高教版中职数学(基础模块)下册9.1《平面的基本性质》word教案
- 格式:doc
- 大小:80.50 KB
- 文档页数:8
中职数学(基础模块)教案1.1集合的概念知识目标:(1)理解集合、元素及其关系;(2)掌握集合的列举法与描述法,会用适当的方法表示集合.能力目标:通过集合语言的学习与运用,培养学生的数学思维能力.教学重点:集合的表示法.教学难点:集合表示法的选择与规范书写.课时安排:2课时.1。
2集合之间的关系知识目标:(1)掌握子集、真子集的概念;(2)掌握两个集合相等的概念;(3)会判断集合之间的关系。
能力目标:通过集合语言的学习与运用,培养学生的数学思维能力。
教学重点:集合与集合间的关系及其相关符号表示.教学难点:真子集的概念.课时安排:2课时.1。
3集合的运算(1)知识目标:(1)理解并集与交集的概念;(2)会求出两个集合的并集与交集.能力目标:(1)通过数形结合的方法处理问题,培养学生的观察能力;(2)通过交集与并集问题的研究,培养学生的数学思维能力.教学重点:交集与并集.教学难点:用描述法表示集合的交集与并集.课时安排:2课时.1.3集合的运算(2)知识目标:(1)理解全集与补集的概念;(2)会求集合的补集.能力目标:(1)通过数形结合的方法处理问题,培养学生的观察能力;(2)通过全集与补集问题的研究,培养学生的数学思维能力.教学重点:集合的补运算.教学难点:集合并、交、补的综合运算.课时安排:2课时.1.4充要条件知识目标:了解“充分条件”、“必要条件”及“充要条件”.能力目标:通过对条件与结论的研究与判断,培养思维能力.教学重点:(1)对“充分条件"、“必要条件”及“充要条件"的理解.(2)符号“",“”,“”的正确使用.教学难ZYB重油煤焦油专用泵点:“充分条件”、“必要条件”、“充要条件”的判定.课时安排:2课时.2.1不等式的基本性质知识目标:⑴理解不等式的基本性质;⑵了解不等式基本性质的应用.能力目标:⑴了解比较两个实数大小的方法;⑵培养学生的数学思维能力和计算技能.教学重点:⑴比较两个实数大小的方法;⑵不等式的基本性质.教学难点:比较两个实数大小的方法.课时安排:1课时.2.2区间知识目标:⑴掌握区间的概念;⑵用区间表示相关的集合.能力目标:通过数形结合高温导热油泵的学习过程,培养学生的观察能力和数学思维能力.教学重点:区间的概念.教学难点:区间端点的取舍.课时安排:1课时.2.3一元二次不等式知识目标:⑴了解方程、不等式、函数的图像之间的联系;⑵掌握一元二次不等式的图像解法.能力目标:⑴通过对方程、不等式、函数的图像之间的联系的研究,培养学生的观察能力与数学思维能力;⑵通过求解一元二次不等式,培养学生的计算技能.教学重点:⑴方程、不等式、函数的图像之间的联系;⑵一元二次不等式的解法.教学难点:一元二次不等式的解法.课时安排:2课时.2。
【高教版中职教材—数学(基础模块)下册电子教案课程】9.2直线与直线、直线与平面、平面与平面平行的判定与性质【教学目标】知识目标:(1)了解两条直线的位置关系;(2)掌握异面直线的概念与画法,直线与直线平行的判定与性质;直线与平面的位置关系,直线与平面平行的判定与性质;平面与平面的位置关系,平面与平面平行的判定与性质.能力目标:培养学生的空间想象能力和数学思维能力.【教学重点】直线与直线、直线与平面、平面与平面平行的判定与性质.【教学难点】异面直线的想象与理解.【教学设计】本节结合正方体模型,通过观察实验,发现两条直线的位置关系除了相交与平行外,在空间还有既不相交也不平行,不同在任何一个平面内的位置关系.由此引出了异面直线的概念.通过画两条异面直线培养学生的画图、识图能力,逐步建立空间的立体观念.空间两条直线的位置关系既是研究直线与直线、直线与平面、平面与平面的位置关系的开始,又是学习后两种位置关系的基础.因此,要让学生树立考虑问题要着眼于空间,克服只在一个平面内考虑问题的习惯.通过观察教室里面墙与墙的交线,引出平行直线的性质,在此基础上,提出问题“空间中,如果两个角的两边分别对应平行,那么这两个角的度数存在着什么关系?请通过演示进行说明.”这样安排知识的顺序,有利于学生理解和掌握所学知识.要防止学生误认为“一条直线平行于一个平面,就平行于这个平面内的所有的直线”,教学时可通过观察正方体模型和课件的演示来纠正学生的这个错误认识.平面与平面的位置关系是通过观察教室中的墙壁与地面、天花板与地面而引入的.【教学备品】教学课件.【课时安排】2课时.(90分钟)【教学过程】*揭示课题直线与直线、直线与平面、平面与平面平行的判定与性质*创设情境兴趣导入A B与AD所观察图9−13所示的正方体,可以发现:棱11在的直线,既不相交又不平行,它们不同在任何一个平面内.图9−13观察教室中的物体,你能否抽象出这种位置关系的两条直线?图9 −14(请画出实物图)受实验的启发,我们可以利用平面做衬托,画出表示两条异面直线的图形(如图9 −15).(1) (2) 图9−15利用铅笔和书本,演示图9−15(2)的异面直线位置关系. 引领 分析仔细分析关键 语句理解 记忆带领 学生 分析5*创设情境 兴趣导入我们知道,平面内平行于同一条直线的两条直线一定平行.那么空间中平行于同一条直线的两条直线是否一定平行呢?观察教室内相邻两面墙的交线(如图9−16).发现:1AA ∥1BB ,1CC ∥1BB ,并且有1AA ∥1CC .质疑 引导 分析思考启发 学生思考图9−16BA CD*创设情境兴趣导入将平面 内的四边形ABCD的两条边AD与DC,沿着对角线AC向上折起,将点D折D的位置(如图9−17).此叠到1D四个点不在同一个平面内.时A、B、C、1图9−17图9−18*运用知识强化练习1.结合教室及室内的物品,举出空间两条直线平行的例子.2.把一张矩形的纸对折两次,然后打开(如第2题图),说明为什么这些折痕是互相平行的?如果一条直线与一个平面只有一个公共点,那么就称这条直线与这个平面相交,画直线与平面相交的图形时,要把直线延伸到平行四边形外(如图9−19(2)).如果一条直线与一个平面没有公共点,那么就称这条直线与这个平面平行. 