高三物理一轮复习教学案25动量守恒定律
- 格式:doc
- 大小:55.50 KB
- 文档页数:4
动量守恒定律高三物理教案一、教学目标1.掌握动量守恒定律的概念、定义和表达式;2.熟悉一维碰撞和弹性碰撞的概念及其特点;3.学会运用动量守恒定律解决实际问题;4.培养学生的实验操作能力和科学研究精神。
二、教学重点1.动量守恒定律的概念和表达式;2.一维碰撞和弹性碰撞的特点;3.运用动量守恒定律解决实际问题。
三、教学难点1.针对实际问题的综合应用能力;2.实验操作和数据处理能力。
四、教学内容和方法教学内容:1.动量守恒定律的概念、定义和表达式;2.一维碰撞和弹性碰撞的概念及其特点;3.动量守恒定律的实践应用。
教学方法:1.讲授法:采用讲授、演示、实验等多种方法进行教学;2.组织实验:让学生亲自操作,培养其实验操作和数据处理能力;3.案例分析:通过实例让学生学会应用动量守恒定律解决实际问题。
五、教学过程第一节:动量守恒定律的概念和表达式1. 授课1.激发学生学习兴趣,引导学生思考;2.介绍动量守恒定律的概念和表达式;3.引导学生思考为什么动量守恒定律成立;4.培养学生运用公式的能力。
2. 实验1.布置实验任务:利用弹簧测量物体碰撞前后的动量,并验证动量守恒定律;2.学生操作,进行实验;3.收集实验结果和数据;4.分析实验数据,让学生验证动量守恒定律。
第二节:一维碰撞和弹性碰撞的特点1. 授课1.引入一维碰撞和弹性碰撞的概念;2.观察实验演示,并分析实验数据;3.分析一维碰撞和弹性碰撞的特点;4.举例说明一维碰撞和弹性碰撞。
2. 案例分析基于实际问题,让学生分析一维碰撞和弹性碰撞的应用。
第三节:动量守恒定律的实践应用1. 授课1.介绍动量守恒定律在实际问题中的应用;2.引导学生思考如何运用动量守恒定律解决实际问题;3.引导学生学会进行信息搜索和材料收集。
2. 独立完成作业让学生自主选定一个实际问题,分析问题所在,并利用所学知识进行分析和解决。
第四节:总结1.总结动量守恒定律的概念、定义和表达式;2.总结一维碰撞和弹性碰撞的特点;3.总结动量守恒定律在实际问题中的应用;4.提高学生思维能力和实践能力。
高三物理一轮复习全套教案完整版一、教学内容本节课为高三物理一轮复习,教材选用人民教育出版社的《高中物理》。
复习内容为第五章“动量守恒定律”,具体包括:5.1动量守恒定律,5.2动量守恒定律的应用。
二、教学目标1. 让学生掌握动量守恒定律的定义、表达式及适用条件。
2. 培养学生运用动量守恒定律解决实际问题的能力。
3. 通过对动量守恒定律的复习,提高学生对物理概念的理解和运用能力。
三、教学难点与重点重点:动量守恒定律的定义、表达式及适用条件。
难点:动量守恒定律在实际问题中的应用。
四、教具与学具准备教具:多媒体课件、黑板、粉笔。
学具:教材、笔记本、练习册。
五、教学过程1. 实践情景引入:讲述一个关于动量守恒的日常生活实例,如碰撞现象,引导学生关注动量守恒在实际生活中的应用。
2. 知识回顾:复习动量的定义、表达式,回顾动量守恒定律的发现过程,引导学生理解动量守恒定律的意义。
3. 教材内容梳理:讲解动量守恒定律的定义、表达式及适用条件,通过示例让学生了解动量守恒定律在实际问题中的应用。
4. 例题讲解:选取典型例题,讲解动量守恒定律的运用方法,引导学生学会分析问题、解决问题。
5. 随堂练习:布置随堂练习题,让学生运用动量守恒定律解决问题,及时巩固所学知识。
6. 板书设计:板书动量守恒定律的定义、表达式及适用条件,突出重点,便于学生复习。
7. 作业设计:布置作业题,让学生运用动量守恒定律解决实际问题,提高学生的应用能力。
作业题目:1. 一辆质量为m的小车以速度v1与质量为M的大车以速度v2相碰撞,求碰撞后两车的速度。
答案:2. 课后反思及拓展延伸:六、教学内容拓展动量守恒定律在现代物理学中的应用,如粒子物理学、宇宙学等。
引导学生关注动量守恒定律在其他领域的应用,提高学生的学科素养。
七、课后作业布置1. 复习动量守恒定律的定义、表达式及适用条件。
2. 完成课后练习题,运用动量守恒定律解决问题。
3. 查阅相关资料,了解动量守恒定律在实际应用中的更多例子。
动量守恒定律复习课教学设计改错题。
例1. (考察知识点: )[多选](2020·天津武清区联考)一质量为m 的物体做平抛运动,在两个不同时刻的速度大小分别为v 1、v 2,时间间隔为Δt ,不计空气阻力,重力加速度为g ,则关于Δt 时间内发生的变化,以下说法正确的是( )A .速度变化大小为g Δt ,方向竖直向下B .动量变化大小为Δp =m (v 2-v 1),方向竖直向下C .动量变化大小为Δp =mg Δt ,方向竖直向下D .动能变化为ΔE k =12m (v 22-v 12) 例2. (考察知识点: )(2020·梧州模拟)如图所示,物体由静止做直线运动,0~4 s 内其合外力随时间变化的关系为某一正弦函数,下列表述不正确的是( ) A .0~2 s 内合外力的冲量一直增大B .0~4 s 内合外力的冲量为零C .2 s 末物体的动量方向发生改变D .0~4 s 内物体的动量方向一直不变通过此题,让学生明确F-t 图像表示的物理含义,以提问的形式,引导学生解决错误较多的D 选项。
学生通过自愿的方式,主动讲解题目。
其他学生认真听讲,改正错题,整理知识2.组织学生展示动量定理内容 小组派代表上前展示动量定理部分思维导图,并对其中整理的知识进行梳理、讲解识点,并更改错题。
例3. (考察知识点: )高空作业须系安全带,如果质量为m 的高空作业人员不慎跌落,从开始跌落到安全带对人刚产生作用力前人下落的距离为h (可视为自由落体运动),此后经历时间t 安全带达到最大伸长,若在此过程中该作用力始终竖直向上,则该段时间安全带对人的平均作用力大小为( )A.m 2gh t +mgB.m 2gh t-mg C.m gh t +mg D.m gh t-mg 例4. (考察知识点: )有一种灌浆机可以持续将某种涂料以速度v 喷在墙壁上,其喷射出的涂料产生的压强为p ,若涂料打在墙壁上后便完全附着在墙壁上,涂料的密度为ρ。
