最新人教版七年级数学下册第六单元测试卷(共2套)
- 格式:docx
- 大小:197.65 KB
- 文档页数:8
人教版七年级数学下册第六章实数。
单元测试题精选(Word版附答案)人教版七年级数学第6章《实数》单元测试题精选完成时间:120分钟满分:150分得分评卷人:______________ 姓名:______________ 成绩:______________一、选择题(本大题10小题,每小题4分,共40分。
每小题给出的四个选项中,只有一个选项是符合题意的,请将该选项的标号填入表格内)题号 1 2 3 4 5 6 7 8 9 10答案 B A D A A C D C B B二、填空题(每题5分,共20分)11.m = 3.n = 1.(m+n)^5 = 243.12.(1) 0.000 521 7 (2) 0.002 284.13.3.14.x = 8.三、解答题(共90分)15.1) x = ±5/3;2) x = 3/5.16.1.17.a = 9.b = -8.3a+b的算术平方根为 5.18.已知 $m=\lfloor 313\rfloor$。
$n=0.13$,求 $m-n$ 的值。
19.如图,计划围一个面积为 $50\text{ m}^2$ 的长方形场地,一边靠旧墙(墙长为 $10$ m),另外三边用篱笆围成,并且它的长与宽之比为 $5:2$。
讨论方案时,XXX说:“我们不可能围成满足要求的长方形场地。
”小军说:“面积和长宽比例是确定的,肯定可以围得出来。
”请你判断谁的说法正确,为什么?解:设长为 $5x$,宽为 $2x$,则面积为 $10x^2$,另一条边长为 $10-5x$,由题意得 $10x^2=(10-5x)\times2x$,解得$x=1$,长为 $5$,宽为 $2$,可以围成满足要求的长方形场地,小军的说法正确。
20.若 $x+3+(y-3)^2=3$,则 $(xy)^{\frac{2015}{3}}$ 等于多少?解:移项得 $(y-3)^2=3-x-3=-x$,所以 $xy=\frac{3-x}{y-3}$,将其代入 $(xy)^{\frac{2015}{3}}$ 得 $\left(\frac{3-x}{y-3}\right)^{\frac{2015}{3}}$,根据乘方的运算法则,得$\left(\frac{3-x}{y-3}\right)^{671}$。
2023年新人教版初中数学七年级下册第六单元学习质量检测卷一、选择题(共12小题,满分36分,每小题3分)1.(3分)四个实数5,0,√8,√3中,最小的无理数是()A.√3B.0C.√8D.52.(3分)设M=2a2+2a+1,N=3a2﹣2a+7,其中a为实数,则M与N的大小关系是()A.M≥N B.M>N C.N≥M D.N>M3.(3分)实数a,b在数轴上的位置如图所示,则化简代数式|a﹣b|﹣a的结果是()A.b﹣2a B.﹣2a﹣b C.﹣b D.b4.(3分)下列说法正确的是()A.无理数是无限不循环小数B.一个数的平方根等于它本身的数是0,1C.绝对值等于本身的数是0D.倒数等于本身的数是0,1,﹣15.(3分)以下几种说法:①每一个无理数都可以用数轴上的点来表示;②近似数1.70所表示的准确数x的范围是1.695≤x<1.705;③在数轴上表示的数在原点的左边;④立方根是它本身的数是0和1;其中正确的有()A.1个B.2个C.3个D.4个6.(3分)在数2,0,﹣2,−√3中,最大的数是()A.−√3B.0C.﹣2D.27.(3分)设面积为31的正方形的边长为x,则x的取值范围是()A.5.0<x<5.2B.5.2<x<5.5C.5.5<x<5.7D.5.7<x<6.08.(3分)已知实数a,b,c在数轴上的位置如图,则化简式子|a|+|c﹣b|﹣|a+b|的结果为()A.c﹣2b B.c﹣2a C.c D.﹣c9.(3分)√2+√3的小数部分是(注:[n ]表示不超过n 的最大整数)( )A .√2+√3−2B .√2+√3−3C .4−√2−√3D .[√2+√3]﹣210.(3分)实数a 在数轴.上的对应点的位置如图所示,若实数b 满足b =a +3,则b 表示的数可以是( )A .1B .1.2C .2D .2.211.(3分)对于示数x ,规定f (x )=x 2﹣2x ,例如f (5)=52﹣2×5=15,f(−13)=(−13)2−2×(−13)=79,现有下列结论:①若f (x )=3,则x =﹣1;②f (x )的最小值为﹣1;③对于实数a ,b ,若a +b =√3,ab =﹣1,则f(a)+f(b)=5−2√3;④f (10)﹣f (9)+f (8)﹣f (7)+⋯+f (2)﹣f (1)=65.以上结论正确的是( )A .①②B .②③C .③④D .②④ 12.(3分)对于一个正实数m ,我们规定:用符号[√m]表示不大于√m 的最大整数,称[√m]为m 的根整数,如:[√4]=2,[√11]=3.如果我们对m 连续求根整数,直到结果为1为止.例如:对11连续求根整数2次,[√11]=3→[√3]=1,这时候结果为1.现有如下四种说法:①[√5]+[√6]的值为4;②若[√m]=1,则满足题意的m 的整数值有2个,分别是2和3;③对110连续求根整数,第3次后结果为1;④只需进行3次连续求根整数运算后结果为1的所有正整数中,最大的是255.其中错误的说法有( )A .1个B .2个C .3个D .4个二、填空题(共6小题,满分18分,每小题3分)13.(3分)一个正数的两个平方根为a +3和a ﹣8,则这个数为 .14.(3分)对于任意实数对(a ,b )和(c ,d ),规定运算“⊗”为(a ,b )⊗(c ,d )=(ac ,bd );运算“⊕”为(a ,b )⊕(c ,d )=(a +c ,b +d ).例如(2,3)⊗(4,5)=(8,15);(2,3)⊕(4,5)=(6,8).若(2,3)⊗(p ,q )=(﹣4,9),则(1,﹣5)⊕(p ,q )= .15.(3分)长方形ABCD 在数轴上的位置如图所示,点B 、C 对应的数分别为﹣2和﹣1,CD =2.若长方形ABCD 绕着点C 顺时针方向在数轴上翻转,翻转1次后,点D 所对应的数为1;绕D 点翻转第2次;继续翻转,则翻转2022次后,落在数轴上的两点所对应的数中较大的是 .16.(3分)对于任意两个正数x 和y ,规定x ⊕y ={√x −y(√x ≥y)y −√x(√x <y),例如,4⊕1=√4−1=1.请计算(5⊕2)﹣(5⊕3)= .17.(3分)定义:不超过实数x 的最大整数称为x 的整数部分,记作[x ].例如[3.6]=3,[−√3]=﹣2,按此规定,[√3]= ,[1﹣2√5]= .18.(3分)如图,面积为4的正方形ABCD 的边AB 在数轴上,且点B 表示的数为1.将正方形ABCD 沿着数轴水平移动,移动后的正方形记为A ′B ′C ′D ′,点A ,B ,C ,D 的对应点分别为A ′,B ′,C ′,D ′,移动后的正方形A ′B ′C ′D ′与原正方形ABCD 重叠部分图形的面积记为S .当S =1时,数轴上点B '表示的数是 .三、解答题(共7小题,满分66分)19.(8分)设a ,b ,c ,d 为实数,则我们把形如|a b c d |的式子叫做二阶行列式,它的运算法则用公式表示为|a b c d|=ad ﹣bc ,请利用此法则解决以下问题: (1)计算|80.5612|= ;|2345|= ;|x 124|= ;(2)若|231−x|=2,求x 的值. 20.(8分)计算:(1)|√10−3|+|√10−4|+√−273;(2)|√3−2|+√−83×12+(−√3)2.21.(8分)已知实数√8x −y 2+|y 2﹣16|=0.(1)求x 、y 的值;(2)判断√y +12是有理数还是无理数,并说明理由.22.(8分)解方程:(1)2x 2﹣50=0;(2)3+(x +1)3=﹣5.23.(11分)如图所示的程序框图:(1)若a =1,b =2,输入x 的值为3,则输出的结果为 ;(2)若输入x 的值为2,则输出的结果为√2;若输入x 的值为3,则输出的结果为0. ①求a ,b 的值;②输入m 1和m 2,输出的结果分别为n 1和n 2,若m 1>m 2,则n 1 n 2;(填“>”“<”或“=”)③若输入x 的值后,无法输出结果,请写出一个符合条件的x 的值: .24.(11分)当代印度著名诗人泰戈尔在《世界上最遥远的距离》中写道,世界上最遥远的距离不是瞬间便无处寻觅而是尚未相遇便注定无法相聚距离是数学、天文学、物理学中的热门话题,唯有对宇宙距离进行测量,人类才能掌握世界尺度.我们可以从图形和代数化简两个角度来计算距离:①已知点A ,B 在数轴上分别表示有理数a ,b ,A ,B 两点之间的距离表示为AB =|a ﹣b |,例如|x ﹣2|表示x 到2的距离,而|a +1|=|a ﹣(﹣1)|则表示a 到﹣1的距离;②我们知道:|x |={x(x >0)0(x =0)−x(x <0),于是可以用这一结论来化简含有绝对值的代数式.例如化简|x +1|+|x ﹣2|时,可先令x +1=0和x ﹣2=0,分别求得x =﹣1,x =2(称﹣1和2分别为|x +1|+|x ﹣2|的零点值),在实数范围内,零点值x =﹣1和x =2可将全体实数分成不重复且不遗漏的如下3种情况:(1)x <﹣1;(2)﹣1≤x <2;(3)x ≥2.从而化简|x +1|+|x ﹣2|可分以下3种情况:(1)当x <﹣1时,原式=﹣(x +1)﹣(x ﹣2)=﹣2x +1;(2)当﹣1≤x <2时,原式=x +1﹣(x ﹣2)=3;(3)当x ≥2时,原式=x +1+x ﹣2=2x ﹣1.综上,原式={−2x +1(x <−1),3(−1≤x <2),2x −1(x ≥2),结合以上材料,回答以下问题:(1)若|x ﹣1|=2,则x = .(2)当代数式|x +1|+|x ﹣2|取最小值时,x 的取值范围是 .(3)代数式|x +1|﹣2|x ﹣1|有最大值,这个值是 .25.(12分)两个正方形在数轴上的位置如图1所示,若左边正方形沿数轴向左移动4个单位长度,右下角的点落在数轴上的点A 处,右边正方形沿数轴向右移动6个单位长度,左下角的点落在数轴上的点B 处,如图2所示.(1)点A 表示的数为 ,点B 表示的数为 ,点A 与点B 之间的距离为 .(2)如图3,左边正方形从点A 出发,以每秒1个单位长度的速度沿着数轴向右匀速运动;同时右边正方形从点B 出发,以每秒3个单位长度的速度沿着数轴向左匀速运动,当A ',B '两点重合时,两个正方形立即以原速度返回,回到各自原先的位置时停止运动,设运动时间为t (t >0)秒.①当A ′,B ′两点重合时,请求出此时A ′在数轴上表示的数.②在整个运动过程中,当A,A',B′三点中有一点到其它两点距离相等时,请直接写出t 的值.参考答案一、选择题(共12小题,满分36分,每小题3分)1.A2.D3.A4.A5.B6.D7.C8.C9.B10.B11.B12.A ;二、填空题(共6小题,满分18分,每小题3分)13.14.(﹣1,﹣2)15.303316.2517.1;﹣418.2.5或﹣0.5;三、解答题(共7小题,满分66分)19.解:(1)|80.5612|=8×12−0.5×6=1;|2345|=2×5﹣3×4=﹣2;|x 124|=4x ﹣2;故答案为:1;﹣2;4x ﹣2;(2)∵|231−x |=2,∴﹣2x ﹣3=2,∴x=−5,2.∴x的值为−5220.解:(1)原式=√10−3+4−√10+(−3)=1﹣3=﹣2;(2)原式=2−√3−1+3=4−√3.21.解:(1)∵数√8x−y2+|y2﹣16|=0.∴8x﹣y2=0,y2﹣16=0,∴x=2,y=±4;(2)√y+12=√4+12=√16=4,4是有理数;或√y+12=√−4+12=√8=2√2,√2是无理数,2√2是无理数,∴√y+12是有理数或无理数.22.解:(1)原方程两边同时加上50,得:2x2﹣50+50=50,即2x2=50,对方程2x2=50,两边同时除以2得:x2=25,对方程直接开方得:x=±5,∴原方程的解为x=±5;(2)原方程两边同时减去3,得:3+(x+1)3﹣3=﹣5﹣3,即(x+1)3=﹣8,对(x+1)3=﹣8,直接开立方得:x+1=﹣2,方程两边同时减去1得:x+1﹣1=﹣2﹣1,即x=﹣3,∴原方程的解为x=﹣3.23.