植物生理学课外资料0-3
- 格式:doc
- 大小:3.85 MB
- 文档页数:69
植物生理学复习资料植物生理学是研究植物的生命过程和功能的科学领域,它涉及植物的生长、发育、营养吸收、代谢、激素调节、环境适应等各个方面。
本文将为您提供植物生理学复习资料,帮助您深入理解植物的生理过程和相关机制。
一、植物的生长和发育生长是植物生命的重要过程,包括细胞分裂、细胞扩张和细胞分化等过程。
植物生长受到激素、光照、温度、水分等环境因素的调节。
激素是植物生长和发育的内源调节因子,包括生长素、赤霉素、细胞分裂素、细胞分化素等。
植物的发育包括种子萌发、幼苗生长和植株形成等阶段。
在种子萌发过程中,种子吸收水分后,活化生理过程,例如蛋白质合成和呼吸作用。
幼苗生长是种子萌发后的主要阶段,包括根系生长、茎轴生长和叶片展开等。
植株形成是植物发育的终极目标,包括茎蔓延、分枝、开花和结果等过程。
二、植物的营养吸收和代谢植物通过根系吸收水分、无机盐和有机物等营养物质。
水分的吸收和传输是植物生理学中的重要研究内容。
根系吸水是由于根毛吸水、根内压力和蒸腾作用等因素共同作用的结果。
植物通过根系吸收的营养物质主要包括:氮、磷、钾、镁、钙等无机盐,以及葡萄糖、脂肪酸等有机物。
植物的代谢过程包括光合作用、呼吸作用和分子合成等。
光合作用是植物利用光能将二氧化碳和水转化为有机物质的过程,其产物为葡萄糖和氧气。
呼吸作用是植物将有机物质氧化分解为二氧化碳和水释放能量的过程,其产物为能量和水。
分子合成是植物利用有机物质合成蛋白质、核酸、脂肪等细胞组分的过程。
三、植物的激素调节植物激素主要包括生长素、赤霉素、细胞分裂素、细胞分化素、脱落酸和乙烯等。
植物激素能够调节植物的生长、发育和适应环境的能力。
例如,生长素能促进植物的细胞分裂和伸长,赤霉素能促进植物的伸长和开花,细胞分裂素和细胞分化素能调节植物的组织和器官的形成。
植物激素的合成和作用受到环境因素的调控。
例如,光照能够影响生长素的合成和分布,温度能够调节赤霉素的合成和作用,水分能够影响细胞分裂素和细胞分化素的合成和传输。
绪论一、植物生理学的定义和内容(一)植物生理学的定义植物生理学(plant physiology)是研究植物生命活动规律、揭示植物生命现象本质的科学。
(二)植物生理学的研究对象主要以绿色高等植物为研究对象。
(三) 植物生理学研究的内容1.生长发育(growth anddevelopment)与形态建成生长发育(growth and development)是植物生命活动的外在表现,它主要包括了两个方面:一是由于细胞数目的增加、细胞体积的扩大而导致的植物体积和重量的增加;二是由于新器官的不断出现带来的一系列肉眼可见的形态变化,即形态建成(morphogenesis),2.物质代谢与能量转化在植物形态变化的背后,是肉眼难以观察到的物质和能量转化过程,而物质转化与能量转化又紧密联系,构成统一的整体,统称为代谢(metabolism)。
3.信息传递(message transportation)和信号转导(signal transduction)信息传递:指信息感受部位将信息传递到发生反应部位的过程。
信号转导:指单个细胞水平上,信号与受体结合后,通过信号转导系统,产生生理反应。
二、植物生理学的产生和发展第一阶段:植物生理学的孕育阶段1627年荷兰人凡·海尔蒙(J.B.van Helmont)柳枝实验:探究植物长大的物质来源:水1699年,英国学者伍德沃德(John.Woodward):单纯的水对于植物的生长发育是不够的英国学者海尔斯(Hales):建立了土壤营养和空气营养的概念英国学者普里斯特里(Priestley):绿色植物能放出氧气1779年荷兰学者印根胡兹(Ingenhousz):植物的绿色部分只有在光下才能放出氧气,在黑暗中放出氧气1804瑞士学者德.索苏尔(De.Saussure):植物在光下利用CO2进行光合作用而生长,从而逐步建立了空气营养理论第二阶段:植物生理学诞生与成长的阶段植物生理学奠基人德国人萨克斯1882年编写《植物生理学讲义》。