实验八 验证动量守恒定律目标要求 1.理解动量守恒定律成立的条件,会利用不同案例验证动量守恒定律.2.知道在不同实验案例中要测量的物理量,会进行数据处理及误差分析.实验技能储备一、实验原理在一维碰撞中,测出相碰的两物体的质量m 1、m 2和碰撞前、后物体的速度v 1、v 2、v 1′、v 2′,算出碰撞前的动量p =m 1v 1+m 2v 2及碰撞后的动量p ′=m 1v 1′+m 2v 2′,看碰撞前、后动量是否相等.二、实验方案及实验过程案例一:研究气垫导轨上滑块碰撞时的动量守恒 1.实验器材气垫导轨、数字计时器、天平、滑块(两个)、重物、弹簧片、细绳、弹性碰撞架、胶布、撞针、橡皮泥等. 2.实验过程(1)测质量:用天平测出滑块的质量. (2)安装:正确安装好气垫导轨,如图所示.(3)实验:接通电源,利用配套的光电计时装置测出两滑块各种情况下碰撞前、后的速度. (4)改变条件,重复实验: ①改变滑块的质量;②改变滑块的初速度大小和方向. (5)验证:一维碰撞中的动量守恒. 3.数据处理(1)滑块速度的测量:v =ΔsΔt ,式中Δs 为滑块上挡光片的宽度(仪器说明书上给出,也可直接测量),Δt 为数字计时器显示的滑块(挡光片)经过光电门的时间. (2)验证的表达式:m 1v 1+m 2v 2=m 1v 1′+m 2v 2′. 案例二:研究斜槽末端小球碰撞时的动量守恒 1.实验器材斜槽、小球(两个)、天平、复写纸、白纸、圆规、铅垂线等.2.实验过程(1)测质量:用天平测出两小球的质量,并选定质量大的小球为入射小球.(2)安装:按照如图甲所示安装实验装置.调整固定斜槽使斜槽底端水平.(3)铺纸:白纸在下,复写纸在上且在适当位置铺放好.记下铅垂线所指的位置O.(4)放球找点:不放被撞小球,每次让入射小球从斜槽上某固定高度处自由滚下,重复10次.用圆规画尽量小的圆把所有的小球落点圈在里面.圆心P就是小球落点的平均位置.(5)碰撞找点:把被撞小球放在斜槽末端,每次让入射小球从斜槽同一高度(同步骤(4)中的高度)自由滚下,使它们发生碰撞,重复实验10次.用步骤(4)的方法,标出碰后入射小球落点的平均位置M和被撞小球落点的平均位置N,如图乙所示.(6)验证:连接ON,测量线段OP、OM、ON的长度.将测量数据填入表中,最后代入m1·OP =m1·OM+m2·ON,看在误差允许的范围内是否成立.(7)整理:将实验器材放回原处.3.数据处理验证的表达式:m1·OP=m1·OM+m2·ON.三、注意事项1.前提条件:碰撞的两物体应保证“水平”和“正碰”.2.案例提醒(1)若利用气垫导轨进行验证,调整气垫导轨时,应确保导轨水平.(2)若利用平抛运动规律进行验证:①斜槽末端的切线必须水平;②入射小球每次都必须从斜槽同一高度由静止释放;③选质量较大的小球作为入射小球;④实验过程中实验桌、斜槽、记录的白纸的位置要始终保持不变.考点一 教材原型实验考向1 研究气垫导轨上滑块碰撞时的动量守恒例1 (2022·全国甲卷·23)利用图示的实验装置对碰撞过程进行研究.让质量为m 1的滑块A 与质量为m 2的静止滑块B 在水平气垫导轨上发生碰撞,碰撞时间极短,比较碰撞后A 和B 的速度大小v 1和v 2,进而分析碰撞过程是否为弹性碰撞.完成下列填空:(1)调节导轨水平;(2)测得两滑块的质量分别为0.510 kg 和0.304 kg.要使碰撞后两滑块运动方向相反,应选取质量为________ kg 的滑块作为A ;(3)调节B 的位置,使得A 与B 接触时,A 的左端到左边挡板的距离s 1与B 的右端到右边挡板的距离s 2相等;(4)使A 以一定的初速度沿气垫导轨运动,并与B 碰撞,分别用传感器记录A 和B 从碰撞时刻开始到各自撞到挡板所用的时间t 1和t 2;(5)将B 放回到碰撞前的位置,改变A 的初速度大小,重复步骤(4).多次测量的结果如下表所示;1 2 3 4 5 t 1/s 0.49 0.67 1.01 1.22 1.39 t 2/s 0.15 0.21 0.33 0.40 0.46 k =v 1v 20.31k 20.330.330.33(6)表中的k 2=________(保留2位有效数字); (7)v 1v 2的平均值为______(保留2位有效数字); (8)理论研究表明,对本实验的碰撞过程,是否为弹性碰撞可由v 1v 2判断.若两滑块的碰撞为弹性碰撞,则v 1v 2的理论表达式为__________________(用m 1和m 2表示),本实验中其值为________________(保留2位有效数字),若该值与(7)中结果间的差别在允许范围内,则可认为滑块A 与滑块B 在导轨上的碰撞为弹性碰撞. 答案 (2)0.304 (6)0.31 (7)0.32(8)v 1v 2=m 2-m 12m 10.34 解析 (2)用质量较小的滑块碰撞质量较大的滑块,碰后运动方向相反,故选质量为0.304 kg 的滑块作为A .(6)由于两段位移大小相等,根据表中的数据可得k 2=v 1v 2=t 2t 1=0.210.67=0.31.(7)v 1v 2的平均值为k =0.31+0.31+0.33+0.33+0.335=0.32. (8)弹性碰撞时满足动量守恒和机械能守恒,可得m 1v 0=-m 1v 1+m 2v 2 12m 1v 02=12m 1v 12+12m 2v 22 联立解得v 1v 2=m 2-m 12m 1,代入数据可得v 1v 2=0.34.考向2 研究斜槽末端小球碰撞时的动量守恒例2 (2023·福建省莆田二中模拟)在验证动量守恒定律的实验中,请回答下列问题:(1)实验记录如图乙所示,为测定A 球不碰B 时做平抛运动的落点的平均位置,把刻度尺的零刻度线跟记录纸上的O 点对齐,图乙给出了小球A 落点附近的情况,可得A 的平均落点到O 点的距离应为________cm.(2)小球A 下滑过程中与斜槽轨道间存在摩擦力,这对实验结果________产生误差(填“会”或“不会”).(3)实验装置如图甲所示,A 球为入射小球,B 球为被碰小球,以下有关实验过程中必须满足的条件正确的是________.A .入射小球的质量m A 可以小于被碰小球的质量mB B .实验时需要测量斜槽末端到水平地面的高度C .入射小球每次不必从斜槽上的同一位置由静止释放D .