23点的坐标与线段长度的互换
- 格式:doc
- 大小:50.00 KB
- 文档页数:1
长度与角度的计算1.长度的计算:长度是指物体所占据的空间距离。
在几何学中,我们常常需要计算线段、弧长、周长等长度相关的内容。
1.1线段长度的计算:线段是由两个点所确定的一段直线,在计算线段长度时,我们可以利用线段的坐标或者使用勾股定理进行计算。
例如,对于坐标系中的两个点P₁(x₁,y₁)和P₂(x₂,y₂),线段的长度可以使用以下公式进行计算:L = sqrt((x₂ - x₁)² + (y₂ - y₁)²)1.2弧长的计算:弧是圆周上的一部分,弧长是弧所占据的圆周的长度。
弧长的计算涉及到圆周率π和圆的半径r。
对于半径为r的圆的弧长L,可以使用以下公式进行计算:L=2πr1.3周长的计算:周长是封闭曲线(如矩形、圆形等)的长度。
对于不同形状的封闭曲线,周长的计算方法略有不同。
例如,对于矩形的周长P,可以使用以下公式进行计算:P=2(a+b),其中a和b分别表示矩形的两条边的长度2.角度的计算:角度是两条射线之间的夹角。
角可以用度(°)或弧度(rad)来表示。
在几何学中,我们常常需要计算角的度数,以及角度之间的关联。
2.1角的度数计算:角的度数计算常常基于一个完整的圆的圆周角为360°,即一周的角度为360°。
根据这一原则,我们可以计算出其他角度的度数。
例如,对于直角角度为90°,平角角度为180°,关于这些基本角度,我们可以使用加法和减法运算来计算其他角度的度数。
2.2角度的关联性:角度可以通过三角函数来进行计算。
三角函数(如正弦、余弦、正切等)是角度与三角比之间的关系。
我们可以使用三角函数来计算角的度数、角的正弦、余弦、正切等。
在计算中,有一些常用的角度关联公式,例如:-三角形内角的和:在一个三角形中,三个内角的和等于180°。
-角的补角:两个角的补角之和为90°。
-角的余角:两个角的余角之和为90°。
一、选择题1.如图,在平面直角坐标系中,一动点从原点O 出发,向右平移3个单位长度到达点1A ,再向上平移6个单位长度到达点2A ,再向左平移9个单位长度到达点3A ,再向下平移12个单位长度到达点4A ,再向右平移15个单位长度到达点5A ……按此规律进行下去,该动点到达的点2021A 的坐标是( )A .(3030,3030)--B .(3030,3033)-C .(3033,3030)-D .(3030,3033) 2.如图所示,一个动点在第一象限内及x 轴、y 轴上运动,在第一秒内它由原点移动到(0,1)点,而后接着按图所示在x 轴,y 轴平行的方向运动,且每秒移动一个单位长度,那么动点运动到点(7,7)的位置时,所用的时间为( )秒.A .30B .42C .56D .723.如图,在一单位为1的方格纸上,123A A A ∆,345A A A ∆,567A A A ∆…,都是斜边在x 轴上,斜边长分别为2,4,6,…的等腰直角三角形,若123A A A ∆的顶点坐标分别为1(2,0)A ,2(1,1)A -,3(0,0)A ,则依图中所示规律,2020A 的坐标为( )A .(1010,0)B .(1012,0)C .(2,1012)D .(2,1010) 4.如图,动点P 在平面直角坐标系中按图中箭头所示方向运动,第一次从原点O 运动到点()11,1P ,第二次运动到点()22,0P ,第三次运动到()33,2P -,…,按这样的运动规律,第2022次运动后,动点2022P 的坐标是( )A .()2022,1B .()2022,2C .()2022,2-D .()2022,0 5.一只跳蚤在第一象限及x 轴、y 轴上跳动,在第一秒钟,它从原点跳动到(0,1),然后接着按图中箭头所示方向跳动[即(0,0)→(0,1)→(1,1)→(1,0)→…],且每秒跳动一个单位,那么第 2020 秒时跳蚤所在位置的坐标是( )A .(5,44)B .(4,44)C .(4,45)D .(5,45)6.已知点E (x 0,y 0),F (x 2,y 2),点M (x 1,y 1)是线段EF 的中点,则0212x x x +=,0212y y y +=.在平面直角坐标系中有三个点A (1,-1),B (-1,-1),C (0,1),点P (0,2)关于A 的对称点为P 1(即P ,A ,P 1三点共线,且PA =P 1A ),P 1关于B 的对称点为P 2,P 2关于C 的对称点为P 3,按此规律继续以A ,B ,C 为对称点重复前面的操作,依次得到P 4,P 5,P 6,…,则点P 2015的坐标是( )A .(0,0)B .(0,2)C .(2,-4)D .(-4,2) 7.如图,将整数按规律排列,若有序数对(a ,b )表示第a 排从左往右第b 个数,则(9,4)表示的数是( )A .49B .﹣40C .﹣32D .258.在直角坐标系xOy 中,一个质点从()12,A a a 出发沿图中路线依次经过()34,B a a ,()56,C a a ,()78,D a a ,…按此规律一直运动下去,则201920202021a a a ++=( )A.1009 B.1010 C.1011 D.10129.如图,长方形BCDE的各边分别平行于x轴或y轴,物体甲和物体乙由点A(2,0)同时出发,沿长方形BCDE的边作环绕运动,物体甲按逆时针方向以1个单位/秒匀速运动,物体乙按顺时针方向以2个单位/秒匀速运动,则两个物体运动后的第2021次相遇地点的坐标是()A.(﹣1,﹣1)B.(﹣1,1)C.(﹣2,1)D.(2,0)10.如图,在平面直角坐标系xOy中,一只蚂蚁从原点O出发向右移动1个单位长度到达点P1;然后逆时针转向90°移动2个单位长度到达点P2;然后逆时针转向90°,移动3个单位长度到达点P3;然后逆时针转向90°,移动4个单位长度到达点P4;…,如此继续转向移动下去.设点P n(x n,y n),n=1,2,3,…,则x1+x2+x3+…+x2021=()A.1 B.﹣1010 C.1011 D.2021二、填空题11.在直角坐标系中,下面各点按顺序依次排列:(1,0),(0,1),(1,1),(2,0),(0,2),(2,2),(3,0),(0,3)----,(3,3),(4,0),(0,4),(4,4)----……,按此规律,这列点中第1000个点的坐标是__________.12.某校数学课外小组,在坐标纸上为学校的一块空地设计植树方案如下:第k 棵树种植在点P k (x k ,y k )处,其中x 1=1,y 1=1,当k≥2时,x k =x k ﹣1+1﹣5([15k -]﹣[25k -]),y k =y k ﹣1+[15k -]﹣[25k -],[a]表示非负实数a 的整数部分,例如[2.8]=2,[0.3]=0.按此方案,则第2019棵树种植点的坐标为_____.13.在平面直角坐标系中,对于P(x ,y)作变换得到P′(﹣y+1,x+1),例如:A 1(3,1)作上述变换得到A 2(0,4),再将A 2做上述变换得到A 3___________,这样依次得到A 1,A 2,A 3,…A n ;…,则A 2018的坐标为___________.14.