高三物理第一轮复习知识点:动量守恒定律
- 格式:doc
- 大小:2.10 MB
- 文档页数:4
考点3 人船模型1.人船模型问题如图所示,两个原来静止的物体发生相互作用时,若所受外力的矢量和为零,则动量守恒.在相互作用的过程中,任一时刻两物体的速度大小之比等于质量的反比.2.人船模型的特点(1)两物体满意动量守恒定律:m1v1-m2v2=0.(2)运动特点:人动船动,人静船静,人快船快,人慢船慢,人左船右;人船位移比等于它们质量的反比;人船平均速度(瞬时速度)比等于它们质量的反比,即x1 x2=v1v2=m2m1.(3)应用x1x2=v1v2=m2m1时要留意:v1、v2和x1、x2一般都是相对地面而言的.3.“人船模型”的拓展研透高考明确方向6.[人船模型]有一只小船停靠在湖边码头,小船又窄又长.一位同学想用一个卷尺粗略测定它的质量.他进行了如下操作:首先将船平行于码头自由停岸,轻轻从船尾上船,走到船头停下,而后轻轻下船.用卷尺测出船后退的距离d,然后用卷尺测出船长L.已知他的自身质量为m,水的阻力不计,则船的质量为(B)A.m(L+d)d B.m(L-d)dC.mLd D.m(L+d)L解析设船的质量为M,人走动的时候船的平均速度为v,人的平均速度为v',人从船尾走到船头用时为t,人的位移为L-d,船的位移为d,所以v=dt ,v'=L−dt.以船后退的方向为正方向,依据动量守恒定律有Mv-mv'=0,可得M dt =m(L−d)t,小船的质量为M=m(L−d)d,故B正确.7.[“人船模型”的拓展/2024云南曲靖模拟/多选]如图所示,一半圆槽滑块的质量为M,半圆槽半径为R,滑块静止在光滑水平桌面上,一质量为m的小型机器人(可视为质点)置于半圆槽的A端,在无线遥控器限制下,小型机器人从半圆槽A端移动到B端.下列说法正确的是(CD)A.小型机器人与滑块组成的系统动量守恒B.滑块运动的距离为MRM+mC.滑块与小型机器人运动的水平距离之和为2RD.小型机器人运动的位移是滑块的Mm倍解析小型机器人和滑块组成的系统只在水平方向动量守恒,A错误;小型机器人从A端移动到B端的过程中,由水平方向动量守恒得mx1=Mx2,依据位移关系有x1+x2=2R,可得小型机器人和滑块移动的距离分别为x1=2MRM+m ,x2=2mRM+m,即小型机器人运动的位移与滑块运动的位移之比为x1x2=Mm,故B错误,C、D正确.。
物理第一轮考纲知识复习之动量守恒定律一、动量1、动量:运动物体的质量和速度的乘积叫做动量.P=mv是矢量,方向与速度方向相同;动量的合成与分解,按平行四边形法则、三角形法则.是状态量;通常说物体的动量是指运动物体某一时刻的动量(状态量),计算物体此时的动量应取这一时刻的瞬时速度。
是相对量;物体的动量亦与参照物的选取有关,常情况下,指相对地面的动量。
单位是kg?m/s;2、动量和动能的区别和联系① 动量的大小与速度大小成正比,动能的大小与速度的大小平方成正比。
即动量相同而质量不同的物体,其动能不同;动能相同而质量不同的物体其动量不同。
② 动量是矢量,而动能是标量。
因此,物体的动量变化时,其动能不一定变化;而物体的动能变化时,其动量一定变化。
③ 因动量是矢量,故引起动量变化的原因也是矢量,即物体受到外力的冲量;动能是标量,引起动能变化的原因亦是标量,即外力对物体做功。
④ 动量和动能都与物体的质量和速度有关,两者从不同的角度描述了运动物体的特性,且二者大小间存在关系式:P2=2mEk3、动量的变化及其计算方法动量的变化是指物体末态的动量减去初态的动量,是矢量,对应于某一过程(或某一段时间),是一个非常重要的物理量,其计算方法:(1)ΔP=Pt一P0,主要计算P0、Pt在一条直线上的情况。
(2)利用动量定理ΔP=F?t,通常用来解决P0、Pt;不在一条直线上或F为恒力的情况。
二、冲量1、冲量:力和力的作用时间的乘积叫做该力的冲量.是矢量,如果在力的作用时间内,力的方向不变,则力的方向就是冲量的方向;冲量的合成与分解,按平行四边形法则与三角形法则.冲量不仅由力的决定,还由力的作用时间决定。
而力和时间都跟参照物的选择无关,所以力的冲量也与参照物的选择无关。
单位是N?s;2、冲量的计算方法(1)I= F?t.采用定义式直接计算、主要解决恒力的冲量计算问题。
I=Ft(2)利用动量定理Ft=ΔP.主要解决变力的冲量计算问题,但要注意上式中F为合外力(或某一方向上的合外力)。
