焊接热源
- 格式:doc
- 大小:31.00 KB
- 文档页数:1
焊接热过程1、焊接热过程复杂性表现:①焊接热过程的局部性和不均匀性;②焊接热过程的瞬时性;③焊接热源的相对运动。
2、热量来源:电弧热、电阻热、相变潜热、变形热。
电弧热:利用气体介质的放电过程来产生热量,并熔化焊丝和加热工件,焊接的主要热源。
电阻热:焊接电流流过焊丝和工件时,有焊丝和工件本身电阻将电能转化为热能产生的热。
3、散热机构:①环境散热、②飞溅散热4、热传递方式:热传导、辐射、对流、焓迁移。
5、分析焊接热过程需处理的问题:①热源;②热量传输方式;③传质问题;④相变;⑤位移、⑥力学问题。
6、焊接热源:①按形式:电能、机械能、光辐射能、化学能。
②按种类:电弧焊热源、气焊热源、电阻焊热源、摩擦焊热源、电子束焊热源、激光焊热源、铝热剂焊热源。
7、构件几何尺寸简化:①半无限扩展的立方体、②无限扩展的板、③长度无限扩展的板。
8、焊接热源模型:点热源、线热源、面热源、高斯热源、双椭球热源、广义双椭球热源。
9、焊接温度场:焊接过程中,某一时刻所有空间各点温度的总计或分布。
用等温面(线)表示。
等温面:工件上具有相同温度的所有点的轨迹。
10、焊接热循环:指焊接过程中,工件上的温度随着瞬时热源或移动热源的作用而发生变化,温度随时间由低而高,达到最大值后,又由高而低的变化。
简单说就是工件上某点的温度随时间的变化,它描述了该点在焊接过程中热源对其热作用的过程。
主要参数:①加热速度;②加热最高温度;③在相变以上温度停留时间;④冷却速度。
11、多层焊:长段多层焊(1m以上)、短段多层焊(50~400mm)(适合硬化倾向大和晶粒粗化倾向大的钢材焊接)12、热效率:熔化极焊接热效率>非熔化极,埋弧焊热效率>明弧焊,潜弧焊接热效率>明弧13、电极的熔化:是焊接电弧的重要功能之一,对焊接工艺过程、冶金过程、焊接缺欠的产生和焊接生产效率有很大影响。
14、电弧焊时加热和熔化电极的能量:电流流过焊丝的电阻热、电弧传给焊丝端部的热、化学反应热。
(完整)焊接冶金学(基本原理)编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望((完整)焊接冶金学(基本原理))的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为(完整)焊接冶金学(基本原理)的全部内容。
绪论一、焊接过程的物理本质1。
焊接:被焊工件的材质(同种或异种),通过加热或加压或二者并用,并且用或不用填充材料,使工件的材质达到原子问的结合而形成永久性连接的工艺过程称为焊接.物理本质:1)宏观:焊接接头破坏需要外加能量和焊接的的不可拆卸性(永久性)2)微观:焊接是在焊件之间实现原子间结合.2.怎样才能实现焊接,应有什么外界条件?从理论来讲,就是当两个被焊好的固体金属表面接近到相距原子平衡距离时,就可以在接触表面上进行扩散、再结晶等物理化学过程,从而形成金属键,达到焊接的目的.然而,这只是理论上的条件,事实上即使是经过精细加工的表面,在微观上也会存在凹凸不平之处,更何况在一般金属的表面上还常常带有氮化膜、油污和水分等吸附层。
这样,就会阻碍金属表面的紧密接触。
为了克服阻碍金属表面紧密接触的各种因素,在焊接工艺上采取以下两种措施:1)对被焊接的材质施加压力目的是破坏接触表面的氧化膜,使结合处增加有效的接触面积,从而达到紧密接触。
2)对被焊材料加热(局部或整体)对金属来讲,使结合处达到塑性或熔化状态,此时接触面的氧化膜迅速破坏,降低金属变形的阻力,加热也会增加原于的振动能,促进扩散、再结晶、化学反应和结晶过程的进行。
二、焊接热源的种类及其特征1) 电弧热:利用气体介质放电过程所产生的热能作为焊接热源。
2) 化学热:利用可燃和助燃气体或铝、镁热剂进行化学反应时所产生的热能作为热源。
焊接过程中的温度场模拟及其优化焊接是一种热加工方法,通过热源将金属加热到熔化状态,使得两个金属材料在熔池的作用下相互融合,从而形成一个整体。
然而,焊接过程中的高温和温度梯度对材料的组织和性能产生了很大的影响。
因此,温度场模拟和优化是保证焊接接头质量的关键所在。
