工程流体力学禹华谦 第四版
- 格式:docx
- 大小:13.64 KB
- 文档页数:4
第九章 堰流与闸孔出流9.1堰流的类型有哪些?它们有哪些特点?答:堰流分作薄壁堰流、实用堰流、宽顶堰流三种类型。
薄壁堰流的特点:当水流趋向堰壁时,堰顶下泄的水流形如舌状,不受堰顶厚度的影响,水舌下缘与堰顶只有线接触,水面呈单一的降落曲线。
实用堰流的特点:由于堰顶加厚,水舌下缘与堰顶呈面接触,水舌受到堰顶的约束和顶托,越过堰顶的水流主要还是在重力作用下自由跌落。
宽顶堰流的特点:堰顶厚度对水流的顶托作用已经非常明显。
进入堰顶的水流,受到堰顶垂直方向的约束,过流断面逐渐减小,流速增大,在进口处形成水面跌落。
此后,由于堰顶对水流的顶托作用,有一段水面与堰顶几乎平行。
9.2堰流计算的基本公式及适用条件?影响流量系数的主要因素有哪些?答:堰流计算的基本公式为23s Hg 2mbQ εσ=,适用于矩形薄壁堰流、实用堰流和宽顶堰流。
影响流量系数m 的主要因素有局部水头损失、堰顶水流垂向收缩的程度、堰顶断面的平均测压管水头与堰上总水头之间的比例关系。
9.3 用矩形薄壁堰测量过堰流量,如何保证较高的测量精度? 答:(1)上游渠宽与堰宽相同,下游水位低于堰顶;(2)堰顶水头不宜过小,一般应使H>2.5m ,否则溢流水舌受表面张力作用,使得出流不稳定;(3)水舌下面的空气应与大气相通,否则溢流水舌把空气带走,压强降低,水舌下面形成局部真空,会导致出流不稳。
9.4 基本的衔接与消能措施有哪几种?各自的特点是什么? 答:基本的衔接与消能措施有底流消能,挑流消能,面流消能。
底流消能:底流消能就是在建筑物下游采取一定的工程措施,控制水跃的发生位置,通过水跃产生的表面旋滚的强烈紊动以达到消能的目的。
挑流消能:在泄水建筑物末端设置挑流坎,因势利导将水股挑射入空气中,使水流扩散并与空气摩擦,消耗部分动能,然后当水股落入水中时,又在下游水垫中冲击、扩散,进一步消耗能量。
面流消能:当下游水深较大而且比较稳定时,可将下泄的高速水流导向下游水流的表层,主流与河床之间被巨大的底部旋滚隔开,可避免高速水流对河床的冲刷。
工程流体力学A
题目
广华大道田湾段棱柱形长直排水渠道设计
1. 设计资料
流量: 33.5m /s =Q
渠长:100m =l
土质:细砂土,免冲最大允许流速max 0.32m/s =v 。
稳定边坡系数: 1.5=m
渠壁糙率:0.025=n
渠底坡度:避免高填深挖,根据地形条件确定,取0.005=i。
渠道安全超高(设计水位至渠顶高差):20cm =f
沿线地面高程、渠顶起点k0+000高程见表1。
图1 渠道断面形式
2.设计要求
●简答:何谓明渠水力最优断面?
●按水力最优概念进行长直棱柱形渠道断面尺寸设计(附计算书)
●完成表2中沿线各高程计算
●判断渠道水流流态(急流或缓流)
●判断渠道底坡性质(急坡或缓坡)
●检算渠道是否需要加固?
●检算渠道可安全(保证不漫顶)通过的最大流量?
3.参考书
●禹华谦主编,工程流体力学(水力学),第4版,西南交通大学出版社,2018
年8月。
●禹华谦、罗忠贤,流体力学简明教程(第2版),天津大学出版社,2019
年8月。
●禹华谦主编,工程流体力学,第3版,高等教育出版社,2017年2月。
4.学生作业说明:必须按设计要求手写完成,否则以零分记载成绩。
本答案要求手写,手写版的答案在下方答题页上,文档最下方有注意事项,务必读一读!
简答:何谓明渠水力最优断面?