高三动量守恒定律知识点一、动量的概念和计算方法在物理学中,动量是物体运动状态的量度,代表了物体运动时所具有的惯性大小。
动量的计算方法是质量与速度的乘积,即动量(p)等于质量(m)乘以速度(v)。
动量的单位是千克·米/秒(kg·m/s),在国际单位制中,也可以用牛·秒(N·s)表示。
二、动量守恒定律的表述动量守恒定律是物理学中的重要定律之一,它描述了一个封闭系统中动量的总和在时间上保持不变。
在一个封闭系统中,如果没有外力作用,系统中物体的总动量保持不变。
也就是说,一个物体的动量增加,必然有另一个物体的动量减小,它们之间的动量转移互相补偿。
三、动量守恒定律的应用1.碰撞问题当两个物体发生碰撞时,会有动量转移的现象发生。
判断二者碰撞后的速度变化,可以通过动量守恒定律进行计算。
例如,当一个小球以一定速度碰撞到一个静止的小球上,根据动量守恒定律,可以推导出碰撞后两个小球的速度。
2.火箭发射问题火箭发射过程中,尾气的高速喷出是由燃料的燃烧产生的。
火箭向上运动的速度增加,相同时,尾气速度与质量的乘积也要增加。
这是因为根据动量守恒定律,火箭与尾气系统的总动量为零,当火箭获得了一定的速度时,尾气的速度与质量的乘积也要增加,以保持动量守恒。
3.流水问题当水流在管道中流动时,由于管道的减小,水流的速度会增加。
在这个过程中,可以根据动量守恒定律,计算水流速度的变化。
四、动量守恒定律的局限性虽然动量守恒定律可以解释和应用于很多物理现象,但在实际情况中,有一些情形并不适用。
1.外力的干扰如果一个系统受到外力的干扰,如空气阻力、摩擦力等,那么动量守恒定律将不再适用。
2.相对论效应在高速运动中,特别是接近光速的情况下,相对论效应会引起质量的变化。
这种情况下,动量守恒定律也需要结合相对论的理论来解释。
五、总结动量守恒定律是描述物体运动中动量变化的重要定律。
它在碰撞、火箭发射和流体运动等问题中有广泛应用。
中学物理动量守恒定律学问点总结中学物理动量守恒定律是中学物理的重点和难点,那么有哪些学问点是必需驾驭的呢?以下是为您整理关于中学物理动量守恒定律学问点相关资料,希望对您有所帮助。
中学物理动量守恒定律学问点(一)一、动量守恒定律1、动量守恒定律的条件:系统所受的总冲量为零(不受力、所受外力的矢量和为零或外力的作用远小于系统内物体间的相互作用力),即系统所受外力的矢量和为零。
(碰撞、爆炸、反冲)留意:内力的冲量对系统动量是否守恒没有影响,但可变更系统内物体的动量。
内力的冲量是系统内物体间动量传递的缘由,而外力的冲量是变更系统总动量的缘由。
2、动量守恒定律的表达式m1v1+m2v2=m1v1/+m2v2/(规定正方向)△p1=△p2/3、某一方向动量守恒的条件:系统所受外力矢量和不为零,但在某一方向上的力为零,则系统在这个方向上的动量守恒。
必需留意区分总动量守恒与某一方向动量守恒。
二、碰撞1、完全非弹性碰撞:获得共同速度,动能损失最多动量守恒。
2、弹性碰撞:动量守恒,碰撞前后动能相等。
特例1:A、B两物体发生弹性碰撞,设碰前A初速度为v0,B静止,则碰后速度,vB=.特例2:对于一维弹性碰撞,若两个物体质量相等,则碰撞后两个物体互换速度(即碰后A的速度等于碰前B的速度,碰后B的速度等于碰前A 的速度)3、一般碰撞:有完整的压缩阶段,只有部分复原阶段,动量守恒,动能减小。
4、人船模型两个原来静止的物体(人和船)发生相互作用时,不受(其它)外力,对这两个物体组成的系统来说,动量守恒,且任一时刻的总动量均为零,由动量守恒定律,有mv=MV(留意:几何关系)中学物理动量守恒定律学问点(二)冲量与动量(物体的受力与动量的变更)1.动量:p=mv {p:动量(kg/s),m:质量(kg),v:速度(m/s),方向与速度方向相同}3.冲量:I=Ft {I:冲量(N?s),F:恒力(N),t:力的作用时间(s),方向由F确定}4.动量定理:I=p或Ft=mvtmvo {p:动量变更p=mvtmvo,是矢量式}5.动量守恒定律:p前总=p后总或p=p也可以是m1v1+m2v2=m1v1+m2v26.弹性碰撞:p=0;Ek=0 {即系统的动量和动能均守恒}7.非弹性碰撞p=0;0EKEKm {EK:损失的动能,EKm:损失的最大动能}8.完全非弹性碰撞p=0;EK=EKm {碰后连在一起成一整体}9.物体m1以v1初速度与静止的物体m2发生弹性正碰:v1=(m1-m2)v1/(m1+m2) v2=2m1v1/(m1+m2)10.由9得的推论-----等质量弹性正碰时二者交换速度(动能守恒、动量守恒)11.子弹m水平速度vo射入静止置于水平光滑地面的长木块M,并嵌入其中一起运动时的机械能损失E损=mvo2/2-(M+m)vt2/2=fs相对{vt:共同速度,f:阻力,s相(对子)弹相对长木块的位移}中学(物理(学习(方法)))要重视试验物理学是一门以试验为基础的科学,很多物理概念、物理规律都是从自然现象的试验中(总结)出来的。