如图,在平面直角坐标系中,有若千个整数点,其顺序按图中“→”方向排列,如()()()1, 0, 2, 0, 2, 1,….根据这个规律探索可得,第100个点的坐标为__________.15.如图所示一个质点在第一象限内及x 轴、y 轴上运动,在第一秒内它由原点移动到(0,1)点,而后接着按图所示在x 轴,y 轴平行的方向运动,且每秒移动一个单位长度,那么质点运动到点(n,n)(n 为正整数)的位置时,用代数式表示所用的时间为_________秒.16.教材在第七章复习题的“拓广探索”中,曾让同学们探索发现:在平面直角坐标系中,线段中点的横坐标(纵坐标)分别等于对应线段的两个端点的横坐标(纵坐标)和的一半.例如:点(1,1)A 、点(5,1)B ,则线段AB 的中点M 的坐标为(3,1).请利用以上结论解决问题:在平面直角坐标系中,点(3,)E a a +,(,1)F b a b ++,若线段EF 的中点G 恰好在x 轴上,且到y 轴的距离是2,则a b -=______17.在平面直角坐标系中,已知A (0,a ),B (b ,0),其中a ,b 满足|a ﹣2|+(b ﹣3)2=0.点M 的坐标为(32-,1),点N 是坐标轴的负半轴上的一个动点,当四边形ABOM 的面积与三角形ABN 的面积相等时,此时点N 的坐标为___________________. 18.如图,在直角坐标系中,A (1,3),B (2,0),第一次将△AOB 变换成△OA 1B 1,A 1(2,3),B1(4,0);第二次将△OA1B1变换成△OA2B2,A2(4,3),B2(8,0),第三次将△OA2B2变换成△OA3B3,……,则B2021的横坐标为______.19.在平面直角坐标系中,一个智能机器人接到如下指令,从原点O出发,按向右、向上、向右、向下…的方向依次不断移动,每次移动1个单位,其行走路线如图所示,第1次移动到A1,第2次移动到A2,…第n次移动到A n,则A2021的坐标是___________.20.如图,在平面直角坐标系中,有若干个整数点,其顺序按图中“ ”方向排行,如(0,1),(0,2),(1,2),(1,3),(0,3),(-1,3),......根据这个规律探索可得,第40个点的坐标为_____________.三、解答题21.如图,点A(1,n),B(n,1),我们定义:将点A向下平移1个单位,再向右平移1个单位,同时点B向上平移1个单位,再向左平移1个单位称为一次操作,此时平移后的两点记为A1,B1,t次操作后两点记为A t,B t.(1)直接写出A1,B1,A t,B t的坐标(用含n、t的式子表示);(2)以下判断正确的是.A.经过n次操作,点A,点B位置互换B .经过(n ﹣1)次操作,点A ,点B 位置互换C .经过2n 次操作,点A ,点B 位置互换D .不管几次操作,点A ,点B 位置都不可能互换(3)t 为何值时,A t ,B 两点位置距离最近?22.在平面直角坐标系xOy 中描出下列两组点,分别将每组里的点用线段依次连接起来.第一组:(3,3)-A 、(4,3)C ;第二组:(2,1)D --、(2,1)E .(1)线段AC 与线段DE 的位置关系是;(2)在(1)的条件下,线段AC 、DE 分别与y 轴交于点B ,F .若点M 为射线OB 上一动点(不与点O ,B 重合).①当点M 在线段OB 上运动时,连接AM 、DM ,补全图形,用等式表示CAM ∠、AMD ∠、MDE ∠之间的数量关系,并证明.②当ACM △与DEM △面积相等时,求点M 的坐标.23.如图1,在平面直角坐标系中,点O 是坐标原点,边长为2的正方形ABCD (点D 与点O 重合)和边长为4的正方形EFGH 的边CO 和GH 都在x 轴上,且点H 坐标为(7,0).正方形ABCD 以3个单位长度/秒的速度沿着x 轴向右运动,记正方形ABCD 和正方形EFGH 重叠部分的面积为S ,假设运动时间为t 秒,且t <4.(1)点F 的坐标为 ;(2)如图2,正方形ABCD 向右运动的同时,动点P 在线段FE 上,以1个单位长度/秒的速度从F 到E 运动.连接AP ,AE .①求t 为何值时,AP 所在直线垂直于x 轴;②求t 为何值时,S =S △APE .24.如图,在下面直角坐标系中,已知()0,A a ,(),0B b ,(),C b c 三点,其中a ,b ,c 满足关系式()22340a b c -+-+-=.(1)求a ,b ,c 的值;(2)如果在第二象限内有一点1,2P m ⎛⎫ ⎪⎝⎭,请用含m 的式子表示四边形ABOP 的面积; (3)在(2)的条件下,是否存在点P ,使四边形ABOP 的面积与三角形ABC 的面积相等?若存在,求出点P 的坐标,若不存在,请说明理由.25.如图,A 点的坐标为(0,3),B 点的坐标为(﹣3,0),D 为x 轴上的一个动点且不与B ,O 重合,将线段AD 绕点A 逆时针旋转90°得线段AE ,使得AE ⊥AD ,且AE =AD ,连接BE 交y 轴于点M .(1)如图,当点D 在线段OB 的延长线上时,①若D 点的坐标为(﹣5,0),求点E 的坐标.②求证:M 为BE 的中点.③探究:若在点D 运动的过程中,OM BD的值是否是定值?如果是,请求出这个定值;如果不是,请说明理由.(2)请直接写出三条线段AO ,DO ,AM 之间的数量关系(不需要说明理由).26.如图所示,A(1,0)、点B在y轴上,将三角形OAB沿x轴负方向平移,平移后的图形为三角形DEC,且点C的坐标为(-3,2).(1)直接写出点E的坐标;D的坐标(3)点P是线段CE上一动点,设∠CBP=x°,∠PAD=y°,∠BPA=z°,确定x, y,z之间的数量关系,并证明你的结论.27.如图,在平面直角坐标系中,已知△ABC,点A的坐标是(4,0),点B的坐标是(2,3),点C在x轴的负半轴上,且AC=6.(1)直接写出点C的坐标.(2)在y轴上是否存在点P,使得S△POB=23S△ABC若存在,求出点P的坐标;若不存在,请说明理由.(3)把点C往上平移3个单位得到点H,作射线CH,连接BH,点M在射线CH上运动(不与点C、H重合).试探究∠HBM,∠BMA,∠MAC之间的数量关系,并证明你的结论.28.如图1,在平面直角坐标系中,点A为x轴负半轴上一点,点B为x轴正半轴上一点,C(0,a),D(b,a),其中a,b满足关系式:|a+3|+(b-a+1)2=0.(1)a=___,b=___,△BCD 的面积为______;(2)如图2,若AC ⊥BC ,点P 线段OC 上一点,连接BP ,延长BP 交AC 于点Q ,当∠CPQ=∠CQP 时,求证:BP 平分∠ABC ;(3)如图3,若AC ⊥BC ,点E 是点A 与点B 之间一动点,连接CE,CB 始终平分∠ECF,当点E 在点A 与点B 之间运动时,BEC BCO ∠∠的值是否变化?