有( )A .1个B .2个C .3个D .4个 8.如图,在正方形ABCD 中,E 为对角线BD 上一点,CE 交AD 于点F ,连接AE .若①AEC=140︒,则①DFC 等于( )A .55°B .60°C .65°D .70°9.如图,在四边形ABCD 中,对角线AC 与BD 相交于点O ,,AO CO BO DO ==.添加下列条件,可以判定四边形ABCD 是矩形的是( )A .AB AD =B .AC BD =C .AC BD ⊥ D .ABO CBO ∠=∠ 10.如图,已知四边形ABCD 是平行四边形,下列结论中不正确的是( )A .当AB BC =时,它是菱形 B .当AC BD ⊥时,它是菱形C .当90ABC ∠=︒时,它是矩形D .当AC BD =时,它是正方形二、填空题(共30分,每小题3分) 11.矩形的两条对角线的夹角为60,较短的边长为12cm ,则对角线长为________cm . 12.已知菱形的周长为20,一条对角线长为8,则菱形的面积为________.13.如图所示,已知ABCD 中,下列条件:①AC =BD ;①AB =AD ;①①1=①2;①AB ①BC 中,能说明ABCD 是矩形的有______________(填写序号)14.如图,已知菱形ABCD 的对角线AC ,BD 的长分别为6,4,则AB 长为__.15.如图,平行四边形ABCD 是对角线互相垂直的四边形,请你添加一个适当的条件________,使ABCD 成为正方形(只需添加一个即可).16.如图,在矩形ABCD 中,边AB 的长为3,点E ,F 分别在AD ,BC 上,连接BE ,DF ,EF ,BD .若四边形BEDF 是菱形,且EF =AE +FC ,则边BC 的长为____________.17.如图,将两张长为16cm ,宽为4cm 的矩形纸条交叉,使重叠部分是一个菱形,那么菱形周长的最大值与最小值的和是________.18.如图,矩形ABCD 的对角线相交于点O ,DE ①AC ,CE ①BD ,已知AB =6cm ,BC =8cm ,则四边形ODEC 的周长为______cm .19.如图,菱形ABCD 的对角线AC ,BD 相交于O 点,E ,F 分别是AB ,BC 边上的中点,连接EF ,若EF =4BD =,则菱形ABCD 的面积为________.20.如图,将平行四边形ABCD 的边DC 延长到E ,使CE CD =,连接AE 交BC 于F ,AFC n D ∠∠=,当n =______时,四边形ABEC 是矩形.三、解答题(共60分) 21.矩形ABCD 中68AB cm BC cm AE ==,,平分BAC ∠交BC 于E CF ,平分ACD ∠交AD 于F .(共8分)(1)说明四边形AECF 为平行四边形;(2)求四边形AECF 的面积.22.如图,在矩形ABCD中,对角线AC与BD交于点O,且①ADO为等边三角形,过点A 作AE①BD于点E.(共8分)(1)求①ABD的度数;(2)若BD=10,求AE的长.23.已知如图,两个长为8,宽为2的矩形纸条倾斜地重叠着.(共10分)()1求证:两矩形重叠部分为菱形;()2求菱形面积最大和最小值.24.如图,在ABC 中,5AB AC ==,6BC =,AD 为BC 边上的高,过点A 作//AE BC ,过点D 作//DE AC ,AE 与DE 交于点E ,AB 与DE 交于点F ,连结BE .(共10分)()1求证:四边形AEBD 是矩形;()2求四边形AEBD 的面积.25.如图,正方形ABCD中,E、F分别在BC、DC上,且45.∠=试说明:EAF+=.(共12分)BE DF EF26.如图,菱形EFGH的三个顶点E、G、H分别在正方形ABCD的边AB、CD、DA 上,连接CF.(共12分)()1求证:HEA CGF∠=∠;()2当AH DG=时,求证:菱形EFGH为正方形.参考答案:1.D 2.C 3.C 4.A 5.D 6.D 7.D 8.C 9.B 10.D11.24 12.24 13.①① 1415.90ABC∠=16.17.4018.20 19.20.221.