第二十七讲 动量守恒定律一、动量守恒定律1.内容:如果一个系统不受外力,或者所受外力的________为0,这个系统的总动量保持不变。
2.表达式(1)p =p ′,系统相互作用前的总动量p 等于相互作用后的总动量p ′。
(2)m 1v 1+m 2v 2=____________,相互作用的两个物体组成的系统,作用前的动量和等于作用后的动量和。
(3)Δp 1=_______,相互作用的两个物体动量的变化量等大反向。
(4)Δp =0,系统总动量的增量为零。
矢量和m 1v 1′+m 2v 2′-Δp 23.适用条件(1)理想守恒:不受外力或所受外力的合力为____。
(2)近似守恒:系统内各物体间相互作用的内力________它所受到的外力。
(3)某一方向守恒:如果系统在某一方向上所受外力的合力为零,则系统在__________上动量守恒。
零远大于这一方向【典例1】(多选)如图所示,小车与木箱紧挨着静止放在光滑的水平冰面上,现有一男孩站在小车上用力向右迅速推出木箱。
关于上述过程,下列说法中正确的是( )A.男孩和木箱组成的系统动量守恒B.小车与木箱组成的系统动量守恒C.男孩、小车与木箱三者组成的系统动量守恒D.木箱的动量增量与男孩、小车的总动量增量大小相同解析 男孩和木箱组成的系统受小车的摩擦力,所以动量不守恒,A 错误;小车与木箱组成的系统受男孩的力为外力,所以动量不守恒,B 错误;男孩、小车与木箱三者组成的系统,所受合外力为0,所以动量守恒,C 正确;木箱的动量增量与男孩、小车的总动量增量大小相同,但方向相反,D 正确。
CD二、“三类”模型问题1.“子弹打木块”模型(1)“木块”放置在光滑的水平面上①运动性质:“子弹”对地在滑动摩擦力作用下做减速直线运动;“木块”在滑动摩擦力作用下做______直线运动。
②处理方法:通常由于“子弹”和“木块”的相互作用时间极短,内力远大于外力,可认为“子弹”与“木块”组成的系统在这一过程中动量守恒。
动量守恒定律一、冲量、动量和动量定理1.冲量(1)定义:力和力的的乘积.(2)公式:I=,适用于求恒力的冲量.(3)方向:与相同.2.动量(1)定义:物体的与的乘积.(2)表达式:(3)单位:.符号:(4)特征:动量是状态量,是,其方向和方向相同.3.动量定理(1)内容:物体所受合力的冲量等于物体.(2)表达式: .(3)矢量性:动量变化量方向与的方向相同,可以在某一方向上用动量定理.二、动量守恒定律1.系统:相互作用的几个物体构成系统.系统中各物体之间的相互作用力称为内力,外部其他物体对系统的作用力叫做外力.2.定律内容:如果一个系统作用,或者所受的为零,这个系统的总动量保持不变.3.动量守恒定律的不同表达形式(1)m1v1+m2v2=m1v1′+m2v2′,相互作用的两个物体组成的系统,作用前的动量和等于作用后的动量和.(2)Δp1=-Δp2,相互作用的两个物体动量的增量等大反向.0,系统总动量的增量为零.(3)Δp=4.守恒条件(1)理想守恒:系统不受外力或所受外力的合力为零,则系统动量守恒.(2)近似守恒:系统受到的合力不为零,但当内力远大于外力时,系统的动量可近似看成守恒.(3)分方向守恒:系统在某个方向上所受合力为零时,系统在该方向上动量守恒.三、碰撞1.概念:碰撞指的是物体间相互作用持续时间很短,物体间相互作用力很大的现象,在碰撞过程中,一般都满足内力远大于外力,故可以用动量守恒定律处理碰撞问题.解析碰撞的三个依据(1)动量守恒:p1+p2=p1′+p2′.(2)动能不增加:E k1+E k2≥Ek1′+E k2′或p212m1+p222m2≥p1′22m1+p2′22m2.(3)速度要符合情景①如果碰前两物体同向运动,则后面的物体速度必大于前面物体的速度,即v后>v前,否则无法实现碰撞.②碰撞后,原来在前面的物体速度一定增大,且速度大于或等于原来在后面的物体的速度,即v前′≥v后′.③如果碰前两物体是相向运动,则碰后两物体的运动方向不可能都不改变.