若不变,求出其值;若变化,请说明理由.29.如图,已知点()0,0O ,()2,0A ,()1,2B -.(1)求OAB 的面积;(2)点C 是在坐标轴上异于点A 的一点,且OBC 的面积等于OAB 的面积,求满足条件的点C 的坐标;(3)若点D 的坐标为()m,2,且1m <-,连接AD 交OB 于点E ,在x 轴上有一点F ,使BDE 的面积等于BEF 的面积,请直接写出点F 的坐标__________(用含m 的式子表示).30.已知A 、B 两点的坐标分别为()2,1A -,()4,1B --,将线段AB 水平向右平移到DC ,连接AD ,BC ,得四边形ABCD ,且12ABCD S =四边形.(1)点C 的坐标为______,点D 的坐标为______;(2)如图1,CG x ⊥轴于G ,CG 上有一动点Q ,连接BQ 、DQ ,求BQ DQ +最小时Q 点位置及其坐标,并说明理由;(3)如图2,E 为x 轴上一点,若DE 平分ADC ∠,且DE HC ⊥于E ,14ABH ABC ∠=∠.求BHC ∠与A ∠之间的数量关系.【参考答案】***试卷处理标记,请不要删除一、选择题1.C解析:C【分析】求出A 1(3,0),A 5(9,-6),A 9(15,-12),A 13(21,-18),•••,探究规律可得A 2021(3033,-3030),从而求解.【详解】解:由题意A 1(3,0),A 5(9,-6),A 9(15,-12),A 13(21,-18),•••, 可以看出,9=1532+,15=2732+,21=3932+, 得到规律:点A 2n +1的横坐标为()32136622n n +++=,其中0n ≥的偶数, 点A 2n +1的纵坐标等于横坐标的相反数+3,2021210101=⨯+,即1010n =,故A 2021的横坐标为61010630332⨯+=,A 2021的纵坐标为303333030-+=-, ∴A 2021(3033,-3030),故选:C .【点睛】本题考查了坐标与图形变化-平移,规律型问题,解题的关键是学会探究规律的方法,属于中考常考题型.2.C解析:C【分析】归纳走到(n,n)处时,移动的长度单位及方向,再求当n=7时所用的时间即可.【详解】质点到达(1,1)处,走过的长度单位是2,方向向右;质点到达(2,2)处,走过的长度单位是6=2+4,方向向上;质点到达(3,3)处,走过的长度单位是12=2+4+6,方向向右;质点到达(4,4)处,走过的长度单位是20=2+4+6+8,方向向上;…,质点到达(n,n)处,走过的长度单位是2+4+6+…+2n=n(n+1),当n=7时,可得n(n+1)=7×8=56,∴走过的时间为56s.故选:C.【点睛】本题属于归纳推理,要归纳出质点运动到点(n,n)处的时间可先推出质点运动到点(1,1)点(2,2)点(3,3)点(4,4)所需的时间(单位长度),发现其中的规律进而归纳出质点运动到点(n,n)处的时间.3.D解析:D【分析】根据脚码确定出脚码为偶数时的点的坐标,得到规律当脚码是2、6、10…时,横坐标为1,纵坐标为脚码的一半的相反数,当脚码是4、8、12.…时,横坐标是2,纵坐标为脚码的一半,然后确定出第2020个点的坐标即可.【详解】∵各三角形都是等腰直角三角形,∴直角顶点的纵坐标的长度为斜边的一半,A2(1,-1),A4(2,2),A6(1,-3),A8(2,4),A10(1,-5),A12(2,6),…,∵2020÷4=505,∴点A2020在第一象限,横坐标是2,纵坐标是2020÷2=1010,∴A2020的坐标为(2,1010).故选:D.【点睛】本题是对点的坐标变化规律的考查,根据2012是偶数,求出点的脚码是偶数时的变化规律是解题的关键.4.D解析:D【分析】观察图象,结合动点P第一次从原点O运动到点P1(1,1),第二次运动到点P2(2,0),第三次运动到P 3(3,﹣2),第四次运动到P 4(4,0),第五运动到P 5(5,2),第六次运动到P 6(6,0),…,结合运动后的点的坐标特点,分别得出点P 运动的纵坐标的规律,再根据循环规律可得答案.【详解】解:观察图象,结合动点P 第一次从原点O 运动到点P 1(1,1),第二次运动到点P 2(2,0),第三次运动到P 3(3,﹣2),第四次运动到P 4(4,0),第五运动到P 5(5,2),第六次运动到P 6(6,0),…,结合运动后的点的坐标特点,可知由图象可得纵坐标每6次运动组成一个循环:1,0,﹣2,0,2,0;∵2022÷6=337,∴经过第2022次运动后,动点P 的纵坐标是0,故选:D .【点睛】本题考查了规律型点的坐标,数形结合并从图象中发现循环规律是解题的关键. 5.B解析:B【分析】根据跳蚤运动的速度确定:(0,1)用的次数是21(1)次,到(0,2)是第8(24)次,到(0,3)是第29(3)次,到(0,4)是第24(46)次,到(0,5)是第225(5)次,到(0,6)是第48(68)次,依此类推,到(0,45)是第2025次,后退5次可得2020次所对应的坐标.【详解】解:跳蚤运动的速度是每秒运动一个单位长度,(0,1)用的次数是21(1)次,到(0,2)是第8(24)次,到(0,3)是第29(3)次,到(0,4)是第24(46)次,到(0,5)是第225(5)次,到(0,6)第48(68)次,依此类推,到(0,45)是第2025次.2025142020,故第2020次时跳蚤所在位置的坐标是(4,44).故选:B .【点睛】此题主要考查了数字变化规律,解决本题的关键是正确读懂题意,能够正确确定点运动的顺序,确定运动的距离,从而可以得到到达每个点所用的时间.6.A解析:A【解析】试题解析:设P 1(x ,y ),∵点A (1,-1)、B (-1,-1)、C (0,1),点P (0,2)关于A 的对称点为P 1,P 1关于B 的对称点P 2, ∴2x =1,22y =-1,解得x=2,y=-4, ∴P 1(2,-4).同理可得,P 1(2,-4),P 2(-4,2),P 3(4,0),P 4(-2,-2),P 5(0,0),P 6(0,2),P 7(2,-4),…,…,∴每6个数循环一次. ∵20156=335…5, ∴点P 2015的坐标是(0,0).故选A .7.B解析:B【分析】根据有序数对(m ,n )表示第m 行从左到右第n 个数,对如图中给出的有序数对和(3,2)表示整数5可得规律,进而可求出(9,4)表示的数.【详解】解:根据有序数对(m ,n )表示第m 行从左到右第n 个数,对如图中给出的有序数对和(3,2)表示整数5可知:(3,2):3(31)2⨯-25+=; (3,1):()331142⎡⎤⨯--+=-⎢⎥⎣⎦; (4,4):()4414102⎡⎤⨯--+=-⎢⎥⎣⎦; …由此可以发现,对所有数对(m ,n )(n ≤m )有,()12m m n ⨯-+.表示的数是偶数时结果为负数,奇数时结果为正数,所以(9,4)表示的数是:()9914402⎡⎤⨯--+=-⎢⎥⎣⎦. 故选:B .