一、焊接温度场模拟的原理和方法温度场模拟是利用计算机数值分析方法,对焊接过程中材料受热冷却的过程进行模拟,以求得焊接接头的温度分布、热应力和变形等信息。
在焊接过程中,热源会产生高温,材料受热后产生热量逐渐扩散到材料周围,直至热量逐步消散。
因此,要进行温度场模拟首先需要建立完整的三维模型,并设定良好的热源参数、材料物性参数和边界条件等。
温度场模拟可以采用多种方法,如有限元法、有限差分法、边界元法等。
其中,有限元法是目前最常用的一种模拟方法。
有限元法的基本思想是将连续的物理空间划分为有限的单元,利用变分原理和微分方程求解每个单元的温度分布。
在实际模拟中,有限元法可以分为三个步骤:建立有限元模型、求解有限元方程、分析计算结果。
二、焊接温度场模拟的优化方法在焊接过程中,由于材料性质和接头几何形状等原因,产生的温度场分布不稳定,会导致接头形变和热应力,影响接头的质量。
因此,需要通过温度场模拟来优化焊接过程,减少焊接缺陷。
1、热源优化热源参数的优化是焊接温度场模拟的重要步骤。
通过调整热源功率、焊接速度、焊接角度等参数,可以对焊接过程进行控制。
热源功率是控制焊接温度场分布的关键因素。
在模拟过程中,可以通过调整热源功率控制焊接过程中的温度分布,达到控制热影响区大小和缩小焊缝宽度的效果。
2、材料参数优化焊接材料的物性参数是影响温度场分布的另一个关键因素。
不同材料的热传导系数、比热容等物性参数不同,会对温度场产生影响。
因此,在温度场模拟时需准确设置焊接材料的物性参数,以求得更真实、可靠的计算结果。
3、边界约束优化边界约束条件是影响焊接接头形变和变形的重要因素。
焊接工艺及质量验收标准导言焊接是一种将金属材料连接在一起的重要工艺。
它广泛应用于航空航天、汽车制造、建筑结构和制造业等领域。
本文将探讨焊接工艺的基本原理以及其质量验收标准。
一、焊接工艺的分类焊接工艺可以根据焊接材料的状态、热源类型以及焊接过程的特点进行分类。
1. 焊接材料的状态:焊接工艺可分为固态焊接和熔融焊接。
固态焊接通过加压使焊接界面达到足够的结合力,而熔融焊接则是通过加热材料使其熔化,并将熔化状态下的材料连接在一起。
2. 热源类型:焊接工艺可以分为火焰焊接、电弧焊接、激光焊接和电子束焊接等。
不同的热源类型适用于不同的焊接材料和应用场景。
3. 焊接过程特点:焊接工艺可以分为手工焊接和自动化焊接。
手工焊接需要焊工凭借经验和技巧进行焊接操作,而自动化焊接则可以通过机器人等设备实现。
二、焊接工艺的基本原理焊接工艺的基本原理包括热源、填充材料和焊接参数三个方面。
1. 热源:热源是焊接过程中产生热量的工具,用于熔化焊接材料。
不同的热源类型对材料的影响不同,需要根据具体情况选择合适的热源。
2. 填充材料:填充材料是焊接过程中用于补充焊缝材料的材料,用于填充焊缝中的缺陷。
填充材料的选择要考虑到焊接材料的化学成分、力学性能等因素。
3. 焊接参数:焊接参数包括焊接电流、焊接速度、焊接电压等。
这些参数的选择要根据焊接材料的特性以及焊接质量要求来确定。
三、焊接质量验收标准焊接质量验收标准是评估焊接质量的依据,它可以根据不同的应用领域和材料特性进行制定。
1. 外观质量:焊接接头的外观质量是评估焊接质量的一个重要指标。
焊接接头应该光滑均匀,没有气孔、裂纹、缺陷等。
2. 强度性能:焊接接头的强度性能直接影响其应用的安全性。
焊接接头的抗拉强度、抗剪强度、韧性等性能指标应达到相关标准。
3. 无损检测:无损检测是一种通过外部检测手段评估焊接接头内部缺陷的方法。
常用的无损检测方法包括超声波检测、射线检测和磁粉检测等。
4. 尺寸精度:焊接接头的尺寸精度应符合设计要求。
最新ANSYS焊接高斯热源APDL参考汇总A N S Y S焊接高斯热源A P D L参考不准/UNITS,SI/CONFIG,NRES,10000/PREP7ET,1,SOLID70MP,DENS,1,7930MP,C,1,502mptemp,1,20,100,500mpdata,kxx,1,1,12.1,16.3,21.4/VIEW,1,1,1,1!*************定义基板尺寸***********lx=0.1lz=0.1ly=0.006!*************定义焊接参数***********weld=0.01 !每道焊道宽度wheight=0.004 !