植物生理学复习资料植物生理学复习资料第一章植物的水分生理一、名词解释1、水势:指在同温度同压强下每偏摩尔体积水的化学势与纯水的化学势的差值。
单位Pa。
2、渗透势Ψs:由于细胞液中溶质的存在引起细胞水势降低的数值,为负值。
3、压力势Ψp:由于细胞壁的压力的存在引起细胞水势变化的数值。
4、衬质势Ψm:有图细胞胶体物质的亲水性和毛细管作用对自由水的束缚而引起水势降低的值,为负值。
5、蒸腾作用:植物体内的水分以气态方式通过植物体表面散失到外界坏境的过程称为蒸腾作用。
6、蒸腾拉力:由于蒸腾作用产生的一系列水势梯度而使水分沿导管上升的力量称蒸腾拉力。
作用力>>根压。
7、永久萎蔫系数:当植物刚好发生永久萎蔫时土壤尚存留的含水量。
(占土壤干重的百分数)。
二、简答、填空、判断等(一)2、水在植物生命中的作用(1)水是原生质的主要组分(2)一切代谢物质的吸收运输都必须在水中才能进行(3)水可以保持植物的固有姿态(4)水作为原料参与代谢:水是光合作用、呼吸作用、有机物合成与分解的底物(5)水可以调节植物的体温、调节植物的生存环境3、水势:指在同温度同压强下每偏摩尔体积水的化学势与纯水的化学势的差值。
单位Pa。
(1)在任何情况下。
水分流动的方向总是由水势高的地方流向水势低的地方。
(2)典型细胞水势(Ψw)包含三部分:Ψw = Ψs(渗透势)+ Ψp(压力势)+ Ψm(衬质势)成熟细胞则Ψw = Ψs(渗透势)+ Ψp(压力势)(3)当细胞处于质壁分离时:水势= 渗透势;细胞吸水饱和时:水势 = 0.4、植物细胞吸水的方式(1)渗透式吸水(具液泡细胞)(2)吸胀式吸水(无液泡的细胞及干种子、依赖衬质势(3)代谢性吸水(直接耗能)发生频率(1)>(2)>(3)(二)植物根系对水分的吸收1、根系是植物吸水的主要器官,,其中根毛区为主要的吸水区域。
2、根系吸水方式及其动力:根系吸水有主动吸水(根压)和被动吸水(蒸腾拉力)两种形式。
大一植物生理学知识点植物生理学是研究植物生命活动和生物化学过程的学科,它涵盖了植物的生长、发育、代谢、信号传导和植物对环境的适应等方面的知识。
下面,我将介绍一些大一学生应该了解的植物生理学知识点。
1. 光合作用光合作用是植物利用光能合成有机物质的过程。
它主要发生在植物叶绿体中的叶绿素分子中。
光合作用可以分为光反应和暗反应两个阶段。
光反应发生在叶绿体的光合膜中,通过光能将光合色素激发成高能态,产生ATP和NADPH等能量载体。
暗反应发生在叶绿体基质中,利用光反应产生的能量载体将二氧化碳还原成有机物。
2. 植物激素植物激素是植物体内产生和调控生长发育的化学物质。
常见的植物激素包括生长素、赤霉素、细胞分裂素、脱落酸和乙烯等。
它们通过调控细胞的伸长、分裂、分化等过程,对植物的生长和发育起到重要的作用。
3. 水分运输植物通过根系吸收土壤中的水分,并通过茎和叶子上的导管系统将水分运输到全身各个部位。
导管系统由两种类型的细胞组成,分别是木质部和韧皮部。
木质部主要负责水分和无机盐的上行运输,而韧皮部则主要负责有机物的下行运输。
4. 生长和发育调控植物的生长和发育受到内外环境因素的调控。
内源因素包括植物激素、基因表达等,外源因素包括光照、温度、水分、营养物质等。
植物可以通过调节生长素和赤霉素的含量来控制根系和茎叶的生长,通过光质和光周期来调控开花等。
5. 细胞呼吸细胞呼吸是植物细胞中的一种代谢过程,通过氧化有机物质释放能量。
细胞呼吸包括糖酵解和线粒体呼吸两个阶段。
