数学不等式的性质及比较法证明不等式
- 格式:pptx
- 大小:682.76 KB
- 文档页数:57
高二数学知识点:不等式证明方法学习高中频道为各位同学整理了高二数学知识点:不等式证明方法,供大家参考学习。
更多各科知识点请关注新高中频道。
一、不等式的性质
1.两个实数a与b之间的大小关系
2.不等式的性质
(4) (乘法单调性)
3.绝对值不等式的性质
(2)如果a0,那么
(3)|ab|=|a||b|.
(5)|a|-|b||ab||a|+|b|.
(6)|a1+a2++an||a1|+|a2|++|an|.
二、不等式的证明
1.不等式证明的依据
(2)不等式的性质(略)
(3)重要不等式:①|a|0;(a-b)20(a、bR)
②a2+b22ab(a、bR,当且仅当a=b时取=号)
2.不等式的证明方法
(1)比较法:要证明ab(a0(a-b0),这种证明不等式的方法叫做比较法.
用比较法证明不等式的步骤是:作差变形判断符号.
(2)综合法:从已知条件出发,依据不等式的性质和已证明过的不等式,推导出所要证明的不等式成立,这种证明不等式的方法叫做综合法.
(3)分析法:从欲证的不等式出发,逐步分析使这不等式成立的充分条件,直到所需条件已判断为正确时,从而断定原不等式成立,这种证明不等式的方法叫做分析法.
证明不等式除以上三种基本方法外,还有反证法、数学归纳法等.。
不等式的证明的方法介绍不等式的性质及常用的证明方法主要有:比较法、分析法、综合法、数学归纳法等.要明确分析法、反证法、换元法、判别式法、放缩法证明不等式的步骤及应用范围. 若能够较灵活的运用常规方法(即通性通法)、运用数形结合、函数等基本数学思想,就能够证明不等式的有关问题.一、不等式的证明方法1.比较法:(1)作差法比较:.作差比较的步骤:①作差:对要比较大小的两个数(或式)作差.②变形:对差进行因式分解或配方成几个数(或式)的完全平方和.③判断差的符号:结合变形的结果及题设条件判断差的符号.注意:若两个正数作差比较有困难,可以通过它们的平方差来比较大小.例1 若水杯中的b克糖水里含有a克糖,假如再添上m克糖,糖水会变得更甜,试将这一事实用数学关系式反映出来,并证明之.分析:本例反映的事实质上是化学问题,由浓度概念(糖水加糖甜更甜)可知2.分析法:执果索因.基本步骤:要证……只需证……,只需证……①“分析法”证题的理论依据:寻找结论成立的充分条件或者是充要条件.②“分析法”证题是一个非常好的方法,但是书写不是太方便,所以我们可以利用分析法寻找证题的途径,然后用“综合法”进行表达.3.综合法:利用不等式的性质和已经证明过的不等式以及函数的单调性导出特征不等式的方法叫做综合法,概括为“由因导果”。
综合法是分析法的逆过程,表述简单,条理清楚,所以在实际证题时,往往分析法分析用综合法写出。
例3设a,b,c都是正数,求证:4.反证法:正难则反.证明步骤:假设结论不成立,由此出发进行推理,最后导出矛盾的结果,从而得出所证的结论一定成立。
5.放缩法:将不等式一侧适当的放大或缩小以达证题目的. 放缩法是不等式证明中一种常用的方法,也是一种非常重要的方法。
在证明过程中,适当地进行放缩,可以化繁为简、化难为易,达到事半功倍的效果。
但放缩的范围较难把握,常常出现放缩之后得不出结论或得出相反结论的现象。
因此,使用放缩法时,如何确定放缩目标尤为重要。
不等式的性质和证明一、基础知识1.性质对称性a>bÛb<a 传递性a>b,b>c Þ a>c 加法单调性a>b Þ a+c>b+c 乘法单调性a>b,c>0 Þ ac>bc;a>b,c<0 Þ ac<bc开方法则a>b>0 Þ移项法则a+b >c Þ a>c-b 同向不等式相加a>b,c>d Þ a+c>b+d 同向不等式相乘a>b>0,c >d>0 Þ ac>bd 乘方法则a>b>0 Þ a n>b n倒数法则a>b,ab>0 Þ2.证明方法:比较法,综合法,分析法,反证法,换元法证明技巧:逆代,判别式,放缩,拆项,单调性3.