焊道的高度LSIZE=0.005V=0.008 !速度pi=3.1415926U=25I=180Q=U*I !电源有效功率R=0.006 !电源有效热半径effect=0.8Qmax=effect*Q/(pi*R*R) !中心处最大热流tinc=LSIZE/V !每小段的时间间隔!*****************建立模型,生成网格************** block,0,lx,0,ly,0,lzwpoff,0,ly,lz/2block,0,lx,0,wheight,-weld/2,weld/2wpoff,0,0,-weld/2 vsbw,all,,delete wpoff,0,0,weld vsbw,all,,delete vglue,alllsel,s,,,plsel,s,line,,26lsel,a,line,,30lsel,a,line,,33lsel,a,line,,35lsel,s,line,,26lsel,a,line,,30lsel,a,line,,33lsel,a,line,,35 lesize,all,0.005,,,0.2,,,,1 lsel,s,line,,9,10lsel,a,line,,12lsel,a,line,,38 lesize,all,0.005,,,0.2,,,,1 lsel,s,line,,2lsel,a,line,,4,5lsel,a,line,,7lsel,a,line,,14lsel,a,line,,16lsel,a,line,,19lsel,a,line,,39 lesize,all,0.002,,,1,,,,1 lsel,s,line,,23,24lsel,a,line,,41,42 lsel,a,line,,45lsel,a,line,,47lsel,s,line,,23,24lsel,a,line,,41,42 lsel,a,line,,45lsel,a,line,,47 lesize,all,0.002,,,1,,,,1 vmesh,all/PNUM,DEFA EPLOTfini/soluantype,trans,new!nlgeom,ontimint,0,structtimint,1,thermtimint,0,magtimint,0,electtref,25nropt,autoautos,onkbc,0pred,onlnsrch,on!************杀死焊缝去单元*********** nsel,s,loc,y,ly,ly+wheightesln,s,1ekill,allallsel,allesel,s,liveeplot!**********施加对流载荷************* esel,s,livensel,s,loc,z,0nsel,a,loc,z,lznsel,a,loc,x,0nsel,a,loc,x,lxsf,all,conv,10,25!************定义数组维数********** MAX_X=1+lx/LSIZE!*************定义table数组****************************************** *do,i,1,MAX_X,1 local,12,0,(i-1)*lsize,ly,lz/2,,,,,,*del,_FNCNAME*del,_FNCMTID*del,_FNC_C1*del,_FNC_C2*del,_FNC_C3*del,_FNC_C4*del,_FNCCSYS*del,'heatflux'!定义表格各行*set,_FNCNAME,'heatflux'*dim,_FNC_C1,,1*dim,_FNC_C2,,1*dim,_FNC_C3,,1*dim,_FNC_C4,,1!