除非两物体碰撞后速度均为零.2.分类(1)弹性碰撞:这种碰撞的特点是系统的机械能守恒,相互作用过程中遵循的规律是动量守恒和机械能守恒.(2)非弹性碰撞:在碰撞过程中机械能损失的碰撞,在相互作用过程中只遵循动量守恒定律.(3)完全非弹性碰撞:这种碰撞的特点是系统的机械能损失最大,作用后两物体粘合在一起,速度相等,相互作用过程中只遵循动量守恒定律.3.碰撞问题的探究(1)弹性碰撞的求解求解:两球发生弹性碰撞时应满足动量守恒和动能守恒.以质量为m1、速度为v1的小球与质量为m2的静止小球发生正面弹性碰撞为例,则有m1v1=m1v1′+m2v2′12m1v21=12m1v1′2+12m2v2′2解得:v1′=1-m21m1+m2,v2′=2m1v1m1+m2(2)弹性碰撞的结论①当两球质量相等时,v1′=0,v2′=v1,两球碰撞后交换了速度.②当质量大的球碰质量小的球时,v1′>0,v2′>0,碰撞后两球都沿速度v1的方向运动.③当质量小的球碰质量大的球时,v1′<0,v2′>0,碰撞后质量小的球被反弹回来.★要点一基本概念的理解【典型例题】【例1】关于物体的动量,下列说法中正确的是( )A.运动物体在任一时刻的动量方向,一定是该时刻的速度方向B.物体的加速度不变,其动量一定不变C.动量越大的物体,其速度一定越大D.物体的动量越大,其惯性也越大【例2】下列论述中错误的是( )A.相互作用的物体,如果所受合外力为零,则它们的总动量保持不变B.动量守恒是指相互作用的各个物体在相互作用前后的动量不变C.动量守恒是相互作用的各个物体组成的系统在相互作用前的动量之和与相互作用之后的动量之和是一样的D.动量守恒是相互作用的物体系在相互作用过程中的任何时刻动量之和都是一样的★要点二动量守恒的判断【典型例题】【例1】(多选)木块a和b用一根轻弹簧连接起来,放在光滑水平面上,a紧靠在墙壁上.在b上施加向左的水平力F使弹簧压缩,如图所示.当撤去外力F后,下列说法中正确的是( )A.a尚未离开墙壁前,a和b组成的系统动量守恒B.a尚未离开墙壁前,a和b组成的系统动量不守恒C.a离开墙壁后,a、b组成的系统动量守恒D.a离开墙壁后,a、b组成的系统动量不守恒解析BC [在a离开墙壁前、弹簧伸长的过程中,对a和b构成的系统,由于受到墙给a的弹力作用,所以a、b构成的系统动量不守恒,因此B选项正确,A选项错误;a离开墙壁后,a、b构成的系统所受合外力为零,因此动量守恒,故C选项正确,D选项错误.] 【例2】(多选)如图,A、B两物体的中间用一段细绳相连并有一压缩的弹簧,放在平板小车C上后,A、B、C均处于静止状态.若地面光滑,则在细绳被剪断后,A、B从C上未滑离之前,A、B在C上向相反方向滑动的过程中( )A.若A、B与C之间的摩擦力大小相同,则A、B及弹簧组成的系统动量守恒,A、B、C及弹簧组成的系统动量守恒B.若A、B与C之间的摩擦力大小相同,则A、B及弹簧组成的系统动量不守恒,A、B、C 及弹簧组成的系统动量守恒C.若A、B与C之间的摩擦力大小不相同,则A、B及弹簧组成的系统动量不守恒,A、B、C及弹簧组成的系统动量不守恒D.若A、B与C之间的摩擦力大小不相同,则A、B及弹簧组成的系统动量不守恒,A、B、C及弹簧组成的系统动量守恒解析当A、B两物体及弹簧组成一个系统时,弹簧的弹力为内力,而A、B与C之间的摩擦力为外力.当A、B与C之间的摩擦力大小不相等时,A、B及弹簧组成的系统所受合外力不为零,动量不守恒;当A、B与C之间的摩擦力大小相等时,A、B及弹簧组成的系统所受合外力为零,动量守恒.对A、B、C及弹簧组成的系统,弹簧的弹力及A、B与C之间的摩擦力均属于内力,无论A、B与C之间的摩擦力大小是否相等,系统所受的合外力均为零,系统的动量守恒.故选项A、D正确.【对应练习】1. (多选)如图1所示,光滑水平面上两小车中间夹一压缩了的轻弹簧,两手分别按住小车,使它们静止,对两车及弹簧组成的系统,下列说法中正确的是( )A.两手同时放开后,系统总动量始终为零B.先放开左手,后放开右手,动量不守恒C.先放开左手,后放开右手,总动量向左D.无论何时放手,只要两手放开后在弹簧恢复原长的过程中,系统总动量都保持不变,但系统的总动量不一定为零图12. 质量为M和m0的滑块用轻弹簧连接,以恒定的速度v沿光滑水平面运动,与位于正对面的质量为m的静止滑块发生碰撞,如图4所示,碰撞时间极短,在此过程中,下列哪个或哪些说法是可能发生的?