空调翅片管换热器设计计算
- 格式:xlsx
- 大小:103.21 KB
- 文档页数:12
风加热器设计换热及空气阻力计算一、已知参数空气流量 G Nm3/h12200空气比热容 Cp kcal/kg.℃0.2467空气密度ρkg/m3 1.293入口风温 T1℃-25出口风温 T2℃30.0进水温度 t1℃80出水温度 t2℃60水流量 W t/h10.70185水密度ρkg/m3968水比热容 Cp kcal/kg.℃1二、传热计算暖风器所需换热量 Q kcal/h214037对数温差计算ΔTm℃66.0ΔT1=t1-T250.0ΔT2=t2-T185传热系数 K kcal/m2.h. ℃30传热面积 F m2108.1暖风器换热面积(25%的裕量)m2135三、设计参数(固定式)暖风器截面高 H m1暖风器截面宽 B m2换热管外径 d mm19翅片宽 b mm13翅片厚δmm0.6翅片间距 S O mm 2.5换热管轴向中心距 S mm46母管长度 Lm mm2000母管中心距 Sm mm1120母管外径 dm mm40每米翅片管截面积 F J m2/m0.025每米翅片管表面积 F B m2/m 1.124暖风器所需排数 n3换热管总数 N125单排换热管数 N141.6暖风器风道截面积 F F m22暖风器流通截面积 F L m20.79进出水口直径 Ds mm(按1.8m/s)45四、阻力计算流经暖风器空气流速ωm/s 4.2定性温度 T℃3雷诺数 Re=d dl*ω/γ1275.084空气运动黏度γ×106m2/s14.21 Re>180×103时阻力计算Δp=Δp0Zz式中: Δp0 — 一排管基本阻力(Pa) Δp0=ξ0*ω2*ρ/2 5.987ξ0 — 一排管阻力系数ξ0=0.26(l/d dl)^0.3Cz0.525 Zz—管排数3Cz—管排系数 1.05d dl — 流道当量直径(m)0.004311 l — 流道长度(m) l=H1/H*d+H2/H*(H3/2n)1/20.038187 H — 翅片管全表面积(m2)135H1 — 翅片间光管表面积(m2)-7.603 H2 — 翅片表面积(m2)142.603 H3 — 不计端部翅片表面积(m2)141.145 n — 翅片数54000Δp— 排管阻力(Pa)17.961 H2Omm 1.72 Re≤180×103时阻力计算Δp=C dl C l CzΔp0Zz式中: C dl — 系数(按l、dl查得) 1.2C l —系数(按l、dl查得)`0.94Δp0 — 一排管基本阻力(Pa)40Δp— 排管阻力(Pa)142.1 H2Omm14.2。
翅片管换热系数翅片管换热系数是指在翅片管传热过程中,翅片管表面与流体之间传递热量的效果,是评价翅片管传热性能的重要指标之一。
在实际工程应用中,了解和掌握翅片管换热系数的计算方法和影响因素,对于提高换热效率具有重要意义。
1. 计算方法翅片管换热系数的计算方法有多种,常用的有经验公式和数值模拟两种方法。
经验公式是通过试验数据的分析总结得到的,其计算简单,适用范围广,但精度较低。
常见的经验公式有Dittus-Boelter公式、Sieder-Tate公式、Colburn公式等,根据具体情况选择合适的公式进行计算。
数值模拟是一种通过计算机数值计算的方法,可以模拟出复杂流动状态下的换热系数。
数值模拟的优点是可以考虑更多的因素,提高计算精度,但计算复杂度较高,需要借助专业软件进行模拟计算。
2. 影响因素翅片管换热系数的大小受到多种因素的影响,包括流体性质、流动状态、翅片形状等。