表格各行赋值*set,_FNC_C1(1),effect*set,_FNC_C2(1),U*set,_FNC_C3(1),I*set,_FNC_C4(1),R*set,_FNCCSYS,12*DIM,%_FNCNAME%,TABLE,6,26,1,,,,%_FNCCSYS%!! Begin of equation: 3*effect*U*I*exp(-3*({X}^2+{Z}^2)/R^2)/({PI}*R^2) %_FNCNAME%(0,0,1)= 0.0, -999%_FNCNAME%(2,0,1)= 0.0%_FNCNAME%(3,0,1)= %_FNC_C1(1)%%_FNCNAME%(4,0,1)= %_FNC_C2(1)%%_FNCNAME%(5,0,1)= %_FNC_C3(1)%%_FNCNAME%(6,0,1)= %_FNC_C4(1)%%_FNCNAME%(0,1,1)= 1.0, -1, 0, 3, 0, 0, 17%_FNCNAME%(0,2,1)= 0.0, -2, 0, 1, -1, 3, 17%_FNCNAME%(0,3,1)= 0, -1, 0, 1, -2, 3, 18%_FNCNAME%(0,4,1)= 0.0, -2, 0, 1, -1, 3, 19%_FNCNAME%(0,5,1)= 0.0, -1, 0, 0, 0, 0, 0%_FNCNAME%(0,6,1)= 0.0, -3, 0, 1, 0, 0, -1%_FNCNAME%(0,7,1)= 0.0, -4, 0, 1, -1, 2, -3%_FNCNAME%(0,8,1)= 0.0, -1, 0, 3, 0, 0, -4%_FNCNAME%(0,9,1)= 0.0, -3, 0, 1, -4, 3, -1%_FNCNAME%(0,10,1)= 0.0, -1, 0, 2, 0, 0, 2%_FNCNAME%(0,11,1)= 0.0, -4, 0, 1, 2, 17, -1%_FNCNAME%(0,12,1)= 0.0, -1, 0, 2, 0, 0, 4%_FNCNAME%(0,13,1)= 0.0, -5, 0, 1, 4, 17, -1%_FNCNAME%(0,14,1)= 0.0, -1, 0, 1, -4, 1, -5%_FNCNAME%(0,15,1)= 0.0, -4, 0, 1, -3, 3, -1%_FNCNAME%(0,16,1)= 0.0, -1, 0, 2, 0, 0, 20%_FNCNAME%(0,17,1)= 0.0, -3, 0, 1, 20, 17, -1%_FNCNAME%(0,18,1)= 0.0, -1, 0, 1, -4, 4, -3%_FNCNAME%(0,19,1)= 0.0, -1, 7, 1, -1, 0, 0%_FNCNAME%(0,20,1)= 0.0, -3, 0, 1, -2, 3, -1%_FNCNAME%(0,21,1)= 0.0, -1, 0, 2, 0, 0, 20%_FNCNAME%(0,22,1)= 0.0, -2, 0, 1, 20, 17, -1%_FNCNAME%(0,23,1)= 0.0, -1, 0, 3.14159265358979310, 0, 0, -2%_FNCNAME%(0,24,1)= 0.0, -4, 0, 1, -1, 3, -2%_FNCNAME%(0,25,1)= 0.0, -1, 0, 1, -3, 4, -4%_FNCNAME%(0,26,1)= 0.0, 99, 0, 1, -1, 0, 0! End of equation: 3*effect*U*I*exp(-3*({X}^2+{Z}^2)/R^2)/({PI}*R^2) !-->!**********激活单元*********esel,s,livensel,s,loc,x,(i-1)*lsize-0.002,(i-1)*lsize+0.002nsel,r,loc,z,-weld/2,weld/2nsel,r,loc,y,0,wheightesln,s,0ealive,allallsel,all!**********施加热流载荷**********esel,s,livensel,s,loc,Y,wheightsf,all,hflux,%heatflux%allsel,alltime,i*tincnsubst,2SOLVE!*************删除热流载荷***********nsel,s,loc,y,wheightsfdele,all,hfluxallsel,allesel,s,liveeplotOUTRES,ALL,ALL,/PSF,HFLUX,,2/REPLOTOUTRES,ALL,ALL, *ENDDO。