解:(1)因为a=1,b=2,输入x的值为3,所以ax+b=1×3+2=5;故答案为:5;(2)①因为输入x的值为2,输出的结果为√2;输入x的值为3,输出的结果为0.所以{2a +b =√23a +b =0, 解得{a =−√2b =3√2; 即a ,b 的值分别为−√2和3√2;②根据题意得:√−√2m 1+3√2=n 1,√−√2m 2+3√2=n 2,因为m 1>m 2,所以−√2m 1<−√2m 2,所以−√2m 1+3√2<−√2m 2+3√2,√−√2m 1+3√2<√−√2m 2+3√2,所以n 1<n 2;故答案为:<;③当输入x 的值是﹣5时,输出的数是√−5√2+3√2=√−2√2,因为被开方数为负数,所以无法输出结果,所以符合条件的x 的值为:﹣5(答案不唯一).故答案为:﹣5(答案不唯一).24.解:(1)由绝对值的几何意义知:|x ﹣1|=2表示在数轴上x 表示的点到1的距离等于2, ∴x 1=1+2=3,x 2=1﹣2=﹣1,∴x =3或﹣1;故答案为:3或﹣1;(2)若代数式|x +1|+|x ﹣2|取最小值时,表示在数轴上找一点x ,到﹣1和2的距离之和最小,显然这个点x 在﹣1和2之间, ∴当﹣1≤x ≤2时,|x +1|+|x ﹣2|有最小值3.故答案为:﹣1≤x ≤2;(3)当x <﹣1时,原式=﹣x ﹣1+2(x ﹣1)=x ﹣3<﹣4,当﹣1≤x ≤1时,原式=x +1+2(x ﹣1)=3x ﹣1,﹣4≤3x ﹣1≤2,当x>1时,原式=x+1﹣2(x﹣1)=﹣x+3<2,则|x+1|﹣2|x﹣1|的最大值为2.故答案为:2.25.解:(1)由平移的方向和距离可知点A表示的数为﹣4,点B表示的数为6,∴点A与点B之间的距离为6﹣(﹣4)=10;故答案为:﹣4,6,10;(2)①运动后点A′所对应的数是﹣4+t,点B′所对应的数是6﹣3t,当点A′与点B′重合时,可知所对应的数相等,∴﹣4+t=6﹣3t,解得t=52,∴﹣4+52=−32,∴此时A′在数轴上表示的数为−32;②当点A′与点B′重合之前,A′为AB′的中点,t=(6﹣3t)﹣(﹣4+t),解得t=2,当点A′与点B′重合之后,设再过m秒,A′为AB′的中点,−32−m+4=4m,解得m=12,∴t=52+12=3,∴t的值2秒或3秒.。
一、选择题1.为了调查某校学生的视力情况,在全校的1000名学生中随机抽取了100名学生,下列说法正确的是()A.此次调查属于全面调查B.样本容量是100C.1000名学生是总体D.被抽取的每一名学生称为个体2.某学习小组将要进行一次统计活动,下面是四位同学分别设计的活动序号,其中正确的是()A.实际问题→收集数据→表示数据→整理数据→统计分析合理决策B.实际问题→表示数据→收集数据→整理数据→统计分析合理决策C.实际问题→收集数据→整理数据→表示数据→统计分析合理决策D.实际问题→整理数据→收集数据→表示数据→统计分析合理决策3.某校组织学生参加安全知识竞赛,并抽取部分学生成绩绘制成如图所示的统计图(每组不包括最小值,包括最大值),图中从左至右前四组的百分比分别是4,12,40,28,第五组的频数是8.下列判断正确的有()00000000①第五组的百分比为16%;②参加统计调查的竞赛学生共有100人;③成绩在70-80分的人数最多;④80分以上(不含80分)的学生有14名.A.1个B.2个C.3个D.4个4.以下问题,不适合抽样调查的是()A.了解全市中小学生的每天的零花钱B.旅客上高铁列车前的安检C.调查某批次汽车的抗撞击能力D.调查某池塘中草鱼的数量5.为提高学生的课外阅读水平,我市各中学开展了“我的梦,中国梦”课外阅读活动,某校为了解七年级学生每日课外阅读所用的时间情况,从中随机抽取了部分学生,进行了统计分析,整理并绘制出如图所示的频数分布直方图,有下列说法:①这次调查属于全面调查②这次调查共抽取了200名学生的人数最少③这次调查阅读所用时间在2.53h的人数占所调查人数的40%,其中正确的有().④这次调查阅读所用时间在1 1.5hA.②③④B.①③④C.①②④D.①②③6.下列调查方式,你认为最合适的是()A.调查市场上某种白酒的塑化剂的含量,采用全面调查方式B.调查鞋厂生产的鞋底能承受的弯折次数,采用全面调查方式C.调查端午节期间市场上粽子的质量,采用抽样调查方式D.“长征﹣3B火箭”发射前,检查其各零部件的合格情况,采用抽样调查的方式7.已知一组数据:10,8,6,10,8,13,11,12,10,10,7,9,8,12,9,11,12,9,10,11,则频率为0.2的范围是()A.6~7 B.10~11 C.8~9 D.12~138.某学校对七年级随机抽取若干名学生进行“创建文明城市”知识答题,成绩分为1分,2分,3分,4分共4个等级,将调查结果绘制成如右图所示的条形统计图和扇形统计图.根据图中信息,这些学生中得2分的有()人.A.8 B.10 C.6 D.99.如图是某校七年级学生到校方式的条形图,下列说法错误的是()A.步行人数占七年级总人数的60%B.步行、骑自行车、坐公共汽车人数的比为2∶3∶5C.坐公共汽车的人数占七年级总人数的50%D.这所学校七年级共有300人10.下列调查中,调查方式选择合理的是()A.为了了解北斗三号卫星零件的质量情况,选择全面调查B.为了了解胜溪湖森林公园全年的游客流量,选择全面调查C.为了了解某品牌木质地板的甲醛含量,选择全面调查D.新冠肺炎疫情期间,为了了解出入某小区的居民的体温,选择抽样调查11.下列调查方式,你认为最合适的是()A.要调查一批灯管的使用寿命,采用全面调查的方式B.扬泰机场对旅客进行登机前安检,采用抽样调查方式C.为有效控制“新冠疫情”的传播,对国外入境人员的健康状况,采用普查方式D.试航前对我国国产航母各系统的检查,采用抽样调查方式12.某公司为了解职工参加体育锻炼情况,对职工某一周平均每天锻炼(跑步或快走)的里程进行统计(保留整数),并将他们平均每天锻炼的里程数据绘制成扇形统计图,关于他们平均每天锻炼里程数据,下列说法不正确的是()A.平均每天锻炼里程数据的中位数是2B.平均每天锻炼里程数据的众数是2C.平均每天锻炼里程数据的平均数是2.34D.平均每天锻炼里程数不少于4km的人数占调查职工的20%二、填空题13.一个池塘中放养一些草鱼若干,现想测算一下池塘中草鱼的总条数,小明在池塘中放入60条红鲫鱼,一周后,小明在池塘中捞出200条鱼中有5条是红鲫鱼,把鱼全部放回池塘中.请你猜测池塘中现在大约有______条草鱼...14.某班有60人,其中参加读书活动的人数为15人,参加科技活动的人数占全班人数的1,参加艺术活动的比参加科技活动的多5人,如图则参加体育活动的人所占的扇形的圆6心角为____________.15.新冠肺炎在我国得到有效控制后,各校相继开学.为了检测学生在家学习情况,在开学初,我校进行了一次数学测试,如图是某班数学成绩的频数分布直方图,则由图可知,得分在70分以上(包括70分)的人数占总人数的百分比为__________.16.统计得到的一组数据有80个,其中最大值为141,最小值为50,取组距为10,可以分成 _______________组.17.某公司有员工800人举行元旦庆祝活动,A、B、C分别表示参加各种活动的人数的百分比(如图),规定每人都要参加且只能参加其中一项活动,则下围棋的员工共有______人.18.已知一组数据有40个,把它分成五组,第一组、第二组、第四组、第五组的频数分别是10,8,7,6,第三组频数是________.19.小明对某班级同学参加课外活动内容进行问卷调查后(每人必选且只选一种),绘制成如图所示的统计图,已知参加踢毽子的人数比参加打篮球的人数少6人,则参加“其他”活动的人数为__________人.20.在整数20200520中,数字“0”出现的频率是_________.三、解答题21.全民健身运动已成为一种时尚,为了解宝鸡市居民健身运动的情况,某健身馆的工作人员开展了一项问卷调查,问卷包括五个项目:A:健身房运动;B:跳广场舞;C:参加暴走团;D:散步;E:不运动.以下是根据调查结果绘制的统计图表的一部分.运动形式A B C D E人数1230m549请你根据以上信息,回答下列问题:(1)接受问卷调查的共有______人,图表中的m=______,n=______;(2)统计图中,A类所对应的扇形圆心角的度数是多少?(3)宝鸡市团结公园是附近市民喜爱的运动场所之一,每晚都有“暴走团”活动,若最邻近的某社区约有1500人,那么估计一下该社区参加体育公园“暴走团”的大约有多少人?22.为了了解小学生的体能情况,抽取了某校一个年级的部分学生进行一分钟跳绳次数的测试,将所得数据整理后,画出频率分布直方图如图所示.已知图中从左到右前三个小组的频率分别是0.1,0.3,0.4,第一小组的频数为5(1)求第四小组的频率.(2)问参加这次测试的学生数是多少?(3)若次数在75次以上(含75次)为达标,试估计该年级学生跳绳测试的达标人数是多少人?23.下面是公司去年每月收入和支出情况统计图,请根据统计图填空并回答问题.(1)月收入和支出相差最小.月收入和支出相差最大;(2)12月收入和支出相差万元;(3)去年平均每月支出万元.24.2020年3月,中共中央、国务院颁布了《关于全面加强新时代大中小学劳动教育的意见》.某市教育局发布了“普通中小学校劳动教育状况评价指标”,为了解某校学生一周劳动次数的情况,随机抽取若干学生进行调查,得到如下两幅不完整的统计图.请根据图中信息,解答下列问题:(1)求这次调查活动共抽取的人数.(2)直接写出m= ,n= .(3)请将条形统计图补充完整.25.某校为了解七年级学生体育测试情况,以九年级(1)班学生的体育测试成绩为样本,,,,四个等级进行统计,并将统计结果绘制成如下的统计图,请你结合图中按A B C D所给信息解答下列问题:(说明:A级:90分~100分;B级:75分~89分;C级:60分~74分;D级:60分以下)(1)请把条形统计图补充完整;(2)样本中D级的学生人数占全班学生人数的百分比是;(3)扇形统计图中A级所在的扇形的圆心角度数是;(4)若该校九年级有500名学生,请你用此样本估计体育测试中A级和B级的学生人数约为人.26.在我区开展的“美丽江北,创文我同行”活动中,某校倡议八年级学生利用双休日在各自社区参加义务劳动.为了解同学们劳动情况,学校随机调查了部分同学的劳动时间,并用得到的数据绘制成不完整的统计图表,如下图所示:劳动时间(时)频数(人数)频率0.5120.121300.31.5x0.4218y合计m1(1)统计表中的m=__________,x=_________,y=________;(2)如果绘制成扇形图,义务劳动2小时的人数所占圆心角的度数是________°;(3)请将频数分布直方图补充完整;(4)求所有被调查同学的平均劳动时间.【参考答案】***试卷处理标记,请不要删除一、选择题1.B解析:B【分析】根据全面调查与随机抽样调查、样本容量、总体、个体的定义逐项判断即可得.【详解】A、此次调查属于随机抽样调查,此项错误;B、样本容量是100,此项正确;C、1000名学生的视力是总体,此项错误;D、被抽取的每一名学生的视力称为个体,此项错误;故选:B.【点睛】本题考查了全面调查与随机抽样调查、样本容量、总体、个体,熟练掌握统计调查的相关概念是解题关键.2.C解析:C【解析】统计调查一般分为以下几步:收集数据、整理数据、描述数据、分析数据,故选C .3.B解析:B【分析】根据频数分布直方图的知识及频数与频率的关系可以得到解答.【详解】解:由1-4%-12%-40%-28%=16%可知①正确; 由100816%85016÷=⨯=可知参加统计调查的竞赛学生共有50人,∴②错误; 由频数分布直方图可以得知成绩在70-80分的人数最多,∴③正确; 由()5028%16%5044%22⨯+=⨯=可知80分以上(不含80分)的学生有22名,④错误;故选B .【点睛】本题考查频数与频率的应用,熟练掌握频数与频率的关系及频数分布直方图的知识是解题关键 .4.B解析:B【解析】A 、了解全市中小学生的每天的零花钱,人数较多,应采用抽样调查,故此选项错误;B 、旅客上高铁列车前的安检,意义重大,不能采用抽样调查,故此选项正确;C 、调查某批次汽车的抗撞击能力,具有破坏性,应采用抽样调查,故此选项错误;D 、调查某池塘中草鱼的数量众多,应采用抽样调查,故此选项错误;故选B .5.A解析:A【分析】根据抽样调查和频数分布直方图的性质逐个分析计算,即可得到答案.