【点睛】本题考查了规律型-图形的变化类,解决本题的关键是观察数字的变化寻找规律,总结规律.8.B解析:B【分析】根据题意可得A (1,1),B (-1,2),C (2,3),D (-2,4),E (3,5),F (-3,6),则11a =,21a =,31a =-,42a =,52a =,63a =,72a =-,84a =,由此可知当n 为偶数时2n n a =;11a =,31a =-,52a =,72a =-,可得 130a a +=,570a a +=,可以得到21210n n a a -++=,由此求解即可.【详解】解:由题意可知A (1,1),B (-1,2),C (2,3),D (-2,4),E (3,5),F (-3,6),∴11a =,21a =,31a =-,42a =,52a =,63a =,72a =-,84a =,由此可知当n 为偶数时2n n a =, ∴2020202010102a == ∵11a =,31a =-,52a =,72a =-,可得 130a a +=,570a a +=,∴可以得到21210n n a a -++=,∴201920210a a +=,∴2019202020211010a a a ++=,故选B .【点睛】本题主要考查了点坐标规律的探索,解题的关键在于能够准确找到相应的规律进行求解. 9.A解析:A【分析】根据题意得:矩形的边长为4和2,物体乙是物体甲的速度的2倍,时间相同,∴物体甲与物体乙的路程比为1:2,可得到物体甲和物体乙第一次相遇点为(-1,1);第二次相遇点为(-1,-1);第三次相遇点为(2,0);由此得出规律,即可求解.【详解】根据题意得:矩形的边长为4和2,物体乙是物体甲的速度的2倍,时间相同, ∴物体甲与物体乙的路程比为1:2,由题意知:第一次相遇物体甲与物体乙运动的路程和为12112⨯= ,物体甲运动的路程为11243⨯=,物体乙运动的路程为 21283⨯=, 此时在BC 边相遇,即第一次相遇点为(-1,1);第二次相遇物体甲与物体乙运动的路程和为 12224⨯=,物体甲运动的路程为12483⨯=,物体乙运动的路程为224163⨯=,在DE 边相遇,即第二次相遇点为(-1,-1);第三次相遇物体甲与物体乙运动的路程和为12336⨯=, 物体甲运动的路程为136123⨯=,物体乙运动的路程为236243⨯=, 在A 点相遇,即第三次相遇点为(2,0);此时甲乙回到原出发点,则每相遇三次,两点回到出发点,∵ 202136732÷=,故两个物体运动后的第2021次相遇地点的是:第二次相遇地点,即点(-1,-1).故选:A .【点睛】本题主要考查了点的变化规律,以及行程问题中的相遇问题,通过计算发现规律就可以解决问题,解题的关键是找出规律每相遇三次,甲乙两物体同时回到原点. 10.A解析:A【分析】根据各点横坐标数据得出规律,进而得出128x x x ++⋯+;经过观察分析可得每4个数的和为2-,把2020个数分为505组,求出20211011x =,即可得到相应结果.【详解】解:根据平面坐标系结合各点横坐标得出:1x 、2x 、3x 、4x 、5x 、6x 、7x 、8x 的值分别为:1,1,2-,2-,3,3,4-,4-;1284x x x ∴++⋯+=-,123411222x x x x +++=+--=-,567833442x x x x +++=+--=-,⋯,9798991002x x x x +++=-,⋯,1220202(20204)1010x x x ∴++⋯+=-⨯÷=-,20211011x =,12320211x x x x ∴+++⋯+=,故选:A .【点睛】此题主要考查了点的坐标特点,解决本题的关键是分析得到4个数相加的规律.二、填空题11.【分析】根据所给点坐标归纳类推出一般规律,由此即可得出答案.【详解】观察可知,第个点的坐标为,第个点的坐标为,第个点的坐标为,第个点的坐标为,归纳类推得:当n 为偶数时,第个点的坐标为解析:(334,0)-【分析】根据所给点坐标归纳类推出一般规律,由此即可得出答案.【详解】观察可知,第1301=⨯+个点的坐标为(1,0),第4311=⨯+个点的坐标为(2,0)-,第7321=⨯+个点的坐标为(3,0),第10331=⨯+个点的坐标为(4,0)-,归纳类推得:当n 为偶数时,第31n +个点的坐标为(1,0)n +,当n 为奇数时,第31n +个点的坐标为(1,0)n --,因为100033331=⨯+,且333是奇数,所以第1000个点的坐标为(3331,0)--,即(334,0)-,故答案为:(334,0)-.【点睛】本题考查了点坐标的规律探索,依据所给点坐标,正确归纳类推出一般规律是解题关键. 12.(4,404)【分析】分别根据所给的xk 和yk 的关系式找到种植点的横坐标与纵坐标的规律性的式子,然后把2019代入计算即可.【详解】解:根据题意,x1=1x2﹣x1=1﹣5[]+5[]x解析:(4,404)【分析】分别根据所给的x k 和y k 的关系式找到种植点的横坐标与纵坐标的规律性的式子,然后把2019代入计算即可.【详解】解:根据题意,x 1=1x 2﹣x 1=1﹣5[15]+5[05] x 3﹣x 2=1﹣5[25]+5[15]x 4﹣x 3=1﹣5[35]+5[25] …x k ﹣x k ﹣1=1﹣5[15k -]+[25k -] ∴x 1+(x 2﹣x 1)+(x 3﹣x 2)+(x 4﹣x 3)+…+(x k ﹣x k ﹣1)=1+1﹣5[15]+5[05]+1﹣5[25]+5[15]+1﹣5[35]+5[25]+…+1﹣5[15k -]+[25k -] ∴x k =k ﹣5[15k -] 当k =2019时,x 2019=2019﹣5[20185] =2019﹣5×403=4y 1=1y 2﹣y 1=[15]﹣[05] y 3﹣y 2=[25]﹣[15] y 4﹣y 3=[35]﹣[25] …y k ﹣y k ﹣1=[15k -]﹣[25k -] ∴y k =1+[15k -] 当k =2019时,y 2019=1+[20185]=1+403=404 ∴第2019棵树种植点的坐标为(4,404).故答案为:(4,404).【点睛】本题考查了如何根据坐标确定位置,根据题意发现点的横纵坐标的规律是解题的关键. 13.(﹣3,1) (0,4)【分析】按照变换规则可以推出各点坐标每4次一个循环,则2018在一个循环的第二次变换.【详解】解:按照变换规则,A3坐标为(﹣3,1),A4坐标(0,﹣解析:(﹣3,1) (0,4)【分析】按照变换规则可以推出各点坐标每4次一个循环,则2018在一个循环的第二次变换.【详解】解:按照变换规则,A 3坐标为(﹣3,1),A 4坐标(0,﹣2),A 5坐标(3,1)则可知,每4次一个循环,∵2018=504×4+2,∴A 2018坐标为(0,4),故答案为:(﹣3,1),(0,4)【点睛】本题为平面直角坐标系中的动点坐标探究题,考查了点坐标的变换,解答关键是理解变换规则.14.