焊接过程数值模拟热源模式的比较WeldingTechnologyV o1.35No.1Feb.2006?试验与研究?9文章编号:1002-025X(2006)01-0009-03焊接过程数值模拟热源模式的比较陈家权,肖顺湖,吴刚,杨新彦(广西大学机械工程学院,广西南宁530004)擅要:焊接热源模式是焊接数值模拟研究的一个重要内容.文中简要介绍了焊接过程数值模拟热源的各种加栽模式:高斯分布函数,双椭球分布函数,生死单元方法.针对具体算例,采用3种不同的热源加栽模式进行三雏焊接温度场的数值计算,并比较不同方法计算焊接温度场结果的差异.结果表明,生死单元方法是一种简单的热源加栽模式,其计算效率优于其他2种加栽方法.关t词:焊接;高斯热源;双椭球热源;生死单元;有限元中圈分类号:1'(02:TP15文献标识码:A在焊接结构设计和工艺分析中,一般是通过大量焊接工艺试验来评定工艺因素的变化对焊接残余应力和变形乃至使用寿命的影响.近年来,随着数值计算理论和有限元方法的发展以及计算机的普及和性能的提高,焊接过程的数值模拟得以实现.通过数值模拟计算,动态仿真焊接过程,预测不同焊接工艺条件下的残余应力和变形,进而实现对焊接工艺的优化设计.焊接热源模型是实现焊接过程数值模拟的基本条件.焊接热源具有电弧局部集中,瞬时和快速移动的特点,易形成在时间和空间域内梯度都很大的不均匀温度场,这种不均匀温度场会导致在焊接过程中和焊后出现较大的焊接应力和变形.因此,在数值模拟计算焊接过程的温度场时,热源模型的研究至关重要,它关系到焊接温度场和应力变形的计算精度,特别是在靠近热源的地方影响更大.对此,人们提出了一系列的热源计算模式,其中应用较广的是高斯分布热源模型,双椭球热源模型和基于生死单元的焊接热源加载模型.本文采用具有高斯表面热源模型,双椭球热源模型,生死单元热源模型加载焊接热源,进行温度场的有限元计算,并时3种热源模型的计算结果作进一步比较,确定符合焊接过收稿日期:2005一o6—15;修回日期:2005—12一O5基金项目:广西自然科学基金项目(桂科自013505)程效值模拟计算的热源模型.l焊接热源基本模型1.1高斯热源模型Eagar和TsaiⅢ将焊接加热斑点上热流密度的分布近似地用高斯数学模型来描述,即焊接热源的热流密度可表示为如下高斯分布函数:g(r)=q~exp(一),(1)gm=素Q,(2)Q=,(3)式中:g为加热斑点中心最大热流密度,J/(m?S);R为电弧有效加热半径,mm:r为热源某点至电弧加热斑点中心的距离,mm:Q为热源瞬时给焊件的热能,w;为焊接热效率;(,为电弧电压,V;,为焊接电流,A.1.2双椭球型热源模型由于高斯分布函数没有考虑电弧的穿透作用,为了克服这个缺点,AGoldakv?出了双椭球形热源模型.这种模型将焊接熔池的前半部分作为一个1/4椭球,后半部分作为另一个1/4椭球.设前半部分椭球能量分数,后半部分椭球能量分数,2.前半部分椭球内热源分布函数:较小,即OHz处的幅频值随熔核尺寸的变化最为敏感.参考文献:【1】中国机械工程学会焊接学会电阻焊(Ⅲ)专业委员会.电阻焊理论与实践【M】.北京:机械工业出版社,1994.【2】曾鸿志.电阻点焊过程及质量控制方法的研究【J】.焊接技术,2000, 29(5):1—3.【3】应怀樵.波形和频谱分析与随机数据处理【M】.北京:中国铁道出版社,1983.【4】陈汉友.Matlab在数字信号处理中的应用忉.计算机与现代化,20O4, (1):103—1O5.作者简介:马铁军(1972一),男,新疆米泉人,讲师,在职博士,1995年毕业于西北工业大学焊接专业,主要从事压焊工艺与设备及压焊质量检测方面的研究.lO?试验与研究?焊接技术第35卷第1期20O6年2月gcr,=唧{-3[(詈(舌(),c4,后半部分椭球内热源分布函数:r,=唧{一3[(詈)2+(舌)+2(),c5,式(4)和式(5)中的a,6,C,Cr可取不同的值,它们相互独立.在焊接不同材质时,可将双椭球分成4个1/8的椭球瓣.每个可对应不同的a,6,Cf,cr值.1.3生死单元热源加载高斯,双椭球2种热源模型将焊接热流直接施加在整个焊件有限元模型上,不能模拟焊缝金属熔化和填充,无法模拟实际焊接过程,而生死单元能够克服这个缺点.