直线l与平面α平行,记作l∥α.画直线与平面平行的图形时,要把直线画在平行四边形外,并与平行四边形的一边平行(如图9−19(3)).ll(1)(2)l(3)这样,直线与平面的位置关系有三种:直线在平面内、直线与平面相交、直线与平面平行.直线与平面相交及直线与平面平行统称为直线在平面外.*创设情境兴趣导入在桌面上放一张白纸,在白纸上画出两条平行直线,沿着其中的一条直线将纸折起(如图9−20).观察发现:在折起的各个位置上,另一条直线始终与桌面保持平行.图9−201为了叙述简便起见,将线段1DD 所在的直线,直接写作直线1DD ,本章教材中都采用这种表述方法.图9−211111ABCD A B C D -中,因为四边形图9−22(请画出实物图) 分析42*动脑思考 探索新知从大量的实验与观察中,归纳出直线与平面平行的性质:如果一条直线与一个平面平行,并且经过这条直线的一个平面和这个平面相交,那么这条直线与交线平行.如图9−23所示,设直线l 为平面α与平面β的交线,直线m 在平面β内且m α∥,则m l ∥.图9-23讲解 说明引领 分析思考 理解 带领 学生 分析45 *巩固知识 典型例题例 3 在如图9−24所示的一块木料中,已知BC ∥平面1111A B C D ,BC ∥11B C ,要经过平面11A C 内的一点P 与棱BC 将木料锯开,应当怎样画线?说明 强调 引领观察 思考通过例题进一步领会铅笔分析 设点P 和棱BC 确定的平面α,则EF 是α与平面1111A B C D 的交线,由于BC ∥平面1111A B C D ,故EF ∥BC ,11B C BC ∥.所以11EF B C ∥.解 画线的方法是:在平面1111A B C D 内,过点P 作直线11B C 的平行线EF ,分别交直线11A B 及直线11D C 与点E 、F ,连接EB 和FC .讲解 说明主动 求解48*运用知识 强化练习1.试举出一个直线和平面平行的例子.2.请在黑板上画一条直线与地面平行,并说出所画的直线与地面平行的理由.3.如果一条直线平行于一个平面,那么这条直线是不是和这个平面内所有的直线都平行?4.说明长方体的上底面各条边与下底面平行的理由. 提问 巡视 指导思考 求解及时 了解 学生 知识 掌握 得情 况50 *创设情境 兴趣导入教室中的墙壁与地面相交于一条直线,而天花板与地面,没有公共点.质疑 思考 引导 学生 分析 52 *动脑思考 探索新知如果两个平面没有公共点,那么称这两个平面互相平行.平面α与平面β平行,记做α∥β.画两个互相平行平面的图形时,要使两个平行四边形的对应边分别平行(如图9−25).讲解 说明 引领 分析思考 理解带领 学生 分析图9−25图9−24*创设情境兴趣导入进行乒乓球或台球比赛时,必需要保证台面与地面平行.技术人员利用水准器来进行检测.水准器内的玻璃管装有水,管内的水柱相当于一条直线,水准器内的水泡在中央,表示水准器所在的直线与地平面平行.把水准器在平板上交叉放置两次(如图9−26),如果两次检测,水准器内的水泡都在中央,就表示台面与地面平行,可以进行比赛,否则就需要进行调整.图9−26例4 设平面α内的两条相交直线m ,n 分别平行于另一个平面β内的两条直线k ,l (如图9−27),试判断平面α,β是否平行解 因为m 在β外、l 在β内,且m ∥l ,所以直线m ∥平面β.同理可得 直线n ∥平面β.由于m 、n 是平面α内两条相交直线,故可以判断α∥β. *创设情境 兴趣导入将一本书放在与桌面平行的位置,用作业本靠紧书一边,绕着这条边移动作业本,观察作业本和书的交线与作业本和桌面的交线之间的关系(如图9−28).图9−28(请画出实物图)图9−27Am n桌子 书放到不同位置的本*动脑思考 探索新知由大量的观察和实验得到两个平面平行的性质:如果一个平面与两个平行平面相交,那么它们的交线平行.如图9−29所示,如果αβ∥,平面γ与α、β都相交,交线分别为m 、n ,那么m ∥n .*运用知识 强化练习1.画出下列各图形:(1)两个水平放置的互相平行的平面. (2)两个竖直放置的互相平行的平面. (3)与两个平行的平面相交的平面.2.如图所示,//αβ,M 在α与β同侧,过M 作直线a 与b ,a 分别与α、β相交于A 、B ,b 分别与、β相交于C 、D .⑴ 判断直线AC 与直线BD 是否平行;⑵ 如果 4M A =cm ,5AB =cm ,3MC =cm ,求MD 的长.*理论升华 整体建构 ba第2题图MAC D B图9−29[0,180]1BC AD 1CBC ∠1DAD ∠AB 1BC AD 1CBC ∠nm onm o*运用知识 强化练习在如图所示的正方体中,求下列各对直线所成的角的度数:(1)1DD 与BC ; (2)1AA 与1BC .ABCD图9−32题图图9−33*动脑思考 探索新知如果直线l 和平面α内的任意一条直线都垂直,那么就称直线l 与平面α垂直,记作α⊥l .直线l 叫做平面α的垂线,垂线l 与平面α的交点叫做垂足.画表示直线l 和平面α垂直的图形时,要把直线l 画成与平行四边形的横边垂直(如图9−34所示),其中交点A 是垂足.图9−34图9−35图9−3642*动脑思考探索新知斜线l与它在平面α内的射影l'的夹角,叫做直线l与平面α所成的角.如图9−37所示,PBA∠就是直线PB与平面α所成的角.规定:当直线与平面垂直时,所成的角是直角;当直线与平面平行或直线在平面内时,所成的角是零角.显然,直线与平面所成角的取值范围是[0,90].【想一想】如果两条直线与一个平面所成的角相等,那么这两条直线一定平行吗?图9−37讲解说明引领分析仔细分析讲解关键词语思考理解记忆带领学生分析47*巩固知识典型例题例2 如图9−38所示,等腰∆ABC的顶点A在平面α外,底边BC 在平面α内,已知底边长BC =16,腰长AB =17,又知点A 到平面α的垂线段AD =10.求(1)等腰∆ABC 的高AE 的长; (2)斜线AE 和平面α所成的角的大小(精确到1º).