斜槽末端的切线必须水平,小球放在斜槽末端处,且应恰好静止(4)如果碰撞过程中系统机械能也守恒,根据图中各点间的距离,下列式子成立的有________. A .m A ∶m B =ON ∶MPB .m A ∶m B =OP ∶MPC .m A ∶m B =OP ∶(MN -OM )D .m A ∶m B =ON ∶(MN -OM ) 答案 (1)65.50 (2)不会 (3)D (4)AD解析 (1)小球A 落点,应该取多次落点的平均落点,即用尽量小的圆把这些落点圈起来的圆心的位置,由题图乙可得距离应为65.50 cm.(2)在题图甲装置中,只要保证小球A 到达底端的速度相同即可,轨道有无摩擦对实验结果不会产生误差.(3)入射小球的质量m A 不可以小于被碰小球的质量m B ,否则A 球碰后反弹,故A 错误;在实验中不需要小球的下落高度,只要能保证高度相同,即可知道两小球下落时间相同,故B 错误;入射小球每次必从斜槽上的同一位置由静止释放,才能保证每次碰前的速度均相同,故C 错误;斜槽末端的切线必须水平,小球放在斜槽末端处,应能保持静止,故D 正确. (4)两球碰撞后,小球做平抛运动,由于小球抛出点的高度相等,它们在空中做平抛运动的时间t 相等,小球做平抛运动的初速度v A =OP t ,v A ′=OM t ,v B ′=ONt由动量守恒定律得m A v A =m A v A ′+m B v B ′则m A OP t =m A OM t +m B ON t ,m A m B =ON OP -OM =ON MP ,故A 正确,B 错误;由系统机械能守恒得12m A v A 2=12m A v A ′2+12m B v B ′2,代入速度表达式整理得m A (OP 2-OM 2)=m B ON 2,又由m Am B =ONOP -OM,联立解得OP +OM =ON ,故OM =PN ,由几何关系得MN -OM =MN -PN =MP ,则m A ∶m B =ON ∶MP =ON ∶(MN -OM ),故D 正确,C 错误.考点二 探索创新实验考向1 实验装置的创新例3 如图为验证动量守恒定律的实验装置,实验中选取两个半径相同、质量不等的小球,按下面步骤进行实验:①用天平测出两个小球的质量分别为m 1和m 2;②安装实验装置,将斜槽AB 固定在桌边,使槽的末端切线水平,再将一斜面BC 连接在斜槽末端;③先不放小球m 2,让小球m 1从斜槽顶端A 处由静止释放,标记小球在斜面上的落点位置P ; ④将小球m 2放在斜槽末端B 处,仍让小球m 1从斜槽顶端A 处由静止释放,两球发生碰撞,分别标记小球m 1、m 2在斜面上的落点位置;⑤用毫米刻度尺测出各落点位置到斜槽末端B 的距离.图中M 、P 、N 三点是实验过程中记下的小球在斜面上的三个落点位置,从M 、P 、N 到B 的距离分别为s M 、s P 、s N .依据上述实验步骤,请回答下面问题:(1)两小球的质量m 1、m 2应满足m 1________m 2(填“>”“=”或“<”);(2)小球m 1与m 2发生碰撞后,m 1的落点是图中________点,m 2的落点是图中________点; (3)用实验中测得的数据来表示,只要满足关系式________________,就能说明两球碰撞前后动量是守恒的;(4)若要判断两小球的碰撞是否为弹性碰撞,用实验中测得的数据来表示,只需比较________与________是否相等即可. 答案 (1)> (2)M N (3)m 1s P =m 1s M +m 2s N (4)m 1s P m 1s M +m 2s N解析 (1)为了防止入射小球碰撞后反弹,一定要保证入射小球的质量大于被碰小球的质量,故m 1>m 2;(2)碰撞前,小球m 1落在题图中的P 点,由于m 1>m 2,当小球m 1与m 2发生碰撞后,m 1的落点是题图中M 点,m 2的落点是题图中N 点;(3)设碰前小球m 1的水平初速度为v 1,当小球m 1与m 2发生碰撞后,小球m 1落到M 点,设其水平速度为v 1′,m 2落到N 点,设其水平速度为v 2′,斜面BC 与水平面的倾角为α,由平抛运动规律得s M sin α=12gt 2,s M cos α=v 1′t ,联立解得v 1′=gs M cos 2 α2sin α,同理可得v 2′=gs N cos 2α2sin α,v 1=gs P cos 2 α2sin α,因此只要满足m 1v 1=m 1v 1′+m 2v 2′,即m 1s P =m 1s M +m2s N.(4)如果小球的碰撞为弹性碰撞,则满足12m1v12=12m1v1′2+12m2v2′2代入以上速度表达式可得m1s P=m1s M+m2s N故验证m1s P和m1s M+m2s N相等即可.考向2实验方案的创新例4某物理兴趣小组设计了如图甲所示的实验装置.在足够大的水平平台上的A点放置一个光电门,其右侧摩擦很小,可忽略不计,左侧为粗糙水平面.当地重力加速度大小为g.采用的实验步骤如下:A.在小滑块a上固定一个宽度为d的窄挡光片;B.用天平分别测出小滑块a(含挡光片)和小球b的质量m a、m b;C.a和b间用细线连接,中间夹一被压缩了的轻短弹簧(与a、b不连接),静止放置在平台上;D.细线烧断后,a、b瞬间被弹开,向相反方向运动;E.记录滑块a通过光电门时挡光片的遮光时间t;F.小球b从平台边缘飞出后,落在水平地面的B点,用刻度尺测出平台距水平地面的高度h 及平台边缘铅垂线与B点之间的水平距离s;G.改变弹簧压缩量,进行多次测量.(1)用游标卡尺测量挡光片的宽度,如图乙所示,则挡光片的宽度为________ mm.(2)针对该实验装置和实验结果,同学们做了充分的讨论.讨论结果如下:①该实验要验证“动量守恒定律”,则只需验证a、b弹开后的动量大小相等,即________=________(用上述实验所涉及物理量的字母表示);②若该实验的目的是求弹簧的最大弹性势能,则弹簧的弹性势能为________(用上述实验所涉及物理量的字母表示);③改变弹簧压缩量,多次测量后,该实验小组得到x a与1t2的关系图像如图丙所示,图线的斜率为k,则平台上A点左侧与滑块a之间的动摩擦因数大小为________(用上述实验数据字母表示).答案 (1)3.80 (2)①m a dt m b sg 2h②m a d 22t 2+m b s 2g 4h ③d 22kg解析 (1)挡光片的宽度d =3 mm +16×0.05 mm =3.80 mm.