【详解】这次调查属于抽样调查,故①错误;结合频数分布直方图,可计算得共抽取10208070128200+++++=名学生,故②正确;结合频数分布直方图,阅读所用时间在2.53h -的共8名学生,人数最少,故③正确;这次调查阅读所用时间在1 1.5h 的人数占比为802=2005,即40%,故④正确; 故选:A .【点睛】 本题考查了抽样调查、频数分布直方图的知识;解题的关键是熟练掌握抽样调查、频数分布直方图的性质,从而完成求解.6.C解析:C【分析】由普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比较近似.【详解】解:A 、调查市场上某种白酒的塑化剂的含量,采用全面调查方式,适合抽样调查; B 、了调查鞋厂生产的鞋底能承受的弯折次数,适合抽样调查;C 、调查端午节期间市场上粽子的质量,适合采用抽样调查方式;D 、“长征﹣3B 火箭”发射前,检查其各零部件的合格情况,适合采用全面调查方式; 故选:C .【点睛】本题考查了抽样调查和全面调查的区别,选择普查还是抽样调查要根据所要考查的对象的特征灵活选用,一般来说,对于具有破坏性的调查、无法进行普查、普查的意义或价值不大,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用普查. 7.D解析:D【分析】分别计算出各组的频数,再除以20即可求得各组的频率,看谁的频率等于0.2.【详解】A 中,其频率=2÷20=0.1;B 中,其频率=6÷20=0.3;C 中,其频率=8÷20=0.4;D 中,其频率=4÷20=0.2.故选D .【点睛】首先数出数据的总数,然后数出各个小组内的数据个数,即频数.根据频率=频数÷总数进行计算.8.A解析:A【分析】首先根据4分的人数和百分比求出总人数,然后计算出3分的人数,最后用总人数减去1分、3分和4分的总人数得出答案【详解】解:总人数=12÷30%=40人,得3分的人数=42.5%×40=17人,得2分的人数=40-(3+17+12)=8人.故选:A.9.A解析:A【解析】观察条形统计图可知:步行人数有60人,骑自行车的人数有90人,坐公共汽车的人数有150人.即可得这所学校七年级共有60+90+150=300人;坐公共汽车的人数占七年级总人数的50%;步行、骑自行车、坐公共汽车人数的比为60:90:150=2∶3∶5;步行人数占七年级总人数的20%(60100%20%300⨯=),所以四个选项中只有选项A错误,故选A.10.A解析:A【分析】由普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比较近似.【详解】A、为了了解北斗三号卫星零件的质量情况的调查是精确度要求高的调查,适于全面调查,故本选项正确;B、为了了解胜溪湖森林公园的游客流量,因为普查工作量大,适合抽样调查,故本选项错误;C、为了了解某品牌木质地板的甲醛含量,因为普查工作量大,适合抽样调查,故本选项错误;D、新冠肺炎疫情期间,为了了解出入某小区的居民的体温,是精确度要求高的调查,适于全面调查,故本项错误,故选:A.【点睛】本题考查了抽样调查和全面调查的区别,选择普查还是抽样调查要根据所要考查的对象的特征灵活选用,一般来说,对于具有破坏性的调查、无法进行普查、普查的意义或价值不大时,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用普查.11.C解析:C【分析】由普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比较近似.【详解】解:A、要调查一批灯管的使用寿命,具有破坏性,应用抽样调查,故A错误;B、扬泰机场对旅客进行登机前安检,事关重大,采用普查方式,故B错误;C、为有效控制“新冠疫情”的传播,对国外入境人员的健康状况,事关重大,采用普查方式,故C正确;D、试航前对我国国产航母各系统的检查,采用普查方式,故D错误.故选:C.【点睛】本题考查了抽样调查和全面调查的区别,选择普查还是抽样调查要根据所要考查的对象的特征灵活选用,一般来说,对于具有破坏性的调查、无法进行普查、普查的意义或价值不大,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用普查.12.D解析:D【分析】中位数、众数和平均数的定义分别对每一项进行分析,即可得出答案.【详解】解:A、把这些数从小到大排列,则平均每天锻炼里程数据的中位数是2,故本选项正确;B、∵2出现了20次,出现的次数最多,则平均每天锻炼里程数据的众数是2,故本选项正确;C、平均每天锻炼里程数据的平均数是:11222031045532.3412201053⨯+⨯+⨯+⨯+⨯=++++,故本选项正确;D、平均每天锻炼里程数不少于4km的人数占调查职工的53100%16%50+⨯=,故本选项错误;故选:D.【点睛】此题考查了条形统计图、中位数、众数和平均数的概念,读懂统计图,从统计图中得到必要的信息是解决问题的关键.二、填空题13.2340【分析】捕捞200条鱼发现其中5条有标记即在样本中有标记的占到再根据有标记的共有60条列式计算即可【详解】根据题意得:池塘中的鱼大约有60÷=2400(条)∴草鱼大约有2400-60=234解析:2340【分析】捕捞200条鱼,发现其中5条有标记,即在样本中,有标记的占到5200,再根据有标记的共有60条,列式计算即可.【详解】根据题意得:池塘中的鱼大约有60÷5200=2400(条).∴草鱼大约有2400-60=2340条故答案为:2340.【点睛】此题考查了用样本的信息来估计总体的信息,本题体现了统计思想,用到的知识点是样本的百分比=整体的百分比.14.【分析】分别求出参加科技活动和参加艺术活动的人数即可得到参加体育活动的人数根据参加体育活动的人数占比即可求解其圆心角度数【详解】解:参加科技活动的人数为:(人)参加艺术活动的人数为:(人)∴参加体育解析:120︒【分析】分别求出参加科技活动和参加艺术活动的人数,即可得到参加体育活动的人数,根据参加体育活动的人数占比即可求解其圆心角度数.【详解】解:参加科技活动的人数为:160106⨯=(人),参加艺术活动的人数为:10515+=(人),∴参加体育活动的人数为:6015101520---=,∴参加体育活动的人所占的扇形的圆心角为2036012060︒⨯=︒,故答案为:120︒.【点睛】本题考查扇形统计图的圆心角度数,求出参加体育活动的人数占比是解题的关键.15.【分析】计算出总人数及成绩在70分以上(含70)的学生人数列式计算即可【详解】解:∵总人数=4+12+14+8+2=40成绩在70分以上(含70)的学生人数=14+8+2=24∴成绩在70分以上(含解析:60%【分析】计算出总人数及成绩在70分以上(含70)的学生人数,列式计算即可.【详解】解:∵总人数=4+12+14+8+2=40,成绩在70分以上(含70)的学生人数=14+8+2=24,∴成绩在70分以上(含70)的学生人数占全班总人数的百分比为24100%60%40⨯=.故答案是:60%.【点睛】本题考查读频数分布直方图的能力及对信息进行处理的能力.16.10【分析】组数定义:数据分成的组的个数称为组数根据组数=(最大值-最小值)÷组距计算注意小数部分要进位【详解】解:这组数据的极差为141-50=9191÷10=91因此数据可以分为10组故答案为:解析:10【分析】组数定义:数据分成的组的个数称为组数,根据组数=(最大值-最小值)÷组距计算,注意小数部分要进位.【详解】解:这组数据的极差为141-50=91,91÷10=9.1,因此数据可以分为10组,故答案为:10.【点睛】本题考查的是组数的计算,属于基础题,只要根据组数的定义来解即可.17.160【分析】用员工总数乘以下围棋的百分比即可求出答案【详解】下围棋的员工共有(人)故答案为:160【点睛】此题考查利用扇形统计图的百分比求某部分的数量掌握求部分数量是计算公式是解题的关键解析:160【分析】用员工总数乘以下围棋的百分比即可求出答案.【详解】⨯--=(人),下围棋的员工共有800(138%42%)160故答案为:160.【点睛】此题考查利用扇形统计图的百分比求某部分的数量,掌握求部分数量是计算公式是解题的关键.18.9【分析】用总频数减去各组已知频数可得【详解】第三组频数是40-10-8-7-6=9故答案为:9【点睛】考核知识点:频数理解频数的定义是关键数据的个数叫频数解析:9【分析】用总频数减去各组已知频数可得.【详解】第三组频数是40-10-8-7-6=9故答案为:9【点睛】考核知识点:频数.理解频数的定义是关键.数据的个数叫频数.19.10【分析】先由扇形统计图得出参加踢毽子与打篮球的人数所占的百分比结合参加踢毽子的人数比参加打篮球的人数少6人求出参加课外活动一共的人数进一步可求参加其他活动的人数【详解】解:6÷(30-15)=4解析:10【分析】先由扇形统计图得出参加踢毽子与打篮球的人数所占的百分比,结合参加踢毽子的人数比参加打篮球的人数少6人,求出参加课外活动一共的人数,进一步可求参加“其他”活动的人数.【详解】解:6÷(30%-15%)=40(人),40×25%=10(人).答:参加“其他”活动的人数为10人.故答案为:10.【点睛】本题考查的是扇形统计图.在扇形统计图中,各部分占总体的百分比之和为1,每部分占总体的百分比等于该部分所对应的扇形圆心角的度数与360°的比.20.5【分析】直接利用频率的定义分析得出答案【详解】解:∵在整数20200520中一共有8个数字数字0有4个故数字0出现的频率是故答案为:【点睛】此题主要考查了频率的求法正确把握定义是解题关键解析:5【分析】直接利用频率的定义分析得出答案.【详解】解:∵在整数20200520中,一共有8个数字,数字“0”有4个,故数字“0”出现的频率是12.故答案为:12.【点睛】此题主要考查了频率的求法,正确把握定义是解题关键.三、解答题21.(1)150,45,36;(2)A类所对应的扇形圆心角的度数是28.8 ;(3)估计该社区参加“暴走团”的大约有450人.【分析】(1)由B项目的人数及其百分比求得总人数,根据各项目人数之和等于总人数求得m=45,再用D项目人数除以总人数可得n的值;(2)360°乘以A项目人数占总人数的比例可得;(3)总人数乘以样本中C人数所占比例.【详解】(1)接受问卷调查的共有:30÷20%=150人,m=150-(12+30+54+9)=45,n%=54÷150×100%=36%,∴n=36,故答案为:150、45、36;(2)A类所对应的扇形圆心角的度数为360°×12150=28.8°;(3)1500×45150=450(人),答:估计该社区参加“暴走团”的大约有450人.【点睛】本题考查的是统计表和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.扇形统计图直接反映部分占总体的百分比大小.22.(1)0.2;(2)50人;(3)45人【分析】(1)第四小组的频率=1-0.1-0.3-0.4=0.2;(2)学生数=50.1=50(人);(3)达标率为0.9,达标人数=50×0.9=45(人).【详解】(1)第四小组的频率=1-0.1-0.3-0.4=0.2;(2)学生数=50.1=50(人);(3)∵达标率为1-0.1=0.9,∴达标人数=50×0.9=45(人).【点睛】本题考查了样本的频率,频数,样本容量,达标率,熟记频数,频率,样本容量的关系是解题的关键.23.(1)4,7;(2)30;(3)30.【分析】(1)利用折线统计图得到每月的收入与支出,从而得到收入和支出相差最小的月份和收入和支出相差最大的月份;(2)利用折线统计图得到12月的收入与支出,从而得到结论;(3)利用平均数的计算方法,把12个月的支出相加除以12得到平均每月支出数.