平面的基本性质与推论
- 格式:doc
- 大小:143.00 KB
- 文档页数:6
1.空间中的平行关系1.集合的语言:点A 在直线l 上,记作: A ∈l ;点A 在平面α内,记作: A ∈α;直线在平面α内(即直线上每一个点都在平面α内),记作l ⊂α ; 注意:点A 是元素,直线是集合,平面也是集合。
2.平面的三个公理:(1)公理一:如果一条直线上的两点在同一个平面内那么这条直线上所有的点都在这个平而内.符号语言表述:A ∈l ,B ∈l , A ∈α, B ∈α⇒l ⊂α ; (2)公理二:经过不在同一条直线上的三点,有且只有一个平面,即不共线的三点确定一个平面.符号语言表述: A,B,C 三点不共线⇒有且只有一个平面α,使A ∈a, B ∈a, C ∈(3)公理三:如果不重合的两个平面有一个公共点,那么它们 有且只有一条过这个点的公共直线,符号语言表述: A ∈α∩β⇒α∩β= a, A ∈a.3. 平面基本性质的推论推论1:经过一条直线和直线外的一点,有且只有一个平面。
推论2:经过两条相交直线,有且只有一个平面。
推论3:经过两条平行直线,有且只有一个平面。
【例1.【解析】(1)D;直线上有两点在一个平面内,则这条直线一定在平面内,公理1保证了A 正确;公理2保证了C 正确;如果两个平面有两个公共点,则它们的交线是过这两点的直线,公理3保证了B 正确;直线不在平面内,可以与平面有一个交点,故D 错误.(2)①错误,如果这三条直线交于一点,比如过正方体同一顶点的三条棱就无法确定一个平面;②正确,两条相交直线确定一个平面;③错误,必须是不共线的三点,如果是共线三点,则有无数个平面;④正确,两条相交的对角线确定一个平面,四个顶点都在这个平面内,故是平面图形;⑤错误,两个平面若相交,公共点必是一条直线;⑥错误;若四点共线,则可以有无穷多个平面过这四点,若是对不共线的四点,该命题正确.【备选】 已知点A ,直线l ,平面α,① αα∉⇒⊄∈A l l A , ② αα∈⇒∈∈A l l ,A ③ αα∉⇒⊂∉A l l A , ④ αα⊄⇒∉∈l A l A , 以上说法表达正确的有______________【解析】④直线不在平面内,可以与平面有一个交点,故①错误; 直线是点集,故只能用l ⊂α,②错误;直线是平面的真子集,故不在直线上的点可以在平面内,③错误; 一条直线在一个平面内,则直线上任一点都在平面内,故④正确。
课题1.2.1平面的基本性质与推论课型主备人李冬旭上课教师李冬旭上课时间学习目标1、了解平面的基本性质与推论,并能运用这些公理及推论去解决有关问题,会用集合语言来描述点、直线和平面之间的关系以及图形的性质。
2、以所学过的作为推理依据的一些公理和定理为基础,通过直观感知,操作确认,思辨论证,归纳出空间中线、面平行的有关判定定理和性质定理。
能运用已获得的结论证明一些空间位置关系的简单命题。
教学重点平面的基本性质与推论以及它们的应用;线线平行及平行线的传递性和面面平行的定义与判定教学难点自然语言与数学图形语言和符号语言间的相互转化与应用;如何由平行公理以及其他基本性质推出空间线、线,线、面和面、面平行的判定和性质定理,并掌握这些定理的应用。
教师准备教学过程时间分配集备修正(二)平面中的平行关系1. 平行直线(1)空间两条直线的位置关系①相交:在同一平面内,有且只有一个公共点;②平行:在同一平面内,没有公共点。
(2)初中几何中的平行公理:过直线外一点有且只有一条直线和这条直线平行。
【说明】此结论在空间中仍成立.(3)公理4(空间平行线的传递性):平行于同一条直线的两条直线互相平行.即:如果直线a // b,c // b,那么a // c。
【说明】此公理是判定两直线平行的重要方法:寻找第三条直线分别与前两条直线平行。
2. 等角定理等角定理:如果一个角的两边和另一个角的两边分别对应平行,并且方向相同,那么这两个角相等。
推论:如果两条相交直线和另两条相交直线分别平行,那么这两组直线所成的锐角(或直角)相等。
需要说明的是:对于等角定理中的条件:“方向相同”。
1’5x5’(1)若仅将它改成“方向相反”,则这两个角也相等。