分析 三角形AEB 是直角三角形,知道斜边和一条直角边,利用勾股定理可以求出AE 的长;AED ∠是AE 和平面α所成的角,三角形ADE 是直角三角形,求出AED ∠的正弦值即可求出斜线AE 和平面α所成的角.解 (1) 在等腰∆ABC 中,AE BC ⊥,故由BC =16可得BE =8.在Rt ∆AEB 中,∠AEB =90°,因此222217815AE AB BE =-=-=.(2)联结DE .因为AD 是平面α的垂线,AE 是α的斜线,所以DE 是AE 在α内的射影.因此AED ∠是AE 和平面α所成的角. 在Rt ∆ADE 中,102sin 153AD AED AE ∠===,所以42AED ∠≈︒.即斜线AE 和平面α所成的角约为42︒. 【想一想】为什么这三条连线都画成虚线?*运用知识 强化练习图9−381′).练习图*创设情境 兴趣导入在建筑房屋时,有时为了美观和排除雨水的方便,需要考虑屋顶面与地面形成适当的角度(如图9−39(1));在修筑河堤时,为使它经济且坚固耐用,需要考虑河堤的斜坡与地面形成适当的角度(如图9−39(2)).在白纸上画出一条线,沿着这条线将白纸对折,然后打开进行观察.(2)图9−39(1)角,记作二面角l αβ--(或CD αβ--)(如图9−40).过棱上的一点,分别在二面角的两个面内作与棱垂直的射线,以这两条射线为边的最小正角叫做二面角的平面角.如图9−41所示,在二面角α−l −β的棱l 上任意选取一点O ,以点O 为垂足,在面α与面β内分别作OM l ⊥、ON l ⊥,则MON ∠就是这个二面角的平面角.,180].平面角是直角的二面角叫做直二面角地面就组成直二面角,此时称两个平面垂直图9−40CD图9−41loNMCD*巩固知识 典型例题例3 在正方体1111ABCD A B C D -中(如图9−42),求二面角1D AD B --的大小.图9−42解 AD 为二面角的棱, 1AA 与AB 是分别在二面角的两个面内并且与棱AD 垂直的射线,所以1A AB ∠为二面角1D AD B --的平面角.因为在正方体1111ABCD A B C D -中,1A AB ∠是直角.所以二面角1D AD B --为90°.*运用知识 强化练习练习题图*理论升华整体建构【教师教学后记】。
课时教学设计首页(试用)授课时间:年月日课题9.1.2 平面的基本性质课型新授第几1~2课时1.在观察、实验与思辨的基础上掌握平面的三个基本性质及课时推论.教学2.学会用集合语言描述空间中点、线、面之间的关系.目标3.培养学生在文字语言、图形语言与符号语言三种语言之间(三维)教学重点与难点教学方法与手段使用教材的构想的转化的能力.教学重点:平面的三个基本性质.教学难点:理解平面的三个基本性质及其推论实例法结合学生身边的实物,体会平面的无限延展性,并引导学生观察身边的物体以及现象,引导学生总结出平面的三个基本性质,逐个理解其内在的思想.同时教会学生能正确用图形语言与符号语言表示文字语言.通过穿插有针对性的练习,引导学生边学边练,及时巩固,逐步掌握文字语言、图形语言与符号语言三种语言之间的转化太原市教研科研中心研制第1 页(总页)课时教学流程教师行为公路、平静的海面、教室的黑板都给我们以平面的形象.你还能从生活中举出类似平面的物体吗?1.平面几何里所说的“平面”就是从桌面等物体中抽象出来的,但是,几何里的平面是无限延展的.2.平面的表示方法常把希腊字母,β,等写在代表平面的平行四边形的一个角上来表示平面,如平面、平面β等;也可以用代表平面的四边形的四个顶点,或者相对的两个顶点的大写英文字母作为这个平面的名称.基本性质 1 如果一条直线上有两点在一个平面内,那么这条直线上所有的点都在这个平面内.☆补充设计☆学生行为设计意图教师呈现平面的图片,从学生学生根据生活经验找出具有身边的生活平面特点的实例.经验出发,对平面加以描述而不是定义,引发学生学习的兴趣.教师从初中的点、线、学生通面开始说起,逐步过渡到平过点与线的面,并教会学生怎样表示平关系联想到面.点、线与面的关系.培养学生联想的能力.A B师:如果直线l 与平面有两个公共点,直线l 是通过动否在平面内?画演示提高生:是.学生学习的练习一在正方体 ABCD -A1B1C1 D1中,判断下列命题是否正确,并明理由:(1)直线 AC1在平面 CC1B1B 内;(2)直线 BC1在平面 CC1B1B 内.兴趣,活跃学生的思维.平面内有无数个点,平面可以看成点的集合.点在平面内和点在平面外都可以用元素与集合的属于、不属于来表示.基本性质 1 可表示为:如果A,B,那么直线AB.利用这个性质,可以判断一条直线是否在一个平面内.学生个别口答,其他学生进行评价,教师解决有争议的知识点.学生在实际讨论中巩固平面的基本性质1.位置关系的符号表示:位置关系符号表示点 P 在直线AB 上P AB点 C 不在直线AB 上 C AB第 2 页(总运用集合的符号表示点、线、面之间的位置关系.学生体会三种语言符号的联系太原市教研科研中心研制页)课时教学流程点 M 在平面 AC 内M平面 AC 点 A不在平面 AC 内A平面 AC 直线AB 与直线 BC 交于点 B AB ∩ BC= B 直线AB 在平面 AC 内AB平面 AC 直线AA 不在平面 AC 内AA平面 AC与区别.学生观察理解,条件容许时可作为练习,让学生分小组讨论完成.基本性质 2 如果两个不重合的平面有一个公共点,那么它们有且只有一条过该点的公共直线.a练习二观察长方体,你能发现长方体中两个相交平面的公共直线吗?基本性质 3 过不在一条直线上的三点,有且只有一个平面.教师讲解基本性质 2,同时教会学生怎样画两个平面相交.教师结合生活经验启发学生.学生观察长方体,回答问题.推论 1 经过一条直线和直线外的一点,有且只有一个平面.推论 2经过两条相交直线,有且只有一个平面.推论 3经过两条平行直线,有且只有一个平面.练习三在正方体 ABCD -A1B1C1 D1中,O 是 AC 的中点.判断下列命题是否正确,并说明理由:(1)由点 A, O, C 可以确定一个平面;(2)由 A, C1, B1确定的平面是平面ADC 1B1;(3)由 A, C1, B1确定的平面与由A,D,C1确定的平面是同一个平面.