糖酵解发生在细胞质中,将葡萄糖分解成丙酮酸并释放少量能量。
线粒体呼吸发生在线粒体中,将丙酮酸完全氧化,生成大量的能量。
6. 植物对逆境的响应植物在面对逆境条件时,会产生一系列的应答机制以应对。
比如在水分缺乏时,植物会闭合气孔减少水分蒸腾;在高温环境下,植物会合成热休克蛋白以保护细胞结构等。
植物对逆境的响应是它们适应不同环境并存活的重要策略。
以上介绍了一些大一植物生理学的知识点。
一.成花诱导春化作用(vernalization):低温诱导促进植物开花的作用。
温度:相对低温型:低温处理促进植物开花,如冬性一年生植物,种子吸涨后即可感受低温绝对低温型:若不经低温处理,植物绝对不能开花,如二年生植物,营养体达到一定大小才能感受低温。
低温与条件:各类植物通过春化时要求低温持续的时间不同,在一定时间内,春化的效应随低温处理时间的延长而增加。
(2)需要充足的氧气、适量的水分和作为呼吸底物的糖分(3)光照春化之前,充足的光照可促进二年生和多年生植物通过春化。
时期、部位和刺激传导(1)时期大多数一年生植物(冬小麦)在种子吸胀后即可接受低温诱导,在种子萌发和苗期均可进行。
而需低温的二年生植物(胡萝卜、月见草等)只有绿苗达到一定大小才能通过春化。
(2)部位感受低温的部位:茎尖端的生长点春化过程中的生理生化变化(1)呼吸速率—春化处理的较高(2)核酸代谢在春化过程中核酸(特别是RNA)含量增加,代谢加速,而且RNA性质有所变化。
(3)蛋白质代谢可溶性Pr及游离AA含量(Pro)增加。
(4)GA含量增加一些需春化的植物(如天仙子、白菜、胡萝卜等)未经低温处理,若施用GA也能开花。
GA 以某种方式部分代替低温的作用。
春化作用的机理前体物低温中间产物低温最终产物(完成春化)高温中间产物分解(解除春化)春化作用在农业生产中的应用A、人工春化,加速成花,提早成熟(1)“闷麦法” —春天补种冬小麦(2)春小麦低温处理—早熟,躲开干热风,利于后季作物的生长(3)加速育种过程—冬性作物的育种B、指导引种引种时应注意原产地所处的纬度,了解品种对低温的要求。
如北种南引,只进行营养生长而不开花结实。
C、控制花期如低温处理可使秋播的花卉改为春播,当年开花收获营养器官的植物,可高温处理解除春化光周期的发现某些植物在完成春化作用后,只有在高温和特定的光周期处理以后,花芽才能分化。
光周期(photoperiod):一天之中白天和黑夜的相对长度。
植物生理学重点知识整理资料名词解释:1.水势:每偏摩尔体积水的化学势差2.水孔蛋白:在植物细胞质膜和液泡膜上的膜内蛋白,分子量在25~30KD,其单体是中间狭窄的四聚体,呈“滴漏”状,每个亚单位的内部形成狭窄的水通道,特异的允许水分子通过,具有高效转运水分子的功能。
水通道半径大于水分子半径,小于最小的溶质分子半径。
3.蒸腾系数:植物制造1克干物质所需水分的克数。
4.次级主动运输:膜上的转运蛋白利用初级主动运输建立的跨膜电化学势梯度作为驱动力,间接利用能量来转运溶质的过程,也称为次级转运。
5.离子泵运输:质膜上存在ATP酶催化ATP水解释放能量,驱动离子的转运。
植物细胞膜上的离子泵主要有离子泵和钙泵。
6.共质体途径:共质体途径是指水分从一个细胞的细胞质经过胞间连丝,移动到另一个细胞的细胞质,形成一个细胞质的连续体,水分在共质体中移动阻力大,速度较慢。
7.质外体途径:质外体途径是指水分通过没有细胞质的质外体的移动,水分在质外体中移动阻力小,速度快。
8.爱默生效应:用波长大于685nm的长波红光和波长650nm 的短波红光同时照射植物时,量子产额大大增加,比分别单独用该两种波长的光照射时的总和还要多。
该现象暗示光合机构中存在两种光系统,又称为双光增益效应。
9.植物激素:在植物体内合成,并从产生之处运送到别处,对生长发育产生显著作用的微量有机物。
