城中区一中2018-2019学年高三上学期11月月考数学试卷含答案
- 格式:pdf
- 大小:376.65 KB
- 文档页数:6
上城区第一中学2018-2019学年高三上学期11月月考数学试卷含答案一、选择题1. 函数f (x )=x 2﹣x ﹣2,x ∈[﹣5,5],在定义域内任取一点x 0,使f (x 0)≤0的概率是( )A.B .C .D.2. 执行如图所示的程序框图,若输入的分别为0,1,则输出的()A .4B .16C .27D .363. 若a >b ,则下列不等式正确的是( )A .B .a 3>b 3C .a 2>b 2D .a >|b|4. 已知tanx=,则sin 2(+x )=( )A .B .C .D .5. 设双曲线焦点在y 轴上,两条渐近线为,则该双曲线离心率e=()A .5B .C .D .6. 已知函数f (x )的图象如图,则它的一个可能的解析式为()A .y=2B .y=log 3(x+1)C .y=4﹣D .y=班级_______________ 座号______ 姓名_______________ 分数__________________________________________________________________________________________________________________7. 已知函数f (x )=x (1+a|x|).设关于x 的不等式f (x+a )<f (x )的解集为A ,若,则实数a 的取值范围是( )A .B .C .D .8. 设F 1,F 2分别是椭圆+=1(a >b >0)的左、右焦点,过F 2的直线交椭圆于P ,Q 两点,若∠F 1PQ=60°,|PF 1|=|PQ|,则椭圆的离心率为( )A .B .C .D .9. 数列{a n }满足a n+2=2a n+1﹣a n ,且a 2014,a 2016是函数f (x )=+6x ﹣1的极值点,则log 2(a 2000+a 2012+a 2018+a 2030)的值是( )A .2B .3C .4D .510.已知函数,关于的方程()有3个相异的实数根,则的()x e f x x=x 2()2()10f x af x a -+-=a R Îa 取值范围是()A .B .C .D .21(,)21e e -+¥-21(,)21e e --¥-21(0,21e e --2121e e ìü-ïïí-ïïîþ【命题意图】本题考查函数和方程、导数的应用等基础知识,意在考查数形结合思想、综合分析问题解决问题的能力.11.抛物线y=﹣8x 2的准线方程是( )A.y=B .y=2C .x=D .y=﹣212.设m ,n 是正整数,多项式(1﹣2x )m +(1﹣5x )n 中含x 一次项的系数为﹣16,则含x 2项的系数是( )A .﹣13B .6C .79D .37二、填空题13.已知函数的一条对称轴方程为,则函数的最大值为21()sin cos sin 2f x a x x x =-+6x π=()f x ___________.【命题意图】本题考查三角变换、三角函数的对称性与最值,意在考查逻辑思维能力、运算求解能力、转化思想与方程思想.14.若与共线,则y= .15.已知实数x ,y 满足,则目标函数z=x ﹣3y 的最大值为 16.【2017-2018第一学期东台安丰中学高三第一次月考】函数的单调递增区间为__________.()2ln f x x x =-17.设函数,其中[x]表示不超过x 的最大整数.若方程f (x )=ax 有三个不同的实数根,则实数a 的取值范围是 . 18.若点p (1,1)为圆(x ﹣3)2+y 2=9的弦MN 的中点,则弦MN 所在直线方程为 三、解答题19.在四棱锥E ﹣ABCD 中,底面ABCD 是边长为1的正方形,AC 与BD 交于点O ,EC ⊥底面ABCD ,F 为BE 的中点.(Ⅰ)求证:DE ∥平面ACF ;(Ⅱ)求证:BD ⊥AE.20.(本小题满分12分)如图,在直二面角中,四边形是矩形,,,是以为直角顶C AB E --ABEF 2=AB 32=AF ABC ∆A 点的等腰直角三角形,点是线段上的一点,.P BF 3=PF (1)证明:面;⊥FB PAC (2)求异面直线与所成角的余弦值.PC AB PCABEF21.设点P的坐标为(x﹣3,y﹣2).(1)在一个盒子中,放有标号为1,2,3的三张卡片,现在从盒子中随机取出一张卡片,记下标号后把卡片放回盒中,再从盒子中随机取出一张卡片记下标号,记先后两次抽取卡片的标号分别为x、y,求点P在第二象限的概率;(2)若利用计算机随机在区间上先后取两个数分别记为x、y,求点P在第三象限的概率.22.已知数列{a n}满足a1=,a n+1=a n+,数列{b n}满足b n=(Ⅰ)证明:b n∈(0,1)(Ⅱ)证明:=(Ⅲ)证明:对任意正整数n有a n.23.(本小题满分12分)2014年7月16日,中国互联网络信息中心发布《第三十四次中国互联网发展状况报告》,报告显示:我国网3.32络购物用户已达亿.为了了解网购者一次性购物金额情况,某统计部门随机抽查了6月1日这一天1000.4名网购者的网购情况,得到如下数据统计表.已知网购金额在2000元以上(不含2000元)的频率为.(Ⅰ)确定,,,的值;x y p q (Ⅱ)为进一步了解网购金额的多少是否与网龄有关,对这100名网购者调查显示:购物金额在2000元以上的网购者中网龄3年以上的有35人,购物金额在2000元以下(含2000元)的网购者中网龄不足3年的有20人.①请将列联表补充完整;网龄3年以上网龄不足3年合计购物金额在2000元以上35购物金额在2000元以下20合计100②并据此列联表判断,是否有%的把握认为网购金额超过2000元与网龄在三年以上有关?97.5参考数据:()2k P K ≥0.150.100.050.0250.0100.0050.001k2.0722.7063.8415.0246.6357.87910.828(参考公式:,其中)()()()()()22n ad bc a b c d a c b d -K =++++n a b c d =+++24.已知椭圆E 的长轴的一个端点是抛物线y 2=4x 的焦点,离心率是.(1)求椭圆E 的标准方程;(2)已知动直线y=k (x+1)与椭圆E 相交于A 、B 两点,且在x 轴上存在点M ,使得与k 的取值无关,试求点M 的坐标.上城区第一中学2018-2019学年高三上学期11月月考数学试卷含答案(参考答案)一、选择题1.【答案】C【解析】解:∵f(x)≤0⇔x2﹣x﹣2≤0⇔﹣1≤x≤2,∴f(x0)≤0⇔﹣1≤x0≤2,即x0∈[﹣1,2],∵在定义域内任取一点x0,∴x0∈[﹣5,5],∴使f(x0)≤0的概率P==故选C【点评】本题考查了几何概型的意义和求法,将此类概率转化为长度、面积、体积等之比,是解决问题的关键 2.【答案】D【解析】【知识点】算法和程序框图【试题解析】A=0,S=1,k=1,A=1,S=1,否;k=3,A=4,S=4,否;k=5,A=9,S=36,是,则输出的36。
城关区一中2018-2019学年高三上学期11月月考数学试卷含答案一、选择题1. 已知函数 f (x )的定义域为R ,其导函数f ′(x )的图象如图所示,则对于任意x 1,x 2∈R ( x 1≠x 2),下列结论正确的是( )①f (x )<0恒成立;②(x 1﹣x 2)[f (x 1)﹣f (x 2)]<0;③(x 1﹣x 2)[f (x 1)﹣f (x 2)]>0;④;⑤.A .①③B .①③④C .②④D .②⑤2. 设x ∈R ,则x >2的一个必要不充分条件是( )A .x >1B .x <1C .x >3D .x <33. 函数f (x )=e ln|x|+的大致图象为()A .B .C .D .4. 已知实数x ,y 满足,则目标函数z=x ﹣y 的最小值为( )A .﹣2B .5C .6D .75. 已知命题p :∀x ∈R ,2x <3x ;命题q :∃x ∈R ,x 3=1﹣x 2,则下列命题中为真命题的是( )A .p ∧qB .¬p ∧qC .p ∧¬qD .¬p ∧¬q6. 圆心为(1,1)且过原点的圆的方程是()A .2=1B .2=1C .2=2D .2=2班级_______________ 座号______ 姓名_______________ 分数__________________________________________________________________________________________________________________7. 