( )A.M、m0、m速度均发生变化,分别为v1、v2、v3,而且满足(M+m0)v=Mv1+m0v2+mv3 B.m0的速度不变,M和m的速度变为v1和v2,而且满足Mv=Mv1+mv2C.m0的速度不变,M、m的速度都变为v′,且满足Mv=(M+m)v′D.M、m0、m速度均发生变化,M和m0速度都变为v,m速度变为v2,而且满足(M+m)v0=(M+m0)v1+mv 2图4解:碰撞的瞬间M和m组成的系统动量守恒,m0的速度在瞬间不变,以M的初速度方向为正方向,若碰后M和m的速度变v1和v2,由动量守恒定律得:Mv=Mv1+mv2若碰后M和m速度相同,由动量守恒定律得:Mv=(M+m)v′.故BC正确,AD错误.故选:BC.★要点三动量守恒的应用【典型例题】【例1】一质量为2m的物体P静止于光滑水平地面上,其截面如图所示.图中ab为粗糙的水平面,长度为L;bc为一光滑斜面,斜面和水平面通过与ab与bc均相切的长度可忽略的光滑圆弧连接.现有一质量为m的木块以大小为v0的水平初速度从a点向左运动,在斜面上上升的最大高度为h,返回后在到达a点前与物体P相对静止.重力加速度为g.求:(1)木块在ab段受到的摩擦力f;(2)木块最后距a点的距离s.解析木块m和物体P组成的系统在相互作用过程中遵守动量守恒、能量守恒.(1)以木块开始运动至在斜面上上升到最大高度为研究过程,当木块上升到最高点时两者具有相同的速度,根据动量守恒,有mv0=(2m+m)v①根据能量守恒,有12mv20=12(2m+m)v2+fL+mgh②联立①②得f=mv203L-mghL=mv20-3mgh3L③(2)以木块开始运动至最后与物体P在水平面ab上相对静止为研究过程,木块与物体P相对静止,两者具有相同的速度,根据动量守恒,有mv0=(2m+m)v④根据能量守恒,有12mv20=12(2m+m)v2+f(L+L-s)⑤联立③④⑤得s=v20L-6ghLv20-3gh【例2】如图,A、B、C三个木块的质量均为m,置于光滑的水平桌面上,B、C之间有一轻质弹簧,弹簧的两端与木块接触而不固连.将弹簧压紧到不能再压缩时用细线(细线未画出)把B 和C紧连,使弹簧不能伸展,以至于B、C可视为一个整体.现A以初速度v0沿B、C的连线方向朝B运动,与B相碰并粘合在一起.以后细线突然断开,弹簧伸展,从而使C与A、B 分离.已知C离开弹簧后的速度恰为v0.求弹簧释放的势能.解析设碰后A、B和C的共同速度的大小为v,由动量守恒定律得3mv=mv0①设C离开弹簧时,A、B的速度大小为v1,由动量守恒定律得3mv=2mv1+mv0②设弹簧的弹性势能为Ep,从细线断开到C与弹簧分开的过程中机械能守恒,有1 2(3m)v2+Ep=12(2m)v21+12mv20③由①②③式得弹簧所释放的势能为Ep=13mv20④【针对练习】1.(多选)质量为M、内壁间距为L的箱子静止于光滑的水平面上,箱子中间有一质量为m 的小物块,小物块与箱子底板间的动摩擦因数为μ.初始时小物块停在箱子正中间.如图所示.现给小物块一水平向右的初速度v,小物块与箱壁碰撞N次后恰又回到箱子正中间,并与箱子保持相对静止.设碰撞都是弹性的,则整个过程中,系统损失的动能为( )图1 图2A. 12mv2 B.12mMm+Mv2 C.12NμmgL D.NμmgL解析小物块与箱子作用过程中满足动量守恒,小物块最后恰好又回到箱子正中间.二者相对静止,即为共速,设速度为v1,mv=(m+M)v1,系统损失动能ΔEk=12mv2-12(M+m)v21=12Mmv2M+m,A错误、B正确;由于碰撞为弹性碰撞,故碰撞时不损失能量,系统损失的动能等于系统产生的热量,即ΔEk=Q=NμmgL,C错误,D正确.2. 如图2所示,三辆完全相同的平板小车a、b、c成一直线排列,静止在光滑水平面上.c 车上有一小孩跳到b车上,接着又立即从b车跳到a车上.小孩跳离c车和b车时对地水平速度相同.他跳到a车上相对a车保持静止.此后( )A.a、b两车运动速率相等B.a、c两车运动速率相等C.三辆车的速率关系v c>v a>v b D.a、c两车运动方向相同3. 如图所示,小球A系在细线的一端,线的另一端固定在O点,O点到水平面的距离为h.物块B质量是小球的5倍,至于粗糙的水平面上且位于O点正下方,物块与水平面间的动摩擦因数为μ.现拉动小球使线水平伸直,小球由静止开始释放,运动到最低点时与物块发生正碰(碰撞时间极短),反弹后上升至最高点时到水平面的距离为h16.