生死单元技术搠就是采用生死单元模拟焊缝填充的方法来模拟焊接热输入过程.通过试验测量,将全部焊接热Q均匀分布在焊缝上,假设所有焊缝单元在计算前是不激活的.在开始计算前,将焊缝中所有单元"杀死".在计算过程中,按顺序将被"杀死"的单元"激活",模拟焊缝金属的填充.同时,给激活的单元施加生热率(日GEⅣ),热载荷的作用时间等于实际焊接时间. HGEN--Q/(A=~xvxdt),(6)式中:HGEN为每个载荷步施加的生热率,w/m;A为焊缝的横截面积,m;为焊接速度,m/s;dI为每个载荷步的时间步长,8.2焊接叠度场的有限元计算2.1物理模型焊接温度场模拟计算所采用的焊板尺寸为200mmxT.00mmx6mm,如图1所示.试样材料为s355K2G3碳锰钢(BS426o Grade50D,相当于国内16Mn钢),材料的比热容和热导率随温度变化曲线如图2所示.材料的密度近似为常数.lZP7800I~Jm3.焊板由2块200mmxl00minx6lnln钢板焊接而成,为保证焊透,在钢板待焊边上加T60o坡口.焊接采用Co2+混合气体保护焊,焊接参数为:焊接电流180A,电弧电压20V,焊接速度4.8mm/s,焊接热输入O.75kJ/ram,焊接效率',=0.825,焊缝的几何模型与实际焊缝尺寸一致.在本次数值计算中,假定焊板表面与空气的换热系数为15w/(m2?℃).啊1爆接试样尺寸凝萁羹置厦/啊2材辩比热軎和热导搴2.2有限元模型由于采用3D几何模型,所以划分有限元模型时采用8节点热单元SoHd70.为保证焊缝及其附近高温区域得到较精确的温度分布,采用了较小的尺寸单元,焊板有限元模型如图3所示,其中包括13100个单元,19392个节点.E3霹板有限元曩型2.3焊接热源模型的处理2.3.1高斯分布函数的热源模型高斯热源按表面移动热流处理,在ANSYS中按热流率加载,用函数加载功能将高斯热流加载在焊件表面,每一步计算前,先删除上一步热流,再重构高斯函数,对于高斯热源,R= 5.5mm,通过计算,得出:q*---9.4xl05ce-~'.2.3.2双椭球形热源模型双椭球形热源按内热源处理,在ANSYS中按生热率(日GEⅣ)加载,用函数加载功能将双椭球形热流加载在焊件上,在每一步开始计算前,先删除上一步生热率.然后重构双椭球函数,双椭球形热源的几何参数:f:o.6,=1.4,5mm,b=5mm,cf=3.75mm,c.5mlrl.前半部分椭球内热源分布函数为:fr22211)=8.8xl叫I()+()+(0--~375川,(7)后半部分椭球内热源分布函数为:fr2221tg(r)叫一3.x)+()+()J0(8)2.3.3生死单元焊接热源加载在开始计算前,将焊缝中所有单元"杀死",相当于焊前的装配状态.在计算过程中,按顺序将被"杀死"的单元"激活",模拟焊缝金属的填充,同时给激活的单元施加生热率(HGEN),其中生热率(HGEN)的作用时间为每步的焊接WeldingTechnologyV o1.35No.1Feb.2006?试验与研究?11时间,每一步计算完成之后,删除该步的生热率,重新进入下一步加载计算,得到HGEN--6.6xl09.2.4计算结果与分析分别采用3种不同的焊接热载荷的施加方式,进行了焊接温度场的数值模拟计算.3种热源的焊接熔池某个时刻剖面温度场云图结果如图4所示.从图中可以看出,在焊接热参数输入一致的情况下,高斯热源和双椭球形热源计算出的焊件底部温度均低于金属的熔点(1435℃)四,未能达到真正焊透的效果,而采用生死单元技术施加热载荷,焊件表面至焊件底部的温度都能达到金属的熔点,确保整个工件能被焊透,从而能够较好地模拟深熔型焊缝的温度场.图5为焊板上参考点的温度循环曲线,其中,点A及点剧匈位于焊缝位置,.3种热源模式计算的各点温度循环特征相似, 随着热源的接近和离去,参考点的温度迅速上升和下降,3种热源比较相似,但各点的最高温度有所差异,以生死单元方法为最高,高斯热源次之,双椭球形热源最低.通过比较不同热源模型加载条件的计算时间,发现在计算机配置不变的情况下,生死单元法的计算时间最短,为85rain,高斯热源次之,为125min,双椭球形热源为180min,因此采用生死单元法的计算效率明显高于其他2种热源的计算效率. WOD札5ouffrlOXS丁E}-5SU譬?lTI如E-.41666"7TIE/qP(^V6'RSYS-OS知阿2OSID:tl268——E:::::::::::r二::.