现有16张不同的卡片,其中红色、黄色、蓝色、绿色卡片各4张,从中任取3张,要求取出的这些卡片不能是同一种颜色,且红色卡片至多1张,不同取法的种数为( )A .232B .252C .472D .4848. 已知e 是自然对数的底数,函数f (x )=e x +x ﹣2的零点为a ,函数g (x )=lnx+x ﹣2的零点为b ,则下列不等式中成立的是( )A .a <1<b B .a <b <1C .1<a <bD .b <1<a9. 已知,,其中是虚数单位,则的虚部为( )i z 311-=i z +=32i 21z z A .B .C .D .1-54i -i 54【命题意图】本题考查复数及共轭复数的概念,复数除法的运算法则,主要突出对知识的基础性考查,属于容易题.10的倾斜角为( )10y -+=A .B .C .D .150o120o60o30o11.两座灯塔A 和B 与海洋观察站C 的距离都等于a km ,灯塔A 在观察站C 的北偏东20°,灯塔B 在观察站C 的南偏东40°,则灯塔A 与灯塔B 的距离为( )A .akmB .akm C .2akmD . akm12.已知函数有两个零点,则实数的取值范围是( )1()1x f x ae x a -=+--a A .B .C .D .[1,1]-[0,1]{1}(0,1]-U {1}[0,1)-U 二、填空题13.曲线y =x 2+3x 在点(-1,-2)处的切线与曲线y =ax +ln x 相切,则a =________.14.数列{ a n }中,a 1=2,a n +1=a n +c (c 为常数),{a n }的前10项和为S 10=200,则c =________.15.函数y=lgx 的定义域为 .16.如图,正方形的边长为1,它是水平放置的一个平面图形的直观图,则原图的''''O A B C cm 周长为.1111]17.已知f (x )=x (e x +a e -x )为偶函数,则a =________.18.抛物线的准线与双曲线的两条渐近线所围成的三角形面积为__________三、解答题19.已知函数f (x )=|2x ﹣a|+|x ﹣1|.(1)当a=3时,求不等式f (x )≥2的解集;(2)若f (x )≥5﹣x 对∀x ∈R 恒成立,求实数a 的取值范围.20.设函数f (x )=|x ﹣a|﹣2|x ﹣1|.(Ⅰ)当a=3时,解不等式f (x )≥1;(Ⅱ)若f (x )﹣|2x ﹣5|≤0对任意的x ∈[1,2]恒成立,求实数a 的取值范围.21.(本小题满分12分)某校高二奥赛班名学生的物理测评成绩(满分120分)分布直方图如下,已知分数在100-110的学生N 数有21人.(1)求总人数和分数在110-115分的人数;N (2)现准备从分数在110-115的名学生(女生占)中任选3人,求其中恰好含有一名女生的概率;13(3)为了分析某个学生的学习状态,对其下一阶段的学生提供指导性建议,对他前7次考试的数学成绩(满分150分),物理成绩进行分析,下面是该生7次考试的成绩.y 数学888311792108100112物理949110896104101106已知该生的物理成绩与数学成绩是线性相关的,若该生的数学成绩达到130分,请你估计他的物理y 成绩大约是多少?附:对于一组数据,……,其回归线的斜率和截距的最小二乘估计分11(,)u v 22(,)u v (,)n n u v v u αβ=+别为:,.^121()()niii nii u u v v u u β==--=-∑∑^^a v u β=-22.为了了解湖南各景点在大众中的熟知度,随机对15~65岁的人群抽样了n人,回答问题“湖南省有哪几个著名的旅游景点?”统计结果如下图表.组号分组回答正确的人数回答正确的人数占本组的频率第1组[15,25)a0.5第2组[25,35)18x第3组[35,45)b0.9第4组[45,55)90.36第5组[55,65]3y(Ⅰ)分别求出a,b,x,y的值;(Ⅱ)从第2,3,4组回答正确的人中用分层抽样的方法抽取6人,求第2,3,4组每组各抽取多少人?(Ⅲ)在(Ⅱ)抽取的6人中随机抽取2人,求所抽取的人中恰好没有第3组人的概率.23.某单位为了了解用电量y度与气温x℃之间的关系,随机统计了某4天的用电量与当天气温.气温(℃)141286用电量(度)22263438(1)求线性回归方程;()(2)根据(1)的回归方程估计当气温为10℃时的用电量.附:回归直线的斜率和截距的最小二乘法估计公式分别为:=,=﹣. 24.某电脑公司有6名产品推销员,其工作年限与年推销金额的数据如表:推销员编号12345工作年限x/年35679推销金额y/万元23345(1)以工作年限为自变量x,推销金额为因变量y,作出散点图;(2)求年推销金额y关于工作年限x的线性回归方程;(3)若第6名推销员的工作年限为11年,试估计他的年推销金额.城关区一中2018-2019学年高三上学期11月月考数学试卷含答案(参考答案)一、选择题题号12345678910答案D A CABDCABC题号1112答案DD二、填空题13.14.15. {x|x >0} . 16.8cm 17.18.三、解答题19. 20.21.(1),;(2);(3).60N =6n =815P =11522. 23. 24.。
城区高级中学2018-2019学年高三上学期11月月考数学试卷含答案一、选择题1. 如果定义在R 上的函数)(x f 满足:对于任意21x x ≠,都有)()(2211x f x x f x +)()(1221x f x x f x +>,则称)(x f 为“H 函数”.给出下列函数:①13++-=x x y ;②)cos sin (23x x x y --=;③1+=x e y ;④⎩⎨⎧=≠=00||ln x x x y ,其中“H 函数”的个数是( )A .4B .3C .2D .12. 已知定义在区间[0,2]上的函数y=f (x )的图象如图所示,则y=f (2﹣x )的图象为( )A. B. C. D.3. 若等式(2x ﹣1)2014=a 0+a 1x+a 2x 2+…+a 2014x 2014对于一切实数x 都成立,则a 0+1+a 2+…+a 2014=( )A. B. C. D .04. 下列说法正确的是( )A.圆锥的侧面展开图是一个等腰三角形;B.棱柱即是两个底面全等且其余各面都是矩形的多面体;C.任何一个棱台都可以补一个棱锥使他们组成一个新的棱锥;D.通过圆台侧面上的一点,有无数条母线.5. 若动点A ,B 分别在直线l 1:x+y ﹣7=0和l 2:x+y ﹣5=0上移动,则AB 的中点M 到原点的距离的最小值为( ) A .3B .2C .3D .46. 已知直线mx ﹣y+1=0交抛物线y=x 2于A 、B 两点,则△AOB ( )A .为直角三角形B .为锐角三角形C .为钝角三角形D .前三种形状都有可能7. 在正方体ABCD ﹣A 1B 1C 1D 1中,点E ,F 分别是棱AB ,BB 1的中点,则异面直线EF 和BC 1所成的角是( )班级_______________ 座号______ 姓名_______________ 分数__________________________________________________________________________________________________________________A .60°B .45°C .90°D .120°8. “p q ∨为真”是“p ⌝为假”的( )条件A .充分不必要B .必要不充分C .充要D .既不充分也不必要 9. 随机变量x 1~N (2,1),x 2~N (4,1),若P (x 1<3)=P (x 2≥a ),则a=( ) A .1 B .2 C .3 D .410.下列各组函数中,表示同一函数的是( )A 、()f x =x 与()f x =2x xB 、()1f x x =- 与()f x =C 、()f x x =与()f x = D 、()f x x =与2()f x =11.已知α,β为锐角△ABC 的两个内角,x ∈R ,f (x )=()|x ﹣2|+()|x ﹣2|,则关于x 的不等式f (2x ﹣1)﹣f (x+1)>0的解集为( )A .(﹣∞,)∪(2,+∞)B .(,2)C .(﹣∞,﹣)∪(2,+∞)D .(﹣,2)12.在ABC ∆中,222sin sin sin sin sin A B C B C ≤+-,则A 的取值范围是( )1111] A .(0,]6πB .[,)6ππ C. (0,]3π D .[,)3ππ 二、填空题13.若正方形P 1P 2P 3P 4的边长为1,集合M={x|x=且i ,j ∈{1,2,3,4}},则对于下列命题:①当i=1,j=3时,x=2; ②当i=3,j=1时,x=0;③当x=1时,(i ,j )有4种不同取值; ④当x=﹣1时,(i ,j )有2种不同取值; ⑤M 中的元素之和为0.