(1)见解析;(2)30cm2(1)①四边形ABCD是矩形,①AD①BC(即AF①CE),AB①CD,①①BAC=①ACD,又①AE平分①BAC,CF平分①ACD,①①EAC=①FCA,①AE①CF,①四边形AECF是平行四边形;(2)过点E作EO①AC于点O,①①B=90°,AE平分①BAC,①EO=BO,①AE=AE,①Rt①ABE①Rt①AOE,①AO=AB=6,①在Rt①ABC,10,①OC=AC-AO=4(cm),设CE=x,则EO=BE=BC-CE=8-x,①在Rt①OEC中由勾股定理可得:222-+=,解得:58(x x4)x=,①EC=5,①S四边形AECF=CE·AB=5×6=30(cm2).22.(1)①ABD=30°;(2)AE(1)①四边形ABCD是矩形,①①DAB=90°,①①ADO为等边三角形,①①ADB=60°,①①ABD=180°-①DAB-①ADB=30°;(2)①BD=10,①BAD=90°,①ABD=30°,①AD=12BD=5,①①ADO为等边三角形,①AD=AO=DO=5,①AE①DO,①DE=EO=12DO=2.5,在Rt①AED中,由勾股定理得AE23.(1)详见解析;(2)菱形面积最大和最小值分别是172、4.()1根据题意得:AD//BC,AB//CD,①四边形ABCD是平行四边形.如图1,分别作CD,BC边上的高为AE,AF,①两纸条宽度相同,①AE AF=.①平行四边形ABCD的面积为AE CD BC AF⨯=⨯,①CD BC=.①平行四边形ABCD为菱形;()2如图2,此时菱形ABCD的面积最大.设AB x =,EB 8x =-,AE 2=,则由勾股定理得到:2222(8x)x +-=, 解得 17x 4=, 1717S 242=⨯=最大; 如图3,此时菱形ABCD 的面积最小.S 224=⨯=最小. 综上所述,菱形面积最大和最小值分别是172、4. 24.(1)详见解析;(2)12. ()1①AE //BC ,BE //AC ,①四边形AEDC 是平行四边形. ①AE CD =.在ABC 中,AB AC =,AD 为BC 边上的高, ①ADB 90∠=,BD CD =.①BD AE =.①四边形AEBD 是矩形.()2在Rt ADC 中,ADB 90∠=,AC 5=,1BD CD BC 32===,①AD 4=.①四边形AEBD 的面积BD AD 3412=⋅=⨯=. 25.证明见解析.①四边形ABCD 为正方形①AB=AD,①BAD=①B=①ADF=90°如图,把△ABE 逆时针旋转90°得到△ADG ,①BE =GD ,AE =AG .①ADG=①ABE=90°,①GAD=①BAE ①①ADG+①ADF=180°①G 、D 、F 在同一条直线上.①①EAF =45°,①①F AG =①GAD+①DAF=①BAE+①DAF=①BAD-①EAF=90°﹣45°=45°, ①①EAF =①F AG .在△AEF 和△AGF 中,①AE AG EAF FAG AF AF =⎧⎪∠=∠⎨⎪=⎩,①①AEF ①①AGF (SAS ),①EF =GF ,即EF =GD +DF ,①BE +DF =EF .26.(1)详见解析;(2)详见解析.(1)连接GE ,①AB//CD ,①AEG CGE ∠∠=,①GF//HE ,①HEG FGE ∠∠=,①HEA CGF ∠∠=;()2①四边形ABCD 是正方形, ①D A 90∠∠==, ①四边形EFGH 是菱形, ①HG HE =,在Rt HAE 和Rt GDH 中, AH DG HE HG =⎧⎨=⎩, ①()Rt HAE Rt GDH HL ≅, ①AHE DGH ∠∠=,又DHG DGH 90∠∠+=, ①DHG AHE 90∠∠+=, ①GHE 90∠=, ①菱形EFGH 为正方形;。