(2)若仅将它改成“一边方向相同,而另一边方向相反”,则这两个角互补。
此定理及推论是证明角相等问题的常用方法。
3. 空间图形的平移如果空间图形F的所有点都沿同一方向移动相同的距离到F'的位置,则说图形F在空间做了一次平移。
立体几何公式定理大全、公理定理(一)平面基本性质公理1:如果一条直线上的两点在一个平面内,那么这条直线上的所有的点都在这个平面内。
公理2:过不在同一条直线上的三个点,有且只有一个平面。
推论1:经过一条直线和这条直线外一点,有且只有一个平面。
推论2:经过两条相交直线,有且只有一个平面。
推论3:经过两条平行直线,有且只有一个平面。
公理3:如果两个平面有一个公共点,那么它们有且只有一条通过这个点的公共直线。
公理4:平行于同一条直线的两条直线互相平行。
等角定理:如果一个角的两边和另一个角的两边分别平行,那么这两个角相等或互补。
(二)空间中两条直线的位置关系空间两直线的位置关系:空间两条直线只有三种位置关系:平行、相交、异面1、按是否共面可分为两类:(1)共面:平行、相交(2)异面:异面直线的定义:不同在任何一个平面内的两条直线或既不平行也不相交。
异面直线判定定理:过平面内一点与平面外一点的直线,与平面内不经过该点的直线是异面直线。
两异面直线所成的角:过空间任意一点引两条直线分别平行于两条异面直线,它们所成的锐角(或直角)就是异面直线所成的角。
范围为0 , 90两异面直线间距离: 公垂线段(有且只有一条) 2、若从有无公共点的角度看可分为两类:(1)有且仅有一个公共点——相交直线;(2)没有公共点——平行或异面三)平行关系1.线面平行定义:直线和平面没有公共点判定定理:如果平面外一条直线和这个平面内的一条直线平行,那么这条直线和这个平面平行性质定理:如果一条直线和一个平面平行,经过这条直线的平面和这个平面相交,那么这条直线和交线平行。
2.面面平行定义:空间两平面没有公共点判定定理:如果一个平面内有两条相交直线都平行于另一个平面,那么这两个平面平行。
性质定理引理:两个平面互相平行则其中一个平面内的直线平行于另一个平面。
性质定理:如果两个平行平面同时和第三个平面相交,那么交线平行。
(四)垂直关系1线面垂直定义:如果一条直线a和一个平面内的任意一条直线都垂直,我们就说直线a和平面互相垂直.直线a叫做平面的垂线,平面叫做直线a的垂面。
§1.2点、线、面之间的位置关系1.2.1平面的基本性质与推论【学习要求】1.理解平面的基本性质与推论.2.能运用平面的基本性质及推论去解决有关问题.3.会用集合语言来描述点、直线和平面之间的关系以及图形的性质.【学法指导】通过桌面、黑板、地面等有形的实物,对平面有个感性认识,进而抽象出平面的概念及平面的基本性质及推论,感受我们所处的世界是一个三维空间,进而增强学习的兴趣,培养空间想象能力.填一填:知识要点、记下疑难点1.连接两点的线中,线段最短;过两点有一条,并且只有一条直线.2.平面基本性质1:如果一条直线上的两点在一个平面内,那么这条直线上的所有点都在这个平面内.这时我们说,直线在平面内或平面经过直线 .3.基本性质2:经过不在同一条直线上的三点,有且只有一个平面.或简单说成:不共线的三点确定一个平面.4.基本性质3:如果不重合的两个平面有一个公共点,那么它们有且只有一条过这个点的公共直线.5.基本性质的推论:推论1 :经过一条直线和直线外的一点,有且只有一个平面;推论2 :经过两条相交直线,有且只有一个平面;推论3 :经过两条平行直线,有且只有一个平面.6.异面直线:既不相交也不平行的直线叫做异面直线.与一平面相交于一点的直线与这个平面内不经过交点的直线是异面直线.研一研:问题探究、课堂更高效[问题情境]在《西游记》中,如来佛对孙悟空说:“你一个跟头虽有十万八千里,但不会跑出我的手掌心”.结果孙悟空真没有跑出如来佛的手掌心,如果把孙悟空看作是一个点,他的运动成为一条线,大家说如来佛的手掌像什么?探究点一平面的基本性质问题1在初中我们学习的点与直线的基本性质有哪些?问题2生活中常见的如黑板、平整的操场、桌面、平静的湖面等等,都给我们以平面的印象,你们能举出更多例子吗?那么,平面的含义是什么呢?问题3实际生活中,我们有这样的经验:把一根直尺边缘上的任意两点放到桌面上,可以看到,直尺的整个边缘就落在了桌面上.