其中正确的结论序号为 .(填上所有正确结论的序号)14.某高中共有学生1000名,其中高一年级共有学生380人,高二年级男生有180人.如果在全 校学生中抽取1名学生,抽到高二年级女生的概率为19.0,先采用分层抽样(按年级分层)在全校抽取 100人,则应在高三年级中抽取的人数等于 .15.如图,在三棱锥P ABC -中,PA PB PC ==,PA PB ⊥,PA PC ⊥,PBC △为等边三角形,则PC 与平面ABC 所成角的正弦值为______________.【命题意图】本题考查空间直线与平面所成角的概念与计算方法,意在考查学生空间想象能力和计算能力. 16.图中的三个直角三角形是一个体积为20的几何体的三视图,则h =__________.17.运行如图所示的程序框图后,输出的结果是18.已知一组数据1x ,2x ,3x ,4x ,5x 的方差是2,另一组数据1ax ,2ax ,3ax ,4ax ,5ax (0a >)的标准差是a = .三、解答题19.(本小题满分12分)设函数()()2741201x x f x a a a --=->≠且.(1)当a =()0f x <的解集; (2)当[]01x ∈,时,()0f x <恒成立,求实数的取值范围.20.为了预防流感,某学校对教室用药熏消毒法进行消毒.已知药物释放过程中,室内每立方米空气中的含药量y (毫克)与时间t (小时)成正比;药物释放完毕后,y 与t 的函数关系式为1()16t ay -=(a 为常数),如图所示.据图中提供的信息,回答下列问题:(1)写出从药物释放开始,每立方米空气中的含药量y (毫克)与时间t (小时)之间的函数关系式; (2)据测定,当空气中每立方米的含药量降低到0.25毫克以下时,学生方可进教室。
城区实验中学2018-2019学年高三上学期11月月考数学试卷含答案一、选择题1. 曲线y=在点(1,﹣1)处的切线方程为( )A .y=x ﹣2B .y=﹣3x+2C .y=2x ﹣3D .y=﹣2x+12. 如果定义在R 上的函数)(x f 满足:对于任意21x x ≠,都有)()(2211x f x x f x +)()(1221x f x x f x +>,则称)(x f 为“H 函数”.给出下列函数:①13++-=x x y ;②)cos sin (23x x x y --=;③1+=x e y ;④⎩⎨⎧=≠=000||ln x x x y ,其中“H 函数”的个数是( )A .4B .3C .2D .13. 下列函数中,既是偶函数又在(0,)+∞单调递增的函数是( )A .3y x =B . 21y x =-+C .||1y x =+D .2x y -=4. 已知 m 、n 是两条不重合的直线,α、β、γ是三个互不重合的平面,则下列命题中 正确的是( ) A .若 m ∥α,n ∥α,则 m ∥n B .若α⊥γ,β⊥γ,则 α∥βC .若m ⊥α,n ⊥α,则 m ∥nD .若 m ∥α,m ∥β,则 α∥β5. 在《张邱建算经》中有一道题:“今有女子不善织布,逐日所织的布比同数递减,初日织五尺, 末一日织一尺,计织三十日”,由此推断,该女子到第10日时,大约已经完成三十日织布总量的( ) A .33% B .49% C .62% D .88% 6. 已知函数f (x )=lnx+2x ﹣6,则它的零点所在的区间为( ) A .(0,1) B .(1,2) C .(2,3) D .(3,4) 7. 如图,已知平面=,.是直线上的两点,是平面内的两点,且,,,.是平面上的一动点,且有,则四棱锥体积的最大值是( )A .B .C .D .8. 已知a >b >0,那么下列不等式成立的是( )A .﹣a >﹣bB .a+c <b+cC .(﹣a )2>(﹣b )2D.9. 如图所示是一样本的频率分布直方图,则由图形中的数据,可以估计众数与中位数分别为( )班级_______________ 座号______ 姓名_______________ 分数__________________________________________________________________________________________________________________A.10 13 B.12.5 12 C.12.5 13 D.10 1510.已知圆C:x2+y2﹣2x=1,直线l:y=k(x﹣1)+1,则l与C的位置关系是()A.一定相离 B.一定相切C.相交且一定不过圆心D.相交且可能过圆心11.(m+1)x2﹣(m﹣1)x+3(m﹣1)<0对一切实数x恒成立,则实数m的取值范围是()A.(1,+∞)B.(﹣∞,﹣1)C.D.12.已知曲线C1:y=e x上一点A(x1,y1),曲线C2:y=1+ln(x﹣m)(m>0)上一点B(x2,y2),当y1=y2时,对于任意x1,x2,都有|AB|≥e恒成立,则m的最小值为()A.1 B.C.e﹣1 D.e+1二、填空题13.不等式的解集为.14.已知f(x)=,若不等式f(x﹣2)≥f(x)对一切x∈R恒成立,则a的最大值为.15.设a抛掷一枚骰子得到的点数,则方程x2+ax+a=0有两个不等实数根的概率为.16.平面内两定点M(0,一2)和N(0,2),动点P(x,y)满足,动点P的轨迹为曲线E,给出以下命题:①∃m,使曲线E过坐标原点;②对∀m,曲线E与x轴有三个交点;③曲线E只关于y轴对称,但不关于x轴对称;④若P、M、N三点不共线,则△PMN周长的最小值为+4;⑤曲线E上与M,N不共线的任意一点G关于原点对称的另外一点为H,则四边形GMHN的面积不大于m。
上城区一中2018-2019学年高三上学期11月月考数学试卷含答案一、选择题1. 设函数f (x )=则不等式f (x )>f (1)的解集是( )A .(﹣3,1)∪(3,+∞)B .(﹣3,1)∪(2,+∞)C .(﹣1,1)∪(3,+∞)D .(﹣∞,﹣3)∪(1,3)2. 如图F 1、F 2是椭圆C 1:+y 2=1与双曲线C 2的公共焦点,A 、B 分别是C 1、C 2在第二、四象限的公共点,若四边形AF 1BF 2为矩形,则C 2的离心率是( )A .B .C .D .3. 若复数z 满足iz=2+4i ,则在复平面内,z 对应的点的坐标是( ) A .(2,4) B .(2,﹣4)C .(4,﹣2)D .(4,2)4. 已知回归直线的斜率的估计值是1.23,样本点的中心为(4,5),则回归直线的方程是( )A . =1.23x+4B . =1.23x ﹣0.08C . =1.23x+0.8D . =1.23x+0.08 5. 在ABC ∆中,22tan sin tan sin A B B A =,那么ABC ∆一定是( )A .锐角三角形B .直角三角形C .等腰三角形D .等腰三角形或直角三角形6. 已知幂函数y=f (x )的图象过点(,),则f (2)的值为( )A .B .﹣C .2D .﹣27. 执行如图所示的程序框图,若输出的S=88,则判断框内应填入的条件是( )班级_______________ 座号______ 姓名_______________ 分数__________________________________________________________________________________________________________________A.k>7 B.k>6 C.k>5 D.k>48.5名运动员争夺3项比赛冠军(每项比赛无并列冠军),获得冠军的可能种数为()A.35B.C.D.539.已知a>b>0,那么下列不等式成立的是()A.﹣a>﹣b B.a+c<b+c C.(﹣a)2>(﹣b)2D.10.在10201511xx⎛⎫++⎪⎝⎭的展开式中,含2x项的系数为()(A)10(B )30(C)45(D)12011.设a=lge,b=(lge)2,c=lg,则()A.a>b>c B.c>a>b C.a>c>b D.c>b>a12.设函数的集合,平面上点的集合,则在同一直角坐标系中,P中函数的图象恰好经过Q中两个点的函数的个数是A4B6C8D10二、填空题13.设S n 是数列{a n }的前n 项和,且a 1=﹣1, =S n .则数列{a n }的通项公式a n = .14.意大利著名数学家斐波那契在研究兔子繁殖问题时,发现有这样一组数:1,1,2,3,5,8,13,…其中从第三个数起,每一个数都等于他前面两个数的和.该数列是一个非常美丽、和谐的数列,有很多奇妙的属性.比如:随着数列项数的增加,前一项与后一项之比越逼近黄金分割0.6180339887….