【详解】解:(1)1月份收入为40万,支出为20万,收入与支出相差:40-20=20(万元)2月份收入为60万,支出为30万,收入与支出相差:60-30=30(万元)3月份收入为30万,支出为10万,收入与支出相差:30-10=20(万元)4月份收入为30万,支出为20万,收入与支出相差:30-20=10(万元)5月份收入为50万,支出为20万,收入与支出相差:50-20=30(万元)6月份收入为60万,支出为30万,收入与支出相差:60-30=30(万元)7月份收入为80万,支出为20万,收入与支出相差:80-20=60(万元)8月份收入为70万,支出为30万,收入与支出相差:70-30=40(万元)9月份收入为70万,支出为40万,收入与支出相差:70-40=30(万元)10月份收入为80万,支出为50万,收入与支出相差:80-50=30(万元)11月份收入为90万,支出为40万,收入与支出相差:90-40=50(万元)12月份收入为80万,支出为50万,收入与支出相差:80-50=30(万元)∴4月份收入为30万,支出为20万,收入与支出相差最小;7月份收入为80万,支出为20万,相差最大;故答案为:4,7;(2)12月份收入为80万,支出为50万,收入和支出相差80-50=30万元,故答案为:30;(3)去年每月支出的平均数为112(20+30+10+20+20+30+20+30+40+50+40+50)=30(万元).故答案为:30.【点睛】本题考查了折线统计图:折线图是用一个单位表示一定的数量,根据数量的多少描出各点,然后把各点用线段依次连接起来.以折线的上升或下降来表示统计数量增减变化.折线图不但可以表示出数量的多少,而且能够清楚地表示出数量的增减变化情况.24.(1)200人;(2)86,27;(3)图见解析.【分析】(1)从统计图中可知:1次及以下的频数为20,占调查人数的10%,可求出抽查人数;(2)3次的占调查人数的43%,可求出3次的频数,确定m的值,进而求出4次以上的频数,求出n的值;(3)求出2次的频数,即可补全条形统计图.【详解】(1)2010%200÷=(人),所以这次调查活动共抽取200人.(2)20043%86⨯=(人),5420027%÷=,即86m =,27n =,故答案为:86,27;(3)200×20%=40,补全条形统计图如下:【点睛】本题考查的条形统计图,扇形统计图的意义和制作方法,从两个统计图中获取数量和数量之间的关系是解答本题的关键.25.(1)补充完整的条形统计图见解析;(2)10%;(3)72°;(4)330.【分析】(1)根据题意可以求得D 级的人数,从而可以将条形统计图补充完整;(2)根据扇形统计图可以求得D 级所占的百分比;(3)根据扇形统计图可以求得A 级所在扇形圆心角的度数;(4)根据统计图中的数据可以估计体育测试中A 级和B 级的学生人数.【详解】(1)九年级一班的学生有:10×20%=50(人),∴D 等级的人数有:50−10−23−12=5(人),补充完整的条形统计图如下图所示,(2)由扇形统计图可得,样本中D 级的学生人数占全班学生人数的百分比是:1−20%−46%−24%=10%, 故答案为:10%;(3)扇形统计图中A 级所在的扇形的圆心角度数是:360°×20%=72°,故答案为:72°;(4)此样本估计体育测试中A 级和B 级的学生人数约为:500×(20%+46%)=330(人),故答案为:330.【点睛】。
人教版七年级初一数学第二学期第六章 实数单元 期末复习测试综合卷检测试卷一、选择题1.设记号*表示求a 、b 算术平均数的运算,即*2a ba b +=,则下列等式中对于任意实数a ,b ,c 都成立的是( ).①(*)()*()a b c a b a c +=++;②*()()*a b c a b c +=+; ③*()(*)(*)a b c a b a c +=+;④(*)(*2)aa b c b c c+=+. A .①②③ B .①②④ C .①③④ D .②④ 2.在有理数中,一个数的立方等于这个数本身,这种数的个数为( ) A .1B .2C .3D .43.40在下面哪两个整数之间( ) A .5和6B .6和7C .7和8D .8和94.如图,数轴上的,,A B C 三点所表示的数分别为a b c 、、,其中AB BC =,如果||||||a c b >>那么该数轴的原点O 的位置应该在( )A .点A 的左边B .点A 与点B 之间C .点B 与点C 之间D .点C 的右边5.下面说法错误的个数是( )①a -一定是负数;②若||||a b =,则a b =;③一个有理数不是整数就是分数;④一个有理数不是正数就是负数. A .1个B .2个C .3个D .4个6.下列实数中的无理数是( ) A 1.21B 38-C 33-D .2277.下列各组数的大小比较正确的是( ) A 56B 3πC .5.329D . 3.1->﹣3.18.在实数:3.14159364,1.010010001...., 4.21••,π,227中,无理数有( ) A .1个 B .2个 C .3个 D .4个 9.下列各数中,介于6和7之间的数是( )A 43B 50C 58D 33910.比较552、443、334的大小( ) A .554433234<<B .334455432<<C .553344243<<D .443355342<<二、填空题11.如图,四个实数m ,n ,p ,q 在数轴上对应的点分别为M ,N ,P ,Q ,若0n q +=,则m ,n ,p ,q 四个实数中,绝对值最大的是________.12.写出一个3到4之间的无理数____.13.规定:[x]表示不大于x 的最大整数,(x )表示不小于x 的最小整数,[x )表示最接近x 的整数(x≠n+0.5,n 为整数),例如:[2.3]=2,(2.3)=3,[2.3)=2.当﹣1<x <1时,化简[x]+(x )+[x )的结果是_____.14.定义新运算a ☆b =3a ﹣2b ,则(﹣2)☆1=_____.15.对于实数a ,我们规定:用符号[]a 表示不大于[]a 的最大整数,称为a 的根整数,例如:,如果我们对a 连续求根整数,直到结果为1为止.例如:对10连续求根整数2次: [10]3[3]1=→=这时候结果为1.则只需进行3次连续求根整数运算后结果为1的所有正整数中,最大的是__________. 16.46的整数部分是________.17.若34330035.12=,30.3512x =-,则x =_____________.18.如图,直径为1个单位长度的半圆,从原点沿数轴向右滚动一周,圆上的一点由原点O 到达点'O ,则点'O 对应的数是_______.19.已知正实数x 的平方根是m 和m b +. (1)当8b =时,m 的值为_________;(2)若22()4m x m b x ++=,则x 的值为___________20.若x ,y 为实数,且|2|30x y ++-=,则(x+y) 2012的值为____________.三、解答题21.先阅读下面的材料,再解答后面的各题:现代社会会保密要求越来越高,密码正在成为人们生活的一部分,有一种密码的明文(真实文)按计算机键盘字母排列分解,其中,,,,,Q W E N M 这26个字母依次对应1,2,3,,25,26这26个自然数(见下表).Q W E R T Y U I O P A S D 1 2 3 4 5 6 7 8 9 10 11 12 13 F G H J K L Z X C V B N M 14151617181920212223242526给出一个变换公式:(126,3)3217(126,31)318(126,32)3J J J xx x x x x x x x x x x x x x ⎧=≤≤⎪⎪+⎪=+≤≤⎨⎪+⎪=+≤≤⎪⎩是自然数,被整除是自然数,被除余是自然数,被除余 将明文转成密文,如4+24+17=193⇒,即R 变为L :11+111+8=123⇒,即A 变为S .将密文转成成明文,如213(2117)210⇒⨯--=,即X 变为P :133(138)114⇒⨯--=,即D 变为F .(1)按上述方法将明文NET 译为密文.(2)若按上方法将明文译成的密文为DWN ,请找出它的明文. 22.定义:如果2b n =,那么称b 为n 的布谷数,记为()b g n =. 例如:因为328=,所以()3(8)23g g ==,因为1021024=, 所以()10(1024)210g g ==.(1)根据布谷数的定义填空:g (2)=________________,g (32)=___________________. (2)布谷数有如下运算性质:若m ,n 为正整数,则()()()=+g mn g m g n ,()()m g g m g n n ⎛⎫=- ⎪⎝⎭. 根据运算性质解答下列各题: ①已知(7) 2.807g =,求 (14)g 和74g ⎛⎫⎪⎝⎭的值; ②已知(3)g p =.求(18)g 和316g ⎛⎫⎪⎝⎭的值. 23.(概念学习)规定:求若干个相同的有理数(均不等于0)的除法运算叫做除方,如2÷2÷2,(﹣3)÷(﹣3)÷(﹣3)÷(﹣3)等.类比有理数的乘方,我们把2÷2÷2记作2③,读作“2的圈3次方”,(﹣3)÷(﹣3)÷(﹣3)÷(﹣3)记作(﹣3)④,读作“﹣3的圈4次方”,一般地,把n 个a (a ≠0)记作a ⓝ,读作“a 的圈n 次方”. (初步探究)(1)直接写出计算结果:2③= ,(﹣12)⑤= ;(深入思考)我们知道,有理数的减法运算可以转化为加法运算,除法运算可以转化为乘法运算,有理数的除方运算如何转化为乘方运算呢?(1)试一试:仿照上面的算式,将下列运算结果直接写成乘方的形式.(﹣3)④= ;5⑥= ;(﹣12)⑩= . (2)想一想:将一个非零有理数a 的圈n 次方写成乘方的形式等于 ; 24.观察下列各式:111122-⨯=-+; 11112323-⨯=-+; 11113434-⨯=-+; … (1)你发现的规律是_________________.(用含n 的式子表示; (2)用以上规律计算:1111223⎛⎫⎛⎫-⨯+-⨯+ ⎪ ⎪⎝⎭⎝⎭11113420172018⎛⎫⎛⎫-⨯+⋅⋅⋅+-⨯ ⎪ ⎪⎝⎭⎝⎭25.观察下来等式: 12×231=132×21, 13×341=143×31, 23×352=253×32, 34×473=374×43, 62×286=682×26, ……在上面的等式中,等式两边的数字分别是对称的,且每个等式中组成两位数与三位数的数字之间具有相同规律,我们称这类等式为“数字对称等式”. (1)根据以上各等式反映的规律,使下面等式成为“数字对称等式”: 52×_____=______×25;(2)设这类等式左边的两位数中,个位数字为a ,十位数字为b ,且2≤a +b≤9,则用含a ,b 的式子表示这类“数字对称等式”的规律是_______. 26.观察下列各式,回答问题21131222-=⨯, 21241333-=⨯ 21351444-=⨯ ….按上述规律填空: (1)211100-= × ,2112005-= × , (2)计算:21(1)2-⨯21(1)...3-⨯21(1)2004-⨯21(1)2005-= .【参考答案】***试卷处理标记,请不要删除一、选择题 1.B 解析:B 【解析】①中(*)2b c a b c a ++=+,()*()22a b a c b ca b a c a ++++++==+,所以①成立;②中*()2a b c a b c +++=,()*2a b c a b c +++=,所以②成立; ③中()()*(*)*222a b a c b ca b a c a a b c ++++=+=+=+,所以③不成立; ④中(*)2a b a b c c ++=+,22(*2)22222a abc a b c a b b c c +++++=+==+,所以④成立. 故选B.2.C解析:C 【分析】设这个数为x, 根据题意列出关于x 的方程,求出方程的解即可. 【详解】解:设这个数为x ,根据题意得:3x x =, 解得:x=0或-1或1,共3个; 故选:C . 【点睛】此题考查了有理数的立方,熟练掌握运算法则是解本题的关键.3.B解析:B 【分析】6<7. 【详解】所以6<7. 故选:B . 【点睛】的取值范围是解题关键.4.C解析:C 【分析】根据绝对值是数轴上表示数的点到原点的距离,分别判断出点A 、B 、C 到原点的距离的大小,从而得到原点的位置,即可得解. 【详解】 ∵|a|>|c|>|b|,∴点A 到原点的距离最大,点C 其次,点B 最小, 又∵AB=BC ,∴原点O 的位置是在点B 、C 之间且靠近点B 的地方. 故选:C . 【点睛】此题考查了实数与数轴,理解绝对值的定义是解题的关键.5.C解析:C 【分析】①举例说明命题错误;②举例说明命题错误;③根据有理数的概念判断即可;④根据有理数的概念判断即可. 【详解】①当a≤0时,-a≥0,故-a 一定是负数错误;②当a=2,b=-2时, ||||a b ,但是a≠b ,故②的说法错误; ③一个有理数不是整数就是分数,此选项正确;④一个有理数不是正数就是负数还有可能是0,故④的说法错误. 