第 3 页(总教师创设实际情境:生活中经常看到用三角在这个架支撑照相机.过程中,逐步并让学生找出生活中类培养学生空似的现象.例如自行车、门间想象能力.等.教师强调存在性和唯一性.学生体学生在教师的引导下,验生活中处理解三个推论.处存在数学教师逐个结合学生身边知识.的现象或实例讲解三个推学生对论.如教师可结合学生身边于“有且只有熟悉的现象,提出问题:木一个”进行理匠用两根细绳分别沿桌子四解.条腿底端的对角线拉直,以判断桌子四条腿的底端是在同一平面内,其依据是什太原市教研科研中心研制页)课时教学流程么?学生灵活运用所学知识进行解决.太原市教研科研中心研制第4 页(总页)课时教学设计尾页(试用)☆补充设计☆板书设计9.1.2 平面的基本性质1. 平面的基本性质 1 以及推论1. 4.例题与练习2.平面的基本性质 2 以及推论 2.3.平面的基本性质 3 以及推论 3.作业设计教材P113 练习 B 组第 2 题.教学后记太原市教研科研中心研制第5 页(总页)。
课题:10.1平面的基本性质课题:10.1平面的基本性质【教学目标】1.知识目标:理解和掌握平面的三个基本性质,并学会应用性质进行一些简单的分析和判断。
2. 能力目标:通过实例和多媒体进行直观教学,培养学生的观察能力和空间想象能力。
通过应用性质进行一些简单的分析和判断,培养逻辑思维能力。
3.情感目标:(1)通过创设主题式故事情境,增强学习兴趣。
(2)结合生活,进行“数学来源于生活”的唯物主义观念教育。
(3)通过问题解决,培养学生合作交流、独立思考等良好的个性品质,以及勇于批判、敢于创新的科学精神。
【教学重点】平面的基本性质。
因为研究空间图形时,往往将有关点、线归结到一个平面内,再利用平面图形的性质解决。
所以要求学生对基本性质有较深刻的理解。
【教学难点】平面的基本性质的掌握与运用。
因为平面的基本性质既抽象又枯燥,而中职幼师专业的学生想象和思维都较弱,所以掌握与运用三个平面的基本性质会有一定的难度。
【教学方法】遵循学生的认知规律,结合多媒体将具体与抽象、感性与理性、动手与动脑有机地结合在一起。
进行思考、交流,师生共同讨论等学法。
根据中职学生想象能力、思维能力较弱的特点,尽量从直观入手,因此考虑通过创设既靠近生活,又体现数学本质,并且能从情感上激发学生主动、深入思考的有效情境(主题式故事情境)作为载体的启发式教法。
【教学过程】图9−5公理1作为判断和证明直线是否在平图9−8反映了只要“两面共一点”,就两面共一线,且过这一点,线唯把信封的一角竖立在桌面上,那么信封所在平面和桌面所在平面只交于一点,对吗?如图:在长方体ABCD—A1B1C1D1是棱A1B1上的中点,画出C1三点所确定的平面α与长方体表面的交线。
江苏省XY中等专业学校2021-2022-2教案编号:备课组别数学组上课日期主备教师授课教师课题:§9.1.1 平面的基本性质—平面及其表示教学目标1学会用符号语言表达空间点、线、面之间的位置关系,能将文字语言转化为符号语言2了解平面的三个公理及推论重点学会用符号语言表达空间点、线、面之间的位置关系,能将文字语言转化为符号语言难点了解平面的三个公理及推论教法引导探究,讲练结合教学设备多媒体一体机教学环节教学活动内容及组织过程个案补充教学内容一新课引入立体几何在生活中无处不在;本章研究空间中的直线和平面,是处理空间问题、形成空间想象能力的基础二新知探究(一)平面定义:平面是平的,没有厚度的,在空间无限延伸的图形.数学中的平面的概念是现实中平面形象抽象的结果.比如平静的湖面、桌面等.平面的表示方法:(1)用大写的英文字母表示:平面M,平面N等;(2)用小写的希腊字母表示:平面,平面等;(3)用平面上的三个(或三个以上)点的字母表示:(如图14-1)平面ABCD等.教学内容平面的直观图画法:正视图垂直放置的平面M 水平放置的平面M相交平面画法注意:看得见的线用实线,看不见的线用虚线。
(二)空间点、线、面的位置关系的集合语言表示法在空间,我们把点看作元素,直线和平面看作是由元素点所组成的集合,建立了如下点、线、面的集合语言表示法.点与线:点A在直线L上:(直线L经过点A);点Q不在直线L上:点与平面:点A在平面内:(平面经过点A);点B不在平面内:;教学内容直线与平面:直线L在平面上:直线L上所有的点都在平面上,即直线L在平面上,或平面经过直线L,记作.直线L在平面外:当直线L与平面只有一个公共点A时,称直线L与平面相交于点A,记作;当直线L与平面没有公共点时,称直线L与平面平行,记作或.直线与直线:直线a与直线b相交于点A,记作.三例题讲解例1用符号表示下列语句,并画出图形:⑴点A在平面α内,点B在平面α外;⑵直线L在平面α内,直线m不在平面α内;⑶平面α和β相交于直线L⑷直线L 经过平面α外一点P和平面α内一点Q ;。
中职数学基础模块下册教学计划一、前言中职数学基础模块下册教学计划是中等职业学校数学教学工作的重要组成部分,其内容涵盖了数学基础理论、基本知识和实际运用。
通过对中职数学基础模块下册教学计划的全面评估,我们可以更好地理解和把握数学教学的深层次内涵和教学目标,为学生提供更加优质的教育资源和更加完善的学习环境。
二、教学内容概述中职数学基础模块下册教学计划主要包括数的性质和应用、方程和不等式、平面向量和立体几何三个单元。
在这些单元内容中,数的性质和应用主要介绍了有理数、无理数、指数、对数等相关知识;方程和不等式主要讲解了一元二次方程、分式方程、分式不等式等内容;平面向量和立体几何则涉及到向量运算、空间图形的位置关系等内容。
这些教学内容的深度和广度都是中职数学教学的重要组成部分,对学生的数学素质和实际运用能力有着重要的促进作用。
三、教学方法与手段在教学方法上,中职数学基础模块下册教学计划强调了理论联系实际、启发式教学和问题解决能力的培养。
教师在教学过程中应注重理论知识的深入与实际应用的结合,通过启发式教学方法引导学生主动思考,培养其数学问题解决能力和创新能力。
教学手段也要多样化,结合现代化教育技术和多媒体手段来提高教学效果,激发学生学习兴趣,确保教学内容的深入学习和灵活运用。