人们称该数列{a n }为“斐波那契数列”.若把该数列{a n }的每一项除以4所得的余数按相对应的顺序组成新数列{b n },在数列{b n }中第2016项的值是 .15.【泰州中学2018届高三10月月考】设函数()f x '是奇函数()f x 的导函数,()10f -=,当0x >时,()()0xf x f x -<',则使得()0f x >成立的x 的取值范围是__________.16.函数y=sin 2x ﹣2sinx 的值域是y ∈ .17.由曲线y=2x 2,直线y=﹣4x ﹣2,直线x=1围成的封闭图形的面积为 .18.抛物线y=4x 2的焦点坐标是 .三、解答题19.已知函数f (x )=,求不等式f (x )<4的解集.20.如图,在四棱锥P ﹣ABCD 中,平面PAD ⊥平面ABCD ,AB=AD ,∠BAD=60°,E 、F 分别是AP 、AD 的中点,求证:(1)直线EF ∥平面PCD ; (2)平面BEF ⊥平面PAD .21.△ABC 的三个内角A 、B 、C 所对的边分别为a 、b 、c ,asinAsinB+bcos 2A=a .(Ⅰ)求;(Ⅱ)若c 2=b 2+a 2,求B .22.(本小题满分12分)某超市销售一种蔬菜,根据以往情况,得到每天销售量的频率分布直方图如下:(Ⅰ)求频率分布直方图中的a 的值,并估计每天销售量的中位数;(Ⅱ)这种蔬菜每天进货当天必须销售,否则只能作为垃圾处理.每售出1千克蔬菜获利4元,未售出的蔬菜,每千克亏损2元.假设同一组中的每个数据可用该组区间的中点值代替,估计当超市每天的进货量为75千克时获利的平均值.23.已知斜率为1的直线l 经过抛物线y 2=2px (p >0)的焦点F ,且与抛物线相交于A ,B 两点,|AB|=4.(I )求p 的值;(II )若经过点D (﹣2,﹣1),斜率为k 的直线m 与抛物线有两个不同的公共点,求k 的取值范围.千克24.已知函数f(x)=log a(x2+2),若f(5)=3;(1)求a的值;(2)求的值;(3)解不等式f(x)<f(x+2).上城区一中2018-2019学年高三上学期11月月考数学试卷含答案(参考答案)一、选择题13. .14. 0 .15.()(),10,1-∞-⋃ 16. [﹣1,3] .17. .18. .三、解答题19. 20. 21.22.(本小题满分12分)解:本题考查频率分布直方图,以及根据频率分布直方图估计中位数与平均数. (Ⅰ)由(0.0050.0150.020.025)101a ++++⨯=得0.035a = (3分)每天销售量的中位数为0.15701074.30.35+⨯=千克 (6分) (Ⅱ)若当天的销售量为[50,60),则超市获利554202180⨯-⨯=元;若当天的销售量为[60,70),则超市获利654102240⨯-⨯=元; 若当天的销售量为[70,100),则超市获利754300⨯=元, (10分) ∴获利的平均值为0.151800.22400.65300270⨯+⨯+⨯=元. (12分) 23.24.。
城区高级中学2018-2019学年高三上学期11月月考数学试卷含答案一、选择题1. 给出下列命题:①在区间(0,+∞)上,函数y=x ﹣1,y=,y=(x ﹣1)2,y=x 3中有三个是增函数;②若log m 3<log n 3<0,则0<n <m <1;③若函数f (x )是奇函数,则f (x ﹣1)的图象关于点A (1,0)对称;④若函数f (x )=3x ﹣2x ﹣3,则方程f (x )=0有2个实数根.其中假命题的个数为( )A .1B .2C .3D .42. 下列函数中,与函数的奇偶性、单调性相同的是( )()3x xe ef x --=A .B .C . D.(ln y x =+2y x =tan y x =xy e =3. 袋内分别有红、白、黑球3,2,1个,从中任取2个,则互斥而不对立的两个事件是( )A .至少有一个白球;都是白球B .至少有一个白球;至少有一个红球C .恰有一个白球;一个白球一个黑球D .至少有一个白球;红、黑球各一个4. 设m ,n 表示两条不同的直线,α、β表示两个不同的平面,则下列命题中不正确的是( )A .m ⊥α,m ⊥β,则α∥βB .m ∥n ,m ⊥α,则n ⊥αC .m ⊥α,n ⊥α,则m ∥nD .m ∥α,α∩β=n ,则m ∥n5. (m+1)x 2﹣(m ﹣1)x+3(m ﹣1)<0对一切实数x 恒成立,则实数m 的取值范围是( )A .(1,+∞)B .(﹣∞,﹣1)C .D . 6. 已知曲线的焦点为,过点的直线与曲线交于两点,且,则2:4C y x =F F C ,P Q 20FP FQ +=u u u r u u u r r OPQ ∆的面积等于()A .B .CD7. 双曲线4x 2+ty 2﹣4t=0的虚轴长等于( )A .B .﹣2tC .D .48. 已知命题和命题,若为真命题,则下面结论正确的是( )p p q ∧A .是真命题B .是真命题C .是真命题D .是真命题p ⌝q ⌝p q ∨()()p q ⌝∨⌝9. 已知命题“如果﹣1≤a ≤1,那么关于x 的不等式(a 2﹣4)x 2+(a+2)x ﹣1≥0的解集为∅”,它的逆命题、否命题、逆否命题及原命题中是假命题的共有( )A .0个B .1个C .2个D .4个班级_______________ 座号______ 姓名_______________ 分数__________________________________________________________________________________________________________________10.已知直线x+ay ﹣1=0是圆C :x 2+y 2﹣4x ﹣2y+1=0的对称轴,过点A (﹣4,a )作圆C 的一条切线,切点为B ,则|AB|=( )A .2B .6C .4D .211.下列函数中,在其定义域内既是奇函数又是减函数的是()A .y=|x|(x ∈R )B .y=(x ≠0)C .y=x (x ∈R )D .y=﹣x 3(x ∈R )12.关于函数,下列说法错误的是( )2()ln f x x x=+(A )是的极小值点2x =()f x ( B ) 函数有且只有1个零点 ()y f x x =- (C )存在正实数,使得恒成立k ()f x kx >(D )对任意两个正实数,且,若,则12,x x 21x x >12()()f x f x =124x x +>二、填空题13.已知点A (2,0),点B (0,3),点C 在圆x 2+y 2=1上,当△ABC 的面积最小时,点C 的坐标为 . 14.设不等式组表示的平面区域为M ,若直线l :y=k (x+2)上存在区域M 内的点,则k 的取值范围是 .15.将一枚质地均匀的骰子先后抛掷两次,若第一次朝上一面的点数为a ,第二次朝上一面的点数为b ,则函数y=ax 2﹣2bx+1在(﹣∞,2]上为减函数的概率是 .16.函数y=lgx 的定义域为 .17.如图是函数y=f (x )的导函数y=f ′(x )的图象,对此图象,有如下结论:①在区间(﹣2,1)内f (x )是增函数;②在区间(1,3)内f (x )是减函数;③在x=2时,f (x )取得极大值;④在x=3时,f (x )取得极小值.其中正确的是 .18.在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,若△ABC 不是直角三角形,则下列命题正确的是 (写出所有正确命题的编号)①tanA•tanB•tanC=tanA+tanB+tanC②tanA+tanB+tanC的最小值为3③tanA,tanB,tanC中存在两个数互为倒数④若tanA:tanB:tanC=1:2:3,则A=45°⑤当tanB﹣1=时,则sin2C≥sinA•sinB.三、解答题19.如图所示,已知在四边形ABCD中,AD⊥CD,AD=5,AB=7,BD=8,∠BCD=135°.(1)求∠BDA的大小(2)求BC的长.20.已知等差数列{a n}的首项为a,公差为b,且不等式log2(ax2﹣3x+6)>2的解集为{x|x<1或x>b}.(Ⅰ)求数列{a n}的通项公式及前n项和S n公式;(Ⅱ)求数列{}的前n项和T n.21.已知函数的图象在y轴右侧的第一个最大值点和最小值点分别为(π,2)和(4π,﹣2).(1)试求f(x)的解析式;(2)将y=f(x)图象上所有点的横坐标缩短到原来的(纵坐标不变),然后再将新的图象向轴正方向平移个单位,得到函数y=g(x)的图象.写出函数y=g(x)的解析式.22.如图,AB 是⊙O 的直径,AC 是弦,∠BAC 的平分线AD 交⊙O 于点D ,DE ⊥AC ,交AC 的延长线于点E ,OE 交AD 于点F .(1)求证:DE 是⊙O 的切线.(2)若,求的值.23.(本小题满分12分)数列满足:,,且.{}n b 122n n b b +=+1n n n b a a +=-122,4a a ==(1)求数列的通项公式;{}n b (2)求数列的前项和.{}n a n S 24.已知函数f (x )=ax 2﹣2lnx .(Ⅰ)若f (x )在x=e 处取得极值,求a 的值;(Ⅱ)若x ∈(0,e],求f (x )的单调区间;(Ⅲ)设a>,g(x)=﹣5+ln,∃x1,x2∈(0,e],使得|f(x1)﹣g(x2)|<9成立,求a的取值范围.城区高级中学2018-2019学年高三上学期11月月考数学试卷含答案(参考答案)一、选择题题号12345678910答案A A DDCCCCCB题号1112答案DC二、填空题13. (,) .14. . 15. .16. {x|x >0} .17. ③ .18. ①④⑤ 三、解答题19. 20. 21. 22.23.(1);(2).122n n b +=-222(4)n n S n n +=-++24.。