第一章达标检测卷(120分,90分钟)一、选择题(每题3分,共30分)1.如图,已知菱形ABCD 的边长为3,∠ABC =60°,则对角线AC 的长是( )A .12B .9C .6D .3(第1题)(第4题)(第6题)2.下列命题为真命题的是( )A .四个角相等的四边形是矩形B .对角线垂直的四边形是菱形C .对角线相等的四边形是矩形D .四边相等的四边形是正方形3.若顺次连接四边形ABCD 四边的中点,得到的图形是一个矩形,则四边形ABCD 一定是( )A .矩形B .菱形C .对角线相等的四边形D .对角线互相垂直的四边形4.如图,EF 过矩形ABCD 对角线的交点O ,且分别交AB ,CD 于点E ,F ,那么阴影部分的面积是矩形ABCD 面积的( )A .15B .14C .13D .3105.已知四边形ABCD 是平行四边形,下列结论中错误的有( )①当AB =BC 时,它是菱形;②当AC ⊥BD 时,它是菱形;③当∠ABC =90°时,它是矩形;④当AC =BD 时,它是正方形.A .1个B .2个C .3个D .4个6.如图,已知正方形ABCD的对角线长为22,将正方形ABCD沿直线EF折叠,则图中阴影部分的周长为( )A.8 2 B.4 2 C.8 D.67.如图,每个小正方形的边长为1,A,B,C是正方形的顶点,则∠ABC的度数为( ) A.90°B.60°C.45°D.30°8.如图,在菱形ABCD中,点M,N分别在AB,CD上,且AM=CN,MN与AC交于点O,连接OB.若∠DAC=28°,则∠OBC的度数为( )A.28°B.52°C.62°D.72°(第7题)(第8题)(第9题)(第10题)9.如图,在矩形纸片ABCD中,AB=4,BC=8,将纸片沿EF折叠,使点C与点A重合,则下列结论错误的是( )A.AF=AE B.△ABE≌△AGF C.EF=2 5 D.AF=EF10.如图,在正方形ABCD中,点P是AB上一动点(点P不与A,B重合),对角线AC,BD 相交于点O,过点P分别作AC,BD的垂线,分别交AC,BD于点E,F,交AD,BC于点M,N.下列结论:①△APE≌△AME;②PM+PN=BD;③PE2+PF2=PO2.其中正确的有( ) A.0个 B.1个 C.2个 D.3个二、填空题(每题3分,共24分)11.如图是一个平行四边形的活动框架,对角线是两根橡皮筋.若改变框架的形状,则∠α也随之变化,两条对角线长度也在发生改变.当∠α的度数为________时,两条对角线长度相等.12.如图,四边形ABC D是菱形,O是两条对角线的交点,过O点的三条直线将菱形分成阴影部分和空白部分.当菱形的两条对角线的长分别为6和8时,则阴影部分的面积为________.(第11题)(第12题)(第13题)13.如图是根据四边形的不稳定性制作的边长为15 cm的可活动衣架,若墙上钉子间的距离AB=BC=15 cm,则∠1=________.14.已知E是正方形ABCD的对角线AC上一点,AE=AD,过点E作AC的垂线,交边CD 于点F,那么∠FAD=________.15.如图,矩形OBCD的顶点C的坐标为(1,3),则对角线BD的长等于________.(第15题)(第16题)(第17题)(第18题)16.如图,已知正方形ABCD的边长为1,连接AC,BD,CE平分∠ACD交BD于点E,则DE =________.17.如图,在矩形ABCD中,M,N分别是AD,BC的中点,E,F分别是线段BM,CM的中点.若AB=8,AD=12,则四边形ENFM的周长为________.18.如图,在边长为1的菱形 ABCD中,∠DAB=60°.连接对角线AC,以AC为边作第二个菱形ACEF,使∠FAC=60°.连接AE,再以AE为边作第三个菱形AEGH,使∠HAE=60°,…,按此规律所作的第n个菱形的边长是________.三、解答题(19,20题每题9分,21题 10分,22,23题每题12分,24题14分,共66分)19.如图,在四边形ABCD中,AD∥BC,AC的垂直平分线交AD,BC于点E,F.求证:四边形AECF是菱形.(第19题)20.如图,O为矩形ABCD对角线的交点,DE∥AC,CE∥BD.(1)求证:四边形OCED是菱形;(2)若AB=3,BC=4,求四边形OCED的面积.(第20题)21.如图,在正方形ABCD中,E为CD边上一点,F为BC延长线上一点,且CE=CF.