流体性质是影响换热系数的重要因素之一,包括流体的粘性、导热系数、比热容等。
一般来说,粘性较小、导热系数较大的流体具有较高的换热系数。
流动状态也对换热系数有很大影响,分为定常流动和非定常流动两种情况。
在定常流动状态下,流体速度和温度分布均保持不变;而在非定常流动状态下,流体速度和温度分布随时间变化。
一般来说,非定常流动下的换热系数较定常流动下高。
翅片形状是另一个重要的影响因素,翅片的几何形状会对翅片管的传热效果产生明显影响。
常见的翅片形状有三角形、梯形、椭圆形等,不同形状的翅片会导致换热系数的差异。
3. 应用案例翅片管换热系数在实际工程中有着广泛的应用。
例如,翅片管传热器是一种常见的换热设备,广泛应用于化工、冶金、制药等领域。
通过翅片管传热器,可以有效地将高温流体的热量传递给低温流体,达到能量利用和节能的目的。
在设计和选择翅片管传热器时,需要根据具体工况条件确定合适的翅片管换热系数。
根据流体的性质、流动状态和翅片的形状等因素,结合经验公式和数值模拟等方法,计算得到合理的换热系数,以确保传热效果的高效和可靠性。
翅片换热器换热面积计算
翅片换热器是一种常用的换热设备,其换热面积的大小决定了其换热效率的高低。
翅片换热器的换热面积可以通过以下公式进行计算:
换热面积=翅片长度×翅片密度×管道数×管道长度
其中,翅片长度指的是翅片的长度,翅片密度指的是单位长度上翅片的数量,管道数指的是翅片换热器中管道的数量,管道长度指的是每个管道的长度。
在实际应用中,需要根据具体的工程要求和设计参数来确定翅片换热器的换热面积,以满足换热需求。
同时,在使用过程中也需要注意维护和清洁翅片换热器,以保证其正常运行和换热效率。
- 1 -。
翅片管换热系数摘要:1.翅片管换热系数的基本概念2.翅片管换热系数的计算方法3.影响翅片管换热系数的因素4.提高翅片管换热系数的方法5.翅片管换热系数在实际应用中的重要性正文:翅片管换热系数是热力学领域中一个重要的参数,它反映了换热器中热量传递的效率。
在工业生产、空调制冷等领域中,翅片管换热器得到了广泛的应用。
本文将从翅片管换热系数的基本概念、计算方法、影响因素、提高方法以及在实际应用中的重要性等方面进行详细阐述。
一、翅片管换热系数的基本概念翅片管换热系数是指在单位时间内,单位面积上交换的热量。
它受到许多因素的影响,如换热器的设计、流体的性质、流动状态等。
在实际工程中,准确估算翅片管换热系数对于优化系统设计、提高能源利用率具有重要意义。
二、翅片管换热系数的计算方法翅片管换热系数的计算方法有多种,其中较为常见的是采用努塞尔数(Nusselt Number)和雷诺数(Reynolds Number)两个无量纲数进行计算。
计算公式如下:u = h / kRe = μ × v / √(ρ × k)其中,Nu为努塞尔数,h为翅片管换热系数,k为热传导系数;Re为雷诺数,μ为流体动力粘度,v为流体流速,ρ为流体密度。
三、影响翅片管换热系数的因素1.翅片类型:不同类型的翅片(如螺旋翅片、波纹翅片等)对换热系数产生不同的影响。
2.翅片间距:翅片间距越大,换热系数越小,但流体的压降也会相应降低。
3.流体性质:流体的性质(如粘度、比热容等)对换热系数有显著影响。
4.流动状态:层流与紊流两种流动状态对换热系数的影响截然不同,紊流换热系数通常更高。
四、提高翅片管换热系数的方法1.选择合适的翅片类型和间距:根据实际工况,选用适合的翅片类型和调整翅片间距,以实现较高的换热系数。
2.优化流体流动:通过改变流体的流动状态,如采用湍流促进剂等,以提高换热系数。
3.改进换热器设计:例如增加换热面积、提高热传导性能等,从而提高换热系数。