城区高级中学2018-2019学年高三上学期11月月考数学试卷含答案一、选择题1. 在△ABC 中,sinB+sin (A ﹣B )=sinC 是sinA=的()A .充分非必要条件B .必要非充分条件C .充要条件D .既不充分也非必要条件2. 复数是虚数单位)的虚部为( )i iiz (21+=A .B .C .D .1-i -i 22【命题意图】本题考查复数的运算和概念等基础知识,意在考查基本运算能力.3. 设a ,b ∈R ,i 为虚数单位,若=3+b i ,则a -b 为( )2+a i1+iA .3B .2C .1D .04. 如图,四面体OABC 的三条棱OA ,OB ,OC 两两垂直,OA=OB=2,OC=3,D 为四面体OABC 外一点.给出下列命题.①不存在点D ,使四面体ABCD 有三个面是直角三角形②不存在点D ,使四面体ABCD 是正三棱锥③存在点D ,使CD 与AB 垂直并且相等④存在无数个点D ,使点O 在四面体ABCD 的外接球面上其中真命题的序号是( )A .①②B .②③C .③D .③④5. 已知双曲线的方程为﹣=1,则双曲线的离心率为( )A .B .C .或D .或6. 命题“存在实数x ,使x >1”的否定是( )A .对任意实数x ,都有x >1B .不存在实数x ,使x ≤1C .对任意实数x ,都有x ≤1D .存在实数x ,使x ≤17. 下列函数在(0,+∞)上是增函数的是( )A .B .y=﹣2x+5C .y=lnxD .y=8. 利用计算机在区间(0,1)上产生随机数a ,则不等式ln (3a ﹣1)<0成立的概率是( )A .B .C .D .班级_______________ 座号______ 姓名_______________ 分数__________________________________________________________________________________________________________________9. 若函数则的值为( )1,0,()(2),0,x x f x f x x +≥⎧=⎨+<⎩(3)f -A .5B .C .D .21-7-10.已知向量=(1,1,0),=(﹣1,0,2)且k+与2﹣互相垂直,则k 的值是( )A .1B .C .D .11.已知是虚数单位,若复数在复平面内对应的点在第四象限,则实数的值可以是( )22aiZ i+=+A .-2 B .1C .2D .312.函数f (x )=ax 2+2(a ﹣1)x+2在区间(﹣∞,4]上为减函数,则a 的取值范围为()A .0<a ≤B .0≤a ≤C .0<a <D .a >二、填空题13.【2017-2018学年度第一学期如皋市高三年级第一次联考】已知函数()211{52128lnx x xf x m x mx x +>=-++≤,,,,若有三个零点,则实数m 的取值范围是________.()()g x f x m =-14.若函数为奇函数,则___________.63e ()()32ex x bf x x a =-∈R ab =【命题意图】本题考查函数的奇偶性,意在考查方程思想与计算能力.15.若实数x ,y 满足x 2+y 2﹣2x+4y=0,则x ﹣2y 的最大值为 .16.一个正四棱台,其上、下底面均为正方形,边长分别为2cm 和4cm ,侧棱长为2cm ,则其表面积为__________2cm .17.数列{a n }是等差数列,a 4=7,S 7= .18.在中,已知角的对边分别为,且,则角ABC ∆C B A ,,c b a ,,B c C b a sin cos +=B 为.三、解答题19.已知函数f (x )=x 2﹣mx 在[1,+∞)上是单调函数.(1)求实数m 的取值范围;(2)设向量,求满足不等式的α的取值范围.20.已知f(x)=log3(1+x)﹣log3(1﹣x).(1)判断函数f(x)的奇偶性,并加以证明;(2)已知函数g(x)=log,当x∈[,]时,不等式f(x)≥g(x)有解,求k的取值范围.21.如图,在多面体ABCDEF中,底面ABCD是边长为2的菱形,∠BAD=60°,四边形BDEF是矩形,平面BDEF⊥平面ABCD,BF=3,H是CF的中点.(1)求证:AC⊥平面BDEF;(2)求二面角H﹣BD﹣C的大小.22.已知p:,q:x2﹣(a2+1)x+a2<0,若p是q的必要不充分条件,求实数a的取值范围.23.已知函数f (x )=(log 2x ﹣2)(log 4x ﹣)(1)当x ∈[2,4]时,求该函数的值域;(2)若f (x )>mlog 2x 对于x ∈[4,16]恒成立,求m 的取值范围.24.(本小题满分12分)已知函数.1()ln (42)()f x m x m x m x=+-+∈R (1)时,求函数的单调区间;当2m >()f x (2)设,不等式对任意的恒成立,求实数的[],1,3t s ∈|()()|(ln 3)(2)2ln 3f t f s a m -<+--()4,6m ∈a 取值范围.【命题意图】本题考查函数单调性与导数的关系、不等式的性质与解法等基础知识,意在考查逻辑思维能力、等价转化能力、分析与解决问题的能力、运算求解能力.城区高级中学2018-2019学年高三上学期11月月考数学试卷含答案(参考答案)一、选择题题号12345678910答案A A D C C C C D111]D题号1112答案A B二、填空题13.7 14⎛⎤ ⎥⎝⎦,14.2016 15.1016.20 17.4918.4π三、解答题19.20.21.22.23.24.。
城区高级中学2018-2019学年高三上学期11月月考数学试卷含答案一、选择题1. 已知||=3,||=1,与的夹角为,那么|﹣4|等于()A .2B .C .D .132. 已知实数x ,y 满足a x <a y (0<a <1),则下列关系式恒成立的是( )A .B .ln (x 2+1)>ln (y 2+1)C .x 3>y 3D .sinx >siny 3. 如图,四面体OABC 的三条棱OA ,OB ,OC 两两垂直,OA=OB=2,OC=3,D 为四面体OABC 外一点.给出下列命题.①不存在点D ,使四面体ABCD 有三个面是直角三角形②不存在点D ,使四面体ABCD 是正三棱锥③存在点D ,使CD 与AB 垂直并且相等④存在无数个点D ,使点O 在四面体ABCD 的外接球面上其中真命题的序号是( )A .①②B .②③C .③D .③④4. sin45°sin105°+sin45°sin15°=( )A .0B .C .D .15. 已知抛物线的焦点为,,点是抛物线上的动点,则当的值最小时,24y x =F (1,0)A -P ||||PF PA PAF ∆的面积为( )B. C.D. 24【命题意图】本题考查抛物线的概念与几何性质,考查学生逻辑推理能力和基本运算能力.6. 设方程|x 2+3x ﹣3|=a 的解的个数为m ,则m 不可能等于( )A .1B .2C .3D .47. 在△ABC 中,C=60°,AB=,AB 边上的高为,则AC+BC 等于()A .B .5C .3D .8. 已知直线l ⊥平面α,直线m ⊂平面β,有下面四个命题:(1)α∥β⇒l ⊥m ,(2)α⊥β⇒l ∥m ,班级_______________ 座号______ 姓名_______________ 分数__________________________________________________________________________________________________________________(3)l ∥m ⇒α⊥β,(4)l ⊥m ⇒α∥β,其中正确命题是()A .