所以错误的个数是3个. 故答案为C 【点睛】本题考查了有理数的概念,熟练掌握概念是解题的关键.6.C解析:C 【分析】无限不循环小数是无理数,根据定义解答. 【详解】=1.1是有理数;,是有理数;是无理数;D. 227是分数,属于有理数,故选:C.【点睛】此题考查无理数的定义,熟记定义是解题的关键.7.A解析:A【分析】正实数都大于0,负实数都小于0,正实数大于一切负实数,两个负实数绝对值大的反而小,据此判断即可.【详解】,∴选项A符合题意;,∴选项B不符合题意;∵5.3∴选项C不符合题意;∵ 3.1-<﹣3.1,∴选项D不符合题意.故选A.【点睛】此题主要考查了实数大小比较的方法,要熟练掌握,解答此题的关键是要明确:正实数>0>负实数,两个负实数绝对值大的反而小.8.B解析:B【分析】有理数能写成有限小数和无限循环小数,而无理数只能写成无限不循环小数,据此判断出无理数有哪些即可.【详解】解:因为3.14159,227是有限小数,4.21是无限循环小数,所以它们都是有理数;=4,4是有理数;因为1.010010001…,π=3.14159265…,所以1.010010001…,π,都是无理数.综上,可得无理数有2个:1.010010001…,π.故选:B.【点睛】本题考查了无理数的定义,注意带根号的要开不尽方才是无理数,无限不循环小数为无理数.9.A解析:A【分析】求出每个根式的范围,再判断即可.【详解】解:A、67,故本选项正确;B、78,故本选项错误;C、78,故本选项错误;D、34,故本选项错误;故选:A.【点睛】本题考查了估算无理数的大小的应用,关键是求出每个根式的范围.10.C解析:C【分析】根据幂的乘方,底数不变指数相乘都转换成指数是11的幂,再根据底数的大小进行判断即可【详解】解:255=(25)11=3211,344=(34)11=8111,433=(43)11=6411,∵32<64<81,∴255<433<344.故选:C.【点睛】本题考查了幂的乘方的性质,解题的关键在于都转化成以11为指数的幂的形式.二、填空题11.【分析】根据可以得到的关系,从而可以判定原点的位置,从而可以得到哪个数的绝对值最大,本题得以解决.【详解】∵,∴n 和q 互为相反数,O 在线段NQ 的中点处, ∴绝对值最大的是点P 表示的数. 故 解析:p【分析】根据0n q +=可以得到n q 、的关系,从而可以判定原点的位置,从而可以得到哪个数的绝对值最大,本题得以解决. 【详解】 ∵0n q +=,∴n 和q 互为相反数,O 在线段NQ 的中点处, ∴绝对值最大的是点P 表示的数p . 故答案为:p . 【点睛】本题考查了实数与数轴,解题的关键是明确数轴的特点,利用数形结合的思想解答.12.π(答案不唯一). 【解析】考点:估算无理数的大小.分析:按要求找到3到4之间的无理数须使被开方数大于9小于16即可求解. 解:3到4之间的无理数π. 答案不唯一.解析:π(答案不唯一). 【解析】考点:估算无理数的大小.分析:按要求找到3到4之间的无理数须使被开方数大于9小于16即可求解. 解:3到4之间的无理数π. 答案不唯一.13.﹣2或﹣1或0或1或2. 【分析】 有三种情况:①当时,[x]=-1,(x )=0,[x )=-1或0, ∴[x]+(x )+[x )=-2或-1;②当时,[x]=0,(x )=0,[x )=0, ∴[x]解析:﹣2或﹣1或0或1或2. 【分析】有三种情况:①当10x -<<时,[x ]=-1,(x )=0,[x )=-1或0, ∴[x ]+(x )+[x )=-2或-1;②当0x =时,[x ]=0,(x )=0,[x )=0, ∴[x ]+(x )+[x )=0;③当01x <<时,[x ]=0,(x )=1,[x )=0或1, ∴[x ]+(x )+[x )=1或2;综上所述,化简[x ]+(x )+[x )的结果是-2或﹣1或0或1或2. 故答案为-2或﹣1或0或1或2.点睛:本题是一道阅读理解题.读懂题意并进行分类讨论是解题的关键. 【详解】 请在此输入详解!14.﹣8 【分析】原式利用题中的新定义计算即可得到结果. 【详解】解:根据题中的新定义得:(﹣2)☆1=3×(−2)−2×1=−6−2=−8, 故答案为−8. 【点睛】此题考查了有理数的混合运算,解析:﹣8 【分析】原式利用题中的新定义计算即可得到结果. 【详解】解:根据题中的新定义得:(﹣2)☆1=3×(−2)−2×1=−6−2=−8, 故答案为−8. 【点睛】此题考查了有理数的混合运算,弄清题中的新定义是解本题的关键.15.255 【分析】根据材料的操作过程,以及常见的平方数,可知分别求出255和256进行几次操作,即可得出答案. 【详解】 解:∴对255只需要进行3次操作后变成1,∴对256需要进行4次操作解析:255【分析】根据材料的操作过程,以及常见的平方数,可知分别求出255和256进行几次操作,即可得出答案.【详解】解:25515,3,1,⎡⎤===⎣⎦ ∴对255只需要进行3次操作后变成1,25616,4,2,1,⎡⎤====⎣⎦ ∴对256需要进行4次操作后变成1,∴只需进行3次连续求根整数运算后结果为1的所有正整数中,最大的是255; 故答案为:255.【点睛】本题考查了估算无理数的大小应用,主要考查学生的阅读能力和猜想能力,同时也要考了一个数的平方数的计算能力.16.6【分析】求出在哪两个整数之间,从而判断的整数部分. 【详解】∵,,又∵36<46<49∴6<<7∴的整数部分为6故答案为:6【点睛】本题考查无理数的估算,正确掌握整数的平方数是解 解析:6【分析】的整数部分.【详解】∵246=,2636=,2749=又∵36<46<49∴6<76故答案为:6【点睛】本题考查无理数的估算,正确掌握整数的平方数是解题的关键.17.-0.0433【分析】三次根式变化规律为:三次根号内的式子扩大或缩小1000倍,则得到的结果扩大或缩小10倍,根据规律可得x 的值.【详解】从35.12变为-0.3512,缩小了100倍,且添解析:-0.0433【分析】三次根式变化规律为:三次根号内的式子扩大或缩小1000倍,则得到的结果扩大或缩小10倍,根据规律可得x 的值.【详解】从35.12变为-0.3512,缩小了100倍,且添加了“-”∴根据规律,三次根式内的式子应该缩小1000000倍,且添加“-”故答案为:-0.0433【点睛】本题考查三次根式的规律,二次根式规律类似:二次根号内的式子扩大或缩小100倍,则得到的结果扩大或缩小10倍.18.【分析】点对应的数为该半圆的周长.【详解】解:半圆周长为直径半圆弧周长即故答案为:.【点睛】本题考查数轴上的点与实数的关系.明确的长即为半圆周长是解答的关键. 解析:12π+【分析】点O '对应的数为该半圆的周长.【详解】解:半圆周长为直径+半圆弧周长 即12π+ 故答案为:12π+.【点睛】本题考查数轴上的点与实数的关系.明确OO '的长即为半圆周长是解答的关键.19.-4【分析】(1)根据正实数平方根互为相反数即可求出m 的值;(2)根据题意可知,再代入求解即可.【详解】解:(1)∵正实数的平方根是和,∴,∵,∴,∴;(2)∵正解析:【分析】(1)根据正实数平方根互为相反数即可求出m 的值;(2)根据题意可知22,()m x m b x +==,再代入求解即可.【详解】解:(1)∵正实数x 的平方根是m 和m b +,∴0m b m ++=,∵8b =,∴28m =-,∴4m =-;(2)∵正实数x 的平方根是m 和m b +,∴22,()m x m b x +==,∴224x x +=,∴22x =,∵x 是正实数,∴x .故答案为:-4.【点睛】本题考查的知识点是平方根,掌握正实数平方根的性质是解此题的关键. 20.1【分析】先根据绝对值的非负性、算术平方根的非负性求出x 、y 的值,再代入计算有理数的乘方即可.【详解】由绝对值的非负性、算术平方根的非负性得:解得则故答案为:1.【点睛】本题考查了解析:1【分析】先根据绝对值的非负性、算术平方根的非负性求出x 、y 的值,再代入计算有理数的乘方即可.【详解】由绝对值的非负性、算术平方根的非负性得:2030x y +=⎧⎨-=⎩解得23x y =-⎧⎨=⎩则201220122012()(23)11x y +=-+==故答案为:1.【点睛】本题考查了绝对值的非负性、算术平方根的非负性、有理数的乘方运算,利用绝对值的非负性、算术平方根的非负性求解是常考知识点,需重点掌握.三、解答题21.(1)N,E,T 密文为M,Q,P;(2)密文D,W,N 的明文为F,Y ,C .【分析】(1) 由图表找出N,E,T 对应的自然数,再根据变换公式变成密文.(2)由图表找出N=M,Q,P 对应的自然数,再根据变换.公式变成明文.【详解】解:(1)将明文NET 转换成密文:2522517263N M +→→+=→ 3313E Q →→=→ 5158103T P +→→+=→ 即N,E,T 密文为M,Q,P;(2)将密文D,W,N 转换成明文:()133138114D F →→⨯--=→2326W Y →→⨯=→253(2517)222N C →→⨯--=→即密文D,W,N 的明文为F,Y ,C .【点睛】本题考查有理数的混合运算,此题较复杂,解答本题的关键是由图表中找到对应的数或字母,正确运用转换公式进行转换.22.(1)1;5;(2)①3.807,0.807;②12p +;4p -.【分析】(1)根据布谷数的定义把2和32化为底数为2的幂即可得出答案;(2)①根据布谷数的运算性质, g (14)=g (2×7)=g (2)+g (7),7(7)(4)4g g g ⎛⎫=- ⎪⎝⎭,再代入数值可得解; ②根据布谷数的运算性质, 先将两式化为2(18)(2)(3)g g g =+,3()(3)(16)16g g g =-,再代入求解.【详解】解:(1)g (2)=g (21)=1,g (32)=g (25)=5;故答案为1,32;(2)①g (14)=g (2×7)=g (2)+g (7),∵g (7)=2.807,g (2)=1,∴g (14)=3.807;7(7)(4)4g g g ⎛⎫=- ⎪⎝⎭g (4)=g (22)=2, ∴74g ⎛⎫ ⎪⎝⎭=g (7)-g (4)=2.807-2=0.807; 故答案为3.807,0.807;②∵()3g p =.∴22(18)(23)(2)(3)12g g g g p =⨯=+=+; 3()(3)(16)416g g g p =-=-. 【点睛】本题考查有理数的乘方运算,新定义;能够将新定义的运算转化为有理数的乘方运算是解题的关键.23.初步探究:(1)12,-8;深入思考:(1)(−13)2,(15)4,82;(2)21n a -⎛⎫ ⎪⎝⎭【分析】初步探究:(1)分别按公式进行计算即可;深入思考:(1)把除法化为乘法,第一个数不变,从第二个数开始依次变为倒数,由此分别得出结果;(2)结果前两个数相除为1,第三个数及后面的数变为1a ,则11n a a a -⎛⎫=⨯ ⎪⎝⎭ⓝ;【详解】解:初步探究:(1)2③=2÷2÷2=12, 111111-=-----222222⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫÷÷÷÷ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⑤111=1---222⎛⎫⎛⎫⎛⎫÷÷÷ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭ ()11-2--22⎛⎫⎛⎫÷÷ ⎪ ⎪⎝⎭⎝⎭=-8;深入思考:(1)(-3)④=(-3)÷(-3)÷(-3)÷(-3)=1×(−13)2=(−13)2; 5⑥=5÷5÷5÷5÷5÷5=(15)4; 同理可得:(﹣12)⑩=82; (2)21n a a -⎛⎫= ⎪⎝⎭ⓝ【点睛】本题是有理数的混合运算,也是一个新定义的理解与运用;一方面考查了有理数的乘除法及乘方运算,另一方面也考查了学生的阅读理解能力;注意:负数的奇数次方为负数,负数的偶数次方为正数,同时也要注意分数的乘方要加括号,对新定义,其实就是多个数的除法运算,要注意运算顺序.24.(1)111111n n n n -⨯=-+++;(2)20172018- 【分析】 (1)由已知的等式得出第n 个式子为111111n n n n -⨯=-+++; (2)根据规律将原式中的积拆成和的形式,运算即可. 