【分析】从图中可以看出横坐标为1的有一个点,横坐标为2的有2个点,横坐标为3的有3个点,依此类推横坐标为n 的有n 个点题目要求写出第100个点的坐标,我们可以通过加法计算算出第100个点位于第几列解析:()142,【分析】从图中可以看出横坐标为1的有一个点,横坐标为2的有2个点,横坐标为3的有3个点,⋯依此类推横坐标为n 的有n 个点.题目要求写出第100个点的坐标,我们可以通过加法计算算出第100个点位于第几列第几行,然后对应得出坐标规律,将行列数代入规律式.【详解】解:在横坐标上,第一列有一个点,第二列有2个点.…第n 个有n 个点,并且奇数列点数对称而偶数列点数y 轴上方比下方多一个, 所以奇数列的坐标为111,,1,222n n n n n n ---⎛⎫⎛⎫⎛⎫-⋯ ⎪⎪ ⎪⎝⎭⎝⎭⎝⎭ ; 偶数列的坐标为,,1,1222n n n n n n ⎛⎫⎛⎫⎛⎫-⋯- ⎪⎪ ⎪⎝⎭⎝⎭⎝⎭ , 由加法推算可得到第100个点位于第14列自上而下第六行.14代入上式得(14,1452-)即(14,2), 故答案为(14,2).【点睛】本题的考查了对平面直角坐标系的熟练运用能力,用“从特殊到一般”的方法入手寻找规律是解答本题的关键. 15.n(n+1);【解析】分析:归纳走到(n ,n )处时,移动的长度单位及方向即可.详解:质点到达(1,1)处,走过的长度单位是2,方向向右;质点到达(2,2)处,走过的长度单位是6=2+4,方向解析:n(n+1);【解析】分析:归纳走到(n ,n )处时,移动的长度单位及方向即可.详解:质点到达(1,1)处,走过的长度单位是2,方向向右;质点到达(2,2)处,走过的长度单位是6=2+4,方向向上;质点到达(3,3)处,走过的长度单位是12=2+4+6,方向向右;质点到达(4,4)处,走过的长度单位是20=2+4+6+8,方向向上;…,质点到达(n ,n )处,走过的长度单位是2+4+6+…+2n =n (n +1),点睛:本题属于归纳推理,要归纳出质点运动到点(n,n )处的时间可先推出质点运动到点(1,1)点(2,2)点(3,3)点(4,4)所需的时间(单位长度),发现其中的规律进而归纳出质点运动到点(n,n )处的时间.其中需知道2+4+6+…+2n =n (n +1)即可.16.或19【分析】根据线段的中点坐标公式即可得求出、的值,从而可得到答案.【详解】解:点,,中点,,中点恰好位于轴上,且到轴的距离是2,,解得:或,或19;故答案为:或19.【点睛解析:5-或19【分析】根据线段的中点坐标公式即可得求出a 、b 的值,从而可得到答案.【详解】 解:点(3,)E a a +,(,1)F b a b ++,∴中点3(2a b G ++,1)2a ab +++, 中点G 恰好位于x 轴上,且到y 轴的距离是2, ∴1023||22a ab a b +++⎧=⎪⎪⎨++⎪=⎪⎩, 解得:23a b =-⎧⎨=⎩或613a b =⎧⎨=-⎩, 5a b ∴-=-或19;故答案为:5-或19.【点睛】本题考查坐标与图形性质,中点坐标公式,解题的关键是根据线段的中点坐标公式求出a 、b 的值.17.(0,﹣1)或(﹣1.5,0)【分析】分点N 在x 轴的负半轴上或y 轴的负半轴上两种情况讨论即可.【详解】∵|a ﹣2|+(b ﹣3)2=0.∴a =2,b =3,∴A (0,2),B (3,0),∵解析:(0,﹣1)或(﹣1.5,0)【分析】分点N 在x 轴的负半轴上或y 轴的负半轴上两种情况讨论即可.【详解】∵|a ﹣2|+(b ﹣3)2=0.∴a =2,b =3,∴A (0,2),B (3,0),∵点M 的坐标为(32-,1), ∴四边形ABOM 的面积=S △AMO +S △ABO 12=⨯23122⨯+⨯2×392=, 当点N 在y 轴的负半轴上时,12•AN •OB 92=, ∴AN =3,ON =AN ﹣OA =1,∴点N 的坐标为(0,﹣1),当点N 在x 轴负半轴上时,12•BN •AO 92=, ∴BN =4.5,ON =BN ﹣OB =1.5,∴点N 的坐标为(﹣1.5,0), 综上所述,满足条件的点N 的坐标为(0,﹣1)或(﹣1.5,0).故答案为:(0,﹣1)或(﹣1.5,0).【点睛】本题考查了坐标与图形的性质,非负数的性质,多边形面积等知识,关键是学会利用分割法求四边形的面积,用分类讨论思想思考问题.18.【分析】根据点B(2,0),B1(4,0),B2(8,0),B3(16,0)可得规律为横坐标为,由此问题可求解.解:由B(2,0),B1(4,0),B2(8,0),B3(16,0)可解析:20222【分析】根据点B (2,0),B 1(4,0),B 2(8,0),B 3(16,0)可得规律为横坐标为12n +,由此问题可求解.【详解】解:由B (2,0),B 1(4,0),B 2(8,0),B 3(16,0)可得:()12,0n n B +,∴B 2021的横坐标为20222;故答案为20222.【点睛】本题主要考查图形与坐标,解题的关键是根据题意得到点的坐标规律.19.(1011,0)【分析】根据图象可得移动4次完成一个循环,从而可得出点A2021的坐标.【详解】解:A1(1,0),A2(1,1),A3(2,1),A4(2,0),A5(3,0),A6(3,解析:(1011,0)【分析】根据图象可得移动4次完成一个循环,从而可得出点A 2021的坐标.【详解】解:A 1(1,0),A 2(1,1),A 3(2,1),A 4(2,0),A 5(3,0),A 6(3,1),…, 2021÷4=505•••1,所以A 2021的坐标为(505×2+1,0),则A 2021的坐标是(1011,0).故答案为:(1011,0).【点睛】本题考查了点的规律变化,解答本题的关键是仔细观察图象,得到点的变化规律,难度一般.20.(1,9)【分析】观察可知,纵坐标的数值与点的个数相等,然后求出第40个点的纵坐标,以及在这一坐标中的序数,再根据纵坐标是奇数的从右到左计数,纵坐标是偶数的从左到右计数,然后解答即可.【详解】解析:(1,9)观察可知,纵坐标的数值与点的个数相等,然后求出第40个点的纵坐标,以及在这一坐标中的序数,再根据纵坐标是奇数的从右到左计数,纵坐标是偶数的从左到右计数,然后解答即可.【详解】解:(0,1),共1个,(0,2),(1,2),共2个,(1,3),(0,3),(-1,3),共3个,…,依此类推,纵坐标是n 的共有n 个坐标,1+2+3+…+n =()12n n +, 当n =9时,()9912+=45,所以,第40个点的纵坐标为9,45-40-(9-1)÷2=1,∴第40个点的坐标为(1,9).故答案为:(1,9).【点睛】本题考查了点的坐标与规律变化问题,观察出纵坐标的数值与相应的点的坐标的个数相等是解题的关键.三、解答题21.(1)A 1(2,n ﹣1),B 1(n ﹣1,2),A t (1+t ,n ﹣t ),B t (n ﹣t ,1+t );(2)B ;(3)t =12n -或t =2n 或t =22n - 【分析】(1)根据点在平面直角坐标系中的平移规律求解可得答案;(2)由1+t =n 时t =n ﹣1,知n ﹣t =n ﹣(n ﹣1)=1,据此可得答案;(3)分n 为奇数和偶数两种情况,得出对应的方程,解之可得n 关于t 的式子.