小球与物块均视为质点,不计空气阻力,重力加速度为g,求物块在水平面上滑行的时间t.★要点五动量和能量观点的综合应用【例1】如图所示,在光滑水平面上有一辆质量M=8 kg的平板小车,车上有一个质量m=1.9 kg的木块,木块距小车左端 6 m(木块可视为质点),车与木块一起以v=1 m/s的速度水平向右匀速行驶.一颗质量m0=0.1 kg的子弹以v0=179 m/s的速度水平向左飞来,瞬间击中木块并留在其中.如果木块刚好不从车上掉下来,求木块与平板小车之间的动摩擦因数μ.(g =10 m/s2)解析以子弹和木块组成的系统为研究对象,设子弹射入木块后两者的共同速度为v1,以水平向左为正方向,则由动量守恒有:m0v0-mv=(m+m0)v1①解得v1=8 m/s它们恰好不从小车上掉下来,则它们相对平板小车滑行距离x=6 m时它们跟小车具有共同速度v2,则由动量守恒定律有(m+m0)v1-Mv=(m+m0+M)v2②解得v2=0.8 m/s由能量守恒定律有μ(m0+m)gx=12(m+m0)v21+12Mv2-12(m0+m+M)v22③由①②③,解得μ=0.54【例2】如图所示,AOB是光滑水平轨道,BC是半径为R的光滑的1/4固定圆弧轨道,两轨道恰好相切.质量为M的小木块静止在O点,一个质量为m的子弹以某一初速度水平向右射入小木块内,并留在其中和小木块一起运动,且恰能到达圆弧轨道的最高点C(木块和子弹均可以看成质点).求:(1)子弹射入木块前的速度;(2)若每当小木块返回到O点或停止在O点时,立即有相同的子弹射入小木块,并留在其中,则当第9颗子弹射入小木块后,小木块沿圆弧轨道能上升的最大高度为多少?【针对练习】1. 如图所示,光滑的水平地面上有一木板,其左端放有一重物,右方有一竖直的墙.重物质量为木板质量的2倍,重物与木板间的动摩擦因数为μ.使木板与重物以共同的速度v0向右运动,某时刻木板与墙发生弹性碰撞,碰撞时间极短.求木板从第一次与墙碰撞到再次碰撞所经历的时间.设木板足够长,重物始终在木板上.重力加速度为g.解析第一次与墙碰撞后,木板的速度反向,大小不变,此后木板向左做匀减速运动,速度减到0后向右做加速运动,重物向右做匀减速运动,最后木板和重物达到一共同的速度v,设木板的质量为m,重物的质量为2m,取向右为正方向,由动量守恒定律得2mv0-mv0=3mv①设木板从第一次与墙碰撞到和重物具有共同速度v所用的时间为t1,对木板应用动量定理得,2μmgt1=mv-m(-v0)②由牛顿第二定律得2μmg=ma③式中a为木板的加速度在达到共同速度v时,木板离墙的距离l为l=v0t1-12at21④从开始向右做匀速运动到第二次与墙碰撞的时间为t2=lv ⑤所以,木板从第一次与墙碰撞到再次碰撞所经过的时间为t=t1+t2⑥由以上各式得t=4v0 3μg.2. 如图7所示,小球a、b用等长细线悬挂于同一固定点O.让球a静止下垂,将球b向右拉起,使细线水平.从静止释放球b,两球碰后粘在一起向左摆动,此后细线与竖直方向之间的最大偏角为60°.忽略空气阻力,求:(ⅰ)两球a、b的质量之比;(ⅱ)两球在碰撞过程中损失的机械能与球b在碰前的最大动能之比.解析(ⅰ)设球b的质量为m2,细线长为L,球b下落至最低点但未与球a相碰时的速率为v,由机械能守恒定律得m2gL=12m2v2 ①式中g是重力加速度的大小.设球a的质量为m1;在两球碰后的瞬间,两球共同速度为v′,以向左为正.由动量守恒定律得m2v=(m1+m2)v′②设两球共同向左运动到最高处时,细线与竖直方向的夹角为θ,由机械能守恒定律得1 2(m1+m2)v′2=(m1+m2)gL(1-cos θ)③联立①②③式得m1m2=11-cos θ-1 ④代入题给数据得m1m2=2-1 ⑤(ⅱ)两球在碰撞过程中的机械能损失为Q=m2gL-(m1+m2)gL(1-cos θ)⑥联立①⑥式,Q与碰前球b的最大动能E k(E k=12m2v2)之比为QE k=1-m1+m2m2(1-cos θ)⑦联立⑤⑦式,并代入题给数据得QE k=1-22综合练习:1. (多选)如图所示,光滑水平面上小球A和B向同一方向运动,设向右为正方向,已知两小球的质量和运动速度分别为m A=3kg、m B=2kg和vA=4m/s、vB=2m/s.则两将发生碰撞,碰撞后两球的速度可能是()A.v′A=3 m/s、v′B=3.5 m/s B.v′A=3.2 m/s、v′B=3.2 m/sC.v′A=-2 m/s、v′B=11 m/s D.v′A=5 m/s、v′B=0.5 m/s2. 