【详解】(1)∵第1个式子为111122-⨯=-+第2个式子为1111 2323 -⨯=-+第3个式子为1111 3434 -⨯=-+……∴第n个式子为111111 n n n n-⨯=-+++故答案为:111111 n n n n-⨯=-+++(2)由(1)知:原式1111111 (1)()()()2233420172018 =-++-++-++⋅⋅⋅+-+112018=-+20172018=-【点睛】本题考查有理数的混合运算以及数字规律,分析题目,找出规律是解题关键.25.(1)275,572;(2)(10b+a)[100a+10(a+b)+b]=(10a+b[100b+10(a+b)+a].【分析】(1)观察等式,发现规律,等式的左边:两位数所乘的数是这个两位数的个位数字变为百位数字,十位数字变为个位数字,两个数字的和放在十位;等式的右边:三位数与左边的三位数字百位与个位数字交换,两位数与左边的两位数十位与个位数字交换然后相乘,根据此规律进行填空即可;(2)按照(1)中对称等式的方法写出,然后利用多项式的乘法进行写出即可.【详解】解:(1)∵5+2=7,∴左边的三位数是275,右边的三位数是572,∴52×275=572×25,(2)左边的两位数是10b+a,三位数是100a+10(a+b)+b;右边的两位数是10a+b,三位数是100b+10(a+b)+a;“数字对称等式”为:(10b+a)[100a+10(a+b)+b]=(10a+b[100b+10(a+b)+a].故答案为275,572;(10b+a)[100a+10(a+b)+b]=(10a+b[100b+10(a+b)+a].【点睛】本题是对数字变化规律的考查,根据已知信息,理清利用左边的两位数的十位数字与个位数字变化得到其它的三个数字是解题的关键.26.(1)99101100100⨯,2004200620052005⨯;(2)10032005.【分析】(1)观察已知等式可知等式右边为两个分数的积,其分母相等且与等式左边分母的底数相等,分子一个比分母小1,一个比分母大1,由此填空(2)根据(1)发现的规律将每个括号部分分解为两个分数的积再寻找约分规律.【详解】解:(1)211100-=99101100100⨯,2112005-=2004200620052005⨯. (2)2112⎛⎫-⨯ ⎪⎝⎭ 211...3⎛⎫-⨯ ⎪⎝⎭ 2112004⎛⎫-⨯ ⎪⎝⎭ 2112005⎛⎫- ⎪⎝⎭ =1322⨯ ×2433⨯ ×…×2003200520042004⨯×2004200620052005⨯ =12×20062005. =10032005.. 【点睛】本题考查的是有理数的运算能力,关键是根据已知等式由特殊到一般得出分数的拆分规律和约分规律.。
人教版初一数学下册全册六单元试卷合集(精编答案版)第五章相交线与平行线试题汇总测试1 相交线学习要求1.能从两条直线相交所形成的四个角的关系入手,理解对顶角、互为邻补角的概念,掌握对顶角的性质.2.能依据对顶角的性质、邻补角的概念等知识,进行简单的计算.课堂学习检测一、填空题1.如果两个角有一条______边,并且它们的另一边互为____________,那么具有这种关系的两个角叫做互为邻补角.2.如果两个角有______顶点,并且其中一个角的两边分别是另一个角两边的___________ ________,那么具有这种位置关系的两个角叫做对顶角.3.对顶角的重要性质是_________________.4.如图,直线AB、CD相交于O点,∠AOE=90°.(1)∠1和∠2叫做______角;∠1和∠4互为______角;∠2和∠3互为_______角;∠1和∠3互为______角;∠2和∠4互为______角.(2)若∠1=20°,那么∠2=______;∠3=∠BOE-∠______=______°-______°=______°;∠4=∠______-∠1=______°-______°=______°.5.如图,直线AB与CD相交于O点,且∠COE=90°,则(1)与∠BOD 互补的角有________________________;(2)与∠BOD 互余的角有________________________;(3)与∠EOA 互余的角有________________________;(4)若∠BOD =42°17′,则∠AOD =__________;∠EOD =______;∠AOE =______.二、选择题6.图中是对顶角的是( ).7.如图,∠1的邻补角是( ).(A)∠BOC (B)∠BOC 和∠AOF(C)∠AOF (D)∠BOE 和∠AOF8.如图,直线AB 与CD 相交于点O ,若AOD AOC ∠=∠31,则∠BOD 的度数为().(A)30° (B)45°(C)60° (D)135°9.如图所示,直线l 1,l 2,l 3相交于一点,则下列答案中,全对的一组是( ).(A)∠1=90°,∠2=30°,∠3=∠4=60°(B)∠1=∠3=90°,∠2=∠4=30°(C)∠1=∠3=90°,∠2=∠4=60°(D)∠1=∠3=90°,∠2=60°,∠4=30°三、判断正误10.如果两个角相等,那么这两个角是对顶角. () 11.如果两个角有公共顶点且没有公共边,那么这两个角是对顶角. () 12.有一条公共边的两个角是邻补角. () 13.如果两个角是邻补角,那么它们一定互为补角. () 14.对顶角的角平分线在同一直线上. () 15.有一条公共边和公共顶点,且互为补角的两个角是邻补角. () 综合、运用、诊断一、解答题16.如图所示,AB,CD,EF交于点O,∠1=20°,∠BOC=80°,求∠2的度数.17.已知:如图,直线a,b,c两两相交,∠1=2∠3,∠2=86°.求∠4的度数.18.已知:如图,直线AB,CD相交于点O,OE平分∠BOD,OF平分∠COB,∠AOD∶∠DOE=4∶1.求∠AOF的度数.19.如图,有两堵围墙,有人想测量地面上两堵围墙内所形成的∠AOB的度数,但人又不能进入围墙,只能站在墙外,请问该如何测量?拓展、探究、思考20.如图,O是直线CD上一点,射线OA,OB在直线CD的两侧,且使∠AOC=∠BOD,试确定∠AOC与∠BOD是否为对顶角,并说明你的理由.21.回答下列问题:(1)三条直线AB,CD,EF两两相交,图形中共有几对对顶角(平角除外)?几对邻补角?(2)四条直线AB,CD,EF,GH两两相交,图形中共有几对对顶角(平角除外)?几对邻补角?(3)m条直线a1,a2,a3,…,a m-1,a m相交于点O,则图中一共有几对对顶角(平角除外)?几对邻补角?测试2 垂线学习要求1.理解两条直线垂直的概念,掌握垂线的性质,能过一点作已知直线的垂线.2.理解点到直线的距离的概念,并会度量点到直线的距离.课堂学习检测一、填空题1.当两条直线相交所成的四个角中,有一个角是直角时,就说这两条直线______,其中一条直线叫做另一条直线的______线,它们的交点叫做______.2.垂线的性质性质1:平面内,过一点____________与已知直线垂直.性质2:连接直线外一点与直线上各点的_________中,_________最短.3.直线外一点到这条直线的__________________叫做点到直线的距离.4.如图,直线AB,CD互相垂直,记作______;直线AB,CD互相垂直,垂足为O点,记作____________;线段PO的长度是点_________到直线_________的距离;点M到直线AB的距离是_______________.二、按要求画图5.如图,过A点作CD⊥MN,过A点作PQ⊥EF于B.图a 图b 图c6.如图,过A点作BC边所在直线的垂线EF,垂足是D,并量出A点到BC边的距离.图a 图b 图c7.如图,已知∠AOB及点P,分别画出点P到射线OA、OB的垂线段PM及PN.图a 图b 图c8.如图,小明从A村到B村去取鱼虫,将鱼虫放到河里,请作出小明经过的最短路线.综合、运用、诊断一、判断下列语句是否正确(正确的画“√”,错误的画“×”)9.两条直线相交,若有一组邻补角相等,则这两条直线互相垂直.( ) 10.若两条直线相交所构成的四个角相等,则这两条直线互相垂直.( ) 11.一条直线的垂线只能画一条.( ) 12.平面内,过线段AB 外一点有且只有一条直线与AB 垂直.( ) 13.连接直线l 外一点到直线l 上各点的6个有线段中,垂线段最短.( ) 14.点到直线的距离,是过这点画这条直线的垂线,这点与垂足的距离.( ) 15.直线外一点到这条直线的垂线段,叫做点到直线的距离.( ) 16.在三角形ABC 中,若∠B =90°,则AC >AB .( )二、选择题17.如图,若AO ⊥CO ,BO ⊥DO ,且∠BOC =α,则∠AOD 等于( ).(A)180°-2α(B)180°-α (C)α2190+︒ (D)2α-90° 18.如图,点P 为直线m 外一点,点P 到直线m 上的三点A 、B 、C 的距离分别为P A =4cm ,PB =6cm ,PC =3cm ,则点P 到直线m 的距离为( ).(A)3cm (B)小于3cm(C)不大于3cm (D)以上结论都不对19.如图,BC ⊥AC ,CD ⊥AB ,AB =m ,CD =n ,则AC 的长的取值范围是( ).(A)AC <m (B)AC >n(C)n ≤AC ≤m (D)n <AC <m20.若直线a 与直线b 相交于点A ,则直线b 上到直线a 距离等于2cm 的点的个数是( ).(A)0 (B)1 (C)2 (D)321.如图,AC ⊥BC 于点C ,CD ⊥AB 于点D ,DE ⊥BC 于点E ,能表示点到直线(或线段)的距离的线段有( ).(A)3条 (B)4条(C)7条 (D)8条三、解答题22.已知:OA ⊥OC ,∠AOB ∶∠AOC =2∶3.求∠BOC 的度数.23.已知:如图,三条直线AB ,CD ,EF 相交于O ,且CD ⊥EF ,∠AOE =70°,若OG平分∠BOF .求∠DOG .拓展、探究、思考24.已知平面内有一条直线m 及直线外三点A ,B ,C ,分别过这三个点作直线m 的垂线,想一想有几个不同的垂足?画图说明.25.已知点M ,试在平面内作出四条直线l 1,l 2,l 3,l 4,使它们分别到点M 的距离是1.5cm .·M26.从点O 引出四条射线OA ,OB ,OC ,OD ,且AO ⊥BO ,CO ⊥DO ,试探索∠AOC与∠BOD 的数量关系.27.一个锐角与一个钝角互为邻角,过顶点作公共边的垂线,若此垂线与锐角的另一边构成75直角,与钝角的另一边构成直73角,则此锐角与钝角的和等于直角的多少倍?测试3 同位角、内错角、同旁内角学习要求当两条直线被第三条直线所截时,能从所构成的八个角中识别出哪两个角是同位角、内错角及同旁内角.课堂学习检测一、填空题1.如图,若直线a,b被直线c所截,在所构成的八个角中指出,下列各对角之间是属于哪种特殊位置关系的角?(1)∠1与∠2是_______;(2)∠5与∠7是______;(3)∠1与∠5是_______;(4)∠5与∠3是______;(5)∠5与∠4是_______;(6)∠8与∠4是______;(7)∠4与∠6是_______;(8)∠6与∠3是______;(9)∠3与∠7是______;(10)∠6与∠2是______.2.如图所示,图中用数字标出的角中,同位角有______;内错角有______;同旁内角有______.3.如图所示,(1)∠B和∠ECD可看成是直线AB、CE被直线______所截得的_______角;(2)∠A和∠ACE可看成是直线_______、______被直线_______所截得的______角.4.如图所示,(1)∠AED和∠ABC可看成是直线______、______被直线______所截得的_______角;(2)∠EDB和∠DBC可看成是直线______、______被直线_______所截得的______角;(3)∠EDC和∠C可看成是直线_______、______被直线______所截得的______角.综合、运用、诊断一、选择题5.已知图①~④,图①图②图③图④在上述四个图中,∠1与∠2是同位角的有( ).(A)①②③④(B)①②③(C)①③(D)①6.如图,下列结论正确的是( ).(A)∠5与∠2是对顶角(B)∠1与∠3是同位角(C)∠2与∠3是同旁内角(D)∠1与∠2是同旁内角7.如图,∠1和∠2是内错角,可看成是由直线( ).