四、总结回顾中职数学基础模块下册教学计划作为中等职业学校数学教学的重要内容,其深度和广度都得到了充分的展现和发挥。
教学内容涵盖了数的性质和应用、方程和不等式、平面向量和立体几何等重要知识,教学方法和手段也注重培养学生的问题解决能力和创新能力,确保学生能够全面、深刻和灵活地掌握数学知识和技能。
从个人观点来看,中职数学基础模块下册教学计划对学生的数学素质和综合能力有着重要的促进作用,是一项具有重要意义和价值的教学计划。
以上就是对中职数学基础模块下册教学计划的全面评估和个人观点的阐述,希望对您有所帮助。
五、教学目标的具体分解1. 数的性质和应用:让学生掌握有理数、无理数、指数、对数等的基本性质和实际应用,提高学生对数的理解和运用能力;2. 方程和不等式:使学生能够熟练掌握一元二次方程、分式方程、分式不等式等的解题方法,提高学生的代数方程处理能力和问题解决能力;3. 平面向量和立体几何:让学生掌握向量的运算方法和空间图形的位置关系,培养学生的几何思维和空间想象能力。
平面的基本性质说课稿(第一课时)一、教材分析和学情分析1.教材地位及作用本节课选自苏教版《数学》必修二的1.2.1平面的基本性质第一课时,主要内容是平面的概念及三个公理。
平面的基本性质虽然在高考中一般以选择和填空题型为主,但是它是研究立体几何的理论基础,也是以后论证推理的逻辑依据。
这节内容是学生已有的平面几何观念的拓展,帮助学生观念逐步从平面转向空间。
因此,掌握平面的三条基本性质至关重要。
2. 学情分析学生已经掌握了平面内点和直线的概念和性质,可以进行顺应性的建构;但由于学生想象能力、思维能力较弱,一旦涉及到抽象的总结归纳,难免会束手无策。
二、定位和设计1.教学目标根据本节课的教学内容、特点及教学大纲对学生的要求,结合学生现有的知识水平和理解水平,确定本节课的教学目标:【知识目标】(1)通过列举实例,类比直线,准确抽象出平面的特点;(2)通过观察、联想,快速地用图形和符号语言表示平面并进一步表示空间中点、直线线和平面的位置关系;(3)通过操作、实验,准确理解并表述平面的三个基本性质;【能力目标】(1)通过实例和多媒体直观教学,培养学生的观察能力和空间想象能力;(2)通过对生活中平面及其性质的举例、分析、解释过程,培养学生逻辑思维能力。
【情感目标】通过学生的观察、实验、操作和思维辩证,培养学生勇于批判、敢于创新的科学精神以及“数学来源于生活”的唯物主义精神。
2.重点难点同样根据教材和学生的需要确定本节课的:【重点】准确理解平面的特点和基本性质。
因为研究立体几何时,往往将有关点、线归结到一个平面内,再利用平面图形的性质解决,所以要求学生对平面的基本性质有较深刻的理解。
【难点】空间点、线、面位置关系的符号表示和平面的基本性质的掌握与运用。
因为平面的基本性质既抽象又枯燥,而学生想象和思维都较弱,所以掌握与运用三个平面的基本性质会有一定的难度。
三、教学策略1、教法——启发式教法一方面,考虑到生活中关于平面及其性质的实例很多,本节适合让学生联系生活列举实例;另一方面,根据学生想象能力、思维能力较弱的特点,教学时尽量从直观入手。
中等专业学校2023-2024-1教案编号:备课组别数学组课程名称数学所在年级二年级主备教师授课教师授课系部授课班级授课日期课题 4.1.2平面的基本性质教学目标1.通过实验观察,能分析得出平面的三个基本性质和三个推论;2.感悟数学源于生活,服务于生活,增强学习兴趣.重点平面的三个基本性质和三个推论;难点平面的三个基本性质和三个推论教法实物演示数形结合讲练结合教学设备实物多媒体教学环节教学活动内容及组织过程个案补充教学内容一、情境导入如图所示,分别尝试用一个指尖、两个指尖、三个指尖顶起一块硬纸板,看看哪种方式能比较稳地将硬纸板顶起来?你有什么发现?二、探索新知1.尝试后发现,当三个指尖不在同一条直线上时,能将硬纸板平稳地顶起来.这个现象蕴含着平面的如下重要性质.公理1 经过不在同一条直线上的三点,有且只有一个平面.观察图像分析问题理解体会教学内容这个公理也可以说成“不共线的三点确定一个平面”. 如图所示,点A、B、C不共线.由公理 1可知,存在唯一的平面α,使得A∈α,B∈α,C∈α.容易看出,经过一个点、两个点或共线的三个点有无数个平面,也可以说成“一个点,两个点或共线的三个点不能确定一个平面”.用图形再次强调三点不能共线.2.将一根细线拉直,然后把它的两个端点固定在桌面上,如图所示,观察细线上其他的点与桌面的关系.如果抓住细线中的一点并拉离桌面,细线还是直线吗?公理2 如果一条直线上的两个点在一个平面内,那么这条直线上的所有点都在这个平面内.有且只有一个平面.当一条直线上的所有点都在平面内时,称直线在平面内,或者说平面经过直线.因为直线和平面都是由点组成的集合,所以直线m在平面α内可表示为m⊆α .当直线m不在平面α内时,表示为m⊈α,此时直线与平面有一个公共点或没有公共点.符号语言如图所示,由A∈α,B∈α,可知AB⊆α .由公理1、2得到以下结论.推论 1 经过一条直线和该直线外的一点有且只有一个平面.如图所示,A∈l,存在唯一的平面α,使得A∈α,l⊆α.教学内容推论2 经过两条相交直线有且只有一个平面.如图所示,直线m与直线n相较于点A,存在唯一的平面α,使得m⊆α,n⊆α.推论3 经过两条平行直线有且只有一个平面.如图所示,m∥n,存在唯一的平面α,使得m⊆α,n⊆α.3.将一块薄的硬纸板平放到桌面上,可视作硬纸板和桌面所在的平面重合,如图所示.抬起硬纸板的一端,让另一端紧贴桌面,则硬纸板和桌面所在台面有一条公共直线.继续抬起硬纸板,将纸板的一角支在桌面上,则支点就是硬纸板和桌面所在平面的一个公共点.这时,它们所在的平面就只有这一个公共点么?考虑到平面具有无限延展性,我们把硬纸板向下延展.容易看出,硬纸板所在的平面与桌面所在的平面有一条公共直线由此,得到平面的性质:公理3 如果两个平面有一个公共点,那么它们有且只有一条经过该点的公共直线.此时,称两个平面相交,并把公共直线称为两个平面的交线.当平面α与平面β相交于直线l 时,记作α⋂β=l.如图所示,A∈α,A∈β,存在唯一的直线l,使得A∈l, α⋂β=l.。