10.光形态建成(Photomorphogenesis)/光控发育:光控制细胞分化,最终汇集成组织和器官的建成。
11.光呼吸:植物绿色细胞依赖光照,吸收O2释放CO2的过程。
12.临界日长:指在昼夜周期中诱导短日植物开花所必需的最长日照或诱导长日植物开花所必需的最短日照。
13.临界夜长:又称临界暗期,指在昼夜周期中短日植物能够开花所必需的最短暗期长度,或长日植物能够开花所必需的最长暗期长度。
14.光反应中心:在类囊体膜上进行光合作用原初反应的最基本的色素蛋白复合体,是由反应中心色素分子、原初电子供体和原初电子受体组成的具有电荷分离功能的色素蛋白复合体结构。
植物生理学(知识梳理3)植物生理学是指研究植物生长、发育及其机制的生物科学领域。
它涵盖了植物吸收、传输、利用水分和营养物质的生物化学过程,以及植物响应内外环境变化的机制,包括光、温度、干旱、胁迫等因素。
一、植物的光合作用:光合作用是植物利用光能合成有机物质和释放氧气的过程。
在光合作用过程中,植物叶绿素吸收光能,产生化学能,利用二氧化碳、水和光能合成葡萄糖等有机物质。
光合作用对植物生长和代谢具有重要作用。
二、植物的水分代谢:植物的水分代谢包括水分的吸收、输送和利用等过程。
植物的根吸收水分,通过整个植物体内部的输送系统(木质部、韧皮部等组织)运输水分,为植物的生长和代谢提供水分。
植物还通过开、闭气孔来调节水分的流失和吸收。
三、植物的逆境适应:逆境适应是指植物在环境压力下调节和适应生长和代谢的能力。
逆境适应包括干旱、高温、低温、盐碱等环境胁迫的调节机制,同时也包括植物在种子萌发、幼苗成长和成熟过程中的各种适应机制。
四、植物的激素机制:植物激素是指植物内部产生的复杂有机化合物,对植物生长发育和代谢发挥调节作用的生物活性物质。
植物的生长和发育过程受多个类别的激素共同影响,其中包括生长素、脱落酸、赤霉素、葡萄糖苷等激素。
五、植物的矿质营养:植物的矿质营养包括植物对于营养元素的吸收、转运、利用和排泄等过程。
其中养分元素包括碳、氢、氧、氮、磷、钾、硫、镁、钙、铁、锰、锌、铜、钼、氯、镍等元素。
这些元素对于植物的生长和发育具有不同的作用。
六、植物的生长节律:植物的生长节律是指植物体内部各种生理过程存在的循环性变化,并对生长发育产生调控作用的机制。
生长节律可以通过光照、温度、激素、水分等多种因素受到调节,是植物合理管理和利用的重要参考指标。
植物生理学研究领域较为广泛,涵盖了诸多学科领域。
以上七个方面仅为植物生理学的部分研究内容。
随着科学技术的发展和研究深入,植物生理学的研究会更加精细和深入。
绪论1.植物生理学的诞生是从探索植物的营养开始的。
2.植物生理学的第一个实验:凡•海尔蒙特(J.B.van Helmon)做柳枝实验。
3.1771年一一光合作用年,普利斯特里发现绿色植物有净化空气的作用。
4.李比希,创立矿质营养学说,标志着植物生理学的诞生。
5.德:萨克斯、诺普、费弗尔:无土栽培技术。
6.《植物生理学讲义》、《植物生理学》三卷,标志着植物生理学达到成熟。
7.Sachs萨克斯被称为植物生理学的奠基人,Sachs和Pfeffer费弗尔被称为植物生理学的两大先驱。
水分生理1.水分代谢(water metabolism):植物对水分的吸收、运输、利用和散失的过程水对植物的生态作用1.调节植物体温2.水对可见光的通透性3.调节生态环境(植物的生存环境)★植物体内的含水量:植物种类:水生植物:>90%;中生植物:70-90%;旱生植物最低时可达到6%。
环境条件:阴蔽、潮湿,含水量高;向阳、干燥,含水量低。
植物组织和器官:幼嫩部分:60%-90%;茎杆:40%-50%;休眠芽:40%;风干种子:9%-14%0★植物体内水分存在的状态:束缚水、自由水。