主要公式及解题思路公式:a2+b2≥2ab(a,b∈R)a3+b3+c3≥3abc(a,b,c∈R+)思路:①②③④正数x,y且x+y=1,求证:≥二、例题解析1.(1)a,b∈R+且a<b,则下列不等式一定成立的是()A.B.C.D.(2)若0<x<1,0<y<1且x≠y,则x2+y2,x+y,2xy,中最大的一个是()A.x2+y2B.x+y C.2xy D.(3)若a,b为非零实数,则在①a2+b2≥2ab ②≤ ③≥④≥2中恒成立的个数为()A.4B.3C.2D.1(4)下列函数中,y的最小值是4的是()A.B.C.y= D.y=lgx+4log x10(5)若a2+b2+c2=1,则下列不等式成立的是()A. a2+b2+c2>1B.ab+bc+ca≥C.|abc|≤ D a3+b3+c3≥2.(1)已知x,y∈R+且2x+y=1,则的最小值为(2)已知x,y∈R 且x2+y2=1,则3x+4y的最大值为(3)在等比数列{a n}和等差数列{b n}中,a1=b1>0,a3=b3>0,a1≠a3,试比较大小:a5b5(4)已知a>0,b>0,a + b=1,则的最小值为(5)已知:x+2y=1,则的最小值为(6)已知:x>0,y>0且x+2y=4,则lg x + lg y的最大值为(7)若x>0,则,若x<0,则(8)建造一个容积为8 m3,深为2m的长方体无盖水池,如果池底和池壁造价分别为120元和80元,那么水池的最低总造价为元。
1.5.1 比较法学习目标:1.理解比较法证明不等式的依据。
2.掌握利用比较法证明不等式的一般步骤.3。
通过学习比较法证明不等式,培养学生对转化思想的理解和应用.教材整理1 比较法的定义比较法证明不等式可分为作差比较法和作商比较法两种.(1)作差比较法要证明a〉b,只要证明a-b〉0;要证明a〈b,只要证明a-b<0.这种证明不等式的方法,叫做作差比较法.(2)作商比较法若a〉0,b>0,要证明a〉b,只要证明ab>1;要证明b>a,只要证明错误!〉1.这种证明不等式的方法,叫做作商比较法.教材整理2 比较法证明不等式的步骤比较法是证明不等式的基本方法之一,其步骤是先求差(商),然后变形,最终通过比较作判断.1.设t=a+2b,s=a+b2+1,则下列t与s的大小关系中正确的是( )A.t>s B.t≥sC.t<s D.t≤s[解析] s-t=(a+b2+1)-(a+2b)=(b-1)2≥0,∴s≥t.[答案] D2.已知P=错误!,Q=a2-a+1,那么P,Q的大小关系是( )A.P>0 B.P<QC.P≥Q D.P≤Q[解析]∵QP=(a2-a+1)(a2+a+1)=(a2+1)2-a2=a4+2a2+1-a2=a4+a2+1≥1.∴P≤Q.[答案]D作差比较法证明不等式a b a b ab a b[精彩点拨] 此不等式作差后是含有两个字母的二次式,既可配成平方和的形式,也可根据二次三项式的判别式确定符号.[自主解答]法一:化成几个平方和.∵a2+b2-ab-a-b+1=错误![(a-b)2+(a-1)2+(b-1)2]≥0,∴a2+b2+1≥ab+a+b.法二:a2+b2-ab-a-b+1=a2-(b+1)a+b2-b+1。
对于a的二次三项式,Δ=(b+1)2-4(b2-b+1)=-3(b-1)2≤0,∴a2-(b+1)a+b2-b+1≥0,故a2+b2+1≥ab+a+b。
不等式的性质和证明1. 不等式的性质是证明不等式和解不等式的依据.样 由不等式性质定理4的推论2和定理5可得: 如果a 、b ∈ R +, 那么a > b ⇔ a n > b n (n ∈N), 在比较分数指数幂或根式的值的大小时常用.2. 比较法是证明不等式最基本的方法. 比较法的主要步骤是: 作差、变形、判断符号. 变形中常用到因式分解和配方, 其目的是便于判断正负. 比较某些分式、指数式或绝对值等的大小有时用作商比较方便一些.3. 分析法与综合法是证明命题(包括不等式、恒等式、定理等)时常用的两种方法, 主要由证明的思路和表述方式来区分.