高教版中职数学(基础模块)课时安排及目录课时安排第三版上册第1章集合与充要条件1.1 集合的概念1.2 集合之间的关系1.3 集合的运算1.4 充要条件复习题1现代信息技术应用1 如何在Word文档中录入数学公式阅读与欣赏康托尔与集合论第2章不等式2.1 不等式的基本性质2.2 区间2.3 一元二次不等式2.4 含绝对值的不等式复习题2现代信息技术应用2 利用Excel软件解一元二次方程阅读与欣赏数学家华罗庚第3章函数3.1 函数的概念及表示法3.2 函数的性质3.3 函数的实际应用举例复习题3现代信息技术应用3 利用几何画板作函数图像(静态)阅读与欣赏个人所得税计算方法解析第4章指数函数与对数函数4.1 实数指数幂4.2 指数函数4.3 对数4.4 对数函数复习题4现代信息技术应用4 利用几何画板作函数图像(动态)阅读与欣赏声音的计量及噪音第5章三角函数5.1. 角的概念推广5.2 弧度制5.3 任意角的正弦函数、余弦函数和正切函数5.4 同角三角函数的基本关系5.5 诱导公式5.6 三角函数的图像和性质5.7 已知三角函数值求角复习题5现代信息技术应用5 利用几何画板作函数图像(从轨迹角度)阅读与欣赏光周期现象及其应用附录1 预备知识附录2 教材使用的部分数学符号下册第6 章数列6.1 数列的概念6.2 等差数列6.3 等比数列复习题6现代信息技术应用6 编制利用Excel软件进行数列相关计算的工作表阅读与欣赏堆垛中的数学计算第7章平面向量7.1 平面向量的概念及线性运算7.2 平面向量的坐标表示7.3 平面向量的内积复习题7现代信息技术应用7 利用几何画板软件绘图1阅读与欣赏牛顿第8章直线和圆的方程8.1 两点间的距离与线段中点的坐标8.2 直线的方程8.3 两条直线的位置关系8.4 圆复习题8现代信息技术应用8 利用几何画板软件绘图2阅读与欣赏解析几何的创始人———笛卡儿第9 章立体几何9.1 平面的基本性质9.2 直线与直线、直线与平面、平面与平面平行的判定与性质绪言第1章集合1.1 集合及其表示1.1.1 集合的概念1.1.2 集合的表示法1.2 集合之间的关系1.3 集合的运算1.3.1 交集1.3.2 并集1.3.3 补集趣味数学神奇的心灵魔术数学文化无限集的奥秘信息技术应用元素与集合(列表) 第2章不等式2.1 不等式的基本性质2.1.1 实数的大小2.1.2 不等式的性质数学文化从弦图看基本不等式2.2 区间2.3 一元二次不等式2.4 含绝对值的不等式2.5 不等式应用举例数学文化等号与不等号的来历信息技术应用四个“二次”第3章函数3.1 函数的概念3.2 函数的表示方法3.3 函数的性质3.3.1 函数的单调性3.3.2 函数的奇偶性3.3.3 几种常见的函数信息技术应用“心形”曲线与函数3.4 函数的应用趣味数学百钱买百鸡数学文化中国古代数学的发展期——魏晋南北朝第4章三角函数4.1 角的概念的推广4.1.1 任意角4.1.2 终边相同的角4.2 弧度制4.3 任意角的三角函数4.3.1 任意角的三角函数定义4.3.2 单位圆与三角函数4.4 同角三角函数的基本关系4.5 诱导公式4.6 正弦函数的图像和性质4.6.1 正弦函数的图像4.6.2 正弦函数的性质4.7 余弦函数的图像和性质4.8 已知三角函数值求角趣味数学地球的周长数学文化sin 的由来信息技术应用三角函数的定义域新版下册课时安排第5章指数函数与对数函数5.1 实数指数幂5.1.1 有理数指数幂5.1.2 实数指数幂5.2 指数函数5.3对数5.3.1对数的概念5.3.2 积、商、幂的对数数学文化对数简史5.4 对数函数5.5 指数函数与对数函数的应用趣味数学神奇的对数速算信息技术应用运用指数函数比较值的大小第6章直线与圆的方程6.1 两点间距离公式和线段的中点坐标公式6.2 直线的方程6.2.1 直线的倾斜角与斜率6.2.2 直线的点斜式方程与斜截式方程6.2.3 直线的一般式方程6.3 两条直线的位置关系6.3.1 两条直线平行6.3.2 两条直线相交6.3.3 点到直线的距离6.4 圆6.4.1 圆的标准方程6.4.2 圆的一般方程6.5 直线与圆的位置关系6.6 直线与圆的方程应用举例趣味数学数形结合,相辅相成数学文化笛卡儿坐标系的产生信息技术应用用GeoGebra判断直线与圆的位置关系第7章简单几何体7.1.1 棱柱7.1.2 直观图的画法7.1.3 棱锥7.2 旋转体7.2.1 圆柱7.2.2 圆锥7.2.3 球7.3 简单几何体的三视图数学文化祖暅原理信息技术应用正方体的十一种平面展开图第8章概率与统计初步8.1 随机事件8.1.1 随机事件的概念8.1.2 频率与概率8.3 概率的简单性质8.4 抽样方法8.4.1 简单随机抽样8.4.2 系统抽样8.4.3 分层抽样8.5 统计图表8.6 样本的均值和标准差趣味数学圆周率π中各数码出现的概率相同吗?拓展延伸大数据信息技术应用数据统计分析。
课时教学设计首页(试用)第页(总页)课时教学流程☆补充设计☆课时教学流程点M在平面AC内M乏平面AC点A,不在平面AC内A它平面AC 直线AB与直线BC交于点B AB n BC=B 直线AB在平面AC内AB二平面AC 直线AA不在平面AC内AAQ:平面AC学生观察理解,条件容许时可作为练习,让学生分小组讨论完成.与区别.基本性质2如果两个不重合的平面有一个公共点,练习二观察长方体,你能发现长方体中两个相交平面的公共直线吗?基本性质3过不在一条直线上的三点,有且只有一个平面.推论1经过一条直线和直线外的一点,有且只有一个平面.推论2经过两条相交直线,有且只有一个平面.推论3经过两条平行直线,有且只有一个平面.练习三在正方体ABCD-A I B I C I D I中,0是AC的中点.判断下列命题是否正确,并说明理由:⑴ 由点A, O, C可以确定一个平面;(2)由A, C I,B I确定的平面是平面ADC I B I;(3)由A, C I,B I确定的平面与由A, D, C I确定的平面是同一个平面.教师讲解基本性质2, 同时教会学生怎样画两个平面相交.学生观察长方体,回答问题.教师创设实际情境:生活中经常看到用三角架支撑照相机.并让学生找出生活中类似的现象.例如自行车、门等.教师强调存在性和唯一性.学生在教师的引导下,理解三个推论.教师逐个结合学生身边的现象或实例讲解三个推论.如教师可结合学生身边熟悉的现象,提出问题:木匠用两根细绳分别沿桌子四条腿底端的对角线拉直,以判断桌子四条腿的底端是在同一平面内,其依据是什教师结合生活经验启发学生.在这个过程中,逐步培养学生空间想象能力.学生体验生活中处处存在数学知识.学生对于“有且只有一个”进行理解.课时教学流程课时教学设计尾页(试用)板书设计9.1.2平面的基本性质作业设计教材P113练习B组第2题.教学后记☆补充设计☆1.平面的基本性质1以及推论4•例题与练习2.平面的基本性质2以及推论3.平面的基本性质3以及推论。