(1)求证:△BCE≌△DCF;(2)若∠FDC=30°,求∠BEF的度数.(第21题)22.如图,将矩形纸片ABCD沿对角线BD折叠,使点A落在平面上的F点处,DF交BC于点E.(1)求证:△DCE≌△BFE;(2)若CD=2,∠ADB=30°,求BE的长.(第22题)23.如图,在菱形ABCD中,AB=4,∠BAD=120°,以点A为顶点的一个60°的角∠EAF绕点A旋转,∠EAF的两边分别交BC,CD于点E,F,且E,F不与B,C,D重合,连接EF.(1)求证:BE=CF.(2)在∠EAF绕点A旋转的过程中,四边形 AECF的面积是否发生变化?如果不变,求出其定值;如果变化,请说明理由.(第23题)24.如图,在△ABC中,点O是边AC上一个动点,过O作直线MN∥BC,设MN交∠ACB的平分线于点E,交△ABC的外角∠ACD的平分线于点F.(1)探究线段OE与OF的数量关系并说明理由.(2)当点O运动到何处,且△ABC满足什么条件时,四边形AECF是正方形?请说明理由.(3)当点O在边AC上运动时,四边形BCFE________是菱形(填“可能”或“不可能”).请说明理由.(第24题)答案一、1.D 2.A3.D点拨:首先根据三角形中位线定理知:所得四边形的对边都平行且相等,那么其必为平行四边形,若所得四边形是矩形,那么邻边互相垂直,故原四边形的对角线必互相垂直,由此得解.4.B5.A 点拨:①当AB=BC时,它是菱形,正确;②当AC⊥BD时,它是菱形,正确;③当∠ABC=90°时,它是矩形,正确;④当AC=BD时,它是矩形,因此④是错误的.6.C7.C 8.C9.D点拨:如图,由折叠得∠1=∠2.∵AD∥BC,∴∠3=∠1.∴∠2=∠3.∴AE=AF.故选项A正确.由折叠得CD=AG,∠D=∠G=90°.∵AB=CD,∴AB=AG.∵AE=AF,∠B=90°,∴Rt△ABE≌Rt△AGF(HL).故选项B正确.设DF=x,则GF=x,AF=8-x.又AG=AB=4,∴在Rt△AGF中,根据勾股定理得(8-x)2=42+x2.解得x=3.∴AF=8-x=5.则AE=AF=5,∴BE=AE2-AB2=52-42=3.过点F作FM⊥BC于点M,则EM=5-3=2.在Rt△EFM中,根据勾股定理得EF=EM2+FM2=22+42=20=25,则选项C正确.∵AF=5,EF=25,∴AF≠EF.故选项D错误.(第9题)10.D 点拨:∵四边形ABCD是正方形,∴∠PAE=∠MAE=45°.∵PM⊥AC,∴∠PEA=∠MEA.又∵AE=AE,∴根据“ASA”可得△APE≌△AME.故①正确.由①得PE=ME,∴PM=2PE.同理PN=2PF.又易知PF=BF,四边形PEOF是矩形,∴PN=2BF,PM=2FO.∴PM+PN=2FO+2BF =2BO=BD.故②正确.在Rt△PFO中,∵FO2+PF2=PO2,而PE=FO,∴PE2+PF2=PO2.故③正确.二、11.90°点拨:对角线相等的平行四边形是矩形.12.12 点拨:∵菱形的两条对角线的长分别为6和8,∴菱形的面积=12×6×8=24.∵O是菱形两条对角线的交点,∴阴影部分的面积=12×24=12.13.120°(第14题)14.22.5°点拨:如图,由四边形ABCD是正方形,可知∠CAD=12∠BAD=45°.由FE⊥AC,可知∠AEF=90°.在Rt△AEF与Rt△ADF中, AE=AD,AF=AF,∴Rt△AEF≌Rt△ADF(HL).∴∠FAD=∠FAE=12∠CAD=12×45°=22.5°.15.10 16.2-117.20 点拨:点N是BC的中点,点E,F分别是BM,CM的中点,由三角形的中位线定理可证EN∥MC,NF∥ME,EN=12MC,FN=12MB.又易知MB=MC,所以四边形ENFM是菱形.由点M是AD的中点,AD=12得AM=6.在Rt△ABM中,由勾股定理得BM=10.因为点E是BM的中点,所以EM=5.所以四边形ENFM的周长为20.18.(3)n -1三、19.证明:∵EF 垂直平分AC , ∴∠AOE =∠COF =90°,OA =OC. ∵AD ∥BC ,∴∠OAE =∠OCF. ∴△AOE ≌△COF(ASA ). ∴AE =CF.