最优断面是指面积一定而过水能力(流量Q)最大的明槽(渠)断面。
或可定义为通过流量一定而湿周最小的明槽(渠)断面。
2 — 1 已知某种物质的密度32.94/g cm ρ=,试求它的相对密度d 。
2—2已知某厂1号炉水平烟道中烟气组成的百分数为213.5%co α=,20.3%so α= ,20.3%o α=,20.3%N α=20.3%H O α=,试求烟气的密度。
[31.341/kg cm ]2—4 当压强增量为5000Pa 时,某种液体的密度增长0.002%。
试求该液体的体积模量。
[52.510Pa ⨯] 2—6 充满石油的油槽内的压强为54.910Pa ⨯,今由槽中排出石油40Kg ,使槽内压强降到49.806710Pa ⨯,设石油的体积模量K=91.3210Pa ⨯。
试求油槽的体积。
2—9 动力黏度为42.910Pa S -⨯∙、密度为678Kg/3m 的油,其运动黏度等于多少?[724.2810/m s -⨯] 2—12 一平板距离另一固定平板0.5mm ,两板间充满流体,上板在每平方米有2N 的力作用下以0.25m/s 的速度移动,求该流体的黏度。
[0.004Pa S ∙] 2—13 已知动力滑动轴承的轴直径d=0.2m ,转速n=2830r/min ,轴承内径D=0.2016m ,宽度l=0.3m ,润滑油的动力黏度0.245Pa S μ=∙,试求克服摩擦阻力所消耗的功率。
[50.7W]3—1 如图所示,烟囱高H=20m ,烟气温度s t =300℃,压强s p ,试确定引起火炉中烟气自动流通的压强差。
烟气的密度可按下式计算:s p =(1.25-0.0027s t 3/kg cm ,空气的密度s p =1.293/kg cm 。
[1.667Pa]3—6 如图所示,两根盛有水银的U 形测压管与盛有水的密封容器连接。
若上面测压管的水银页面距自由液面的深度1h =60cm ,水银柱高2h =25cm ,下面测压管的水银柱高3h =30cm ,Hg =136003/kg cm ,试求下面测压管水银面距自由液面的深度4h 。
7.1 水以来流速度v 0=0.2m/s 顺流绕过一块平板。
已知水的运动粘度s /m 10145.126-⨯=ν,试求距平板前缘5m 处的边界层厚度。
【解】计算x=5m 处的雷诺数50x 107.8/x v Re ⨯=ν=该处的边界层属湍流m 12.0)107.8(537.0Re x 37.051551x=⨯==δ7.2 流体以速度v 0=0.8m/s 绕一块长 L=2m 的平板流动,如果流体分别是水(s /m 10261-=ν)和油(s /m 108252-⨯=ν),试求平板末端的边界层厚度。
【解】先判断边界层属层流还是湍流水:610L 106.1/L v Re ⨯=ν= 油:520L 102/L v Re ⨯=ν=油边界层属层流m 077.08.02108477.5v L 477.5502=⨯⨯=ν=δ-水边界层属湍流m 042.0)106.1(237.0Re L 37.051651L=⨯==δ7.3 空气以速度v 0=30m/s 吹向一块平板,空气的运动粘度s /m 101526-⨯=ν,边界层的转捩临界雷诺数6xcr 10Re =,试求距离平板前缘x=0.4m 及x=1.2m 的边界层厚度。
空气密度3m /kg 2.1=ρ。
【解】(1)x=0.4m ,xcr 60x Re 108.0/x v Re <⨯=ν=,为层流边界层m 0024.0304.01015477.5v x 477.560=⨯⨯=ν=δ- (2)x=1.2m ,xcr 60x Re 104.2/x v Re >⨯=ν=,为湍流边界层m 023.0)104.2(2.137.0Re x 37.051651x=⨯==δ7.4 边长为1m 的正方形平板放在速度v 0=1m/s 的水流中,求边界层的最大厚度及双面摩擦阻力,分别按全板都是层流或者都是湍流两种情况进行计算,水的运动粘度s /m 1026-=ν。