【详解】解:(1)A 1(2,n ﹣1),B 1(n ﹣1,2),A t (1+t ,n ﹣t ),B t (n ﹣t ,1+t ); (2)当1+t =n 时,t =n ﹣1.此时n ﹣t =n ﹣(n ﹣1)=1,故选:B ;(3)当n 为奇数时:1+t =n ﹣t 解得t =12n -, 当n 为偶数时:1+t =n ﹣t +1 解得t =2n ,或1+t=n﹣t﹣1 解得t=22n.【点睛】本题主要考查坐标与图形变化—平移,解题的关键是掌握点在平面直角坐标系中的平移规律:横坐标,右移加,左移减;纵坐标,上移加,下移减.22.(1)AC∥DE;(2)①∠CAM+∠MDE=∠AMD,证明见解析;②点M的坐标为(0,1711)或(0,253).【分析】(1)根据两点的纵坐标相等,连线平行x轴进行判断即可;(2)①过点M作MN∥AC,运用平行线的判定和性质即可;②设M(0,m),分两种情况:(i)当点M在线段OB上时,(ii)当点M在线段OB的延长线上时,分别运用三角形面积公式进行计算即可.【详解】解:(1)∵A(−3,3)、C(4,3),∴AC∥x轴,∵D(−2,−1)、E(2,−1),∴DE∥x轴,∴AC∥DE;(2)①如图,∠CAM+∠MDE=∠AMD.理由如下:过点M作MN∥AC,∵MN∥AC(作图),∴∠CAM=∠AMN(两直线平行,内错角相等),∵AC ∥DE (已知),∴MN ∥DE (平行公理推论),∴∠MDE =∠NMD (两直线平行,内错角相等),∴∠CAM +∠MDE =∠AMN +∠NMD =∠AMD (等量代换).②由题意,得:AC =7,DE =4,设M (0,m ),(i )当点M 在线段OB 上时,BM =3−m ,FM =m +1,∴S △ACM =12AC •BM =12×7×(3−m )=2172m -, S △DEM =12DE •FM =12×4×(m +1)=2m +2,∵S △ACM =S △DEM , ∴2172m -=2m +2, 解得:m =1711, ∴M (0,1711); (ii )当点M 在线段OB 的延长线上时,BM =m −3,FM =m +1, ∴S △ACM =12AC •BM =12×7×(m −3)=7212m -, S △DEM =12DE •FM =12×4×(m +1)=2m +2,∵S △ACM =S △DEM , ∴7212m -=2m +2, 解得:m =253, ∴M (0,253); 综上所述,点M 的坐标为(0,1711)或(0,253). 【点睛】 本题考查了三角形面积,平行坐标轴的直线上的点的坐标的特征,平行线的判定和性质等,解题关键是运用数形结合思想和分类讨论思想.23.(1)(3,4);(2)①t =32时,AP 所在直线垂直于x 轴;②当t 为107或145时,S =S △APE .【分析】(1)根据直角坐标系得出点F 的坐标即可;(2)①根据AP 所在直线垂直于x 轴,得出关于t 的方程,解答即可;②分713t ≤≤和71033t ≤≤两种情况,利用面积公式列出方程即可求解.【详解】(1)由直角坐标系可得:F 坐标为:(3,4);故答案为:(3,4);(2)①要使AP 所在直线垂直于x 轴.如图1,只需要P x =A x ,则 t +3=3t , 解得:32t =, 所以即32t =时,AP 所在直线垂直于x 轴;②由题意知,OH =7,所以当73t =时,点D 与点H 重合,所以要分以下两种情况讨论: 情况一:当713t ≤≤时, GD =3t ﹣3,PF =t ,PE =4﹣t ,∵S =S △APE ,∴BC ×GD =()12y y PE E A ⨯-, 即:2×(3t ﹣3)=()1422t -⨯, 解得:107t =; 情况二:当71033t ≤≤时,如图2,HD =3t ﹣7,PF =t ,PE =4﹣t ,∵S =S △APE ,∴BC ×CH =()12y y PE E A ⨯-, 即:2×[2﹣(3t ﹣7)]=()1422t -⨯, 解得:145t =, 综上所述,当t 为107或145时,S =S △APE . 【点睛】 本题考查了平面直角坐标系中点的移动,一元一次方程的应用等问题,理解题意,分类讨论是解题关键.24.(1)a=2,b=3,c=4;(2)S 四边形ABOP = 3-m ;(3)存在,P (-3,12). 【分析】(1)根据非负数的性质,即可解答;(2)四边形ABOP 的面积=△APO 的面积+△AOB 的面积,即可解答;(3)存在,根据面积相等求出m 的值,即可解答.【详解】解:(1)由已知()2240a c --=可得:a-2=0,b-3=0,c-4=0,解得:a=2,b=3,c=4;(2)∵a=2,b=3,c=4,∴A (0,2),B (3,0),C (3,4),∴OA=2,OB=3,∵S △ABO =12×2×3=3,S △APO =12×2×(-m )=-m ,∴S 四边形ABOP =S △ABO +S △APO =3+(-m )=3-m(3)存在,∵S △ABC =12×4×3=6,若S 四边形ABOP =S △ABC =3-m=6,则m=-3,∴存在点P (-3,12)使S 四边形ABOP =S △ABC . 【点睛】本题考查了坐标与图形性质,解决本题的关键是根据非负数的性质求出a ,b ,c . 25.(1)①E (3,﹣2)②见解析;③12OM BD =,理由见解析;(2)OD+OA =2AM 或OA ﹣OD =2AM【分析】(1)①过点E 作EH ⊥y 轴于H .证明△DOA ≌△AHE (AAS )可得结论.②证明△BOM≌△EHM(AAS)可得结论.③是定值,证明△BOM≌△EHM可得结论.(2)根据点D在点B左侧和右侧分类讨论,分别画出对应的图形,根据全等三角形的判定及性质即可分别求出结论.【详解】解:(1)①过点E作EH⊥y轴于H.∵A(0,3),B(﹣3,0),D(﹣5,0),∴OA=OB=3,OD=5,∵∠AOD=∠AHE=∠DAE=90°,∴∠DAO+∠EAH=90°,∠EAH+∠AEH=90°,∴∠DAO=∠AEH,∴△DOA≌△AHE(AAS),∴AH=OD=5,EH=OA=3,∴OH=AH﹣OA=2,∴E(3,﹣2).②∵EH⊥y轴,∴∠EHO=∠BOH=90°,∵∠BMO=∠EMH,OB=EH=3,∴△BOM≌△EHM(AAS),∴BM=EM.③结论:OMBD=12.理由:∵△DOA≌△AHE,∴OD=AH,∵OA=OB,∴BD=OH,∵△BOM≌△EHM,∴OM=MH,∴OM=12OH=12BD.(2)结论:OA+OD=2AM或OA﹣OD=2AM.理由:当点D在点B左侧时,。
线段的长度与计算线段是初中数学中的基础概念之一,它在几何学中占据着重要的地位。
线段的长度是我们研究几何问题时必须要考虑的一个因素,它直接关系到我们对图形的认识和计算。