(1) 分析法是从求证的结论J 出发, 逐步分析能使结论成立的充分条件, 直到所需条件可由题设T 判明正确时, 就可断定原结论正确, 即: J ⇐ …… ⇐ T ,∵T 为真,∴J 成立. 用分析法证题时要特别注意不能省略反映逻辑推理过程的连结字或符号. 如果每一步都是使结论成立的充要条件, 就可用符号“⇔”表述(参看教材22页例3).(2) 综合法是由已知条件T 出发, 利用定义、公理、定理(如基本不等式)等,推出要证明的结论J ,即:T ⇒ ……… ⇒ J.(3) 具体证题时常采用“分析法找(思)路, 综合法表述”的论证方式.4. 熟记三个重要不等式及其中字母的取值范围, 在证明其它不等式时若能直接引用则可简化论证过程. 特别要重视“两个正数的算术平均数不小于它们的几何平均数”的灵活运用.5. 同向不等式两边分别相加或相乘是用综合法证明不等式的常用手段, 经常与应用重要不等式结合使用. 注意相乘时需要两边都是正数.6. 证明不等式的常用技巧有: 变量代换(例如三角代换), 同向放缩等.7. 证明不等式还可用数学归纳法、反证法等其它方法.8. 求函数f (x) 的最值的基本步骤是: (1) 论证f (x) ≥ m (或f (x) ≤ m );(2) 说明当x 取定义域内的某些值时相等能够成立. 9. 第10页例1中的结论是求最值的常用工具:(1) 如果两个正变量的和为常数, 那么当且仅当这两个变量相等时它们的积取最大值; (2) 如果两个正变量的积为常数, 那么当且仅当这两个变量相等时它们的和取最小值.例1 已知a > b 且ab ≠ 0, 比较a 1和b1的大小.解 ∵a 1 - b1 = ab a b -, 且a > b ⇔ b - a < 0,∴ 当ab > 0时ab a b -< 0, a 1 < b1;当ab < 0时ab a b -> 0, a 1 > b 1(也可由a > 0 > b 得a 1 > 0 > b1 ).综上所述, 当a > b > 0或b < a < 0时a 1 < b 1, 当a > 0且b < 0时a 1 > b1. 例2. 已知a ≠ b, a 、b 、m 、n ∈ R + 且m + n = 1, 试比较nb ma + 与a m + b n 的大小.解 设P =nb ma +, Q =a m + b n .∵a 、b 、m 、n ∈ R +, ∴ P > 0, Q > 0.∵m + n = 1, ∴P 2 = ma + nb = (ma + nb)(m + n),P 2 - Q 2 = (ma + nb)(m + n) - (a m + b n )2 = mn(a - b )2 ,∵ a ≠ b, ∴P 2 - Q 2 > 0, P > Q,nb ma + > a m + b n .例3. 若 a > 2, 证明 log a (a - 1) < log a+1 a .证明 设c = log a (a - 1) - log a+1 a = log a (a - 1) -)1(log 1+a a =)1(log 1)1(log )1(log +-+-a a a a a a ,∵a >2, log a (a + 1) > 0, log a (a - 1) > 0,log a (a - 1) log a (a + 1) = ()1(log )1(log +-a a a a )2 < (21( log a (a - 1) + log a(a + 1)))2= (21log a (a 2 - 1))2 < (21log aa 2 )2 (同向放缩) = 1,∴ c < 0, log a (a - 1) < log a+1 a . 也可用作商比较法.例4. 设a 、 b 、c ∈ R +, 且a + b + c = 1, 证明a +b +c ≤3 .证明 ∵a 、 b 、c ∈ R +, 且a + b + c = 1,要证a +b +c ≤ 3,只需证 a + b + c + 2ab + 2bc + 2ca ≤ 3, 即证 2ab + 2bc + 2ca ≤ 2(a + b + c),∴只需证 (a -b )2 + (b -c )2 + (c -a )2 ≥ 0 ①, ∵不等式①成立, ∴a +b +c ≤ 3.