束缚水:与细胞组分紧密结合不能自由移动、不易蒸发散失的水自由水:与细胞组分之间吸附力较弱,可以自由移动的水自由水直接参与代谢,束缚水不参与代谢。
自由能:根据热力学原理,系统中物质的总能量可分为束缚能和自由能。
束缚能是不能用于做有用功的能量,而自由能是指在等温、等压条件下,能够做最大有用功(非膨胀功)的那部分能量。
化学势:用来衡量物质反应或转移所用的能量一摩尔物质所具有的自由能水的化学势用卩w表示。
★水的化学势的热力学含义:当温度、压力及物质数量(水分以外)一定时,由水量(摩尔增量)引起的体系自由能的改变量。
水的化学势可用来判断水分参加化学反应的本领或两相间移动的方向和限度。
热力学中将纯水的化学势规定为零。
水的偏摩尔体积:指在恒温恒压、其它组分浓度不变情况下,混合体系中1mol物质所占据的有效体积。
第0章绪论一、植物生理学的研究对象和内容植物生理学(plant physiology)是研究植物生命活动规律的科学,是生物科学的一个重要分支。
植物生理学的研究范畴应当包括整个植物界的各种类型植物的生命活动,但由于和人类关系最密切的植物(含农作物、林木、园艺作物和资源植物等)大多数是高等植物,因此植物生理学研究的对象往往着重于高等植物。
植物生理学是研究植物体内所进行的各种生理过程及其作为这些生理过程的生物物理和生物化学基础,这些过程的机理以及与环境条件的关系和形态结构的关系。
从群体、整体、器官、组织水平深入到细胞、亚细胞和分子水平,把宏观与微观结合来阐明植物生命活动的规律。
研究的目的不仅要认识和解释现象,而且更要掌握其规律性,能动地为农、林、园艺等生产服务。
高等植物的生活史从受精卵分裂开始,经历胚胎发生期,完成种子发育阶段;种子萌发后植物经历幼龄期、性成熟期、开花结实期以及衰老期。
植物在生命活动的整个过程中产生许多变化,概括起来是:物质转化、能量转化、信息传递和形态建成。
在叶绿素的参与下,绿色植物能将CO2和H2O以及其它无机物转变为有机物,同时将太阳的辐射能转变为化学能。
这个光合作用过程是植物体内进行所有物质转化和能量转化的基础。
光合作用和所有的代谢过程是植物生长发育的基础,而生长发育则是各个代谢过程的综合表现,也包括形态建成过程。
与动物和微生物相比,植物本身有其独特之处,首先是绿色植物具有自养性,能利用无机物自行制造有机物;其次是植物扎根在土中营固定式生活,因而对不良环境的抗性较强;再其次是植物生长无定限,虽然部分组织或细胞死亡,但同时却有器官、组织或细胞再生或更新,不断生长;最后的特点是植物体细胞具有全能性,即具有完整细胞核的细胞,都具有分化成一个完整植株的潜在能力。
因此,植物生理的研究不但具有生物共性,而且还有其特殊性,具有重大的理论意义。
二、植物生理学文档顶端的产生和发展我国古代劳动人民在农业生产中总结出很多有关植物生理学的知识,例如豆类与谷物的轮作法、“粪种”(即用粪水浸泡种子)法、“七九闷麦”法(即春化法)等。
但由于中国长期处于封建社会,劳动人民积累的生产知识和经验,得不到科学实验的验证和理论上的概括,在长时间内未能形成科学体系。
随着人类生产力以及其它基础学科的发展,科学的植物生理学得到相应的发展。
植物生理学的产生是从土壤营养的研究开始,农业生产的发展要求植物生理学回答:植物体中的物质从那里来,又是如何进行营养的。
直到19世纪德国李比希(Liebig,1840)建立矿质营养学说,提出施矿质肥料补充土壤营养的消耗;与此同时法国布森格(Boussingault)用实验证明植物不能利用空气中的氮素;而克诺普(Knop)、费弗尔(Pfeffer)在无土条件下培育植物成功,这些都是对植物营养理论的重大贡献。
18世纪海尔斯(Hales)将植物干馏,观察到有气体放出,推测植物体能吸收气体状态物质,这一发现使人们注意到空气营养。