(1)与(2)B .(1)与(3)C .(2)与(4)D .(3)与(4) 9. 在等差数列中,,公差,为的前项和.若向量,,{}n a 11a =0d ≠n S {}n a n 13(,)m a a u r =133(,)n a a r=-且,则的最小值为( )0m n u r r ×=2163n n S a ++A .B.C .D .432-92【命题意图】本题考查等差数列的性质,等差数列的前项和,向量的数量积,基本不等式等基础知识,意在n 考查学生的学生运算能力,观察分析,解决问题的能力.10.常用以下方法求函数y=[f (x )]g (x )的导数:先两边同取以e 为底的对数(e ≈2.71828…,为自然对数的底数)得lny=g (x )lnf (x ),再两边同时求导,得•y ′=g ′(x )lnf (x )+g (x )•[lnf (x )]′,即y ′=[f (x )]g (x ){g ′(x )lnf (x )+g (x )•[lnf (x )]′}.运用此方法可以求函数h (x )=x x (x >0)的导函数.据此可以判断下列各函数值中最小的是( )A .h ()B .h ()C .h ()D .h ()11.已知命题“如果﹣1≤a ≤1,那么关于x 的不等式(a 2﹣4)x 2+(a+2)x ﹣1≥0的解集为∅”,它的逆命题、否命题、逆否命题及原命题中是假命题的共有( )A .0个B .1个C .2个D .4个12.已知等比数列{a n }的前n 项和为S n ,若=4,则=()A .3B .4C .D .13二、填空题13.如图,在棱长为的正方体中,点分别是棱的中点,是侧1111D ABC A B C D -,E F 1,BC CC P 面内一点,若平行于平面,则线段长度的取值范围是_________.11BCC B 1AP AEF 1A P 14.圆上的点(2,1)关于直线x+y=0的对称点仍在圆上,且圆与直线x ﹣y+1=0相交所得的弦长为,则圆的方程为 .15.已知过球面上 ,,A B C 三点的截面和球心的距离是球半径的一半,且2AB BC CA ===,则球表面积是_________.16.设函数,其中[x]表示不超过x的最大整数.若方程f(x)=ax有三个不同的实数根,则实数a的取值范围是 .17.某高中共有学生1000名,其中高一年级共有学生380人,高二年级男生有180人.如果在全19.0校学生中抽取1名学生,抽到高二年级女生的概率为,先采用分层抽样(按年级分层)在全校抽取100人,则应在高三年级中抽取的人数等于.18.以抛物线y2=20x的焦点为圆心,且与双曲线:的两条渐近线都相切的圆的方程为 .三、解答题19.已知函数f(x)=.(1)求函数f(x)的最小正周期及单调递减区间;(2)当时,求f(x)的最大值,并求此时对应的x的值.20.已知函数f(x)=ax2+lnx(a∈R).(1)当a=时,求f(x)在区间[1,e]上的最大值和最小值;(2)如果函数g(x),f1(x),f2(x),在公共定义域D上,满足f1(x)<g(x)<f2(x),那么就称g (x)为f1(x),f2(x)的“活动函数”.已知函数+2ax.若在区间(1,+∞)上,函数f(x)是f1(x),f2(x)的“活动函数”,求a的取值范围.21.如图,⊙O的半径为6,线段AB与⊙相交于点C、D,AC=4,∠BOD=∠A,OB与⊙O相交于点.(1)求BD 长;(2)当CE ⊥OD 时,求证:AO=AD .22.已知定义域为R 的函数f (x )=是奇函数.(Ⅰ)求b 的值;(Ⅱ)判断函数f (x )的单调性;(Ⅲ)若对任意的t ∈R ,不等式f (t 2﹣2t )+f (2t 2﹣k )<0恒成立,求k 的取值范围. 23.(本小题满分10分)已知函数.()|||2|f x x a x =++-(1)当时,求不等式的解集;3a =-()3f x ≥(2)若的解集包含,求的取值范围.()|4|f x x ≤-[1,2]24.(本小题满分13分)在四棱锥中,底面是直角梯形,,,.P ABCD -ABCD //AB DC 2ABC π∠=AD =33AB DC ==(Ⅰ)在棱上确定一点,使得平面;PB E //CE PAD (Ⅱ)若,,求直线与平面所成角的大小.PA PD ==PB PC =PA PBC ABCDP城区高级中学2018-2019学年高三上学期11月月考数学试卷含答案(参考答案)一、选择题题号12345678910答案C C DCBADBAB题号1112答案CD二、填空题13.14. (x ﹣1)2+(y+1)2=5 .15.649π16. (﹣1,﹣]∪[,) . 17.2518. (x ﹣5)2+y 2=9 .三、解答题19.20. 21. 22.23.(1)或;(2).{|1x x ≤8}x ≥[3,0]-24.。
中山区第一中学2018-2019学年高三上学期11月月考数学试卷含答案一、选择题1. 已知集合,,则( ){2,1,0,1,2,3}A =--{|||3,}B y y x x A ==-∈A B =I A .B .C .D .{2,1,0}--{1,0,1,2}-{2,1,0}--{1,,0,1}-【命题意图】本题考查集合的交集运算,意在考查计算能力.2. ,分别为双曲线(,)的左、右焦点,点在双曲线上,满足,1F 2F 22221x y a b-=a 0b >P 120PF PF ⋅=u u u r u u u u r 若,则该双曲线的离心率为( )12PF F∆C.D.1+1+【命题意图】本题考查双曲线的几何性质,直角三角形内切圆半径与外接圆半径的计算等基础知识,意在考查基本运算能力及推理能力.3. 下列图象中,不能作为函数y=f (x )的图象的是()A .B .C .D .4. 高一新生军训时,经过两天的打靶训练,甲每射击10次可以击中9次,乙每射击9次可以击中8次.甲、乙两人射击同一目标(甲、乙两人互不影响),现各射击一次,目标被击中的概率为( )A .B .C .D .5. 设n S 是等比数列{}n a 的前项和,425S S =,则此数列的公比q =( )A .-2或-1B .1或2C.1±或2D .2±或-16. 在函数y=中,若f (x )=1,则x 的值是()A .1B .1或C .±1D .7. 设集合,,则(){}|||2A x R x =∈≤{}|10B x Z x =∈-≥A B =I 班级_______________ 座号______ 姓名_______________ 分数__________________________________________________________________________________________________________________A. B. C. D. {}|12x x <≤{}|21x x -≤≤{}2,1,1,2--{}1,2【命题意图】本题考查集合的概念,集合的运算等基础知识,属送分题.8. 命题“∀a ∈R ,函数y=π”是增函数的否定是( )A .“∀a ∈R ,函数y=π”是减函数B .“∀a ∈R ,函数y=π”不是增函数C .“∃a ∈R ,函数y=π”不是增函数D .“∃a ∈R ,函数y=π”是减函数9. 若关于x 的方程x 3﹣x 2﹣x+a=0(a ∈R )有三个实根x 1,x 2,x 3,且满足x 1<x 2<x 3,则a 的取值范围为()A .a >B .﹣<a <1C .a <﹣1D .a >﹣110.若关于的不等式的解集为或,则的取值为( )2043x ax x +>++31x -<<-2x >A . B . C .D .1212-2-11.抛物线E :y 2=2px (p >0)的焦点为F ,点A (0,2),若线段AF 的中点B 在抛物线上,则|BF|=()A .B .C .D .12.设,,a b c R ∈,且a b >,则( )A .ac bc >B .11a b< C .22a b >D .33a b>二、填空题13.在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,sinA ,sinB ,sinC 依次成等比数列,c=2a 且•=24,则△ABC 的面积是 .14.已知,,则的值为.1sin cos 3αα+=(0,)απ∈sin cos 7sin 12ααπ-15.在4次独立重复试验中,随机事件A 恰好发生1次的概率不大于其恰好发生两次的概率,则事件A 在一次试验中发生的概率P 的取值范围是 .16.已知i 是虚数单位,复数的模为 . 17.若圆与双曲线C :的渐近线相切,则_____;双曲线C 的渐近线方程是____.18.