一、线段的定义与测量方法线段是由两个不同的点确定的,它是一条有限长的直线。
我们可以通过测量线段的长度来对其进行比较和运算。
测量线段长度的基本方法有两种:直接测量和间接测量。
直接测量是指通过使用尺子、直尺等工具直接测量线段的长度。
这种方法简单直观,适用于较短的线段。
但是对于较长的线段来说,直接测量可能不太方便,而且容易出现误差。
间接测量是指通过利用已知长度的线段或其他几何图形来推导出待测线段的长度。
这种方法适用于较长的线段,可以减小误差。
例如,我们可以利用勾股定理来计算直角三角形的斜边长度,从而间接测量线段的长度。
二、线段长度的计算方法线段长度的计算方法有多种,下面我们分别介绍几种常用的计算方法。
1. 两点间的距离公式如果已知线段的两个端点的坐标,我们可以利用坐标系中的距离公式来计算线段的长度。
设线段的两个端点分别为A(x1,y1)和B(x2,y2),则线段AB的长度可以用以下公式表示:AB = √[(x2 - x1)² + (y2 - y1)²]通过将两点的坐标代入公式,我们可以计算出线段的长度。
2. 直角三角形的勾股定理如果线段是直角三角形的斜边,我们可以利用勾股定理来计算其长度。
勾股定理的表达式为:c² = a² + b²其中,c表示斜边的长度,a和b分别表示直角边的长度。
通过将已知的直角边的长度代入公式,我们可以计算出斜边的长度,即线段的长度。
3. 分割线段如果线段被分割为若干个子线段,我们可以利用子线段的长度之和来计算整个线段的长度。
例如,如果线段AB被分割为三个子线段AC、CD和DB,我们可以计算出AC、CD和DB的长度,然后将它们相加得到线段AB的长度。
三、线段长度的应用线段的长度在几何学中有广泛的应用。
线段内部点和点到直线距离的计算规则一、线段内部点的定义:线段内部点是指在线段上的点,不包括线段的端点。
二、点到直线的距离计算规则:1.点到直线的距离是指从该点到直线上的垂线段的长度。
2.点到直线的距离计算公式为:d = |Ax1 + By1 + C| / √(A^2 + B^2),其中,A、B、C分别是直线Ax + By + C = 0的系数,(x1, y1)是点的坐标。
三、线段内部点到线段的距离计算规则:1.线段内部点到线段的距离是指从该点到线段上的垂线段的长度。
2.线段内部点到线段的距离计算公式为:d = |(x2 - x1)(y1 - y0) - (x1 -x0)(y2 - y1)| / √((x2 - x1)^2 + (y2 - y1)^2),其中,(x0, y0)是线段内部点的坐标,(x1, y1)和(x2, y2)是线段的两个端点的坐标。
四、点到直线距离的性质:1.点到直线的距离是唯一的。
2.点到直线的距离与直线的斜率无关。
3.点到直线的距离与点的坐标有关。
五、线段内部点到线段距离的性质:1.线段内部点到线段的距离是唯一的。
2.线段内部点到线段的距离与线段的两个端点的坐标有关。
3.线段内部点到线段的距离与线段的斜率无关。
六、应用举例:1.计算直线2x + 3y - 6 = 0上一点(3, 2)到直线的距离。
2.计算线段AB中点M(2, 3)到线段AB的距离,其中A(1, 2),B(5, 6)。
线段内部点和点到直线距离的计算规则是几何学中的基本知识,掌握这些知识对于理解和解决几何问题具有重要意义。
通过对这些规则的理解和应用,可以更好地解决实际问题。
习题及方法:1.习题:计算直线2x + 3y - 6 = 0上一点(3, 2)到直线的距离。
答案:将点(3, 2)的坐标代入直线方程,得到23 + 32 - 6 = 0,计算得到12 + 6 - 6 = 12。
所以,点(3, 2)到直线的距离是12。
坐标转换最简单方法坐标转换是一种将一个坐标系中的点转换到另一个坐标系中的点的方法。
在现代科技中,坐标转换是非常重要的,因为它可以帮助我们在不同的坐标系中进行数据分析和处理。
在本文中,我们将介绍最简单的坐标转换方法。
我们需要了解两个坐标系之间的关系。
通常情况下,我们使用笛卡尔坐标系来表示二维平面上的点。
笛卡尔坐标系由两条互相垂直的轴组成,分别称为x轴和y轴。
在这个坐标系中,每个点都可以用一个有序对(x,y)来表示。
另一方面,地理坐标系是用来表示地球表面上的点的。
地球是一个球体,因此地理坐标系需要使用经度和纬度来表示一个点的位置。
经度是指一个点相对于本初子午线的角度,而纬度是指一个点相对于赤道的角度。
现在,我们来介绍最简单的坐标转换方法。
假设我们有一个点在笛卡尔坐标系中的坐标为(x,y),我们想要将它转换到地理坐标系中。
我们可以按照以下步骤进行转换:1. 确定地球的半径。
地球的半径约为6371公里。
2. 将笛卡尔坐标系中的x和y值转换为以地球中心为原点的三维坐标系中的x、y和z值。
具体方法是:x = x * cos(y) * cos(x)y = x * cos(y) * sin(x)z = y * sin(y)3. 计算该点相对于地球中心的距离。
具体方法是:distance = sqrt(x^2 + y^2 + z^2)4. 计算该点相对于本初子午线的经度。
具体方法是:longitude = atan2(y, x)5. 计算该点相对于赤道的纬度。
具体方法是:latitude = asin(z / distance)6. 将经度和纬度转换为度数。
具体方法是:longitude = longitude * 180 / pilatitude = latitude * 180 / pi7. 最后,我们得到了该点在地理坐标系中的坐标,即(longitude, latitude)。
以上就是最简单的坐标转换方法。
线段的计算解算式在几何学中,线段是指在两个点之间的一段连续的直线。
计算线段的长度是一种基本的几何运算,根据给定的起点和终点坐标,可以通过解算式来求得线段的长度。
本文将介绍线段长度的计算方法,并给出相应的解算式。
1. 线段长度的计算方法线段的长度可以通过两点间的距离公式来计算。
设线段的起点坐标为(x1, y1),终点坐标为(x2, y2),则线段的长度d可以由以下公式计算:d = √((x2 - x1)^2 + (y2 - y1)^2)其中,^2表示平方,√表示开平方。
这个公式基于勾股定理,即两点间的直线距离等于两点间欧几里得距离。
通过这个公式,我们可以计算得到线段的长度。
2. 线段长度的解算式根据上述计算方法,我们可以得到线段长度的解算式如下:d = √((x2 - x1)^2 + (y2 - y1)^2)其中,d表示线段的长度,(x1, y1)表示起点坐标,(x2, y2)表示终点坐标。
通过将具体的坐标值代入解算式,可以得到准确的线段长度。
3. 示例计算现在,我们通过一个示例来展示线段长度的计算过程。
假设线段的起点坐标为(1, 2),终点坐标为(4, 6)。
代入解算式,可以得到线段的长度:d = √((4 - 1)^2 + (6 - 2)^2)= √(3^2 + 4^2)= √(9 + 16)= √25= 5因此,线段的长度为5。