又∵AE ∥CF , ∴四边形AECF 是平行四边形. ∵EF ⊥AC ,∴四边形AECF 是菱形. 20.(1)证明:∵DE ∥AC ,CE ∥BD , ∴四边形OCED 为平行四边形. ∵四边形ABCD 为矩形,∴OD =OC. ∴四边形OCED 为菱形. (2)解:∵四边形ABCD 为矩形, ∴BO =DO =12BD.∴S △OCD =S △OCB =12S △ABC =12×12×3×4=3.∴S 菱形OCED =2S △OCD =6.21.(1)证明:在△BCE 与△DCF 中,⎩⎨⎧BC =DC ,∠BCE =∠DCF ,CE =CF ,∴△BCE ≌△DCF.(2)解:∵△BCE ≌△DCF , ∴∠EBC =∠FDC =30°. ∵∠BCD =90°,∴∠BEC =60°. ∵EC =FC ,∠ECF =90°, ∴∠CEF =45°.∴∠BEF =105°.22.(1)证明:∵在矩形ABCD 中,AD ∥BC ,∠A =∠C =90°, ∴∠ADB =∠DBC.根据折叠的性质得∠ADB =∠BDF ,∠F =∠A =90°, ∴∠DBC =∠BDF ,∠C =∠F...∴BE =DE.在△DCE 和△BFE 中,⎩⎨⎧∠DEC =∠BEF ,∠C =∠F ,DE =BE ,∴△DCE ≌△BFE. (2)解:在Rt △BCD 中, ∵CD =2,∠ADB =∠DBC =30°, ∴BD =4.∴BC =2 3.在Rt △ECD 中,易得∠EDC =30°. ∴DE =2EC. ∴(2EC)2-EC 2=CD 2. ∵CD =2, ∴CE =233. ∴BE =BC -EC =433.(第23题)23.(1)证明:如图,连接AC. ∵四边形ABCD 为菱形, ∠BAD =120°, ∴∠ABE =∠ACF =60°, ∠1+∠2=60°.∵∠3+∠2=∠EAF =60°, ∴∠1=∠3.∵∠ABC =60°,AB =BC , ∴△ABC 为等边三角形. ∴AC =AB. ∴△ABE ≌△ACF.∴BE=CF.(2)解:四边形AECF的面积不变.由(1)知△ABE≌△ACF,则S△ABE=S△ACF,故S四边形AECF=S△AEC+S△ACF=S△AEC+S△ABE=S△ABC. 如图,过A作AM⊥BC于点M,则BM=MC=2,∴AM=AB2-BM2=42-22=2 3.∴S△ABC =12BC·AM=12×4×23=4 3.故S四边形AECF=4 3.24.解:(1)OE=OF.理由如下:∵CE是∠ACB的平分线,∴∠ACE=∠BCE.又∵MN∥BC,∴∠NEC=∠BCE.∴∠NEC=∠ACE.∴OE=OC.∵CF是∠ACD的平分线,∴∠OCF=∠FCD.又∵MN∥BC,∴∠OFC=∠FCD.∴∠OFC=∠OCF.∴OF=OC.∴OE=OF.(2)当点O运动到AC的中点,且△ABC满足∠ACB为直角时,四边形AECF是正方形.理由如下:∵当点O运动到AC的中点时,AO=CO,又∵EO=FO,∴四边形AECF是平行四边形.∵FO=CO,∴AO=CO=EO=FO.∴AO+CO=EO+FO,即AC=EF.∴四边形AECF是矩形.已知MN∥BC,当∠ACB=90°时,∠AOE=90°,∴AC⊥EF. ∴四边形AECF是正方形.(3)不可能理由如下:连接BF,∵CE平分∠ACB,CF平分∠ACD,∴∠ECF=12∠ACB+12∠ACD=12(∠ACB+∠ACD)=90°.若四边形BCFE是菱形,则BF⊥EC.但在一个三角形中,不可能存在两个角为90°,故四边形BCFE不可能为菱形.。
期末专题复习:北师大版九年级数学上册第一章特殊平行四边形单元检测试卷 一、单选题(共10题;共30分) 1.如图,在菱形 中,对角线 、 交于点 .若∠ °, ,则 的长为( )
A. 1 B. C. 2 D. 2.下列给出的条件中,能识别一个四边形是菱形的是( ) A. 有一组对边平行且相等,有一个角是直角 B. 两组对边分别相等,且有一组邻角相等 C. 有一组对边平行,另一组对边相等,且对角线互相垂直 D. 有一组对边平行且相等,且有一条对角