如图,是一回形图,其回形通道的宽和OB 1的长均为1,回形线与射线OA 交于A 1,A 2,A 3,…,若从点O 到点A 3的回形线为第1圈(长为7),从点A 3到点A 2的回形线为第2圈,从点A 2到点A 3的回形线为第3圈…依此类推,第8圈的长为 .三、解答题19.函数f (x )=sin 2x+sinxcosx .(1)求函数f (x )的递增区间;(2)当x ∈[0,]时,求f (x )的值域.20.(本小题满分12分)已知函数,数列满足:,().21()x f x x +={}n a 12a =11n n a f a +⎛⎫= ⎪⎝⎭N n *∈(1)求数列的通项公式;{}n a (2)设数列的前项和为,求数列的前项和.{}n a n n S 1n S ⎧⎫⎨⎬⎩⎭n n T 【命题意图】本题主要考查等差数列的概念,通项公式的求法,裂项求和公式,以及运算求解能力.21.已知f ()=﹣x ﹣1.(1)求f (x );(2)求f (x )在区间[2,6]上的最大值和最小值. 22.(本题满分12分)为了了解某地区心肺疾病是否与性别有关,在某医院随机地对入院的50人进行了问卷调查,得到了如下的列联表:22⨯患心肺疾病患心肺疾病合计男20525女101525合计302050(1)用分层抽样的方法在患心肺疾病的人群中抽6人,其中男性抽多少人?(2)在上述抽取的6人中选2人,求恰有一名女性的概率.(3)为了研究心肺疾病是否与性别有关,请计算出统计量,判断心肺疾病与性别是否有关?2K 下面的临界值表供参考:)(2k K P ≥15.010.005.0025.0010.0005.0001.0k 2.0722.7063.841 5.024 6.6357.879828.10(参考公式:,其中)))()()(()(22d b c a d c b a bc ad n K ++++-=d c b a n +++=23.在等比数列{a n }中,a 3=﹣12,前3项和S 3=﹣9,求公比q .24.(本小题满分10分)选修4-5:不等式选讲设函数.()5f x x a x =-+(1)当时,求不等式的解集;1a =-()53f x x ≤+(2)若时有,求的取值范围.1x ≥-()0f x ≥a中山区第一中学2018-2019学年高三上学期11月月考数学试卷含答案(参考答案)一、选择题1. 【答案】C【解析】当时,,所以,故选C .{2,1,0,1,2,3}x ∈--||3{3,2,1,0}y x =-∈---A B =I {2,1,0}--2. 【答案】D【解析】∵,∴,即为直角三角形,∴,120PF PF ⋅=u u u r u u u u r12PF PF ⊥12PF F ∆222212124PF PF F F c +==,则,12||2PF PF a -=222221212122()4()PF PF PF PF PF PF c a ⋅=+--=-.所以内切圆半径2222121212()()484PF PF PF PF PF PF c a +=-+⋅=-12PF F ∆,外接圆半径.由题意,得,整理,得12122PF PF F F r c +-==-R c =c -=,∴双曲线的离心率,故选D.2()4ca=+1e =+3. 【答案】B【解析】解:根据函数的定义可知,对应定义域内的任意变量x 只能有唯一的y 与x 对应,选项B 中,当x >0时,有两个不同的y 和x 对应,所以不满足y 值的唯一性.所以B 不能作为函数图象.故选B .【点评】本题主要考查函数图象的识别,利用函数的定义是解决本题的关键,注意函数的三个条件:非空数集,定义域内x 的任意性,x 对应y 值的唯一性. 4. 【答案】 D 【解析】【解答】解:由题意可得,甲射中的概率为,乙射中的概率为,故两人都击不中的概率为(1﹣)(1﹣)=,故目标被击中的概率为1﹣=,故选:D .【点评】本题主要考查相互独立事件的概率乘法公式,所求的事件的概率与它的对立事件的概率之间的关系,属于基础题.5. 【答案】D 【解析】试题分析:当公比1-=q 时,0524==S S ,成立.当1-≠q 时,24,S S 都不等于,所以42224==-q S S S , 2±=∴q ,故选D.考点:等比数列的性质.6. 【答案】C【解析】解:∵函数y=中,f (x )=1,∴当x ≤﹣1时,x+2=1,解得x=﹣1;当﹣1<x <2时,x 2=1,解得x=1或x=﹣1(舍);当x ≥2时,2x=1,解得x=(舍).综上得x=±1故选:C . 7. 【答案】D 【解析】由绝对值的定义及,得,则,所以,故选D.||2x ≤22x -≤≤{}|22A x x =-≤≤{}1,2A B =I 8. 【答案】C【解析】解:因为全称命题的否定是特称命题,所以,命题“∀a ∈R ,函数y=π”是增函数的否定是:“∃a ∈R ,函数y=π”不是增函数.故选:C .【点评】本题考查命题的否定,特称命题与全称命题的否定关系,是基础题. 9. 【答案】B【解析】解:由x 3﹣x 2﹣x+a=0得﹣a=x 3﹣x 2﹣x ,设f (x )=x 3﹣x 2﹣x ,则函数的导数f ′(x )=3x 2﹣2x ﹣1,由f ′(x )>0得x >1或x <﹣,此时函数单调递增,由f ′(x )<0得﹣<x <1,此时函数单调递减,即函数在x=1时,取得极小值f (1)=1﹣1﹣1=﹣1,在x=﹣时,函数取得极大值f (﹣)=(﹣)3﹣(﹣)2﹣(﹣)=,要使方程x 3﹣x 2﹣x+a=0(a ∈R )有三个实根x 1,x 2,x 3,则﹣1<﹣a <,即﹣<a <1,故选:B .【点评】本题主要考查导数的应用,构造函数,求函数的导数,利用导数求出函数的极值是解决本题的关键. 10.【答案】D 【解析】试题分析:由题意得,根据不等式与方程的关系可知,不等式解集的端点就是对应的方程的根,可得方程,解得,其对应的根分别为,所以,故选2043x ax x +=++3,1,x x x a =-=-=-3,1,2x x x =-=-=2a =-D.考点:不等式与方程的关系.11.【答案】D【解析】解:依题意可知F 坐标为(,0)∴B 的坐标为(,1)代入抛物线方程得=1,解得p=,∴抛物线准线方程为x=﹣,所以点B 到抛物线准线的距离为=,则B 到该抛物线焦点的距离为.故选D . 12.【答案】D 【解析】考点:不等式的恒等变换.二、填空题13.【答案】 4 .【解析】解:∵sinA ,sinB ,sinC 依次成等比数列,∴sin 2B=sinAsinC ,由正弦定理可得:b 2=ac ,∵c=2a ,可得:b=a ,∴cosB===,可得:sinB==,∵•=24,可得:accosB=ac=24,解得:ac=32,∴S △ABC =acsinB==4.故答案为:4.14.【解析】,7sinsin sin cos cos sin 12434343πππππππ⎛⎫=+=+ ⎪⎝⎭Q =,sin cos 7sin 12ααπ-∴==考点:1、同角三角函数之间的关系;2、两角和的正弦公式.15.【答案】 [] .【解析】解:由题设知C 41p (1﹣p )3≤C 42p 2(1﹣p )2,解得p ,∵0≤p ≤1,∴,故答案为:[]. 16.【答案】 .【解析】解:∵复数==i ﹣1的模为=.故答案为:.【点评】本题考查了复数的运算法则、模的计算公式,属于基础题. 17.【答案】,【解析】【知识点】圆的标准方程与一般方程双曲线【试题解析】双曲线的渐近线方程为:圆的圆心为(2,0),半径为1.因为相切,所以所以双曲线C 的渐近线方程是:故答案为:,18.【答案】 63 .【解析】解:∵第一圈长为:1+1+2+2+1=7第二圈长为:2+3+4+4+2=15第三圈长为:3+5+6+6+3=23…第n 圈长为:n+(2n ﹣1)+2n+2n+n=8n ﹣1故n=8时,第8圈的长为63,故答案为:63.【点评】本题主要考查了归纳推理,解答的一般步骤是:先通过观察第1,2,3,…圈的长的情况发现某些相同性质,再从相同性质中推出一个明确表达的一般性结论,最后将一般性结论再用于特殊情形. 三、解答题19.【答案】 【解析】解:(1)…(2分)令解得…f (x )的递增区间为…(6分)(2)∵,∴…(8分)∴,∴…(10分)∴f (x )的值域是…(12分)【点评】本题考查两角和与差的三角函数,二倍角公式的应用,三角函数的最值,考查计算能力. 20.【答案】【解析】(1)∵,∴. 