【解】b=1m, L=1m, 60L 10/L v Re =ν=层流: m 005.01110477.5v L 477.560=⨯=ν=δ- 3Lf 1046.1Re 46.1C -⨯==N 46.1bL 2C v 21F f 20D =ρ=湍流: m 023.0)101(137.0Re L 37.051651L =⨯==δ 32.0L f 105.4)(Re 072.0C -⨯==N 5.4bL 2C v 21F f 20D =ρ=7.5 水渠底面是一块长L=30m ,宽b=3m 的平板,水流速度v 0=6m/s ,水的运动粘度s /m 1026-=ν,试求:(1)平板前面x=3m 一段板面的摩擦阻力;(2)长L=30m 的板面的摩擦阻力【解】设边界层转捩临界雷诺数5xcr 105Re ⨯=,因为5cr 0105/x v ⨯=ν,所以 m 083.0x cr =(1) x=3m ,平板边界层为混合边界层60x 1018/x v Re ⨯=ν=0025.01805)002.00053.0(0026.0Re Re )Re 46.1Re 074.0(Re 074.0C xxcr xcr 5xcr5xfm =--=--=N 406bL v 21C F 20fmD =ρ= (2) L=30m ,平板边界层为混合边界层60L 10180/L v Re ⨯=ν=00159.018005)002.00053.0(0016.0Re Re )Re 46.1Re 074.0(Re 074.0C Lxcr xcr 5xcr5Lfm =--=--=N 2577bL v 21C F 20fm D =ρ=7.6 一块面积为m 8m 2⨯的矩形平板放在速度s /m 3v 0=的水流中,水的运动粘度s /m 1026-=ν,平板放置的方法有两种:以长边顺着流速方向,摩擦阻力为F 1;以短边顺着流速方向,摩擦阻力为F 2。
第一章1.1 试谈牛顿内摩擦定律?产生摩擦力的根本原因是什么?(参考分数:8分)答:流体内只要存在相对运动,流体内就会产生内摩擦力来抵抗此相对运动,牛顿经过大量牛顿平板试验得出单位面积上的内摩擦力:τ=F/A=μ·du/dy 即为牛顿内摩擦定律。
产生摩擦力的根本原因是流体内存在着相对运动。
1.2 液体和气体的粘性随温度的升高或降低发生变化,变化趋势是否相同?为什么?(参考分数:8分)答:不相同,液体的粘度随温度升高而减小,气体的粘度却随温度升高而增大。
其原因是,液体分子间距小,内聚力强,粘性作用主要来源于分子内聚力,当液体温度升高时,其分子间距加大,内聚力减小,粘度随温度上升而减小;而气体的内聚力极小,可以忽略,其粘性作用可以说完全是分子热运动中动量交换的结果,当气体温度升高时,热运动加剧,其粘度随温度升高而增加。
1.3 何谓流体的连续介质模型?为了研究流体机械运动规律,说明引入连续介质模型的必要性。
答:流体的连续介质模型:假定流体是由连续分布的流体质点所组成,即认为流体所占据的空间完全由没有任何空隙的流体质点所充满,流体质点在时间过程中作连续运动。
根据流体的连续介质假设,表征流体性质和运动特性的物理量和力学量一般为空间坐标和时间变量的连续函数,这样就可以用数学分析方法来研究流体运动,解决流体力学问题.1。
4 什么是表面张力?试对表面张力现象作物理解释.答:液体的表面张力是液体自由表面上相邻部分之间的拉力,其方向与液面相切,并与两相邻部分的分界线垂直。
表面张力是分子引力在液体表面上的一种宏观表现。
例如,在液体和气体相接触的自由表面上,液面上的分子受到液体内部分子的吸引力与其上部气体分子的吸引力不平衡,其合力的方向与液面垂直并指向液体内部。
在合力的作用下,表层中的液体分子都力图向液体内部收缩,使液体具有尽量缩小其表面的趋势,这样沿液体的表面便产生了拉力,即表面张力.1。
5 动力粘度μ=0.172Pa·s 的润滑油充满在两个同轴圆柱体的间隙中,外筒固定,内径D =12cm ,间隙h =0.02cm ,试求:(1)当内筒以速度U =1m/s 沿轴线方向运动时,内筒表面的切应力τ1,如图1-3(a );(2)当内筒以转速n =180r/min 旋转时,内筒表面的切应力τ2,如图1—3(b )。
第四章 管路,孔口和管嘴的水力计算4-1(自编)根据造成液体能量损失的流道几何边界的差异,可以将液体机械能的损失分为哪两大类? 各自的定义是什麽? 发生在哪里?答:可分为沿程损失和局部损失两大类。
沿程损失指均匀分布在流程中单位重量液体的机械能损失,一般发生在工程中常用的等截面管道和渠道中。
