第16讲焊接热裂纹
- 格式:pptx
- 大小:481.77 KB
- 文档页数:46
焊接热裂纹气孔缺陷成因及解决方法焊接热裂纹和气孔缺陷是焊接过程中常见的质量问题,其成因和解决方法如下所述:焊接热裂纹的成因:1. 金属材料的热裂敏感性:某些金属材料在焊接过程中易产生热裂纹,例如低合金钢、不锈钢等。
2. 焊接残余应力:焊接过程中产生的残余应力超过材料的承受能力,导致热裂纹的产生。
3. 高温区热处理:焊接过程中,高温区域的快速冷却和热应力可以引起热裂纹。
焊接热裂纹的解决方法:1. 选择适当的焊接材料:对于易产生热裂纹的材料,应选择抗裂纹性好的焊接材料。
2. 控制焊接热输入:通过控制焊接参数,如预热温度、焊接速度等,控制焊接热输入,减少热裂纹的产生。
3. 采用合理的焊接顺序:合理的焊接顺序可以减小残余应力,降低热裂纹的风险。
4. 进行后热处理:合适的后热处理可以减小残余应力,降低热裂纹的产生。
气孔缺陷的成因:1. 气体溶解度:焊接过程中,溶解在焊池中的气体(如氮气、氧气等)在加热过程中难以消除,形成气孔。
2. 气体污染:焊接材料表面或环境中存在杂质或油污等物质,会导致气体释放,形成气孔。
3. 不稳定的焊接电弧:不稳定的电弧容易引入空气,形成气孔。
气孔缺陷的解决方法:1. 提高焊接材料的清洁度:在焊接前应确保焊接材料表面干净,避免油污和杂质的存在。
2. 使用合适的保护气体:在焊接过程中使用合适的保护气体,如纯氩气或二氧化碳气体,以减少气体溶解度。
3. 控制焊接电弧的稳定性:通过调整焊接电流和电弧稳定器等,保持焊接电弧的稳定性,减少气孔的产生。
4. 加大气孔检测力度:使用超声波扫描、X射线检测等方法对焊接接头进行检测,及时发现并修复气孔缺陷。
5. 选择适当的焊接工艺和焊接参数,以提高焊接质量。
焊接裂纹产生的原因及预防措施作者:赵小娜来源:《科技传播》2013年第20期摘要裂纹是焊接结构最危险的一种缺陷,不仅会使产品报废,而且还可能引起严重的事故。
所以如何避免裂纹的产生是保证焊接质量的关键。
本文着重从焊接裂纹形成原因,影响裂纹生成的因素以及防止措施三方面进行探讨。
关键词热裂纹;冷裂纹;产生原因;预防措施中图分类号TG4 文献标识码 A 文章编号 1674-6708(2013)101-0075-020引言在焊接应力及其他致脆因素的作用下,焊接接头中局部区域因开裂而产生的缝隙称为焊接裂纹。
在焊接生产中出现的裂纹形式是多种多样的,根据裂纹产生的情况,可把焊接裂纹归纳为热裂纹、冷裂纹、再热裂纹和层状撕裂。
下面主要讨论较为常见的热裂纹和冷裂纹。
1热裂纹热裂纹是高温下在焊缝金属和焊缝热影响区中产生的一种沿晶裂纹。
热裂纹产生的原因焊接是一个局部加热的过程,液体由液态向固态转变的过程需要放热,体积缩小,焊缝金属凝固后,在冷却过程中处于放热状态,因此体积收缩。
但焊缝周围金属性能稳定,焊缝金属的收缩受到阻碍,因而使焊缝受到拉力作用。
在焊缝开始凝固、结晶时,液体流动性较小,因此产生的拉应力不会引起裂纹。
此时的液体金属可以在晶粒间自由流动,因而拉应力造成的晶粒间隙能被液体金属填满。
当温度继续下降时,柱状晶体继续生长,拉应力也逐渐增长。
之所以焊缝中的共晶体被柱状晶体推向晶界,聚集在晶界上,是因为焊缝中低熔共晶体的熔点比较低,凝固的时间晚。
在焊缝金属基本上都凝固时,小部分低熔点的金属还未完全凝固,在晶界上形成了一种“液体夹层”,拉应力在此时已经变的比较大了,然而液体金属本身强度很小,这大大减弱了晶粒间的结合。
在拉应力的作用下,柱状晶体之间的间隙被增大,低熔点液体金属这时填充不了被增大的空隙,因此产生了裂纹。
1.1由此可见,拉应力是产生热裂纹的外因,晶界上的低熔点共晶体是产生热裂纹的内因,拉应力作用在低熔点共晶体处的晶界上而造成裂纹。
热力管道焊接裂纹产生原因分析及修复工艺摘要:随着北方城镇集中供热模式的发展,城镇供热管网的建设规模得到大力发展。