(A)AD,BC被AC所截构成(B)AB,CD被AC所截构成(C)AB,CD被AD所截构成(D)AB,CD被BC所截构成8.如图,直线AB,CD与直线EF,GH分别相交,图中的同旁内角共有( ).(A)4对(B)8对(C)12对(D)16对拓展、探究、思考一、解答题9.如图,三条直线两两相交,共有几对对顶角?几对邻补角?几对同位角?几对内错角?几对同旁内角?测试4 平行线及平行线的判定学习要求1.理解平行线的概念,知道在同一平面内两条直线的位置关系,掌握平行公理及其推论.2.掌握平行线的判定方法,能运用所学的“平行线的判定方法”,判定两条直线是否平行.用作图工具画平行线,从而学习如何进行简单的推理论证.课堂学习检测一、填空题1.在同一平面内,______的两条直线叫做平行线.若直线a与直线b平行,则记作______.2.在同一平面内,两条直线的位置关系只有______、______.3.平行公理是:_______________________________________________________________.4.平行公理的推论是如果两条直线都与______,那么这两条直线也______.即三条直线a,b,c,若a∥b,b∥c,则______.5.两条直线平行的条件(除平行线定义和平行公理推论外):(1)两条直线被第三条直线所截,如果____________,那么这两条直线平行.这个判定方法1可简述为:____________,两直线平行.(2)两条直线被第三条直线所截,如果____________,那么____________.这个判定方法2可简述为:____________,____________.(3)两条直线被第三条直线所截,如果____________,那么____________.这个判定方法3可简述为:____________,____________.二、根据已知条件推理6.已知:如图,请分别依据所给出的条件,判定相应的哪两条直线平行?并写出推理的根据.(1)如果∠2=∠3,那么____________.(____________,____________)(2)如果∠2=∠5,那么____________.(____________,____________)(3)如果∠2+∠1=180°,那么____________.(____________,____________)(4)如果∠5=∠3,那么____________.(____________,____________)(5)如果∠4+∠6=180°,那么____________.(____________,____________)(6)如果∠6=∠3,那么____________.(____________,____________)7.已知:如图,请分别根据已知条件进行推理,得出结论,并在括号内注明理由.(1)∵∠B=∠3(已知),∴______∥______.(____________,____________)(2)∵∠1=∠D(已知),∴______∥______.(____________,____________)(3)∵∠2=∠A(已知),∴______∥______.(____________,____________)(4)∵∠B+∠BCE=180°(已知),∴______∥______.(____________,____________)综合、运用、诊断一、依据下列语句画出图形8.已知:点P是∠AOB内一点.过点P分别作直线CD∥OA,直线EF∥OB.9.已知:三角形ABC及BC边的中点D.过D点作DF∥CA交AB于M,再过D点作DE ∥AB交AC于N点.二、解答题10.已知:如图,∠1=∠2.求证:AB∥CD.(1)分析:如图,欲证AB∥CD,只要证∠1=______.证法1:∵∠1=∠2,(已知)又∠3=∠2,( )∴∠1=_______.( )∴AB∥CD.(___________,___________)(2)分析:如图,欲证AB∥CD,只要证∠3=∠4.证法2:∵∠4=∠1,∠3=∠2,( )又∠1=∠2,(已知)从而∠3=_______.( )∴AB∥CD.(___________,___________)11.绘图员画图时经常使用丁字尺,丁字尺分尺头、尺身两部分,尺头的里边和尺身的上边应平直,并且一般互相垂直,也有把尺头和尺身用螺栓连接起来,可以转动尺头,使它和尺身成一定的角度.用丁字尺画平行线的方法如下面的三个图所示.画直线时要按住尺身,推移丁字尺时必须使尺头靠紧图画板的边框.请你说明:利用丁字尺画平行线的理论依据是什么?拓展、探究、思考12.已知:如图,CD ⊥DA ,DA ⊥AB ,∠1=∠2.试确定射线DF 与AE 的位置关系,并说明你的理由.(1)问题的结论:DF ______AE .(2)证明思路分析:欲证DF ______AE ,只要证∠3=______.(3)证明过程:证明:∵CD ⊥DA ,DA ⊥AB ,( )∴∠CDA =∠DAB =______°.(垂直定义)又∠1=∠2,( )从而∠CDA -∠1=______-______,(等式的性质)即∠3=___.∴DF ___AE .(____,____)13.已知:如图,∠ABC =∠ADC ,BF 、DE 分别平分∠ABC 与∠ADC .且∠1=∠3.求证:AB ∥DC .证明:∵∠ABC =∠ADC ,.2121ADC ABC ∠=∠∴( ) 又∵BF 、DE 分别平分∠ABC 与∠ADC ,.212,211ADC ABC ∠=∠∠=∠∴ ( ) ∴∠______=∠______.( )∵∠1=∠3,( )∴∠2=∠______.(等量代换)∴______∥______.( )14.已知:如图,∠1=∠2,∠3+∠4=180°.试确定直线a 与直线c 的位置关系,并说明你的理由.(1)问题的结论:a ______c .(2)证明思路分析:欲证a ______c ,只要证______∥______且______∥______.(3)证明过程:证明:∵∠1=∠2,( )∴a∥______.(________,________)①∵∠3+∠4=180°,( )∴c∥______.(________,________)②由①、②,因为a∥______,c∥______,∴a______c.(________,________)测试5 平行线的性质学习要求1.掌握平行线的性质,并能依据平行线的性质进行简单的推理.2.了解平行线的判定与平行线的性质的区别.3.理解两条平行线的距离的概念.课堂学习检测一、填空题1.平行线具有如下性质:(1)性质1:______被第三条直线所截,同位角______.这个性质可简述为两直线______,同位角______.(2)性质2:两条平行线__________________,_______相等.这个性质可简述为_____________,_____________.(3)性质3:__________________,同旁内角______.这个性质可简述为_____________,__________________.2.同时______两条平行线,并且夹在这两条平行线间的______________叫做这两条平行线的距离.二、根据已知条件推理3.如图,请分别根据已知条件进行推理,得出结论,并在括号内注明理由.(1)如果AB∥EF,那么∠2=______.理由是____________________________________.(2)如果AB∥DC,那么∠3=______.理由是____________________________________.(3)如果AF∥BE,那么∠1+∠2=______.理由是______________________________.(4)如果AF∥BE,∠4=120°,那么∠5=______.理由是________________________.4.已知:如图,DE∥AB.请根据已知条件进行推理,分别得出结论,并在括号内注明理由.(1)∵DE∥AB,( )∴∠2=______.(__________,__________)(2)∵DE∥AB,( )∴∠3=______.(__________,__________)(3)∵DE∥AB( ),∴∠1+______=180°.(______,______)综合、运用、诊断一、解答题5.如图,∠1=∠2,∠3=110°,求∠4.解题思路分析:欲求∠4,需先证明______∥______.解:∵∠1=∠2,( )∴______∥______.(__________,__________)∴∠4=______=______°.(__________,__________) 6.已知:如图,∠1+∠2=180°.求证:∠3=∠4.证明思路分析:欲证∠3=∠4,只要证______∥______.证明:∵∠1+∠2=180°,( )∴______∥______.(__________,__________)∴∠3=∠4.(______,______)7.已知:如图,AB∥CD,∠1=∠B.求证:CD是∠BCE的平分线.证明思路分析:欲证CD是∠BCE的平分线,只要证______=______.证明:∵AB∥CD,( )∴∠2=______.(____________,____________)但∠1=∠B,( )∴______=______.(等量代换)即CD是________________________.8.已知:如图,AB∥CD,∠1=∠2.求证:BE∥CF.证明思路分析:欲证BE∥CF,只要证______=______.证明:∵AB∥CD,( )∴∠ABC=______.(____________,____________)∵∠1=∠2,( )∴∠ABC-∠1=______-______,( )即______=______.∴BE∥CF.(__________,__________)9.已知:如图,AB∥CD,∠B=35°,∠1=75°.求∠A的度数.解题思路分析:欲求∠A,只要求∠ACD的大小.解:∵CD∥AB,∠B=35°,( )∴∠2=∠______=_______°.(____________,____________)而∠1=75°,∴∠ACD=∠1+∠2=______°.∵CD∥AB,( )∴∠A+______=180°.(____________,____________)∴∠A=_______=______.10.已知:如图,四边形ABCD中,AB∥CD,AD∥BC,∠B=50°.求∠D的度数.分析:可利用∠DCE作为中间量过渡.解法1:∵AB∥CD,∠B=50°,( )∴∠DCE=∠_______=_______°.(____________,______)又∵AD∥BC,( )∴∠D=∠______=_______°.(____________,____________) 想一想:如果以∠A作为中间量,如何求解?解法2:∵AD∥BC,∠B=50°,( )∴∠A+∠B=______.(____________,____________)即∠A=______-______=______°-______°=______°.∵DC∥AB,( )∴∠D +∠A =______.(_____________,_____________)即∠D =______-______=______°-______°=______°.11.已知:如图,AB ∥CD ,AP 平分∠BAC ,CP 平分∠ACD ,求∠APC 的度数.解:过P 点作PM ∥AB 交AC 于点M .∵AB ∥CD ,( )∴∠BAC +∠______=180°.( )∵PM ∥AB ,∴∠1=∠_______,( )且PM ∥_______.(平行于同一直线的两直线也互相平行)∴∠3=∠______.(两直线平行,内错角相等)∵AP 平分∠BAC ,CP 平分∠ACD ,( )∠=∠∴211______,∠=∠214______.( ) 90212141=∠+∠=∠+∠∴ACD BAC .( ) ∴∠APC =∠2+∠3=∠1+∠4=90°.( )总结:两直线平行时,同旁内角的角平分线______.拓展、探究、思考12.已知:如图,AB ∥CD ,EF ⊥AB 于M 点且EF 交CD 于N 点.求证:EF ⊥CD .13.如图,DE ∥BC ,∠D ∶∠DBC =2∶1,∠1=∠2,求∠E 的度数.14.问题探究:(1)如果一个角的两条边与另一个角的两条边分别平行,那么这两个角的大小有何关系?