从经验中我们能得到什么结论呢?问题4直线和平面都可以看成点的集体,那么点、直线、平面的位置关系怎样用集合的符号表示?问题5如何用符号语言表示基本性质1?基本性质1有怎样的用途?问题6生活中经常看到用三角架支撑照相机;测量员用三角架支撑测量用的平板仪;有的自行车后轮旁只安装一只撑脚.上述事实和类似经验可以归纳出平面怎样的性质?问题7如何用符号语言表示基本性质2?基本性质2有怎样的用途?问题8基本性质2中“有且只有一个”的含义是什么?问题9如图所示,直线BC外一点A和直线BC能确定一个平面吗?为什么?问题10如图所示,两条相交直线能不能确定一个平面?为什么?问题11如图所示,两条平行直线能不能确定一个平面?为什么?问题12回顾第1.1节的内容,我们已经看到各种棱柱、棱锥的每两个相交的面之间的交线都是直线段,由此你能总结出怎样的结论?问题13在画两个平面相交时,如果其中一个平面被另一个平面遮住,应该怎样处理才有立体感?探究点二空间中两直线的位置关系问题1空间中的几个点或几条直线,如果都在同一平面内,我们就说它们共面.如果两条直线共面,那么两条直线有怎样的位置关系?问题2如图,直线AB与平面α相交于点B,点A在α外,那么直线l与直线AB能不能在同一个平面内?为什么?直线l与直线AB的位置关系是怎样的?小结:我们把这类既不相交又不平行的直线叫做异面直线.例1如图中的△ABC,若AB、BC 在平面α内,判断AC 是否在平面α内?小结:要判断或证明直线在平面内,只需要直线上的两点在平面内即可.跟踪训练1求证:两两平行的三条直线如果都与另一条直线相交,那么这四条直线共面.已知:a∥b∥c,l∩a=A,l∩b=B,l∩c=C.求证:直线a、b、c和l共面.例2如图,正方体AC1中,对角线A1C和平面BDC1交于O,AC与BD交于点M,求证:点C1、O、M共线.小结:证明点共线问题常用方法:(1)先找出两个平面,再证明这三个点都是这两个平面的公共点,根据基本性质3从而判定他们都在交线上;(2)选择两点确定一条直线,再证另一点在这条直线上.跟踪训练2空间四边形ABCD中,E、F、G、H分别是AB、AD、BC、CD上的点,已知EF和GH相交于点M,求证:点B、D、M共线.练一练:当堂检测、目标达成落实处1.若点M在直线b上,b在平面β内,则M、b、β之间的关系可记作()A.M∈b∈β B.M∈b⊂βC.M⊂b⊂β D.M⊂b∈β2.空间中可以确定一个平面的条件是()A.两条直线B.一点和一直线C.一个三角形D.三个点3.“a、b为异面直线”是指:①a∩b=∅,且a b;②a⊂面α,b⊂面β,且a∩b=∅;③a⊂面α,b⊂面β,且α∩β=∅;④a⊂面α,b⊄面α;⑤不存在面α,使a⊂面α,b⊂面α成立.上述结论中,正确的是()A.①④⑤正确B.①③④正确C.仅②④正确D.仅①⑤正确课堂小结:1.证明几点共线的方法:先考虑两个平面的交线,再证有关的点都是这两个平面的公共点.或先由某两点作一直线,再证明其他点也在这条直线上.2.证明点线共面的方法:先由有关元素确定一个基本平面,再证其他的点(或线)在这个平面内;或先由部分点线确定平面,再由其他点线确定平面,然后证明这些平面重合.注意对诸如“两平行直线确定一个平面”等依据的证明、记忆与运用.3.证明几线共点的方法:先证两线共点,再证这个点在其他直线上,而“其他”直线往往归结为平面与平面的交线。
数学高中必修知识点总结(实用11篇)数学高中必修知识点总结第1篇一、平面的基本性质与推论1、平面的基本性质:公理1如果一条直线的两点在一个平面内,那么这条直线在这个平面内;公理2过不在一条直线上的三点,有且只有一个平面;公理3如果两个不重合的平面有一个公共点,那么它们有且只有一条过该点的公共直线。
2、空间点、直线、平面之间的位置关系:直线与直线-平行、相交、异面;直线与平面-平行、相交、直线属于该平面(线在面内,最易忽视);平面与平面-平行、相交。
3、异面直线:平面外一点A与平面一点B的连线和平面内不经过点B的直线是异面直线(判定);所成的角范围(0,90】度(平移法,作平行线相交得到夹角或其补角);两条直线不是异面直线,则两条直线平行或相交(反证);异面直线不同在任何一个平面内。