由于供热管道安装多为地下埋管,对其安装质量提出更高的要求。
而在供热管网安装工程中,管道组对焊接是关键技术,也是确保管道安装质量的关键工序,因此,确保管道焊接质量成为工程的重中之重。
鉴于此,文章对热力管道焊接中存在的裂纹类型和形成原因进行了分析,然后介绍了相应的裂纹修复工艺,并提出了防止焊接裂纹出现的措施,以供参考。
关键词:热力管道;焊接裂纹;修复工艺1热力管道焊接裂纹类型1.1冷裂纹热力管道的冷裂纹,主要产生于熔合线部位。
由于管道焊接接头处存在淬硬组织,导致熔合线处的性能脆化。
此外,在热影响区域内存在大量的氢气分子。
这些氢气分子也会降低焊接处的韧性,并聚集在钢管焊接的缺陷部位,给缺陷部位造成局部化的压力,进而产生冷裂纹。
在冷裂纹类型中,最常见的要属延迟裂纹。
这种裂纹也是在钢管焊接后的一段时间内发生的,在氢元素的扩散下,诱导发生裂纹。
1.2热裂纹热裂纹,就是指管道在高温的环境下产生的裂纹。
这种裂纹一般发生在焊缝内部,有的裂纹会分布在热力天然气钢管的热影响区域。
热裂纹的表现形式是多样的,比如纵向裂纹、横向裂纹、根部裂纹等,每种裂纹的形式都离不开结晶的影响。
在焊接工艺中,若管道材质中存在一些杂质,会形成裂纹现象。
另外,熔池结晶过程中会存在偏析情况,在较大的焊接应力作用下,熔池产生的结晶将被拉开,进而形成裂纹。
1.3再热裂纹热力管道的再热裂纹,就是指在焊接好的焊件中,在恒定的温度环境下,再次给予加热条件。
在再次受热的环境下,管道裂纹得以产生。
再热裂纹一般发生在焊接的融合线处,并且在其附近的粗晶区域内。
从焊趾到结晶区域范围内,管道及其焊接部位,会受到温度服役及预应力的影响,在热处理的晶体发展中产生裂纹。
1.4层状撕裂裂纹层状撕裂裂纹的产生,主要是源于钢管材料内部掺入了杂物。
因此,在热力管道进行焊接的同时,在轧制的垂直方向,会产生一定的应力。
焊接热裂纹产生的原因一、引言焊接是现代工业生产中常用的加工方法之一。
在焊接过程中,热裂纹是一个常见的问题,会导致焊接件的损坏和失效。
因此,了解热裂纹产生的原因对于提高焊接质量和可靠性具有重要意义。
二、热裂纹的定义热裂纹是指在焊接过程中或后期使用过程中由于温度变化而引起的材料开裂。
它通常出现在高强度合金钢、不锈钢、铝合金等材料上。
三、热裂纹产生的原因1. 组织不均匀性组织不均匀性是导致热裂纹产生的主要原因之一。
当材料中存在缺陷或组织不均匀时,其内部应力分布也会不均匀。
在焊接过程中,由于受到加热和冷却的影响,这种应力分布会发生变化,从而导致材料出现开裂。
2. 焊接参数不当焊接参数包括电流密度、电压、速度等多个方面。
如果这些参数设置不当,就会导致局部过热或过快的冷却,从而引起热裂纹的产生。
3. 残余应力残余应力是指焊接后材料内部的应力。
在焊接过程中,由于加热和冷却的影响,焊接件内部会产生应力。
如果这些应力没有得到合理的处理,就会在后期使用中导致材料发生开裂。
4. 材料选择不当不同材料具有不同的物理性质和化学成分。
如果选择不当的材料进行焊接,就会导致组织不均匀、化学成分变化等问题,从而引起热裂纹的产生。
5. 焊接工艺不合理焊接工艺包括预热、焊接顺序、后续处理等多个方面。
如果这些工艺设置不当或者操作不规范,就会导致局部过热或者过快冷却等问题,从而引起热裂纹的产生。
四、热裂纹防治措施1. 优化组织结构通过对原材料进行特殊处理或者采用合适的退火工艺可以改善材料组织结构,并减少组织不均匀性带来的影响。
2. 合理设置焊接参数通过合理设置焊接参数,如电流密度、电压、速度等,可以控制焊接过程中的温度和冷却速度,减少热裂纹的产生。
3. 处理残余应力通过对焊接件进行退火或者热处理等工艺可以处理残余应力,并减少热裂纹的产生。
4. 合理选择材料在选择材料时应根据具体情况选择合适的材料,并进行必要的预热和后续处理等工艺,以减少热裂纹的产生。