例5. 1. 已知x, y ∈ R + 且x + 2y = 1, 求 x1 + y 1 的最小值. 请指出下面两种解法中哪一种是错误的, 为什么?解法一 由1 = x + 2y ≥ 2xy 2得xy 1 ≥ 22, ∴ x 1 + y 1 ≥xy2 ≥ 42,∴x1 + y 1的最小值是42.解法二 ∵x, y ∈ R + 且x + 2y = 1, ∴ x 1 + y 1= (x + 2y)(x1 + y 1) = 3 + x y2 + y x ≥3 + 22, 当且仅当xy 2 = y x即x =2 - 1, y = 1 -22 时相等成立, ∴ x1 + y 1 的最小值是3 + 22.例6. 设lg x + lg y = 1, 求2x + 5y 的最小值.例6. 由题设知x > 0, y > 0且xy = 10, ∴2x + 5y ≥ 2xy 10 = 20, 当且仅当2x = 5y 时相等成立, 此时x ∙52x = 10, x = 5, y = 2. 高考题精选1.(03京春)设a ,b ,c ,d ∈R ,且a >b ,c >d ,则下列结论中正确的是( ) A.a +c >b +d B.a -c >b -d C.ac >bdD.cbd a > 2.(01京春)若实数a 、b 满足a +b =2,则3a +3b 的最小值是( ) A.18 B.6 C.23 D.243 6.(01上海春)若a 、b 为实数,则a >b >0是a 2>b 2的( ) A.充分不必要条件 B.必要不充分条件 C.充要条件 D.既非充分条件也非必要条件 3.(00全国)若a >b >1,P =b a lg lg ⋅,Q =21(lg a +lg b ),R =lg (2b a +),则( ) A.R <P <Q B.P <Q <RC.Q <P <RD.P <R <Q4.(94上海)若0<a <1,则下列不等式中正确的是( ) A.(1-a )31>(1-a )21 B.log 1-a (1+a )>0 C.(1-a )3>(1+a )2D.(1-a ))1(a +>15.(04湖北) 若011<<ba ,则下列不等式: ①ab b a <+; ②|;|||b a > ③b a <; ④2>+baa b 中,正确的不等式有 ( )BA .1个B .2个C .3个D .4个6.(05重庆) 若x ,y 是正数,则22)21()21(xy y x +++的最小值是 ( )CA .3B .27 C .4 D .297. 设a = sin 15º + cos 15º, b = sin 16º + cos 16º, 下面各式中正确的一个是 ( )(A) a <222b a +< b (B) a < b < 222b a + (C) b < a <222b a + (D) b <222b a +< a .1.A ∵a >b ,c >d ,∴a +c >b +d .2.B 3a +3b ≥2b a b a +=⋅3233=6,当且仅当a =b =1时取等号.故3a +3b 的最小值是6.3.B ∵lg a >lg b >0,∴21(lg a +lg b )>b a lg lg ⋅,即Q >P ,又∵a >b >1,∴ab b a >+2,∴21lg )2lg(=<+ab b a (lg a +lg b ),即R >Q ,∴有P <Q <R , 4. A. 因为0<a <1,所以0<1-a <1,而指数函数y =m x (m >0,m ≠1)在0<m <1时,是减函数,则(1-a )31>(1-a )21,故选A.1. 已知a 、 b 、c 是不全相等的正数, 求证:ab +bc +ca < a + b + c . 证明 ∵a 、 b 、c ∈ R +, ∴ab ≤ 2b a + ①,bc ≤ 2c b + ②,ca ≤ 2a c + ③ .又∵a 、 b 、c 不全相等, ①、②、③中的等号不能同时成立, ∴ab +bc +ca < a + b + c .。