(2)①要验证“动量守恒定律”,则应该验证m a v a =m b v b ,由滑块a 通过光电门可求v a =d t ,由b 球离开平台后做平抛运动,根据h =12gt 2,s =v b t ,整理可得v b =sg2h,因此需验证的表达式为m a dt=m b sg 2h ;②弹性势能大小为E p =12m a v a 2+12m b v b 2,代入数据整理得E p =m a d 22t2+m b s 2g 4h ;③根据动能定理可得μmgx a =12m v a 2,而v a =d t ,联立整理得x a =d 22μg ·1t 2,故k =d 22μg ,可得平台A 点左侧与滑块a 之间的动摩擦因数μ=d 22kg.课时精练1.(2023·云南省昆明一中高三检测)某实验小组在进行“验证动量守恒定律”的实验,入射球与被碰球半径相同、质量不等,且入射球的质量大于被碰球的质量.(1)用游标卡尺测量直径相同的入射球与被碰球的直径,测量结果如图甲所示,则直径为________cm ;(2)实验中,直接测定小球碰撞前、后的速度是不容易的,但是可以通过仅测量________(填选项前的字母),间接地解决这个问题; A .小球开始释放高度hB.小球抛出点距地面的高度HC.小球做平抛运动的水平位移D.小球的直径(3)实验装置如图乙所示,先不放B球,使A球从斜槽上某一固定点C由静止滚下,再把B 球静置于水平槽前端边缘处,让A球仍从C处由静止滚下.记录纸上的O点是铅垂线所指的位置,M、P、N分别为落点的痕迹,未放B球时,A球落地点是记录纸上的________点;放上B球后,B球的落地点是记录纸上的________点;(4)释放多次后,取各落点位置的平均值,测得各落点痕迹到O点的距离:OM=13.10 cm,OP=21.90 cm,ON=26.04 cm.用天平称得入射小球A的质量m1=16.8 g,被碰小球B的质量m2=5.6 g.若将小球质量与水平位移的乘积作为“动量”,请将下面的表格填写完整.(结果保留三位有效数字)根据上面表格中的数据,你认为能得到的结论是____________________________;(5)实验中,关于入射小球在斜槽上释放点的高低对实验影响的说法中正确的是________.A.释放点越低,小球受阻力越小,入射小球速度越小,误差越小B.释放点越低,两球碰后水平位移越小,水平位移测量的相对误差越小,两球速度的测量越准确C.释放点越高,两球相碰时,相互作用的内力越大,碰撞前后动量之差越小,误差越小D.释放点越高,入射小球对被碰小球的作用力越大,轨道对被碰小球的阻力越小答案(1)2.14(2)C(3)P N(4)3.66×10-3在实验误差允许范围内,可认为系统在碰前和碰后的“动量”守恒(5)C解析(1)球的直径d=21 mm+4×0.1 mm=21.4 mm=2.14 cm.(2)小球离开轨道后做平抛运动,因为小球抛出点的高度相等,它们在空中的运动时间相等,小球的水平位移与小球抛出的初速度成正比,可以用小球的水平位移代替其初速度,所以C 正确.(3)A球和B球相撞后,B球的速度增大,A球的速度减小,所以碰撞后A球的落地点距离O 点最近,B球的落地点距离O点最远,所以P点是未放B球时A球的落地点,N点是放上B 球后B球的落地点.(4)碰后“总动量”p ′=m 1OM +m 2ON =0.016 8×0.131 0 kg·m +0.005 6×0.260 4 kg·m ≈3.66×10-3 kg·m则可知碰撞前、后“总动量”近似相等,在实验误差允许范围内,可认为系统在碰前和碰后的“动量”守恒.(5)入射小球的释放点越高,入射球碰撞前的速度越大,相撞时内力越大,阻力的影响相对越小,可以较好地满足动量守恒的条件,也有利于减小测量水平位移时的相对误差,从而使实验的误差减小,C 正确.2.某同学设计了一个用打点计时器验证动量守恒定律的实验:在小车A 的前端粘有橡皮泥,推动小车A 使之做匀速运动.然后与原来静止在前方的小车B 相碰并粘合成一体,继续做匀速运动,他设计的具体装置如图甲所示.在小车A 后连着纸带,电磁打点计时器所用的电源频率为50 Hz ,长木板下垫着小木片用以补偿阻力.(1)若已得到打点纸带,测得各计数点间距如图乙所示,A 为运动起始的第一点,则应选________段来计算A 车的碰前速度,应选________段来计算A 车和B 车碰后的共同速度.(以上两空均选填“AB ”“BC ”“CD ”或“DE ”)(2)已测得小车A 的质量m 1=0.40 kg ,小车B 的质量m 2=0.20 kg ,由以上测量结果可得,碰前总动量为______ kg·m/s ;碰后总动量为____ kg·m/s(结果保留小数点后3位).由上述实验结果得到的结论是:________________________________________________________. 答案 (1)BC DE (2)0.420 0.417 A 、B 碰撞过程中,在误差允许范围内,系统动量守恒 解析 (1)小车A 碰前运动稳定时做匀速直线运动,所以选择BC 段计算A 碰前的速度;两小车碰后粘在一起仍做匀速直线运动,所以选择DE 段计算A 和B 碰后的共同速度. (2) 碰前小车A 的速度为v 0=BC t =0.105 05×0.02m/s =1.050 m/s 则碰前两小车的总动量为p =m 1v 0+0=0.40×1.050 kg·m/s =0.420 kg·m/s 碰后两小车的速度为v =DE t =0.069 55×0.02m/s =0.695 m/s则碰后两小车的总动量为p ′=(m 1+m 2)v =(0.40+0.20)×0.695 kg·m/s =0.417 kg·m/s由上述实验结果得到的结论是:A 、B 碰撞过程中,在误差允许范围内,系统动量守恒.3.(2023·福建福州市模拟)某地中学生助手设计了一个实验演示板做“探究碰撞中的不变量”的实验,主要实验步骤如下:①选用大小为120 cm ×120 cm 的白底板竖直放置,悬挂点为O ,并标上如图所示的高度刻度;②悬挂点两根等长不可伸长的细绳分别系上两个可视为质点的A 摆和B 摆,两摆相对的侧面贴上双面胶,以使两摆撞击时能合二为一,以相同速度一起向上摆;③把A 摆拉到右侧h 1的高度,释放后与静止在平衡位置的B 摆相碰.