211()2x f x x x +==+11()2n n na f a a +==+即,所以数列是以首项为2,公差为2的等差数列,12n n a a +-={}n a∴. (5分)1(1)22(1)2n a a n d n n =+-=+-=(2)∵数列是等差数列,{}n a ∴,1()(22)(1)22n n a a n n nS n n ++===+∴. (8分)1111(1)1n S n n n n ==-++∴1231111n n T S S S S =++++L 11111111()(((1223341n n =-+-+-++-+L . (12分)111n =-+1nn =+21.【答案】【解析】解:(1)令t=,则x=,∴f (t )=,∴f (x )=(x ≠1)…(2)任取x 1,x 2∈[2,6],且x 1<x 2,f (x 1)﹣f (x 2)=﹣=,∵2≤x 1<x 2≤6,∴(x 1﹣1)(x 2﹣1)>0,2(x 2﹣x 1)>0,∴f (x 1)﹣f (x 2)>0,∴f (x )在[2,6]上单调递减,…∴当x=2时,f (x )max =2,当x=6时,f (x )min =… 22.【答案】【解析】【命题意图】本题综合考查统计中的相关分析、概率中的古典概型,突出了统计和概率知识的交汇,对归纳、分析推理的能力有一定要求,属于中等难度.第 11 页,共 11页23.【答案】【解析】解:由已知可得方程组,第二式除以第一式得=,整理可得q 2+4q+4=0,解得q=﹣2.24.【答案】【解析】(1)当时,不等式,1a =-()53f x x ≤+ ∴,5315x x x ≤+++∴,∴.13x +≤24x -≤≤∴不等式的解集为.()53f x x ≤+[4,2]-(2)若时,有,1x ≥-()0f x ≥ ∴,即,50x a x -+≥5x a x -≥-∴,或,∴,或,5x a x -≥-5x a x -≤6a x ≤4a x ≥-∵,∴,,∴,或.1x ≥-66x ≥-44x -≤6a ≤-4a ≥∴的取值范围是.a (,6][4,)-∞-+∞U。
城中区一中2018-2019学年高三上学期11月月考数学试卷含答案
一、选择题
1. 已知集合A={y|y=x 2+2x ﹣3},,则有(
)A .A ⊆B
B .B ⊆A
C .A=B
D .A ∩B=φ2. 设是两个不同的平面,是一条直线,以下命题正确的是( )
βα,A .若,,则 B .若,
,则
α⊥l βα⊥β⊂l α//l βα//β⊂l C .若,,则 D .若,,则α⊥l βα//β⊥l α//l βα⊥β
⊥l 3. 中,“”是“”的(
)
ABC ∆A B >cos 2cos 2B A >A. 充分必要条件 B. 充分不必要条件 C. 必要不充分条件
D. 既不充分也不必要条件
【命题意图】本题考查三角函数的性质与充分必要条件等基础知识,意在考查构造函数的思想与运算求解能力.4. 执行右面的程序框图,如果输入的,则输出的属于( )
[1,1]t ∈-S A. B. C. D.[0,2]e -(,2]e -¥-[0,5][3,5]
e
-【命题意图】本题考查程序框图、分段函数等基础知识,意在考查运算能力和转化思想的运用.5. 过抛物线y=x 2上的点的切线的倾斜角(
)
A .30°
B .45°
C .60°
D .135°
6. 在的展开式中,含项的系数为( )
10
201511x x ⎛⎫++ ⎪⎝
⎭2
x (A ) ( B ) (C )
(D ) 103045120
班级_______________ 座号______ 姓名_______________ 分数_______________
___________________________________________________________________________________________________
7. △ABC 的三内角A ,B ,C 所对边长分别是a ,b ,c ,设向量
,
,若
,则角B 的大小为( )
A .
B .
C .
D .
8. 已知直线x+ay ﹣1=0是圆C :x 2+y 2﹣4x ﹣2y+1=0的对称轴,过点A (﹣4,a )作圆C 的一条切线,切点为B ,则|AB|=( )A .2B .6C .4D .2
9. 矩形ABCD 中,AD=mAB ,E 为BC 的中点,若
,则m=(
)
A .
B .
C .2
D .3
10.在数列中,,,则该数列中相邻两项的乘积为负数的项是{}n a 115a =*
1332()n n a a n N +=-∈(
)
A .和
B .和
C .和
D .和21a 22a 22a 23a 23a 24a 24a 25
a 11.若则的值为( )⎩⎨⎧≥<+=-)2(,
2)
2(),2()(x x x f x f x
)1(f A .8
B .
C .2
D .
8
12
112.设偶函数f (x )在[0,+∞)单调递增,则使得f (x )>f (2x ﹣1)成立的x 的取值范围是( )
A .(,1)
B .(﹣∞,)∪(1,+∞)
C .(﹣,)
D .(﹣∞,﹣)∪(,+∞)
二、填空题
13.将一张坐标纸折叠一次,使点与点重合,且点与点重合,则的()0,2()4,0()7,3(),m n m n +值是
.
14.已知数列的首项,其前项和为,且满足,若对,{}n a 1a m =n n S 2132n n S S n n ++=+n N *∀∈1n n a a +<恒成立,则的取值范围是_______.
m 【命题意图】本题考查数列递推公式、数列性质等基础知识,意在考查转化与化归、逻辑思维能力和基本运算能力.
15.如图,在平行四边形ABCD 中,点E 在边CD 上,若在平行四边形ABCD 内部随机取一个点Q ,则点Q 取自△ABE 内部的概率是 .
16.已知是数列的前项和,若不等式对一切恒成立,则的取值范围是n S 1{}2n n -n 1
|12
n n n S λ-+<+|n N *
∈λ___________.
【命题意图】本题考查数列求和与不等式恒成立问题,意在考查等价转化能力、逻辑推理能力、运算求解能力.17.由曲线y=2x 2,直线y=﹣4x ﹣2,直线x=1围成的封闭图形的面积为 .
18.在等差数列{a n }中,a 1,a 2,a 4这三项构成等比数列,则公比q= .
三、解答题
19.在直角坐标系xOy 中,圆C 的参数方程(φ为参数).以O 为极点,x 轴的非负半轴为极
轴建立极坐标系.
(Ⅰ)求圆C 的极坐标方程;(Ⅱ)直线l 的极坐标方程是ρ(sin θ+)=3
,射线OM :θ=
与圆C 的交点为O ,P ,与直线l
的交点为Q ,求线段PQ 的长.
20.已知中心在坐标原点O 的椭圆C 经过点A (2,3),且点F (2,0)为其右焦点.(1)求椭圆C 的方程;
(2)是否存在平行于OA 的直线l ,使得直线l 与椭圆C 有公共点,且直线OA 与l 的距离等于4?若存在,求出直线l 的方程;若不存在,说明理由.
21.在正方体中分别为的中点.1111D ABC A B C D ,,E G H 111,,BC C D AA (1)求证:平面;
EG P 11BDD B (2)求异面直线与所成的角]
1B H EG
22.某小区在一次对20岁以上居民节能意识的问卷调查中,随机抽取了100份问卷进行统计,得到相关的数据如下表:
节能意识弱节能意识强总计
20至50岁45954
大于50岁103646
总计5545100
(1)由表中数据直观分析,节能意识强弱是否与人的年龄有关?
(2)据了解到,全小区节能意识强的人共有350人,估计这350人中,年龄大于50岁的有多少人?(3)按年龄分层抽样,从节能意识强的居民中抽5人,再从这5人中任取2人,求恰有1人年龄在20至50岁的概率.
23.为了培养中学生良好的课外阅读习惯,教育局拟向全市中学生建议一周课外阅读时间不少于t0小时.为此,教育局组织有关专家到某“基地校”随机抽取100名学生进行调研,获得他们一周课外阅读时间的数据,整理得到如图频率分布直方图:
(Ⅰ)求任选2人中,恰有1人一周课外阅读时间在[2,4)(单位:小时)的概率
(Ⅱ)专家调研决定:以该校80%的学生都达到的一周课外阅读时间为t0,试确定t0的取值范围
24.已知椭圆C1:+x2=1(a>1)与抛物线C:x2=4y有相同焦点F1.
(Ⅰ)求椭圆C1的标准方程;
(Ⅱ)已知直线l1过椭圆C1的另一焦点F2,且与抛物线C2相切于第一象限的点A,设平行l1的直线l交椭圆C1于B,C两点,当△OBC面积最大时,求直线l的方程.
城中区一中2018-2019学年高三上学期11月月考数学试卷含答案(参考答案)
一、选择题
题号12345678910答案B 111] A.
B
B
C
B
B
A
C
题号1112答案
B
A
二、填空题
13.
34514.15
(,)
43
-
15. .
16.31λ-<<17.
.
18. 2或1 .
三、解答题
19. 20.
21.(1)证明见解析;(2).90o
22. 23. 24.。