普利斯特利(Priestley)在发现氧后不久也观察到植物的绿色部分有放氧现象(1779年)。
同年荷兰印根胡兹(Ingenhousz)发现植物的绿色部分只有在光下才能放氧,在黑暗中则放CO2,这既证实了光合作用也发现了呼吸作用。
19世纪在西欧广泛进行资产阶级产业革命,造成了社会生产力的高涨,机器和化肥的应用促进了农业生产的发展,因此对植物内部活动过程的了解有更多的要求,植物生理学便逐渐形成了独立的学科体系。
1845年罗伯特·迈尔(Robert Meyer)把能量守恒定律应用到植物生理学,确定了光合作用也服从这一定律,并且指出光合作用的基本特点是把光能转变为化学能。
其后俄国季米里亚捷夫(Gimiriazev)证明光合作用所利用的光就是叶绿素所吸收的光;而巴赫(Bach)、巴拉琴(Palladin)和科斯梯切夫(Kostychev)则确认呼吸作用是“生物燃烧”,其释放的能量来自呼吸底物中所贮藏的能量。
有关形态建成方面也有很大发展。
1920年加纳(Garner)和阿拉德(Allard)提出光周期学说,阐明日照长度对植物开花的作用。
随后博斯威克(Borthwick)等人发现了光敏素,把形态建成推进到细胞和分子水平。
另外,组织培养技术的发展大大推动了植物生长发育的研究。
1904年在含有无机盐溶液及有机成分的培养基上成功地培养了胡萝卜和辣根菜的离体胚。
1934年怀特(White)用番茄根建立了第一个无性繁殖系,并发现在迅速生长的根尖病毒浓度很低,这为培养无毒植株奠定了基础。
Skoog和崔澂发现腺嘌呤或腺苷可以解除培养基中生长素对芽形成的抑制作用,确定了腺嘌呤/生长素的比例是控制芽和根形成的主要条件之一。
由于广泛研究和培养技术的不断改进,特别是单细胞培养并诱导分化成植株的成功,以及植物生长物质知识的不断增多,加上农业生产上不断提出新的要求,大大促进了这一领域研究的的广泛开展。
同时,使早期提出的细胞全能性假说,得到了科学的证实。
20世纪初期迄今,由于物理学、化学的发展,以及先进技术的应用,促进了植物生理学突飞猛进向前发展。
生物科学领域中的细胞学、遗传学、分子生物学、生物化学、生物物理学等的发展,使深入研究植物生命活动的机理变得更为有效。
各种问题的研究趋向分子水平深入,又不断综合,提出新概念。
初期的植物生理学着重外界条件的影响和外表的变化。
30至40年代生物化学的发展对植物生理学的冲击很大,促使植物生理研究大大地深入到植物内部的机理。
60年代中期分子生物学成为一个学科,使植物生理学的范畴更广阔,分析也更深入。
反映这种趋势的突出例子是:国际著名的学术期刊《植物生理学年鉴评论》(Annual Review of Plant Physiology),于1985年改名为《植物生理学及植物分子生物学年鉴评论》(Annual Review of Plant Physiology and PlantMolecular Biology),这表明在植物生理学领域的研究中分子生物学的比例加大了。
我国现代植物生理学的发展可追溯到1917年钱崇树在国外发表了一篇有关离子吸收的论文,但他后来没再从事植物生理学工作。
20年代末,罗宗洛、李继侗和汤佩松先后回国开展植物生理学方面的研究,为中国植物生理学的发展奠定了基础。
但在旧中国,科学工作者的研究未被重视,发展缓慢。
解放后,综合性大学生物系和农、林、师范院校普遍开设植物生理学课程,中国科学院、农科院以及许多农、林业研究部门也设立专门研究机构,培养了一大批从事植物生理学方面的人才,做了大量研究工作,发表的论文有的已接近国际先进水平,甚至居于领先地位。
随着我国工业、农业、林业和园艺生产的发展,植物生理学必将得到蓬勃的发展,为实现我国四个现代化作出贡献。
三、植物生理学的发展前景植物生理学的产生和发展,决定于生产的发展和其它学科的发展,而植物生理学的发展又反过来促进农、林业等生产的发展。