当A 、B 摆到最高点时读出摆中心对应的高度h 2;回答以下问题:(1)若A 、B 两摆的质量分别为m A 、m B ,则验证动量守恒的表达式为________(用上述物理量字母表示).(2)把A 摆拉到右侧的高度为0.8 m ,两摆撞击后一起向左摆到的高度为0.2 m ,若满足A 摆质量是B 摆质量的________倍,即可验证系统动量守恒,从而可以得出A 摆碰前初动能为碰后两摆损失机械能的________倍.答案 (1)m A h 1=(m A +m B )h 2(2)1 2解析 (1)由机械能守恒定律可得m A gh 1=12m A v 12,得碰前速度v 1=2gh 1,由(m A +m B )gh 2=12(m A +m B )v 22,得碰后速度v 2=2gh 2,根据动量守恒可知需要验证的表达式为m A h 1=(m A +m B )h 2.(2)把数据代入上述验证表达式可得m A =m B ,即若满足A 摆的质量是B 摆的质量的1倍,即可验证系统动量守恒;根据动量守恒定律有m A v 1=(m A +m B )v 2,根据能量守恒定律有12m A v 12=12(m A +m B )v 22+ΔE ,联立解得ΔE =14m A v 12,即A 摆碰前初动能为碰后两摆损失机械能的2倍.4.(2023·云南省昆明一中模拟)现利用图(a)所示的装置验证动量守恒定律.在图(a)中,气垫导轨上有A、B两个滑块,滑块A右侧带有一弹簧片,左侧与连接打点计时器(图中未画出)的纸带相连;滑块B左侧也带有一弹簧片,上面固定一遮光片,光电计时器(未完全画出)可以记录遮光片通过光电门的时间.实验测得滑块A(包括弹簧片)的质量m1=0.310 kg,滑块B(包括弹簧片和遮光片)的质量m2=0.108 kg,遮光片的宽度d=1.00 cm,打点计时器所用交流电的频率f=50.0 Hz.将光电门固定在滑块B的右侧,启动打点计时器,给滑块A一向右的初速度,使它与B相碰.碰后光电计时器显示的时间为Δt B=3.500 ms,碰撞前后打出的纸带如图(b)所示.根据图(b)中所标数据,可分析推断出碰撞发生在________间,A滑块碰撞前的速度为________ m/s,B滑块碰撞前的速度为________ m/s, A滑块碰撞后的速度为________ m/s,B 滑块碰撞后的速度为________ m/s.(结果保留三位有效数字)答案EF 2.0000.970 2.86解析由于A滑块与气垫导轨间的摩擦力非常小,所以除了碰撞过程,A滑块运动过程因摩擦力产生的加速度非常小,在相同时间内相邻位移的差值也非常小,根据图(b)中所标数据,可看出只有EF间的位移相比相邻间的位移变化比较明显,故碰撞发生在EF间;A滑块碰撞前的速度为v A=s FGT =4.00×10-20.02m/s=2.00 m/s, B滑块碰撞前的速度为0,A滑块碰撞后的速度为v A′=s DET =1.94×10-20.02m/s=0.970 m/s,B滑块碰撞后的速度为v B′=dΔt B=1.00×10-23.500×10-3m/s≈2.86 m/s.5.某同学利用如图所示的装置进行“验证动量守恒定律”的实验,操作步骤如下:①在水平桌面上的适当位置固定好弹簧发射器,使其出口处切线与水平桌面相平;②在一块长平木板表面先后钉上白纸和复写纸,将该木板竖直并贴紧桌面右侧边缘.将小球a向左压缩弹簧并使其由静止释放,a球碰到木板,在白纸上留下压痕P;③将木板向右水平平移适当距离,再将小球a向左压缩弹簧到某一固定位置并由静止释放,撞到木板上,在白纸上留下压痕P2;④将半径相同的小球b放在桌面的右边缘,仍让小球a从步骤③中的释放点由静止释放,与b球相碰后,两球均撞在木板上,在白纸上留下压痕P1、P3.(1)下列说法正确的是________.A.小球a的质量一定要大于小球b的质量B.弹簧发射器的内接触面及桌面一定要光滑C.步骤②③中入射小球a的释放点位置一定相同D.把小球轻放在桌面右边缘,观察小球是否滚动来检测桌面右边缘末端是否水平(2)本实验必须测量的物理量有________.A.小球的半径rB.小球a、b的质量m1、m2C.弹簧的压缩量x1,木板距离桌子边缘的距离x2D.小球在木板上的压痕P1、P2、P3分别与P之间的竖直距离h1、h2、h3(3)用(2)中所测的物理量来验证两球碰撞过程中动量是否守恒,当满足关系式________时,则证明a、b两球碰撞过程中动量守恒.答案(1)AD(2)BD(3)m1h2=m1h3+m2h1解析(1)小球a的质量一定要大于小球b的质量,以防止入射球碰后反弹,选项A正确;弹簧发射器的内接触面及桌面不一定要光滑,只要a球到达桌边时速度相同即可,选项B错误;步骤②③中入射小球a的释放点位置不一定相同,但是步骤③④中入射小球a的释放点位置一定要相同,选项C错误;把小球轻放在桌面右边缘,观察小球是否滚动来检测桌面右边缘末端是否水平,选项D正确.(2)小球离开桌面右边缘后做平抛运动,设其水平位移为L,则小球做平抛运动的时间t=L v0小球的竖直位移h =12gt 2 联立解得v 0=L g 2h碰撞前入射球a 的水平速度v 1=L g 2h 2碰撞后入射球a 的水平速度v 2=L g 2h 3碰撞后被碰球b 的水平速度v 3=Lg 2h 1 如果碰撞过程系统动量守恒,则m 1v 1=m 1v 2+m 2v 3 即m 1·Lg 2h 2=m 1·L g 2h 3+m 2·L g 2h 1, 整理得m 1h 2=m 1h 3+m 2h 1 则要测量的物理量是:小球a 、b 的质量m 1、m 2和小球在木板上的压痕P 1、P 2、P 3分别与P 之间的竖直距离h 1、h 2、h 3,故选B 、D. (3)由以上分析可知当满足关系式m 1h 2=m 1h 3+m 2h 1时,则证明a 、b 两球碰撞过程中动量守恒.。
动量守恒定律教案一、教学目标1. 让学生理解动量的概念,掌握动量的计算公式。
2. 让学生了解动量守恒定律的定义,理解动量守恒定律的应用。
3. 培养学生运用动量守恒定律解决实际问题的能力。
二、教学内容1. 动量的概念及计算公式动量p = mv,其中m 为质量,v 为速度。
2. 动量守恒定律的定义在没有外力作用的情况下,系统的总动量保持不变。
3. 动量守恒定律的应用碰撞、爆炸等现象中动量的守恒。
三、教学重点与难点1. 教学重点:(1) 动量的概念及计算公式;(2) 动量守恒定律的定义及应用。