静止在湖面上的船,有两个人分别向相反方向抛出质量为m的相同小球,甲向左抛,乙向右抛,甲先抛,乙后抛,抛出后两球相对于岸的速率相同,下列说法中,正确的是( )(设水的阻力不计).A.两球抛出后,船往左以一定速度运动,抛乙球时,乙球受到的冲量大B.两球抛出后,船往右以一定速度运动,抛甲球时,甲球受到的冲量大C.两球抛出后,船的速度为零,抛甲球和抛乙球过程中受到的冲量大小相等D.两球抛出后,船的速度为零,抛甲球时受到的冲量大解:设小船的质量为M,小球的质量为m,甲球抛出后,根据动量守恒定律有:mv=(M+m)v′,v′的方向向右.乙球抛出后,规定向右为正方向,根据动量守恒定律有:(M+m)v′=mv+Mv″,解得v″为负值,方向向左.根据动量定理得,所受合力的冲量等于动量的变化,对于甲球,动量的变化量为mv,对于乙球动量的变化量为mv-mv′,知甲的动量变化量大于乙球的动量变化量,所以抛出时,人给甲球的冲量比人给乙球的冲量大.故D正确.3. 两名质量相等的滑冰人甲和乙都静止在光滑的水平冰面上.现在,其中一人向另一个人抛出一个篮球,另一人接球后再抛回.如此反复进行几次后,甲和乙最后的速率关系是()A.若甲最先抛球,则一定是v甲>v乙B.若乙最后接球,则一定是v甲>v乙C.只有甲先抛球,乙最后接球,才有v甲>v乙D.无论怎样抛球和接球,都是v甲>v乙解析:系统动量守恒,故最终甲、乙动量大小必相等.谁最后接球谁的质量中包含了球的质量,即质量大,根据动量守恒:m1v1=m2v2,因此最终谁接球谁的速度小.4. 如图所示,水平光滑轨道的宽度和弹簧自然长度均为 d.m2的左边有一固定挡板,m1由图示位置静止释放.当m1与m2第一次相距最近时m1速度为v1,在以后的运动过程中( )A.m1的最小速度是0 B.m1的最小速度是m1-m2 m1+m2v1C.m2的最大速度是v1 D.m2的最大速度是m1m1+m2v15. 如图2所示,甲、乙两船的总质量(包括船、人和货物)分别为10m、12m,两船沿同一直线、同一方向运动,速度分别为2v0、v0.为避免两船相撞,乙船上的人将一质量为m的货物沿水平方向抛向甲船,甲船上的人将货物接住,求抛出货物的最小速度.(不计水的阻力)图2解析:设乙船上的人抛出货物的最小速度大小为v min,抛出货物后船的速度为v1,甲船上的人接到货物后船的速度为v2,由动量守恒定律得12m×v0=11m×v1-m×v min①10m×2v0-m×v min=11m×v2②为避免两船相撞应满足v1=v2③联立①②③式得v min=4v0.④6.如图所示,质量m1=0.3 kg的小车静止在光滑的水平面上,车长L=1.5 m,现有质量m2=0.2 kg可视为质点的物块,以水平向右的速度v0=2 m/s从左端滑上小车,最后在车面上某处与小车保持相对静止,物块与车面间的动摩擦因数μ=0.5,取g=10 m/s2,求(1)物块在车面上滑行的时间t;(2)要使物块不从小车右端滑出,物块滑上小车左端的速度v0'不超过多少。
高三物理动量守恒知识点动量是物体运动的重要属性之一,而动量守恒定律是物理学中一项重要的基本定律。
它在解释和预测物体相互作用时起着至关重要的作用。
高三物理中的动量守恒知识点是学习物理的基础,下面将详细介绍。
一、动量的定义和计算方法动量是物体的物理量,可以用公式 p = mv 来计算,其中 p 表示动量,m 表示物体的质量,v 表示物体的速度。
在动量守恒定律中,最基本的一个概念就是动量的守恒。
当一个物体在一个封闭系统中发生相互作用时,物体的总动量保持不变。
二、动量守恒定律的表达动量守恒定律可以表达为:在一个封闭系统中,物体的总动量在相互作用过程中保持不变。
即如果在一个封闭系统中没有外力作用,物体的动量和总动量守恒。
这是一个非常重要的基本定律,在研究物体相互作用时常常使用。
三、弹性碰撞和完全非弹性碰撞根据动量守恒定律,可以进一步分析物体之间的碰撞。
在弹性碰撞中,物体在碰撞过程中动能守恒,动量守恒,且碰撞后物体会反弹,保持原有的形状。
而在完全非弹性碰撞中,物体在碰撞过程中会发生形变或者粘连,动能不守恒,但动量仍然守恒。
四、动量守恒定律的应用动量守恒定律在实际生活和工程中有着广泛的应用。
例如,汽车发生碰撞时,根据动量守恒定律可以预测碰撞后车辆的速度和动量变化。