局部损失指单位重量液体在流道几何形状发生急剧变化的局部区域中损失的机械能,如在管道的入口、弯头和装阀门处。
4-2粘性流体的两种流动状态是什么?其各自的定义是什么?答:粘性流体的流动分为层流及紊乱两种状态。
层流状态指的是粘性流体的所有流体质点处于作定向有规则的运动状态,紊流状态指的是粘性流体的所有流体质点处于作不定向无规则的混杂的运动状态。
4-3流态的判断标准是什么?解:流态的判断标准是雷诺数Re 。
由于实际有扰动存在,故一般以下临界雷诺数Re c 作为层紊流流态的判断标准,即Re<2320, 管中流态为层流,Re>2320,管中流态为紊流.。
4-4某管道直径d=50mm ,通过温度为10℃的中等燃料油,其运动粘度s m 261006.5-⨯=ν。
试求:保持层流状态的最大流量Q 。
解:由Re =νdv 有v =dνRe =(2320×5.06×610-)/0.05=0.235m/s ,故有Q=A v=π×0.05×0.05×0.235/4=s m 34106.4-⨯。
4-5(自编) 一等径圆管内径d=100mm ,流通运动粘度ν=1.306×10-6m 2/s 的水,求管中保持层流流态的最大流量Q 。
解:由νvd=Re ,有 s m d v /03.01.0232010306.1Re6=⨯⨯==-ν此即圆管中能保持层流状态的最大平均速度,对应的最大流量Q 为s m vA Q /1036.24/1.003.0342-⨯===π4-6利用毛细管测定油液粘度,已知毛细管直径d=4.0mm ,长度L=0.5m ,流量Q=1.0cm 3/s 时,测压管落差h=15cm 。
第一章 绪论1-3.有一矩形断面的宽渠道,其水流速度分布为μρ/)5.0(002.02y hy g u -=,式中ρ、μ分别为水的密度和动力粘度,h 为水深。
试求m h 5.0=时渠底(y =0)处的切应力。
[解] μρ/)(002.0y h g dydu-=)(002.0y h g dydu-==∴ρμτ 当h =0.5m ,y =0时)05.0(807.91000002.0-⨯⨯=τPa 807.9=1-4.一底面积为45×50cm 2,高为1cm 的木块,质量为5kg ,沿涂有润滑油的斜面向下作等速运动,木块运动速度u=1m/s ,油层厚1cm ,斜坡角22.620 (见图示),求油的粘度。
[解] 木块重量沿斜坡分力F 与切力T 平衡时,等速下滑yu AT mg d d sin μθ== 001.0145.04.062.22sin 8.95sin ⨯⨯⨯⨯==δθμu A mg s Pa 1047.0⋅=μ1-5.已知液体中流速沿y 方向分布如图示三种情况,试根据牛顿内摩擦定律yud d μτ=,定性绘出切应力沿y 方向的分布图。
[解]第二章 流体静力学2-1.一密闭盛水容器如图所示,U 形测压计液面高于容器内液面h=1.5m ,求容器液面的相对压强。
[解] gh p p a ρ+=0kPa gh p p p a e 7.145.1807.910000=⨯⨯==-=∴ρ2-2.密闭水箱,压力表测得压强为4900Pa 。
压力表中心比A 点高0.5m ,A 点在液面下1.5m 。
求液面的绝对压强和相对压强。
[解] g p p A ρ5.0+=表Pa g p g p p A 49008.9100049005.10-=⨯-=-=-=ρρ表 Pa p p p a 9310098000490000=+-=+=' 2-3.多管水银测压计用来测水箱中的表面压强。
图中高程的单位为m 。
试求水面的绝对压强p abs 。
工程流体力学第四版《我眼中的〈工程流体力学第四版〉》嗨,你知道吗?有这么一本书,就像一个神秘的宝藏,它的名字叫《工程流体力学第四版》。
我呀,就像一个小探险家,在这本书的世界里开启了一段超级有趣的旅程。
我第一次看到这本书的时候,心里就想:“这书看起来好厉害的样子,里面到底都藏着啥呀?”它的封面就像一个严肃的老爷爷,看起来很有学问。
当我翻开它的时候,就像打开了一扇通往神奇世界的大门。
书里那些关于流体力学的知识,刚开始就像一团乱麻。
什么流速啦,压力啦,感觉就像是一群调皮的小精灵在我脑袋里跳来跳去,让我晕头转向。
我记得有一次,我和我的小伙伴小明在讨论书里的一个知识点。