焊接裂纹就其本质来分,可分为热裂纹、再热裂纹、冷裂纹、层状撕裂等。
下面仅就各种裂纹的成因、特点和防治办法进行具体的阐述。
1.热裂纹在焊接时高温下产生的,故称热裂纹,它的特征是沿原奥氏体晶界开裂。
根据所焊金属的材料不同(低合金高强钢、不锈钢、铸铁、铝合金和某些特种金属等),产生热裂纹的形态、温度区间和主要原因也各不相同。
目前,把热裂纹分为结晶裂纹、液化裂纹和多边裂纹等三大类。
1)结晶裂纹主要产生在含杂质较多的碳钢、低合金钢焊缝中(含S,P,C,Si 缝偏高)和单相奥氏体钢、镍基合金以及某些铝合金焊缝中。
这种裂纹是在焊缝结晶过程中,在固相线附近,由于凝固金属的收缩,残余液体金属不足,不能及时添充,在应力作用下发生沿晶开裂。
防治措施:在冶金因素方面,适当调整焊缝金属成分,缩短脆性温度区的范围控制焊缝中硫、磷、碳等有害杂质的含量;细化焊缝金属一次晶粒,即适当加入Mo、V、Ti、Nb等元素;在工艺方面,可以通过焊前预热、控制线能量、减小接头拘束度等方面来防治。
2)近缝区液化裂纹是一种沿奥氏体晶界开裂的微裂纹,它的尺寸很小,发生于HAZ近缝区或层间。
它的成因一般是由于焊接时近缝区金属或焊缝层间金属,在高温下使这些区域的奥氏体晶界上的低熔共晶组成物被重新熔化,在拉应力的作用下沿奥氏体晶间开裂而形成液化裂纹。
这一种裂纹的防治措施与结晶裂纹基本上是一致的。
特别是在冶金方面,尽可能降低硫、磷、硅、硼等低熔共晶组成元素的含量是十分有效的;在工艺方面,可以减小线能量,减小熔池熔合线的凹度。
3)多边化裂纹是在形成多边化的过程中,由于高温时的塑性很低造成的。
这种裂纹并不常见,其防治措施可以向焊缝中加入提高多边化激化能的元素如Mo、W、Ti等。
2、再热裂纹通常发生于某些含有沉淀强化元素的钢种和高温合金(包括低合金高强钢、珠光体耐热钢、沉淀强化高温合金,以及某些奥氏体不锈钢),他们焊后并未发现裂纹,而是在热处理过程中产生了裂纹。
焊接冷裂纹与热裂纹的形成及防治措施下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。
文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!本店铺为大家提供各种类型的实用资料,如教育随笔、日记赏析、句子摘抄、古诗大全、经典美文、话题作文、工作总结、词语解析、文案摘录、其他资料等等,想了解不同资料格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor. I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you! In addition, this shop provides you with various types of practical materials, such as educational essays, diary appreciation, sentence excerpts, ancient poems, classic articles, topic composition, work summary, word parsing, copy excerpts, other materials and so on, want to know different data formats and writing methods, please pay attention!1. 引言焊接是金属加工中常用的连接方法之一,但在焊接过程中常常会出现冷裂纹和热裂纹,给焊接质量带来不利影响。
焊接裂纹形成的原因及防止措施作者:刘成国来源:《名城绘》2019年第01期摘要:当前,我国工业正处于蓬勃发展阶段,焊接作为一门重要的金属加工工艺,在机械、石油、化工、建筑、交通、矿山等各行业都得到了广泛的应用。