中职数学基础模块教案第一章:数学基础概念1.1 实数1.1.1 有理数1.1.2 实数1.1.3 数的运算1.2 代数式1.2.1 代数式的概念1.2.2 代数式的运算1.2.3 代数式的简化1.3 方程与不等式1.3.1 方程的解法1.3.2 不等式的解法1.3.3 方程与不等式的应用第二章:函数与图形2.1 函数的概念2.1.1 函数的定义2.1.2 函数的表示方法2.1.3 函数的性质2.2 常见函数2.2.1 正比例函数2.2.2 反比例函数2.2.3 二次函数2.3 函数的图像2.3.1 图像的绘制方法2.3.2 图像的特点与分析2.3.3 图像的应用第三章:几何基础3.1 点、线、面的基本概念3.1.1 点的概念3.1.2 线段的概念3.1.3 三角形、四边形、圆的概念3.2 平面几何图形的性质与判定3.2.1 平行线的性质3.2.2 垂直线的性质3.2.3 圆的性质3.3 几何图形的计算与应用3.3.1 面积的计算3.3.2 周长的计算3.3.3 几何图形的应用第四章:三角函数4.1 三角函数的概念4.1.1 角度的概念4.1.2 三角函数的定义4.1.3 三角函数的性质4.2 三角函数的图像与性质4.2.1 正弦函数的图像与性质4.2.2 余弦函数的图像与性质4.2.3 正切函数的图像与性质4.3 三角函数的应用4.3.1 三角函数在测量中的应用4.3.2 三角函数在工程中的应用4.3.3 三角函数在科学计算中的应用第五章:概率与统计5.1 概率的基本概念5.1.1 随机事件的概念5.1.2 概率的计算方法5.1.3 概率的性质5.2 统计的基本概念5.2.1 统计量的概念5.2.2 数据的收集与整理5.2.3 描述统计的方法5.3 概率与统计的应用5.3.1 概率在实际问题中的应用5.3.2 统计在实际问题中的应用5.3.3 概率与统计的综合应用第六章:初等代数6.1 代数式的运算6.1.1 整式的运算6.1.2 分式的运算6.1.3 指数与对数的运算6.2 一元二次方程6.2.1 一元二次方程的定义6.2.2 一元二次方程的解法6.2.3 一元二次方程的应用6.3 不等式与不等式组6.3.1 不等式的性质6.3.2 一元一次不等式的解法6.3.3 不等式组的解法与应用第七章:函数的进一步研究7.1 函数的性质7.1.1 单调性7.1.2 奇偶性7.1.3 周期性7.2 函数图像的变换7.2.1 图像的平移7.2.2 图像的伸缩7.2.3 图像的翻折7.3 函数的应用7.3.1 函数在实际问题中的应用7.3.2 函数在数学问题中的应用7.3.3 函数与其他数学知识的综合应用第八章:几何进阶8.1 解析几何8.1.1 坐标系的概念8.1.2 点、直线、圆的方程8.1.3 解析几何的应用8.2 空间几何8.2.1 空间点的坐标8.2.2 空间直线与平面的方程8.2.3 空间几何体的性质与计算8.3 几何图形的变换8.3.1 旋转8.3.2 翻折8.3.3 缩放第九章:微积分基础9.1 极限的概念9.1.1 极限的定义9.1.2 极限的计算9.1.3 极限的应用9.2 导数的概念与计算9.2.1 导数的定义9.2.2 基本导数公式9.2.3 导数的应用9.3 积分的基础9.3.1 积分的定义9.3.2 基本积分公式9.3.3 积分的应用第十章:数学应用与实践10.1 数学在科学中的应用10.1.1 数学在物理中的应用10.1.2 数学在化学中的应用10.1.3 数学在生物学中的应用10.2 数学在工程技术中的应用10.2.1 数学在电子技术中的应用10.2.2 数学在机械工程中的应用10.2.3 数学在建筑中的应用10.3 数学在日常生活中的应用10.3.1 数学在财务管理中的应用10.3.2 数学在市场营销中的应用10.3.3 数学在生活中的其他应用第十一章:线性代数基础11.1 向量及其运算11.1.1 向量的定义11.1.2 向量的运算11.1.3 向量的应用11.2 矩阵及其运算11.2.1 矩阵的定义11.2.2 矩阵的运算11.2.3 矩阵的应用11.3 行列式及其应用11.3.1 行列式的定义11.3.2 行列式的计算11.3.3 行列式的应用第十二章:概率论与数理统计12.1 随机事件及其概率12.1.1 随机事件的概念12.1.2 概率的计算12.1.3 条件概率与独立性12.2 随机变量及其分布12.2.1 随机变量的概念12.2.2 离散型随机变量的分布12.2.3 连续型随机变量的分布12.3 数理统计的基本方法12.3.1 描述统计方法12.3.2 推断统计方法12.3.3 统计应用案例分析第十三章:离散数学初步13.1 集合及其运算13.1.1 集合的概念13.1.2 集合的运算13.1.3 集合的应用13.2 图论基础13.2.1 图的概念13.2.2 图的运算13.2.3 图的应用13.3 逻辑与布尔代数13.3.1 逻辑的基本概念13.3.2 布尔代数的基本运算13.3.3 布尔代数的应用第十四章:数学建模与解决问题14.1 数学建模的基本方法14.1.1 数学建模的概念14.1.2 数学建模的步骤14.1.3 数学建模的方法与应用14.2 数学在解决问题中的应用14.2.1 问题的定义与分析14.2.2 数学模型的建立14.2.3 数学模型的求解与分析14.3 数学建模案例分析14.3.1 经济管理领域的应用14.3.2 工程技术领域的应用14.3.3 社会生活领域的应用第十五章:数学思维与创新15.1 数学思维的基本方法15.1.1 合情推理与演绎推理15.1.2 抽象思维与形象思维15.1.3 批判性思维与创造性思维15.2 数学思维在解决问题中的应用15.2.1 问题的定义与分析15.2.2 数学思维方法的运用15.2.3 解决问题的策略与技巧15.3 数学创新与数学探究15.3.1 数学创新的概念与意义15.3.2 数学探究的基本方法15.3.3 数学创新与探究的案例分析重点和难点解析本文档为您提供了一份中职数学基础模块的教案,共包含十五个章节。