2. 教学难点:(1) 动量守恒定律在复杂情况下的应用;(2) 碰撞、爆炸等现象中动量守恒的判断。
四、教学方法1. 采用讲授法,讲解动量的概念、计算公式,动量守恒定律的定义及应用。
2. 利用多媒体演示碰撞、爆炸等现象,让学生直观地理解动量守恒定律。
3. 布置练习题,让学生巩固所学知识。
五、教学过程1. 引入:讲解动量的概念,让学生了解动量的定义及计算公式。
2. 讲解动量守恒定律的定义,并通过实例让学生理解动量守恒定律的应用。
3. 讲解碰撞、爆炸等现象中动量守恒的判断方法,并利用多媒体演示相关现象。
4. 布置练习题,让学生运用动量守恒定律解决实际问题。
5. 总结本节课所学内容,强调动量守恒定律的重要性。
六、教学练习与反馈1. 练习题设计:a. 计算两个物体碰撞前后的动量,并验证动量守恒。
b. 分析一个爆炸过程,应用动量守恒定律计算各部分的速度。
c. 讨论在非弹性碰撞中动量守恒的情况。
2. 练习题解答与反馈:a. 检查学生计算过程,确保正确应用动量守恒定律。
b. 针对爆炸问题,检查学生对冲量的理解和应用。
c. 讨论非弹性碰撞中动能与动量的关系,引导学生理解能量损失。
七、案例分析1. 案例选择:a. 选取一个体育赛事中的碰撞事件,如橄榄球运动员的碰撞。
b. 选取一个工业或科学实验中的动量守恒例子,如火箭发射。
2. 案例分析:a. 让学生分析案例中动量的变化,验证动量守恒定律。
第六章 动量和动量守恒定律第1讲 动量 动量定理知识梳理·双基自测知识梳理知识点1 动量1.动量(1)定义:运动物体的质量和速度的乘积。
(2)公式:p =m v 。
(3)单位:千克米每秒,符号是kg·m/s 。
(4)矢量性:方向与速度的方向相同,运算遵循平行四边形定则。
2.动量变化量(1)定义:物体在某段时间内末动量和初动量的矢量差(也是矢量)。
(2)动量始终保持在一条直线上时的运算:选定一个正方向,动量、动量的变化量用带正、负号的数值表示,Δp =p ′-p 。
知识点2 动量定理1.冲量(1)定义:力与力的作用时间的乘积。
(2)公式:I =F Δt 。
(3)单位:牛顿秒,符号是N·s 。
(4)矢量性:方向与力的方向相同。
(5)物理意义:反映力的作用对时间的积累效应。
2.动量定理(1)内容:物体在一个过程始末的动量变化量等于它在这个过程中所受合力的冲量。
(2)表达式:m v ′-m v =F 合t 或p ′-p =F 合t 。
思考:教材中是如何推导动量定理表达式的?[答案] 设一质量为m 的物体,初速度为v ,在恒力F 作用下的时间Δt 内,速度从v 变化到v ′,由于物体做匀加速运动,则有a =v ′-v Δt ,再根据牛顿第二定律得F =ma =m (v ′-v )Δt,即F Δt =m v ′-m v 。
双基自测一、堵点疏通1.某物体的速度大小不变,动量一定不变。
( × )2.物体的质量越大,动量一定越大。
( × )3.物体的动量相同,其动能一定也相同。
( × )4.冲量是矢量,其方向与力的方向相同。
( √ )5.力越大,力对物体的冲量越大。
( × )6.若物体在一段时间内,其动量发生了变化,则物体在这段时间内的合外力一定不为零。
( √ )二、对点激活1.(2021·全国高三专题练习)关于动量和冲量,下列说法正确的是( C )A .动量越大的物体受到的冲量越大B .冲量总是与物体动量方向相同C .冲量是物体动量变化的原因D .作用在静止物体上的力的冲量总是为零[解析] 物体动量的表达式为p =m v ,根据动量定理可知,物体的冲量与动量改变量的关系为I =Δp =m v t -m v 0,动量大说明物体的速度大,但无法明确动量的变化,故不能确定物体的冲量大小,冲量与物体动量变化量方向相同,冲量是物体动量变化的原因,故A 、B 错误,C 正确;根据I =Ft 知,只要有力作用在物体上,经过一段时间,这个力便有了冲量,与物体处于什么运动状态无关,故D 错误。
动量守恒定律教案教案标题:动量守恒定律教案教学目标:1. 了解动量的概念和基本性质。
2. 理解动量守恒定律的概念和应用。
3. 能够解析和计算简单的动量守恒问题。
4. 培养学生运用动量守恒定律解决实际问题的能力。
教学内容和步骤:1. 导入(5分钟)- 利用一个生活例子引入动量守恒定律的概念,例如描述车辆碰撞时的情景。
- 引导学生思考,车辆在碰撞前和碰撞后动量的变化情况。
2. 理论阐述(15分钟)- 讲解动量的定义和计算公式:动量 = 质量 ×速度。
- 引入动量守恒定律的概念:在一个孤立系统中,总动量守恒。
- 通过示例说明动量守恒定律在碰撞等情境中的应用。
3. 实例分析与讨论(20分钟)- 提供实际的碰撞问题,如火车相撞、弹球碰撞等,引导学生运用动量守恒定律解决问题。
- 鼓励学生在小组中讨论并给予彼此反馈,在教师的辅导下进行问题求解。
4. 拓展与应用(15分钟)- 引导学生思考动量守恒定律在其他领域的应用,如体育运动、交通事故等。
- 分组让学生自主选定一个领域,设计一个实际问题,并用动量守恒定律进行分析和解答。
- 学生展示并互相评价彼此的设计和解答过程。
5. 总结与评价(10分钟)- 对动量守恒定律进行简要总结,强调其重要性和应用范围。
- 帮助学生评价自己在本节课中的学习情况,答疑解惑,澄清疑惑。
教学资料与资源:1. PowerPoint/投影片:包含动量和动量守恒定律的定义、公式和相关示例。
2. 实际碰撞问题的案例分析材料。
3. 团队合作讨论时的小组工作记录表。
4. 学生小组演示评价表。
教学评估:1. 课堂表现:观察学生在课堂上的主动参与情况,包括发问、回答问题、解决问题等。
2. 分组讨论:评估小组中学生的合作与思考能力,包括问题分析和解答过程。
3. 学生作业:布置相关习题让学生巩固和应用所学知识,收集、批改并给予反馈。
教学扩展:1. 利用实验仪器进行碰撞实验,让学生亲身感受动量守恒定律的验证。
高三一轮同步复习专题25 动量守恒定律及应用二——“滑块-弹簧”模型【模型归纳】【典例分析】例1、如图所示,一轻弹簧的两端与质量分别为m1和m2的两物块甲、乙连接,静止在光滑的水平面上。
现在使甲瞬时获得水平向右的速度v0=5m/s,当甲物体的速度减小到1m/s 时,弹簧最短。