焊接是生产过程中的一个重要环节,必须保证其质量可靠,进而提高安全性,促进生产的发展。
焊接缺陷是生产中极为不利的因素,为提高焊接质量和结构的可靠性,应该避免在焊接接头中产生裂纹。
基于此,本文对焊接裂纹形成的原因及防止措施进行探讨,以供参考。
关键词:焊接裂纹;形成原因;防止措施1、引言在焊接应力及其他致脆因素的作用下,焊接接头中局部区域因开裂而产生的缝隙称为焊接裂纹。
在焊接生产中出现的裂纹形式是多种多样的,根据裂纹产生的情况,可把焊接裂纹归纳为热裂纹、冷裂纹、再热裂纹和层状撕裂。
裂纹是焊接结构最危险的一种缺陷,不仅会使产品报废,而且还可能引起严重的事故。
所以如何避免裂纹的产生是保证焊接质量的关键。
本文主要讨论焊接裂纹形成的原因及防止措施。
2、焊接裂纹的分类通常焊接裂纹可以分为热裂纹、冷裂纹、再热裂纹、和层状撕裂四类。
首先是热裂纹,当焊接焊缝凝固时,在高温区域,会沿着奥氏体品界面开裂,形成热袋纹,其特点是在焊接完成之后,就可以明显的观察到裂纹,同时经常发生在焊缝中心位置,沿着焊缝长度方向分布。
其次是冷裂纹,冷裂纹是在焊后较低的温度下产生的,焊接中碳钢、高碳钢、低合金高强度钢、某些超高强度钢、工具钢、钛合金等材料时容易出现这种缺陷。
冷裂纹经常产生在热影响区,有时也产生在焊缝金属中。
冷裂纹的特征是穿过晶粒内部开裂,裂纹断面上没有明显的氧化色彩,断口发亮。
再者是再热裂纹,焊件焊后在一点温度范围再次加热(进行消除热应力热处理)时,由于高温及残余应力的共同作用而产生的晶间裂纹,叫做再热裂纹,又叫消除应力裂纹(国外简称“SR”裂纹)。
最后是层状裂纹,这是冷裂纹的一种特殊形式。
在大型焊接结构中,往往采用30~100mm甚至更厚的轧制钢材,轧制钢材中的硫化物、氧化物和硅酸盐等非金属夹杂物,平行于钢板表面,片状分布在钢板中。
焊点热疲劳裂纹产生机理概述说明以及解释1. 引言1.1 概述焊接是一种常用的金属连接工艺,广泛应用于各个行业中。
然而,焊点热疲劳裂纹是焊接过程中普遍存在的问题之一。
它不仅会降低焊接结构的强度和耐久性,还可能引起断裂事故,对设备和人员安全造成威胁。
1.2 文章结构本文主要从机理、概述说明和解释等方面对焊点热疲劳裂纹产生进行阐述。
具体内容按如下结构展开:第二部分将详细介绍焊点热疲劳裂纹产生的机理。
包括焊接过程中的温度变化和应力分布,以及焊接材料的物理性质对热疲劳裂纹产生的影响以及微观组织变化引起的裂纹形成机制。
第三部分将概述说明焊点热疲劳裂纹的特征与形态,并对影响焊点热疲劳裂纹生成的因素进行探讨。
同时,通过实例分析典型应用领域中的焊点热疲劳裂纹,为读者提供更直观的参考。
第四部分将解释焊点热疲劳裂纹产生的机理。
主要包括塑性变形引起的应力集中效应和开裂倾向增加机制、温度梯度引起的残余应力和组织变化导致裂纹生成机制,以及焊接工艺参数对热疲劳裂纹形成的影响机制等内容。
最后,第五部分将总结对焊点热疲劳裂纹产生机理的综合认识,并给出在焊接过程中预防和控制焊点热疲劳裂纹的具体措施建议。
同时,提出未来的研究方向,以推动相关领域的进一步发展。
1.3 目的本文旨在深入了解焊点热疲劳裂纹产生机理,并对其进行全面概述和详细解释。
通过对该问题的深入分析,期望能够提高人们对焊接过程中焊点热疲劳裂纹问题的认识,为预防和控制该问题提供科学依据,并促使相关领域在未来的研究中取得新的突破。
2. 焊点热疲劳裂纹产生机理:2.1 焊接过程中的温度变化和应力分布:在焊接过程中,焊点受到了高温冷却循环的作用影响。
当焊点在短时间内被加热到高温,并随后迅速冷却时,会产生温度梯度,从而引起焊点内部的热应力。
这种温度变化和应力分布是导致焊点热疲劳裂纹产生的主要原因之一。
2.2 焊接材料的物理性质对热疲劳裂纹产生的影响:不同材料具有不同的物理性质,如热导率、膨胀系数和导热系数等。