展望前景,一方面是植物生理学本身的发展,另一方面是植物生理学的应用。
溶液培养法(无土栽培法)在阐明植物对养分需要上起过决定性作用,并奠定了施用化肥的理论基础。
近几年来溶液培养法已发展成为一种实用的农业生产手段。
如前苏联在西伯利亚利用无土栽培法生产饲料,英国则用此法生产花卉,在阿拉伯国家的沙漠地带则用此法在室内种植蔬菜和谷物。
我国许多地方近年来也应用无土栽培法生产蔬菜和花卉。
植物激素的发现促进了植物生长调节剂的研制和生产,并且广泛应用于农业生产,取得了显著的效果。
如杂交水稻制种时保证花期相遇;去雄、疏花、保果、改变株型、改善品质,以及插条生根、打破休眠、延长贮藏期、人工催熟等问题,都可应用植物生长调节剂来解决。
此外,有些植物生长物质(如2,4-D)还用作除草剂,能选择性地除去稻田的杂草,以代替田间中耕除草的繁重劳动,因而开辟了农药界的新领域。
组织培养技术的理论与应用有很大的发展。
由营养芽脱分化为愈伤组织,愈伤组织经过大量繁殖后再分化出许多芽和根,成为许多小苗,这便可大大提高繁殖系数和缩短育苗时间。
还可通过组织培养生产某些特殊物质(次生物质)。
近年来原生质体的培养取得可喜的进展,已经获得很多再生植株,通过原生质体融合和细胞杂交,并结合常规的选育技术,有可能育出新的植物。
另外通过组织培养技术可获得单倍体植株。
对试管苗繁殖中的“玻璃化”、激素后效应、遗传稳定性和复壮等问题,有待进一步研究。
同时还应用组织培养技术诱导体细胞胚的发生,从体胚培养进入人工种子的研制研究。
在离体培养中,可以较好地研究细胞和组织的分化,深入了解植物发育的分子机理。
为避免育种工作的盲目性,必须选择那些具有优良农艺性状和经济性状的亲本,构成最佳的遗传组合,以求产生理想的植物体。
细胞生理学的现代技术能使单个细胞长成植株,且能操纵体细胞内的遗传物质。
无疑,植物生理学与遗传学结合,对人类的未来是非常重要的。
认识了植物对自然界的光温反应规律,不仅可以解释植物生长发育的现象,而且还可以预测引种成功的可能性,用人工方法控制植物的开花季节等。
光敏素的发现开辟了形态建成的分子基础研究,目前还发现另一调控形态建成的色素——隐花色素,两者均为学者们所重视。
存在于叶绿体基质中的核酮糖-1,5-二磷酸羧化酶/加氧酶(Rubisco)是地球上主要的可从空气中取得CO2的酶,目前已被作为遗传工程中的一个重要目标,近年来对该酶的晶体结构、反应机构、调节及分子生物学方面研究进展迅速。
其次,固氮酶的研究亦已进入分子水平。
水分在植物生命活动中扮演着一个非常重要的角色,水分胁迫往往使膜蛋白从膜系统游离下来,导致蛋白质变性聚合。
可是正常性种子的细胞却能耐脱水,而顽拗性种子则否,学者们对这个问题感到困惑,近年来对其研究十分活跃。
种子品质严重影响到作物产量。
当前对种子品质研究的趋向有两个方面:一是从种子萌发潜力(或称生活力)和耐藏性的高低进行研究;另一是寻找种子品质的分子标志。
在多次农业及粮食的国际会议讨论中,曾提出十余项迫切的研究任务,其中多项属于植物生理学的范畴,如光合作用与生产、生物固氮、矿质吸收、对不良环境的抗性、对竞争性生物系统的抗性、植物的生长发育与激素等。
其余几项如遗传工程、细胞工程、菌根和土壤微生物、大气污染、病虫害的控制等也与植物生理学有关,可见植物生理学是农业现代化的主要基础。
光合作用的研究,在解决粮食问题和能源问题两个方面都将发挥巨大作用。
甚至还涉及环境保护方面,因为工业发展,石油、煤等的燃烧量大,空气中CO2显著增加,以致影响气候环境,增加光合作用来吸收CO2是对策之一。
更为突出的是新能源的开发。
地球上捕获、转化太阳能的最主要途径是绿色植物的光合作用,每年能固定3×1021J,10倍于世界上每年的能量消耗。