线平分一个内角 3.顺次连结矩形四边的中点所得的四边形是( ) A. 矩形 B. 正方形 C. 平行四边形 D. 菱形 4.下列说法中,正确的是( ). A. 相等的角一定是对顶角 B. 四个角都相等的四边形一定是正方形 C. 平行四边形的对角线互相平分 D. 矩形的对角线一定垂直 5.在菱形ABCD中,对角线AC、BD相交于点O,AC=8,BD=6,则菱形ABCD的周长是( )
A. 20 B. 40 C. 24 D. 48 6.如图,在正方形ABCD的内部作等边△ADE,则∠AEB度数为( )
A. 80° B. 75° C. 70° D. 60° 7.如图,在菱形ABCD中,对角线AC与BD交于点O,OE⊥AB,垂足为E,若∠ADC=130°,则∠AOE的大
小为( ) A. 75° B. 65° C. 55° D. 50° 8.如图,矩形ABCD的对角线AC=8cm,∠AOD=120°,则AB的长为( )
A. cm B. 2cm C. 2 cm D. 4cm 9.在等腰Rt△ABC中,∠C=90°,AC=8,F是AB边上的中点,点D、E分别在AC、BC边上运动,且保持
AD=CE.连接DE、DF、EF.在此运动变化的过程中,下列结论: ①△DFE是等腰直角三角形;②四边形CDFE不可能为正方形; ③四边形CDFE的面积保持不变;④△CDE面积的最大值为8. 其中正确的结论有( )个.
A. 1个 B. 2个 C. 3个 D. 4个 10.(2017•德州)如图放置的两个正方形,大正方形ABCD边长为a,小正方形CEFG边长为b(a>b),
M在BC边上,且BM=b,连接AM,MF,MF交CG于点P,将△ABM绕点A旋转至△ADN,将△MEF绕
点F旋转至△NGF,给出以下五个结论:①∠MAD=∠AND;②CP=b﹣ ;③△ABM≌△NGF;④S四边形
AMFN=a2+b2;⑤A,M,P,D四点共圆,其中正确的个数是( )
A. 2 B. 3 C. 4 D. 5 二、填空题(共10题;共30分) 11.矩形一个角的平分线分矩形一边为1cm和3cm两部分,则这个矩形的面积为________cm2. 12.如图,要使平行四边形ABCD是矩形,则应添加的条件是________(只填一个). 13.菱形ABCD的一条对角线长为6,边AB的长是方程的解,则菱形ABCD的周长为 ________ . 14.(2017•包头)如图,在矩形ABCD中,点E是CD的中点,点F是BC上一点,且FC=2BF,连接AE,
EF.若AB=2,AD=3,则cos∠AEF的值是________. 15.如图,菱形ABCD的边长为4,∠ABC=60°,在菱形ABCD内部有一点P,当PA+PB+PC值最小时,PB的
长为________. 16.如图所示:点M、G、D在半圆O上,四边形OEDF、HMNO均为矩形,EF=b,NH=c,则b与c之间的
大小关系是b________c(填<、=、>)
17.如图,在四边形ABCD中,∠ADC=∠ABC=90°,AD=CD,DP⊥AB于P.若四边形ABCD的面积是18,则
DP的长是________.
18.如图,在 中,∠ °,BD为AC的中线,过点C作 于点E,过点A作BD的平行
线,交CE的延长线于点F,在AF的延长线上截取FG=BD,连接 BG,DF.若AF=8,CF=6,则四边形BDFG的周长为________. 19.如图,在边长为4的正方形ABCD中,E是AB边上的一点,且AE=3,点Q为对角线AC上的动点,则
△BEQ周长的最小值为________. 20.在平面直角坐标系中,正方形ABCD的位置如右图所示,点A的坐标为(1,0),点D的坐标为(0,
2).延长CB交轴于点A1,作正方形A1B1C1C;延长C1B1交轴于点A2,作正方形A2B2C2C1, …按这样的规
律进行下去,第2017个正方形的面积为________.
三、解答题(共9题;共60分) 21.如图,已知四边形ABCD是菱形,DE⊥AB,DF⊥BC,求证:△ADE≌△CDF.