下列说法正确的是()A.紧接着甲物体将开始做减速运动B.紧接着甲物体将开始做加速运动C.甲乙两物体的质量之比m1∶m2=1∶3D.甲乙两物体的质量之比m1∶m2=1∶4【变式训练1】如图所示,质量为m1=2 kg的小球P从离水平面高度为h=0.8m的光滑斜面上滚下,与静止在光滑水平面上质量为m Q=2kg的带有轻弹簧的滑块Q碰撞,g=10m/s2,下列说法正确的是()A.P球与滑块Q碰撞前的速度为5m/sB.P球与滑块Q碰撞前的动量为16kg·m/sC.它们碰撞后轻弹簧压缩至最短时的速度为2m/sD.碰撞过程中动能守恒【变式训练2】如图甲所示,一轻弹簧的两端与质量分别为m1和m2的两物块A、B相连接,并静止在光滑的水平面上。
现使A瞬时获得水平向右的速度3m/s,以此刻为计时起点,两物块的速度随时间变化的规律如图乙所示,从图像信息可得()A.在t1、t3时刻两物块达到共同速度1m/s,且弹簧都处于伸长状态B.从t3到t4时刻弹簧由伸长状态恢复到原长C .两物体的质量之比为12:1:3m m =D .在t 2时刻A 与B 的动能之比为12:1:8k kE E =【变式训练3】如图所示,质量为m 1=0.95kg 的小车A 静止在光滑地面上,一质量为m 3=0.05kg 的子弹以v 0=100m/s 的速度击中小车A ,并留在其中,作用时间极短。
一段时间后小车A 与另外一个静止在其右侧的,质量为m 2=4kg 的小车B 发生正碰,小车B 的左侧有一固定的轻质弹簧,碰撞过程中,弹簧始终未超弹性限度,则下列说法错误的是( )A .小车A 与子弹的最终速度大小为3m/sB .小车B 的最终速度大小为2m/sC .弹簧最大的弹性势能为10JD .整个过程损失的能量为240J【变式训练4】如图所示,质量M=4kg 的滑板B 静止放在光滑水平面上,其右端固定一根轻质弹簧,弹簧的自由端C 到滑板左端的距离L=0.5m 这段滑板与木块A (可视为质点)之间的动摩擦因数μ=0.2,而弹簧自由端C 到弹簧固定端D 所对应的滑板上表面光滑。
第2节动量守恒定律及其应用知识点一| 动量守恒定律的理解及应用1.动量守恒的条件(1)系统不受外力或所受外力之和为零时,系统的动量守恒。
(2)系统所受外力之和不为零,但当内力远大于外力时系统动量近似守恒。
(3)系统所受外力之和不为零,但在某个方向上所受合外力为零或不受外力,或外力可以忽略,则在这个方向上,系统动量守恒。
2.动量守恒定律的内容如果一个系统不受外力,或者所受外力的矢量和为零,这个系统的总动量保持不变。
3.动量守恒的数学表达式(1)p=p′(系统相互作用前总动量p等于相互作用后总动量p′)。
(2)Δp=0(系统总动量变化为零)。
(3)Δp1=-Δp2(相互作用的两个物体组成的系统,两物体动量增量大小相等,方向相反)。
[判断正误](1)系统所受合外力的冲量为零,则系统动量一定守恒。
(√)(2)动量守恒是指系统在初、末状态时的动量相等。
(×)(3)物体相互作用时动量守恒,但机械能不一定守恒。
(√)动量守恒定律的“五性”甲车和磁铁的总质量为0.5 kg ,乙车和磁铁的总质量为1.0 kg 。
两磁铁的N 极相对,推动一下,使两车相向运动。
某时刻甲的速率为2 m/s ,乙的速率为3 m/s ,方向与甲相反。
两车运动过程中始终未相碰。
则:(1)两车最近时,乙的速度为多大? (2)甲车开始反向运动时,乙的速度为多大?解析:(1)两车相距最近时,两车的速度相同,设该速度为v ,取乙车的速度方向为正方向。
由动量守恒定律得m乙v 乙-m 甲v 甲=(m 甲+m 乙)v ,所以两车最近时,乙车的速度为v =m 乙v 乙-m 甲v 甲m 甲+m 乙=1.0×3-0.5×20.5+1.0 m/s =43m/s≈1.33 m/s。
(2)甲车开始反向时,其速度为0,设此时乙车的速度为v 乙′,由动量守恒定律得m 乙v 乙-m 甲v 甲=m 乙v 乙′,得v 乙′=m 乙v 乙-m 甲v 甲m 乙=1.0×3-0.5×21.0m/s =2 m/s 。
25(1)动量守恒定律
学习目标:
1、动量守恒定律
2、动量守恒定律成立的条件
3、应用动量守恒定律分析、解题
学习内容:
一、动量守恒定律
1、内容:___________________________________________________________________
2、数学表达式:
①P=P' ②△P=0 ③△P 1=-△P 2
3、成立条件
①系统所受的合外力等于0 ;②系统在某一分方向上合力等于0,该方向动量守恒 ;③如果系统所受的内力远大于外力时,如碰撞,爆炸等现象中,系统的冲动量可看成近似守恒。
例1、关于动量守恒的条件,下列说法中正确的是:( )
A .只要系统内存在摩擦力,动量不可能守恒
B .只要系统内某个物体做加速运动,动量就不守恒
C .只要系统所受合外力的冲量为零,动量守恒
D .只要系统所受外力的合力为零,动量守恒
练一练
如图,木块和弹簧相连放在光滑的水平面上,子弹A 沿水平方向射入木块后留在木块B 内,入射时间极短,之后木块将弹簧压缩,关于子弹和木块组成的系统,下列说法中正确的是( )
A .从子弹开始射入到弹簧压缩到最短的过程中,系统动量守恒
B .子弹射入木块的过程中,系统动量守恒
C .木块压缩弹簧的过程中,系统动量守恒
D .上述任何一个过程动量均不守恒
二、动量守恒定律的应用:
对动量守恒定律的几点说明:
①守恒定律研究的对象:两个以上物体组成的系统
②定律的矢量性
③定律中参照物的相对性,同一性
④定律中状态的同时性
步骤:
a 、确定研究对象
b 、对研究对象进行受力分析,并判断系统的动量是否守恒
c 、分析研究对象的运动状态,确定系统始末状态的总动量
d 、规定正方向,根据守恒定律列方程
例2 如图所示,木块质量为 m = 0.4kg ,它以速度V=20 m /s 水平滑上一辆静止的平板小车,已知车的质量M =1.6kg ,木块与小车间动摩擦因数μ=0.2,其它摩
擦不计,g =10m/s 2,求:①木块相对于车静止时,平板小车的速度? ②这一过程所经历
的时间及小车运动的距离。
A
例3、实验用小炮车的质量M=2kg,弹丸的质量M=0.1kg小炮车以速度v0=1m/s沿光滑水平面向右匀速运动,当弹丸以相对于小炮车u=20m/s的速度向左弹出,问弹出后小炮车的速度多大?