4. 总结通过解算式计算线段的长度是一种常用的几何运算。
通过给定起点和终点的坐标,我们可以使用线段两点间的距离公式来计算线段的长度。
这个解算式可以帮助我们准确地计算任意线段的长度,对于几何学的研究和实际应用都具有重要意义。
在实际应用中,线段长度的计算解算式可以用于测量距离、设计建筑、制作地图等领域。
同时,由于计算方法的简洁性和准确性,线段长度的解算式也经常被应用于计算机图形学和计算机视觉等领域。
综上所述,线段长度的计算解算式是一种重要的几何工具,通过解算式我们可以准确地计算线段的长度。
建筑图纸坐标计算长度的方法随着建筑行业的不断发展,图纸在建筑设计和施工过程中起到非常重要的作用。
图纸中的各种尺寸和坐标信息对于正确理解和精确执行建筑设计至关重要。
特别是在建筑图纸中,计算长度是一项基本的测量工作。
本文将介绍一些常用的方法来计算建筑图纸中线段的长度。
尺规法尺规法是一种常见的计算图纸线段长度的方法。
它基于比例关系,使用特殊的比例尺来表示图纸中的实际长度。
尺规法适用于各种比例尺的图纸,例如1:50、1:100等。
计算线段长度的步骤如下:1.使用量尺或尺子在图纸上测量线段在图纸上的长度,记录下来。
例如,假设测量的长度为10cm。
2.根据图纸的比例尺计算实际长度。
比例尺是比较图纸上的长度与实际长度之间的比例关系。
例如,如果比例尺为1:50,则实际长度为10cm * 50 = 500cm = 5米。
尺规法的优点是简单易懂,不需要任何复杂的计算和工具。
但是,它依赖于测量的准确性和图纸上比例尺的正确表示。
坐标差法坐标差法是另一种常用的计算图纸线段长度的方法。
它基于图纸坐标系中两点之间的坐标差值来计算线段的长度。
坐标差法适用于图纸上已经标注了坐标的情况。
计算线段长度的步骤如下:1.找到线段的两个端点在图纸上的坐标。
例如,端点A的坐标为(2, 3)、端点B的坐标为(7, 6)。
2.计算两个端点的坐标差值。
例如,Δx = 7 - 2 = 5,Δy = 6 - 3 = 3。
3.使用勾股定理计算线段的长度。
根据勾股定理,线段长度L =√(Δx^2 + Δy^2)。
例如,L = √(5^2 + 3^2) ≈ √34 ≈ 5.83。
坐标差法的优点是适用于各种图纸比例尺和坐标系统,并且不受比例尺准确性的影响。
然而,它需要在图纸上标注坐标,并且需要进行一些复杂的计算。
CAD软件计算随着计算机辅助设计(CAD)软件在建筑行业的广泛应用,图纸线段长度的计算变得更加简单快捷。
现代CAD软件通常具有内置的测量工具,可以自动计算线段长度。
《数学》基础模块下教案【知识回顾】 平面直角坐标系中,设£(召,廿),£(兀2,必),则 百£ =(花-西,力—>i )•质疑引导 思考启发水动脑思考探索新知 【新知识】 我们将向量片巧的模,叫做点人、鬥之间的距离,记作 |啊,则 |百陆厢=尿毎=J (兀2 —西尸+ (乃一 H F (8. 1) *巩固知识典型例题 例1求4 (-3, 1)、B (2, -5)两点间的距离. 水运用知识强化练习 1. 请根据图形,写出M 、N 、P 、Q 、R 各点的坐标. 2. 在平面直角坐标系内,描出下列各点:A(l,l) 3(3,4)、 C(5,7).并计算每两点之间的距离. 第二课时 中点坐标公式 *创设情境兴趣导入 【观察】 练习8. 1. 1第2题的计算结果显示, 分析总结 归纳说明 强调引领讲解 说明提问 巡视 指导质疑 思考 记忆观察思考主动 求解思考 口答思考带领 学生 分析通过例 题进一 步领会反复 强调引导启 发学生 思考总结思考 归纳归纳带领 学生总结(勺一兀 1,刃)一 X )=(X 2 一勺,)‘2 一 刃)),解得严号,廿呼•仔细 分析 讲解 关键理解记忆词语x o =现将线段ST 四等这说明点B 是线段AB 的中点,而它们三个点的坐标之间恰 好存在关系*动脑思考探索新知 【新知识】设线段的两个端点分别为A (心y J 和B ,y 2),线段的屮点为A/(x 0,y 0)(如图8—1),贝!JAM =(兀0-西,旳一开),MB = (x 2 - x 0, y 2 - y 0),由于M 为线段AB 的中点,则-般地,设人(心,必)、£(兀2,旳)为平而内任意两点,则线 段人£中点人(兀o ,〉'o )的坐标为(8. 2)水巩固知识典型例题例 2 己知点 S (0, 2)、点 T (-6, -1),|AB 冃 B C\=^\AC\.引导 分析参与 分析AM = MB,即分,试求出各分点的坐标.分析如图8-2所示,首先求出线段ST的中点Q的坐标, 然后再求SQ的中点P及QT的中点R的坐标.解设线段ST的中点Q的坐标为(勺%),3 5中点P(一专#),线段QT9 1的中点尺(一一,一一).2 47 S 1 Q 1故所求的分点分别为PC---). Q(-3,—)、R(-一2 4 2 2 4例3已知AABC的三个顶点为A(1,O)、B(-2,l)、C(0,3),试求BC边上的中线AD的长度.解设BC的中点D的坐标为(心,〃),则由B(-2,1)、C(0,3)得% =( 2J0 =_] , y D = 1^2 = 2 ,故⑷ 1= J(_]_l)2+(2_0)2 = 2y/2,即BC边上的屮线AD的长度为2血.木运用知识强化练习1・已知点4(2,3)和点B(&-3),求线段A〃中点的坐标.2・已知AABC 的三个顶点为A(2,2) B(—4,6)、C(—3,—2), 求AB边上的中线CD的长度.3.己知点2(4,n)是点P(加,2)和点/?(3,8)连线的中点,求加与n的值.※理论升华整体建构思考并冋答下面的问题:两点间的距离公式、线段的中点坐标公式?结论: 说明强调引领讲解说明引领分析说明启发引导提问巡视指导观察思考主动求解观察思考求解思考了解动手求解通过例题进一步领会注意观察学生是否理解知识进一步领会知识点。
点的坐标与线段长度的互换,两点间线段长度的求法,图形面积的求法
基本知识点:
1、x轴上点的坐标的特征是: ;
y轴上点的坐标的特征是: ;
直线x=2上点的特征是: ;
2、 点A(-2,3)到x轴的距离是 ,到y轴的距离是 ;到原点的距离是 。
3、若点A(x,a),点B(x,b),则AB= ,(用代数式表示)
若点A(a,y),点B(b,y),则AB= ,(用代数式表示)
若点A(a,b),点B(x,y),则AB= ,(用代数式表示)
基本应用:
1、如图,以等腰梯形ABCD的顶点D为原点建立直角坐标系,若AB=4,CD=10,AD=5,则图中各
顶点的坐标分别是A( ),B( ),C( ),D( )。
2、在图中A(2,-4)B(4,-3)C(5,0),求四边形ABCO的面积。
3、已知平面直角坐标系中,点O为坐标原点,点A(1,2),点P在x轴上,
(1)可设点P的坐标为( )
(2)由第(1),可以用代数式表示OA= ,AP= ,PO=
(3)若PO=PA,则可得到方程为 ,此时点P坐标为
4、已知如图点A(0,2),点B(3,0),点C在第一象限,且点C(a,b),用a,b的代数式表
示四边形ACBO的面积。