小明皱着眉头说:“这个伯努利方程啊,就像是一个迷宫,我怎么走都走不出去。
”我也深有同感,我说:“是啊,就像有好多条小路,都不知道该选哪条才对。
”可是呢,我们可没有被它吓倒。
我们就像两个勇敢的小战士,决定一起去攻克这个难关。
我们找来了好多小纸条,把那些重要的公式和概念都写在上面,然后贴在我们的书桌上。
每天看着这些小纸条,就像那些知识在对着我们喊:“来呀,来把我搞懂呀。
”慢慢地,我们开始有点明白了。
原来那些流速和压力之间是有着奇妙的关系的,就像在一个热闹的舞会上,舞者们(流体分子)的速度和他们之间的作用力(压力)是相互影响的。
书里有好多好多的例子也特别有趣。
比如说,讲飞机为什么能飞起来的时候,就像是在听一个超级酷的故事。
飞机的机翼就像一个神奇的魔法棒,当空气流过机翼的时候,就像被施了魔法一样,上面的空气流速快,下面的流速慢,于是就产生了向上的升力。
我当时就想:“哇,这也太神奇了吧,就像魔法真的存在一样。
”我跑去跟爸爸说这个事儿,爸爸笑着说:“你看,知识就是这么有趣,能解释好多我们觉得不可思议的事情呢。
”再说说那些流体在管道里流动的情况吧。
这就像是一群小蚂蚁在狭窄的地道里爬行。
如果管道粗一点呢,小蚂蚁们(流体分子)就走得比较顺畅,就像我们在宽敞的马路上走路一样。
工程流体力学禹华谦第四版
引言
工程流体力学是研究流体在工程中的运动和相互作用的学科。
它在工程领域中具有广泛的应用,例如航空航天工程、建筑工程、能源工程等。
禹华谦教授的《工程流体力学》是工程流体力学领域的经典教材之一。
本文将对禹华谦教授所著的《工程流体力学》第四版进行介绍和评价。
内容概述
《工程流体力学禹华谦第四版》是一本全面系统地介绍了工程流体力学理论和应用的教材。
全书共分为十三章,包括流体力学基础、不可压缩流体力学基本理论、层流和湍流、动量守恒方程、控制体积法基本方程、动量方程高级应用、能量守恒方程、流体阻力和阻力系数、边界层流动、流体的相似性与模型试验、柱状体运动、水浪和气浪、小波流的振动与扰动。
每章都有清晰的目录和详细的内容,涵盖了工程流体力学的基础知识和经典理论,同时也介绍了一些高级应用和实际问题的解决方法。
通过理论与实践相结合的方式,读者能够更好地理解和应用工程流体力学的知识。
特点
《工程流体力学禹华谦第四版》具有以下几个特点:
1.系统全面:本书内容覆盖了工程流体力学的各个方
面,从基础理论到高级应用,涵盖了广泛的实际工程问题。
2.逻辑清晰:每章内容都按照一定的逻辑顺序组织,
层次清晰,易于理解和学习。
作者通过详细的讲解和示例,帮助读者更好地掌握各个概念和理论。
3.理论实践结合:本书理论与实践相结合,既介绍了
基础理论,又通过实际问题进行了具体的应用。
这样使得
读者能够更好地将理论知识应用于实际工程问题的解决中。
4.兼顾深度和广度:本书不仅深入探讨了工程流体力
学的基础理论和经典问题,同时也介绍了一些前沿和热点
问题,如边界层流动、柱状体运动、水浪和气浪等,使读
者对工程流体力学的各个方面都有所了解。
评价
《工程流体力学禹华谦第四版》是一本非常优秀的工程流
体力学教材,具有以下几个优点:
1.内容全面:作者通过系统的组织方式,将工程流体力学的各个方面内容完整地呈现给读者,让读者对工程流体力学有一个全面的了解。
2.讲解详细:作者对每个概念和理论都进行了详细的讲解,配以图表和示例,使得读者更容易理解和掌握。
3.应用广泛:本书不仅介绍了工程流体力学的基本理论,还通过实际问题的解决过程,具体地说明如何将理论应用于工程实践中。
4.更新及时:本版教材对一些前沿和热点问题进行了介绍,使得读者能够了解到最新的研究进展。
然而,本书也存在一些不足之处:
1.篇幅较长:由于本书内容较为全面,故篇幅较长,读者需要有一定的耐心和时间去学习。
2.难度适中:本书适用于工程流体力学专业的学生和相关领域的研究人员,但对于初学者来说,可能有一定的难度。
结论
《工程流体力学禹华谦第四版》是一本系统全面、逻辑清晰且具有广泛应用价值的工程流体力学教材。
它涵盖了工程流体力学的基础理论和高级应用,同时具备理论与实践相结合的特点。
通过学习本书,读者能够全面了解工程流体力学的理论与应用,并能够将其运用于实际工程问题的解决中。
尽管本书略显冗长,但对于专业学生和研究人员来说,它是一本非常有价值的参考书。