此外,动量守恒定律还可以应用于火箭发射、交通信号灯设计等工程领域。
五、动量守恒实验为了加深对动量守恒定律的理解,可以进行一些简单的实验。
例如,可以利用弹簧测力计和滑轨来观察和验证动量守恒定律。
通过调节质量和速度等因素,可以进行不同条件下的实验,观察物体碰撞后的动量变化情况。
六、动量守恒的局限性虽然动量守恒定律在大多数情况下都适用,但在某些特殊情况下可能存在一定的局限性。
例如,在相对论范围内,质量增加的物体速度趋近于光速,动量守恒定律就需要以相对论动量的形式来描述。
综上所述,高三物理中的动量守恒知识点是物理学中非常重要的一部分。
理解和掌握动量的定义、计算方法以及动量守恒定律的表达和应用是学好物理的基础。
高考第一轮复习----动量第四章动量一.动量和冲量1.动量按定义,物体的质量和速度的乘积叫做动量:⑴冲量是描述力的时间积累效应的物理量,是过程量,它与时间相对应。
⑵冲量是矢量,它的方向由力的方向打算(不能说和力的方向相同)。
假如力的方向在作用时间内保持不变,那么冲量的方向就和力的方向相同。
⑶高中阶段只要求会用1.动量定理物体所受合外力的冲量等于物体的动量变化。
既例2. 以初速度1.动量守恒定律一个系统不受外力或者受外力之和为零,这个系统的总动量保持不变。
即:2.动量守恒定律成立的条件⑴系统不受外力或者所受外力之和为零;⑵系统受外力,但外力远小于内力,可以忽视不计;⑶系统在某一个方向上所受的合外力为零,则该方向上动量守恒。
⑷全过程的某一阶段系统受的合外力为零,则该阶段系统动量守恒。
3.动量守恒定律的表达形式除了,即4.动量守恒定律的重要意义从现代物理学的理论高度来熟悉,动量守恒定律是物理学中最基本的普适原理之一。
(另一个最基本的普适原理就是能量守恒定律。
)从科学实践的角度来看,迄今为止,人们尚未发觉动量守恒定律有任何例外。
相反,每当在试验中观看到好像是违反动量守恒定律的现象时,物理学家们就会提出新的假设来补救,最终总是以有新的发觉而成功告终。
例如静止的原子核发生β衰变放出电子时,按动量守恒,反冲核应当沿电子的反方向运动。
但云室照片显示,两者径迹不在一条直线上。
为解释这一反常现象,1930年泡利提出了中微子假说。
由于中微子既不带电又几乎无质量,在试验中极难测量,直到1956年人们才首次证明白中微子的存在。
(2000年高考综合题23 ②就是依据这一历史事实设计的)。
又如人们发觉,两个运动着的带电粒子在电磁相互作用下动量好像也是不守恒的。
这时物理学家把动量的概念推广到了电磁场,把电磁场的动量也考虑进去,总动量就又守恒了。
四、动量守恒定律的应用1.碰撞Ⅰ Ⅱ Ⅲ⑶弹簧完全没有弹性。
Ⅰ→Ⅱ系统动能削减全部转化为内能,Ⅱ状态系统动能仍和⑴相同,但没有弹性势能;由于没有弹性,此类碰撞问题要考虑三个因素:①碰撞中系统动量守恒;②碰撞过程中系统动能不增加;③碰前、碰后两个物体的位置关系(不穿越)和速度大小应保证其挨次合理。
高三物理第一轮复习知识点:动量守恒定律
高三物理第一轮复习知识点:动量守恒定律
动量守恒定律是说系统内部物体间的相互作用只能改
变每个物体的动量,而不能改变系统的总动量,在系统运动变化过程中的任一时刻,单个物体的动量可以不同,但系统的总动量相同,查字典物理网小编整理了高三物理第一轮复习知识点:动量守恒定律,供参考。
动量守恒定律知识点总结
1、动量守恒定律的条件:系统所受的总冲量为零(不受力、所受外力的矢量和为零或外力
的作用远小于系统内物体间的相互作用力),即系统所受外力的矢量和为零。
(碰撞、爆炸、反冲)
注意:内力的冲量对系统动量是否守恒没有影响,但可改变系统内物体的动量。
内力的冲量是系统内物体间动量传递的原因,而外力的冲量是改变系统总动量的原因。
2、动量守恒定律的表达式m1v1+m2v2=m1v1/+m2v2/(规定正方向)△p1=—△p2/
3、某一方向动量守恒的条件:系统所受外力矢量和不为零,但在某一方向上的力为零,则系统在这个方向上的动量守恒。
必须注意区别总动量守恒与某一方向动量守恒。
4、碰撞
(1)完全非弹性碰撞:获得共同速度,动能损失最多动量守恒;(2)弹性碰撞:动量守恒,碰撞前后动能相等;动量守
合外力是否为零,或合外力的冲量是否可以忽略不计.
(3)选取正方向,并将系统内的物体始、末状态的动量冠以正、负号,以表示动量的方向.
以上是查字典物理网小编整理的高三物理第一轮复习知识点:动量守恒定律,希望小编整理的高三物理第一轮复习计划对同学们的复习有帮助。