=:.::=:.:—●20338657.5976.3l454(a)高斯热源0l6032048064O时间/s(a)高斯热源—一l26820297r7485l(b)双椭球形热源圈4焊接熔池形状比较016032048064O时间/s(b)双椭球热源豳S参考点计算焊接温度变化历程3结论采用ANSYS有限元软件对不同焊接热源加载模式的温度场进行计算,并对计算结果加以比较.结果表明:①用高斯分布的表面热源分布函数计算,引入材料的非线性,可模拟焊接温度场,但未考虑电弧挺度对熔池的影响.②由于双椭球热源模型是一种体热源,热流密度函数复杂,参量较多,因此计算结果比高斯热源准确,但计算时需不断重构焊接移动热源的分布函数,导致计算量增加.③应用生死单元方法加载,能够有效地模拟焊缝的形成过程和焊接热载荷的输入,而且这种处理方法较构造焊接热流密度函数的方法简单,更适用于复杂结构的焊接过程模拟, 且计算效率和精度均高于前2种方法.参考文献——:::l二:=:::::二:.:一::.:一2O4l2.58051324l787(c)生死单元热源加载o16032048064O时间/s(c)生死单元热源加载[1】EagerTW,TsaiNS.Temperaturefieldsproducedbytraveling distributedheat8ource$[J】.WeldingJournal,1983,62(12):346—355.【2】GoldakA,ChakravartiAandBibbyM.Adoubleellipsoidfinite elementmodelforweldingheatsources[Z].11wDoe.,1985.【31GoldakA,ChakravartiAandBibbyM.Anewfiniteelementmodel forweldingheatsoul'ces[J].MetTrans.1984,13(15B):299—305.【4】陈家权.基于单元生死的焊接温度场模拟计算[J】.热加工工艺,2O05, 34(7):64—65.【5】张树华.TC4,16Mn合金及Al陶瓷的高温弹性模量Ⅱl高压物理学报,1999,9(2):133—137.^P£PS啪嚣蝴伽咖咖猢湖伽o222llp\趟赠咖咖鲫枷抛咖咖鲫枷猢o,'}ll\魁赠湖瑚咖聊姗瑚咖姗瑚0222llll魁赠。
熔焊焊接热源
熔焊焊接热源的种类主要有焊接电弧、焊接熔渣和气体火焰三大类。
1、焊接电弧它是一种强烈而持久的气体放电现象。
其最高温度在弧柱中央,
可达5000-50000K(包括等离子弧)。
2、焊接熔渣当电流通过焊接熔渣时产生的电阻热则成为电渣焊的热源。
其
最高温度在电极末端的渣池中,可达到1600-2000℃。
3、气体火焰是可燃气体与氧气发生强烈燃烧反应时形成的火焰。
其最高温
度在焰心前端1~2mm处,对于氧乙炔焰可达3150℃,氧丙烷焰可达2800℃。
手工电弧焊基本知识
1888年,俄罗斯发明了手工电弧焊接技术,使用无药皮的裸露金属棒来产生保护气体。
直
到20世纪初,在瑞典发明卡尔伯格过程(Kjellberg process)和Quasi-arc方法传入英国后
,药皮焊条才开始发展起来。
值得注意的是,由于成本较高,刚开始人们不怎么使用药皮焊条。
但是随着人们对好的焊缝质量需求的日益增长,手工电弧也开始使用药皮焊条。
金属棒(焊条)和工件之间形成的电弧会熔化金属棒和工件的表面,形成焊接熔池。
同时,金属棒上熔化的药皮会形成气体和熔渣,保护焊接熔池不受周围空气的影响。
因为熔渣会冷却、凝固,所以一旦焊缝焊完(或在熔敷下个焊道前)就必须从焊道上清除熔渣。
在焊钳更换新焊条前,手工电弧焊过程只能完成短焊缝的焊接。
焊缝熔深浅,熔敷质量取决于焊工技能。
1. 电弧焊的基本知识:利用电弧作为焊接热源的熔焊方法,称为电弧焊。
1)焊接电弧焊接电弧是在焊条端部与焊件之间的空气电离区内产生的一种强烈而持久的放电现象,实质上,电弧是在一定条件下电荷通过两电极间气体空间的一种导电过程。
2) 焊接电弧构造:焊接电弧由阴极区、阳极区和弧柱区三部分组成。