1.气孔、夹杂和夹渣及防止措施(1)气孔焊接时,熔池中的气体在固体时能逸出二残留下来所形成的空穴成为气孔。
气孔是一种常见的焊接缺陷,分为焊接内部气孔和外部气孔。
气孔有圆形、椭圆形、虫形、针状形和密集型等多种,气孔的存在不但会影响焊缝的致密度,而且将减少焊缝的有效面积,降低焊缝的力学性能。
产生原因:焊件表面和坡口出有油、锈、水分等污物存在;焊条药条药皮受潮,使用前没有烘干;焊接电流太小或焊接速度太快;电弧过长或偏吹,熔池保护效果不好,空气侵入熔池;焊接电流过大,焊条发红、药皮提前脱落,失去保护的作用;运条方法不当,如收弧动作太快,易产生缩孔,接头引弧动作不正确,易产生密集气孔等。
防止措施:焊前将坡口两侧20~30mm范围内的油污、锈、水分清除干净;严格地按焊条说明书规定的温度和时间烘培;正确地选择焊接工艺参数,正确操作;尽量采用短弧焊接,野外施工要有防风设施;不允许使用失效的焊条,如焊芯锈蚀,药皮开裂、剥落,偏心度过大等。
(2)夹杂和夹渣夹杂时残留在焊缝金属中由冶金反映产生的非金属夹杂和氧化物。
夹渣时残留在焊缝中的熔渣。
夹渣可以分为点状夹渣和条状夹渣两种。
夹渣削弱了焊缝的有效断面,从而降低了焊缝的力学性能,夹渣还会引起应力集中,容易使焊接结构在承载时遭受破坏。
产生原因:焊接过程中层间清渣不净;焊接电流太小;焊接速度太快;焊接过程操作不当;焊接材料与母材料化学成分匹配不当;坡口设计加工不合适等。
防止措施:选择脱渣性能好的焊条;认真地清除层间熔渣;合理地选择焊接参数;调整焊条角度和运条方法。
2. 裂纹产生的原因及防止措施裂纹按其产生的温度和时间的不同分为冷裂纹、热裂纹和再热裂纹;按其产生的部位不同分为纵裂纹、横裂纹、焊根裂纹、弧坑裂纹、熔合线裂纹及热影响区裂纹等。
裂纹时焊接结构中最危险的一种缺陷,甚至可能引起严重的生产事故。
(1)热裂纹焊接过程中,焊缝和热影响区金属冷却到固相线附近的高温区间所产生的焊接裂纹成为热裂纹。
热裂纹的特征)热裂纹常发生在焊缝区,在焊缝结晶过程中产生的叫结晶裂纹,也有发生在热影响区中,在加热到过热温度时,晶间低熔点杂质发生熔化,产生裂纹,叫液化裂纹。
特征:沿晶界开裂(故又称晶间裂纹),断口表面有氧化色。
(2)热裂纹产生原因:①晶间存在液态间层焊缝:存在低熔点杂质偏析} 形成液态间层热影响区:过热区晶界存在低熔点杂质②存在焊接拉应力(3)热裂纹的防止措施:冶金因素} 热裂纹拉应力①限制钢材和焊材的低熔点杂质,如S、P含量。
②控制焊接规范,适当提高焊缝成形系数(即焊道的宽度与计算厚度之比)枣焊缝成形系数太小,易形成中心线偏析,易产生热裂纹。
③调整焊缝化学成分,避免低熔点共晶物;缩小结晶温度范围,改善焊缝组织,细化焊缝晶粒,提高塑性,减少偏析。
④减少焊接拉应力⑤操作上填满弧坑防热裂纹:第一:严格限制焊缝中的硫磷等杂质元素的质量分数,以减少低熔点共晶杂质。
第二:选用双向组织的焊条,使焊缝形成奥氏体和少量铁素体的双向组织,以细化晶粒,打乱柱状晶方向,减少偏析严重程度。
最好铁素体在5%以内。
这样,奥氏体和碳化物的双相组织焊缝,就有了较高的抗热裂能力。
第三:选用碱性焊条和焊剂。
,以降低焊缝中的杂质含量,改善偏析程度。
第四:控制焊接电流和电弧电压大小,适当提高焊缝形状系数,采用多层多道,避免中心线偏析,可防止中心线裂纹。
第五:采用小线能量,小电流快速不摆动焊,可减少焊接应力。
第六:填满弧坑,可防止弧坑裂纹。
4.3.2.2 冷裂纹(1)冷裂纹的形态和特征焊缝区和热影响区都可能产生冷裂纹,常见冷裂纹形态有三种,如图6-2-17冷裂纹形态{ 焊道下裂纹:在焊道下的热影响区内形成的焊接冷裂纹,常平行于熔合线发展焊指裂纹:沿应力集中的焊址处形成的冷裂纹,在热影响内扩展焊根裂纹:沿应力集中的焊缝根部所形成的冷裂纹,向焊缝或热影响发展图5-2-17 焊接冷裂纹a-焊道下裂纹;b-焊趾裂纹;c-焊根裂纹特征:无分支、穿晶开裂、断口表面无氧化色。