例4、A、B两船及船上的货物的质量分别为1000kg与2000kg,A、B两船分别以2m/s 与3m/s的速率分别向东与向西行驶,当两船头尾相齐时,同时轻放50kg货物到对方船上,求交换货物后,两船的速度各多大?
例5、有一只小船停止在静水中,船上一人从船头走到船尾,如果人的质量m=60kg,船的质量M=120kg,船长L=3m,则船在水中移动的距离是多少?设水的阻力不计。
注意:人船模型在解决两物体相互作用时非常简便。
例6、两块厚度相同的木块A和B,紧靠着放在光滑的水平面上,其质量分别为M A=0.5kg,M B=0.3kg,它们的下底面光滑,上表面粗糙,另有一质量M C=0.1kg的滑块C (可视为质点),以V C=25m/s的速度恰好水平地滑向A的上表面,如图,由于摩擦,滑块最后停在木块B上,B和C的共同速度为3.0m/s,总共用时10s,求:
⑴木块A的最终速度V A;
⑵滑动C离开A时的速度V C。
25(2)动量守恒定律
1、光滑水平面上有甲、乙两小车,其间夹有一根被压缩的弹簧用手按住小车使它们处于静止状态,若弹簧质量不计,以下说法正确的是()
A.若双手同时放开甲、乙两车,甲、乙两车被弹簧弹开的过程中,动量总是相等的
B.若先放开甲,再放开乙,甲和乙组成的系统动量守恒且总动量为零
C .若先放开甲,再放开乙,在乙被释放后,甲和乙组成的系统动量守恒,但总动量不为零
D .若先放开甲,再放开乙,在乙被释放后,甲和乙组成的系统动量不守恒
2、一辆平板车静止在光滑水平面上,车上一人(原来也静止)用大铁锤敲打车的左端,在锤的连续敲打下,这辆平板车( )
A .左右振动
B .向左运动
C .向右运动
D .保持静止
3、质量为m 的人随平板车以速度v 在平直跑道上匀速前进,不考虑摩擦力、阻力,当人相对于车竖直跳起至落回原起跳位置的过程中,平板车的速度( )
A .变大
B .变小
C .保持不变
D .先变大后变小
4、质量为M 的木块在光滑水平上以速度V 1向右运动,质量为m 的子弹以速度V 2水平向左射入木块并陷入其中,要使木块停下来,必须发射的子弹数目为( )
A .(M+m)V 2/mV 1
B .MV 1/(M+m)V 2
C .MV 1/mV 2
D .mV 1/MV 2
5、如图,小车AB 放在光滑水平面上,A 端固定一个轻弹簧,B 端粘有油泥,AB 总质量为M ,质量为m 的木块C 放在小车上,用细绳连结于小车的A 端并使弹簧压缩,开始时AB 和C 都静止,当突然烧断细绳,C 被释放,使C 离开弹簧向B 端冲去,并跟B 端油泥粘在一起,忽略一切摩擦,以下说法正确的是( )
A .弹簧伸长过程中C 向右运动,同时AB
B .
C 与B 碰前,C 与AB 的速率之比为m :M
C .C 与油泥沾在一起后,AB 立即停止运动
D .C 与油泥粘在一起后,AB 继续向右运动
6、 静止在湖面的小船上有两人分别向相反方向水平抛出质量相同的小球, 甲向左先抛,乙向右后抛,抛出后两小球相对于岸的速率相等,水的阻力不计,下列说法中正确的是
( )
A.两球抛出后,船向左以一定速度运动
B.两球抛出后,船向右以一定速度运动
C.在抛出过程中甲球受到的冲量大些
D.在抛出过程中两球受到的冲量大小相等
7、如图,相同的平板车A 、B 、C 成一直线静止在水平光滑的地面上,C 车上站立的小孩跳到B 车上,接着又立即从B 车跳到A 车上,小孩跳离C 车和B 车的水平速度相同,他跳到A 车上没有走动便相对A 车保持静止,此后( )
A .A 、C 两车的速率相等
B .A 、B 两车的速率相等
C .三车的速率从大到小依次是C 、A 、B
D .B 车必定向右运动
8、如图,光滑水平面上有质量相等的A 、B 两
个物块,B 上装有一轻弹簧,B 原来静止,A 以速度v 正对B 滑行,当弹簧压缩到最短时,B 物体的速度
等于________。
9、气球质量为100kg ,载有质量为50kg 的人,静止在空中距地面20m 高的地方,气球下方悬一根质量可忽略不计的绳子,此人想从气球上沿绳慢慢下滑至地面,为了安全到达地面,则这根绳至少应为 ________m (不计人的高度)。
10、放在光滑水平地面上并靠在一起的物体,A 、B 之间用一根长1m 的轻绳相连,两物体质量分别为m A =4kg ,m B =16kg ,现用大小为8N 的水平力F 拉物体A ,再带动B 一起运动,4s 末两物体一起运动的速度为________m/s 。
11、如图,质量M=200kg 的车厢,静止在光滑的水平轨道上,质量m 1=55kg 的人站在车厢
中,将质量为m2=5kg的铅球向车的B端平抛出去,铅球恰卡在B端的木板中,设铅球出手点距离B端的水平距离为L=5.2m,求铅球在飞行的这段时间中车的位移大小和方向。
12、如图,一辆玩具小车的质量为3.0kg,沿光滑的水平面以2.0m/s的速度向正东方向运动,要使小车停下来,可用速度为2.4m/s的水流水平向西均匀射向挡板,已知每秒钟有0.25kg的水射到挡板CD上,然后流入车中.(1)若水流冲击挡板4秒钟,小车速度变为多少?(2)要使小车速度变为零,水流冲击挡板的时间为多少?(3)在水流冲击挡板过程中,小车加速度是否恒定?
13、如图,小车平板距地高h,小车质量为M,水平地面光滑,小车左端有一质量为M/6的小木块,它与平板间有摩擦,当小车与木块一起沿水平地面以速度V 运动时,有一颗子弹水平射入并嵌在木块中,子弹质量为M/ 18 ,速度为100V,当木块从车右端滑出时,小车的速度减为V / 2 ,求:①木块滑出车右端时的速度;②木块落地时,木块距车右端多远?
V。