【课题】9.2 直线与直线、直线与平面、平面与平面平行的判定与性质【教学目标】知识目标:(1)了解两条直线的位置关系;(2)掌握异面直线的概念与画法,直线与直线平行的判定与性质;直线与平面的位置关系,直线与平面平行的判定与性质;平面与平面的位置关系,平面与平面平行的判定与性质.能力目标:培养学生的空间想象能力和数学思维能力.【教学重点】直线与直线、直线与平面、平面与平面平行的判定与性质.【教学难点】异面直线的想象与理解.【教学设计】本节结合正方体模型,通过观察实验,发现两条直线的位置关系除了相交与平行外,在空间还有既不相交也不平行,不同在任何一个平面内的位置关系.由此引出了异面直线的概念.通过画两条异面直线培养学生的画图、识图能力,逐步建立空间的立体观念.空间两条直线的位置关系既是研究直线与直线、直线与平面、平面与平面的位置关系的开始,又是学习后两种位置关系的基础.因此,要让学生树立考虑问题要着眼于空间,克服只在一个平面内考虑问题的习惯.通过观察教室里面墙与墙的交线,引出平行直线的性质,在此基础上,提出问题“空间中,如果两个角的两边分别对应平行,那么这两个角的度数存在着什么关系?请通过演示进行说明.”这样安排知识的顺序,有利于学生理解和掌握所学知识.要防止学生误认为“一条直线平行于一个平面,就平行于这个平面内的所有的直线”,教学时可通过观察正方体模型和课件的演示来纠正学生的这个错误认识.平面与平面的位置关系是通过观察教室中的墙壁与地面、天花板与地面而引入的.【教学备品】教学课件.【课时安排】2课时.(90分钟)【教学过程】教 学 过 程教师 行为 学生 行为 教学 意图 时间*揭示课题9.2 直线与直线、直线与平面、平面与平面平行的判定与性质*创设情境 兴趣导入观察图9−13所示的正方体,可以发现:棱11A B 与AD 所在的直线,既不相交又不平行,它们不同在任何一个平面内.图9−13观察教室中的物体,你能否抽象出这种位置关系的两条直线?介绍质疑引导 分析了解 思考启发 学生思考0 2 *动脑思考 探索新知在同一个平面内的直线,叫做共面直线,平行或相交的两条直线都是共面直线.不同在任何一个平面内的两条直线叫做异面直线.图9-13所示的正方体中,直线11A B 与直线AD 就是两条异面直线.这样,空间两条直线就有三种位置关系:平行、相交、异面.将两支铅笔平放到桌面上(如图9−14),抬起一支铅笔的一端(如D 端),发现此时两支铅笔所在的直线异面.图9 −14(请画出实物图)受实验的启发,我们可以利用平面做衬托,画出表示两条异面直线的图形(如图9 −15).讲解 说明 引领 分析思考 理解带领 学生 分析桌子 BA C D两支铅笔(1) (2) 图9−15 利用铅笔和书本,演示图9−15(2)的异面直线位置关系.仔细 分析关键语句 记忆5*创设情境 兴趣导入我们知道,平面内平行于同一条直线的两条直线一定平行.那么空间中平行于同一条直线的两条直线是否一定平行呢? 观察教室内相邻两面墙的交线(如图9−16).发现:1AA ∥1BB ,1CC ∥1BB ,并且有1AA ∥1CC .质疑引导 分析思考启发 学生思考7*动脑思考 探索新知由上述观察及大量类似的事实中,归纳出平行线的性质:平行于同一条直线的两条直线平行.我们经常利用这个性质来判断两条直线平行. 【想一想】空间中,如果两个角的两边分别对应平行,那么这两个角的度数存在着什么关系?请通过演示进行说明. 讲解 说明 引领 分析 思考 理解 带领 学生 分析 10 *创设情境 兴趣导入将平面 内的四边形ABCD 的两条边AD 与DC ,沿着对角线AC 向上折起,将点D 折叠到1D 的位置(如图9−17).此时A 、B 、C 、1D 四个点不在同一个平面内.图9−17质疑 引领 分析思考带领 学生 分析13图9−16图9−18*运用知识强化练习1.结合教室及室内的物品,举出空间两条直线平行的例子.2.把一张矩形的纸对折两次,然后打开(如第2题图),说明为什么这些折痕是互相平行的?1为了叙述简便起见,将线段1DD 所在的直线,直接写作直线1DD ,本章教材中都采用这种表述方法.图9−211111ABCD A B C D -中,因为四边形CC 1,又因为CC 1在平面图9−28(请画出实物图)*动脑思考 探索新知由大量的观察和实验得到两个平面平行的性质:如果一个平面与两个平行平面相交,那么它们的交线平行.如图9−29所示,如果αβ∥,平面γ与α、β都相交,交线分别为m 、n ,那么m ∥n .讲解 说明 引领 分析思考 理解 带领 学生 分析75 *运用知识 强化练习1.画出下列各图形:(1)两个水平放置的互相平行的平面. (2)两个竖直放置的互相平行的平面. (3)与两个平行的平面相交的平面.2.如图所示,//αβ,M 在α与β同侧,过M 作直线a 与b ,a 分别与α、β相交于A 、B ,b 分别与、β相交于C 、D .⑴ 判断直线AC 与直线BD 是否平行;⑵ 如果 4M A =cm ,5AB =cm ,3MC =cm ,求MD 的长.提问 巡视 指导思考 求解及时 了解 学生 知识 掌握 得情 况80 *理论升华 整体建构 思考并回答下面的问题:异面直线的定义?质疑回答及时了解学生ba第2题图βαMACD B 桌子 书图9−29【教师教学后记】图9-28你处理一下页脚没了内容太多了时间没分我觉得你得分两个教案。