22.已知,如图,E、F分别为矩形ABCD的边AD和BC上的点,AE=CF.求证:BE=DF. 23.如图,在△ABC中,AB=AC,D为BC中点,四边形ABDE是平行四边形,求证:四边形ADCE是矩形. 24.如图,在△ABC中,∠ACB=90°,CD为AB边上的中线,过点C作CE//AB,过点B作BE//CD,CE、BE相交于点E.求证:四边形BECD为菱形.
25.如图,在矩形ABCD中,点E在边AD上,EF⊥CE且与AB相交于点F,若DE=2,AD+DC=8,且CE=EF,
求AE的长。
26.如图,在矩形ABCD中,AC、BD相交于O,AE平分∠BAD,交BC于E,若∠CAE=15°,求∠OBE的度
数. 27.如图,在▱ABCD中,∠BAD的平分线交CD于点E,交BC的延长线于点F,连接BE,∠F=45°. (1)求证:四边形ABCD是矩形; (2)若AB=14,DE=8,求sin∠AEB的值.
28.如图,点G是正方形ABCD对角线CA的延长线上任意一点,以线段AG为边作一个正方形AEFG,线段
EB和GD相交于点H. (1)求证:EB=GD; (2)判断EB与GD的位置关系,并说明理由; (3)若AB=2,AG= ,求EB的长. 29.如图1,在Rt△ABC中,∠C=90º,AC=4cm,BC=3cm,点P由点B出发沿BA方向向点A匀速运动,速
度为1cm/s;点Q由点A出发沿AC方向向点C匀速运动,速度为2cm/s;连结PQ。若设运动时间为t(s)(0
(1)当t为何值时?PQ//BC? (2)设△APQ的面积为y(cm2),求y与t之间的函数关系? (3)是否存在某一时刻t,使线段PQ恰好把△ABC的周长和面积同时平分?若存在求出此时t的值;若不存在,说明理由. (4)如图2,连结PC,并把△PQC沿AC翻折,得到四边形PQP'C,那么是否存在某一时刻t,使四边形PQP'C为菱形?若存在求出此时t的值;若不存在,说明理由. 答案解析部分 一、单选题 1.【答案】C 2.【答案】D 3.【答案】D 4.【答案】C 5.【答案】A 6.【答案】B 7.【答案】B 8.【答案】D 9.【答案】C 10.【答案】D 二、填空题 11.【答案】4或12 12.【答案】∠ABC=90°或AC=BD(不唯一) 13.【答案】16 14.【答案】 15.【答案】 16.【答案】= 17.【答案】3 18.【答案】20 19.【答案】6 20.【答案】5×( )4032 三、解答题 21.【答案】证明:∵四边形ABCD是菱形, ∴∠A=∠C,AD=CD, 又∵DE⊥AB,DF⊥BC, ∴∠AED=∠CFD=90°, 在△ADE和△CDF中, ∠ ∠ ∠ ∠
,
∴△ADE≌△CDF(AAS) 22.【答案】证明:证法一:∵四边形ABCD为矩形, ∴AB=CD,∠A=∠C=90°. 在△ABE和△CDF中 ∵ ∠ ∠ , ∴△ABE≌△CDF(SAS), ∴BE=DF(全等三角形对应边相等) 证法二:∵四边形ABCD为矩形, ∴AD∥BC,AD=BC, 又∵AE=CF,∴AD-AE=BC-CF 即ED=BF, 而ED∥BF, ∴四边形BFDE为平行四边形 ∴BE=DF(平行四边形对边相等). 利用全等三角形对应边相等求证 23.【答案】证明:∵四边形ABDE是平行四边形,且D为BC中点 ∴AE∥CD,AE=CD ∴四边形ADCE是平行四边形 又∵AB=AC,D为BC中点
∴∠ADC=90° ∴四边形ADCE是矩形 24.【答案】证明:∵CE//AB,BE//CD, ∴四边形BECD是平行四边形. 又∵∠ACB=90°,CD为AB边上的中线, ∴CD= AB. 又∵CD为AB边上的中线 ∴BD= AB. ∴BD=CD. ∴平行四边形BECD是菱形 25.【答案】解:∠AEF+∠DEC=90°,∠DCE+∠DEC=90°, ∠AEF=∠DCE, CE=EF,∠EAF=∠EDC, , CD=EA, DE=2,AD+DC=8,DE+2AE=8, AE=3 26.【答案】解:∵AE平分∠BAD交BC于E, ∴∠BAE=45°,AB=BE, ∵∠CAE=15°,