求异面直线所成的角:平移法,把异面问题转化为相交直线的夹角二、空间中的平行关系1、直线与平面平行(核心)定义:直线和平面没有公共点判定:不在一个平面内的一条直线和平面内的一条直线平行,则该直线平行于此平面(由线线平行得出)性质:一条直线和一个平面平行,经过这条直线的平面和这个平面相交,则这条直线就和两平面的交线平行2、平面与平面平行定义:两个平面没有公共点判定:一个平面内有两条相交直线平行于另一个平面,则这两个平面平行性质:两个平面平行,则其中一个平面内的直线平行于另一个平面;如果两个平行平面同时与第三个平面相交,那么它们的交线平行。
3、常利用三角形中位线、平行四边形对边、已知直线作一平面找其交线三、空间中的垂直关系1、直线与平面垂直定义:直线与平面内任意一条直线都垂直判定:如果一条直线与一个平面内的两条相交的直线都垂直,则该直线与此平面垂直性质:垂直于同一直线的两平面平行推论:如果在两条平行直线中,有一条垂直于一个平面,那么另一条也垂直于这个平面直线和平面所成的角:【0,90】度,平面内的一条斜线和它在平面内的射影说成的锐角,特别规定垂直90度,在平面内或者平行0度2、平面与平面垂直定义:两个平面所成的二面角(从一条直线出发的两个半平面所组成的图形)是直二面角(二面角的平面角:以二面角的棱上任一点为端点,在两个半平面内分别作垂直于棱的两条射线所成的角)判定:一个平面过另一个平面的垂线,则这两个平面垂直性质:两个平面垂直,则一个平面内垂直于交线的直线与另一个平面垂直数学高中必修知识点总结第2篇一.随机事件的概率及概率的意义1、基本概念:(1)必然事件:在条件S下,一定会发生的事件,叫相对于条件S的必然事件;(2)不可能事件:在条件S下,一定不会发生的事件,叫相对于条件S的不可能事件;(3)确定事件:必然事件和不可能事件统称为相对于条件S的确定事件;(4)随机事件:在条件S下可能发生也可能不发生的事件,叫相对于条件S的随机事件;(5)频数与频率:在相同的条件S下重复n次试验,观察某一事件A 是否出现,称n次试验中事件A出现的次数nA为事件A出现的频数;对于给定的随机事件A,如果随着试验次数的增加,事件A发生的频率fn(A)稳定在某个常数上,把这个常数记作P(A),称为事件A的概率。
平面的基本性质与推论
编稿:石小燕审稿:李伟责编:张成志
教学目标:
1、使学生初步掌握点、直线、平面的之间的关系及表示方法
2、使学生掌握平面的基本性质(三个公理)
3、空间的平行关系(直线与直线、直线与平面)
教学重点:
1、三个基本性质与推论以及它们的应用;
2、线线平行、线面平行的判定及性质。
教学难点:
1、自然语言与数学符号语言和图形语言的相互转化与应用;
2、异面直线的理解;
3、线面平行的性质及判定
教学过程:
一、平面的基本性质(三个公理)
1、用集合符号表示点、线、面及其关系。
2、基本性质1:如果一条直线上的两个点在一个平面内,那么这条直线上所有的点都在这个平面内。
(直线在平面内或平面经过直线)
作用:证明直线在平面内。
符号语言:若,,,,则
图形语言:
基本性质2:经过不在同一条直线上三点,有且只有一个平面。
(不共线的三点确定一个平面)
作用:确定一个平面判定两个平面重合
基本性质3:如果不重合的两个平面有一个公共点,那么它们有且只有一条过这个点的公共直线。
如果两个平面有一条公共直线,则称这两个平面相交。
这条直线叫做这两个平面的交线。
作用:判定两个平面相交、证明点在直线上(面的公共点)、确定两平面的交线
符号语言:若,,则
图形语言:
平面基本性质2的推论
①推论1:经过一条直线和直线外一点,有且只有一个平面。
②推论2:经过两条相交直线,有且只有一个平面。
③推论3:经过两条平行直线,有且只有一个平面。
作用:如何确定一个平面何时两个平面重合。
二、空间两元素之间的位置关系:
1、空间两直线的位置关系:(按照是否有公共点分类)
(1)有一个公共点——相交;
(2)没有公共点——平行、异面
若按照是否共面分类:
(1)共面——平行或相交;
(2)不共面——异面直线。
2、空间中直线与平面的位置关系:
直线在平面内:
直线在平面外
3、空间中两个平面的位置关系:
两个平面平行(没有公共点)
两个平面相交(有一条公共直线)
三、异面直线:既不相交也不平行的直线
(没有公共点,永远不能共面)
异面直线的判定定理:(见例题6)
四、直线与直线平行
1、基本性质4(公理4):平行于同一条直线的两条直线互相平行。
(平行线的传递性)
作用: 判定两条直线平行
问题: (1) 垂直于同一条直线的两条直线的位置关系如何?相交、平行、异面
(2) 与同一条直线都异面的两条直线的位置关系又如何?相交、平行、异面
2、等角定理:如果一个角的两边和另一个角的两边分别平行并且方向相同,那么这两个角相等。
(习题中出现)
作用:判定两个角相等
分析证明思想: (1) 全等三角形的应用
五、直线与平面平行的判定及性质
直线与平面平行定义:如果一条直线与一个平面没有公共点,那么我们说这条直线和这个平面平行。
表示方法:直线与平面平行,
直线平面,
3、直线与平面平行判定定理:如果平面外一条直线和这个平面内的一条直线平行,那么这条直线和这个平面平行。
作用:证明线面平行。
平行于同一个平面的两条直线的位置关系——平行、相交、异面。
平行于同一条直线的两个平面的位置关系——平行、相交。
性质定理:如果一条直线和一个平面平行,经过这条直线的平面和这个平面相交,那么这条直线和两个平面的交线平行。
作用:证明线线平行。
参考例题:
1.判断下列命题的真假
1) 空间三点确定一个平面(假)
2) 空间两条直线可以确定一个平面(假)
3) 空间一条直线和一个点可以确定一个平面(假)
4) 一个圆周上的三个点可以确定一个平面(真)
5) 两两相交的三条直线共面(假)
分析:
1)空间三点共线时确定0个平面,空间三点不共线时确定一个平面
2)空间中两条直线的位置关系:共面与异面直线
共面直线此时可以确定一个平面
异面直线:既不相交也不平行的直线(没有公共点,永远不能共面)
3)点在直线外时可以确定一个平面,点在直线上时确定0个平面
4)一个圆周上的三个点不共线所以可以确定一个平面
5)两两相交的三条直线可以共点不共面、共点共面,也可以有三个交点共面
2.已知:一条直线与两条平行直线都相交,求证:这三条直线共面。
符号语言表示:
已知:直线中,,
求证:直线三线共面。
分析:欲证三线共面,根据为平面基本性质——公理3及其推论。
证明:[法1]
确定平面,
,
同理B,,
则直线三线共面。
[法2]
确定平面,又确定平面,
,又,
,且过直线和点B有且只有一个平面,
由公理3推论1得:平面与平面重合,
直线三线共面。
3.一条直线和这条直线外不在同一条直线上的三点最多可以确定平面的个数是(D)
(A)(B)(C)(D)
理科:一条直线和这条直线外三点可以确定平面的个数是
分析:这里确定的含义是由其中部分元素能确定出的平面,可以分解然后添加元素一步一步解决数好
若直线外三点共线于b,b与已知直线a相交时确定一个平面
b与已知直线a平行时确定一个平面
b与已知直线a异面时确定三个平面
若直线外三点不共线则可以确定四个平面
4.两两相交且不过同一个点的三条直线必在同一个平面内
已知:直线AB、BC、CA两两相交,交点分别为A、B、C(如图)
求证:直线AB、BC、CA共面
证明:
因此直线AB、BC、CA都在平面内,即它们共面
小结:纳入法:先用部分元素确定一个平面,再证明其它元素在面内
统一法:先用所有元素确定多个平面,在证明多个平面重合
5.已知:的三条边的延长线与平面交于、、三点,求证:、、三点共线。
分析:先定线,再证明其它的点在线上
证明:设AB、CB延长线分别交平面于P、Q 点,
则平面ABC 交平面于直线PQ,
设AC 交平面于R 点,又AC,
由公理2,R必在PQ 上。
所以、、三点共线。
6.(异面直线的判定)
过平面外一点与平面内一点的直线,和平面内不经过该点的直线是异面直线已知:(如图)
求证:直线AB和直线a是异面直线
证明:假设直线AB和直线a在同一个平面内,
则
因为,所以经过直线直线a与点A有且只有一个平面
所以平面与平面重合
所以,这与已知矛盾,
所以假设直线AB和直线a在同一个平面内不成立,
所以直线AB和直线a是异面直线成立。