举例说明.(2)如果一个角的两边与另一个角的两边分别垂直,那么这两个角的大小有何关系?举例说明.15.如图,AB∥DE,∠1=25°,∠2=110°,求∠BCD的度数.16.如图,AB,CD是两根钉在木板上的平行木条,将一根橡皮筋固定在A,C两点,点E 是橡皮筋上的一点,拽动E点将橡皮筋拉紧后,请你探索∠A,∠AEC,∠C之间具有怎样的关系并说明理由.(提示:先画出示意图,再说明理由).测试6 命题学习要求1.知道什么是命题,知道一个命题是由“题设”和“结论”两部分构成的.2.对于给定的命题,能找出它的题设和结论,并会把该命题写成“如果……,那么……”的形式.能判定该命题的真假.课堂学习检测一、填空题1.______一件事件的______叫做命题.2.许多命题都是由______和______两部分组成.其中题设是____________,结论是______ _____.3.命题通常写成“如果……,那么…….”的形式.这时,“如果”后接的部分是______,“那么”后接的部分是______.4.所谓真命题就是:如果题设成立,那么结论就______的命题.相反,所谓假命题就是:如果题设成立,不能保证结论______的命题.二、指出下列命题的题设和结论5.垂直于同一条直线的两条直线平行.题设是___________________________________________________________;结论是___________________________________________________________.6.同位角相等,两直线平行.题设是___________________________________________________________;结论是___________________________________________________________.7.两直线平行,同位角相等.题设是___________________________________________________________;结论是___________________________________________________________.8.对顶角相等.题设是___________________________________________________________;结论是___________________________________________________________.三、将下列命题改写成“如果……,那么……”的形式9.90°的角是直角.__________________________________________________________________.10.末位数字是零的整数能被5整除.__________________________________________________________________.11.等角的余角相等.__________________________________________________________________.12.同旁内角互补,两直线平行.__________________________________________________________________.综合、运用、诊断一、下列语句哪些是命题,哪些不是命题?13.两条直线相交,只有一个交点.( ) 14. 不是有理数.( )15.直线a与b能相交吗?( ) 16.连接AB.( )17.作AB⊥CD于E点.( ) 18.三条直线相交,有三个交点.( ) 二、判断下列各命题中,哪些命题是真命题?哪些是假命题?(对于真命题画“√”,对于假命题画“×”)19.0是自然数.( )20.如果两个角不相等,那么这两个角不是对顶角.( )21.相等的角是对顶角.( )22.如果AC=BC,那么C点是AB的中点.( )23.若a∥b,b∥c,则a∥c.( )24.如果C是线段AB的中点,那么AB=2BC.( )25.若x2=4,则x=2.( )26.若xy=0,则x=0.( )27.同一平面内既不重合也不平行的两条直线一定相交.( )28.邻补角的平分线互相垂直.( )29.同位角相等.( )30.大于直角的角是钝角.( )拓展、探究、思考31.已知:如图,在四边形ABCD中,给出下列论断:①AB∥DC;②AD∥BC;③AB=AD;④∠A=∠C;⑤AD=BC.以上面论断中的两个作为题设,再从余下的论断中选一个作为结论,并用“如果……,那么……”的形式写出一个真命题.答:_____________________________________________________________________.32.求证:两条平行线被第三条直线所截,内错角的平分线互相平行.测试7 平移学习要求了解图形的平移变换,知道一个图形进行平移后所得的图形与原图形之间所具有的联系和性质,能用平移变换有关知识说明一些简单问题及进行图形设计.课堂学习检测一、填空题1.如图所示,线段ON是由线段______平移得到的;线段DE是由线段______平移得到的;线段FG是由线段______平移得到的.2.如图所示,线段AB在下面的三个平移中(AB→A1B1→A2B2→A3B3),具有哪些性质.图a图b 图c(1)线段AB上所有的点都是沿______移动,并且移动的距离都________.因此,线段AB,A1B1,A2B2,A3B3的位置关系是____________________;线段AB,A1B1,A2B2,A3B3的数量关系是________________.(2)在平移变换中,连接各组对应点的线段之间的位置关系是______;数量关系是______.3.如图所示,将三角形ABC平移到△A′B′C′.图a 图b在这两个平移中:(1)三角形ABC的整体沿_______移动,得到三角形A′B′C′.三角形A′B′C′与三角形ABC的______和______完全相同.(2)连接各组对应点的线段即AA′,BB′,CC′之间的数量关系是__________________;位置关系是__________________.综合、运用、诊断一、按要求画出相应图形4.如图,AB∥DC,AD∥BC,DE⊥AB于E点.将三角形DAE平移,得到三角形CBF.5.如图,AB∥DC.将线段DB向右平移,得到线段CE.6.已知:平行四边形ABCD及A′点.将平行四边形ABCD平移,使A点移到A′点,得平行四边形A′B′C′D′.7.已知:五边形ABCDE及A′点.将五边形ABCDE平移,使A点移到A′点,得到五边形A′B′C′D′E′.拓展、探究、思考一、选择题8.如图,把边长为2的正方形的局部进行如图①~图④的变换,拼成图⑤,则图⑤的面积是( ).(A)18 (B)16 (C)12 (D)8二、解答题9.河的两岸成平行线,A,B是位于河两岸的两个车间(如图).要在河上造一座桥,使桥垂直于河岸,并且使A,B间的路程最短.确定桥的位置的方法如下:作从A到河岸的垂线,分别交河岸PQ,MN于F,G.在AG上取AE=FG,连接EB.EB交MN于D.在D处作到对岸的垂线DC,那么DC就是造桥的位置.试说出桥造在CD位置时路程最短的理由,也就是(AC+CD+DB)最短的理由.10.以直角三角形的三条边BC,AC,AB分别作正方形①、②、③,如何用①中各部分面积与②的面积,通过平移填满正方形③?你从中得到什么结论?参考答案第五章相交线与平行线测试11.公共,反向延长线.2.公共,反向延长线.3.对顶角相等.4.略.5.(1)∠BOC,∠AOD;(2)∠AOE;(3)∠AOC,∠BOD;(4)137°43′,90°,47°43′.6.A.7.D.8.B.9.D.10.×,11.×,12.×,13.√,14.√,15.×.16.∠2=60°.17.∠4=43°.18.120°.提示:设∠DOE=x°,由∠AOB=∠AOD+∠DOB=6x=180°,可得x=30°,∠AOF=4x=120°.19.只要延长BO(或AO)至C,测出∠AOB的邻补角∠AOC(或∠BOC)的大小后,就可知道∠AOB的度数.20.∠AOC与∠BOD是对顶角,说理提示:只要说明A,O,B三点共线.证明:∵射线OA的端点在直线CD上,∴∠AOC与∠AOD互为邻补角,即∠AOC+∠AOD=180°,又∵∠BOD=∠AOC,从而∠BOD+∠AOD=180°,∴∠AOB是平角,从而A,O,B三点共线.∴∠AOC与∠BOD是对顶角.21.(1)有6对对顶角,12对邻补角.(2)有12对对顶角,24对邻补角.(3)有m(m-1)对对顶角,2m(m-1)对邻补角.测试21.互相垂直,垂,垂足.2.有且只有一条直线,所有线段,垂线段.3.垂线段的长度.4.AB⊥CD;AB⊥CD,垂足是O(或简写成AB⊥CD于O);P;CD;线段MO的长度.5~8.略.9.√,10.√,11.×,12.√,13.√,14.√,15.×,16.√.17.B.18.B.19.D.20.C.21.D.22.30°或150°.23.55°.24.如图所示,不同的垂足为三个或两个或一个.这是因为:(1)当A,B,C三点中任何两点的连线都不与直线m垂直时,则分别过A,B,C三点作直线m的垂线时,有三个不同的垂足.(2)当A,B,C三点中有且只有两点的连线与直线m垂直时,则分别过A,B,C三点作直线m的垂线时,有两个不同的垂足.(3)当A,B,C三点共线,且该线与直线m垂直时,则只有一个垂足.25.以点M为圆心,以R=1.5cm长为半径画圆M,在圆M上任取四点A,B,C,D,依次连接AM,BM,CM,DM,再分别过A,B,C,D点作半径AM,BM,CM,DM的垂线l1,l2,l3,l4,则这四条直线为所求.26.相等或互补.27.提示:如图,,9073,9075 ⨯=∠⨯=∠FOC AOE.90710,9072 ⨯=∠⨯=∠∴BOC AOB .90712 ⨯=∠+∠∴BOC AOB ∴是712倍. 测试31.(1)邻补角,(2)对顶角,(3)同位角,(4)内错角,(5)同旁内角,(6)同位角,(7)内错角,(8)同旁内角,(9)同位角,(10)同位角.2.同位角有:∠3与∠7、∠4与∠6、∠2与∠8;内错角有:∠1与∠4、∠3与∠5、∠2与∠6、∠4与∠8;同旁内角有:∠2与∠4、∠2与∠5、∠4与∠5、∠3与∠6.3.(1)BD ,同位. (2)AB ,CE ,AC ,内错.4.(1)ED ,BC ,AB ,同位;(2)ED ,BC ,BD ,内错;(3)ED ,BC ,AC ,同旁内.5.C . 6.D . 7.B . 8.D .9.6对对顶角,12对邻补角,12对同位角,6对内错角,6对同旁内角.测试41.不相交,a ∥b .2.相交、平行.3.经过直线外一点有且只有一条直线与这条直线平行.4.第三条直线平行,互相平行,a ∥c .5.略.6.(1)EF ∥DC ,内错角相等,两直线平行.(2)AB ∥EF ,同位角相等,两直线平行.(3)AD∥BC,同旁内角互补,两直线平行.(4)AB∥DC,内错角相等,两直线平行.(5)AB∥DC,同旁内角互补,两直线平行.(6)AD∥BC,同位角相等,两直线平行.7.(1)AB,EC,同位角相等,两直线平行.(2)AC,ED,同位角相等,两直线平行.(3)AB,EC,内错角相等,两直线平行.(4)AB,EC,同旁内角互补,两直线平行.8.略.9.略.10.略.11.同位角相等,两直线平行.12.略.13.略.14.略.测试51.(1)两条平行线,相等,平行,相等.(2)被第三条直线所截,内错角,两直线平行,内错角相等.(3)两条平行线被第三条直线所截,互补.两直线平行,同旁内角互补.2.垂直于,线段的长度.3.(1)∠5,两直线平行,内错角相等.(2)∠1,两直线平行,同位角相等.(3)180°,两直线平行,同旁内角互补.(4)120°,两直线平行,同位角相等.4.(1)已知,∠5,两直线平行,内错角相等.(2)已知,∠B,两直线平行,同位角相等.(3)已知,∠2,两直线平行,同旁内角互补.5~12.略.13.30°.14.(1)(2)均是相等或互补.15.95°.16.提示:这是一道结论开放的探究性问题,由于E点位置的不确定性,可引起对E点不同位置的分类讨论.本题可分为AB,CD之间或之外.如:结论:①∠AEC=∠A+∠C②∠AEC+∠A+∠C=360°③∠AEC=∠C-∠A④∠AEC=∠A-∠C⑤∠AEC=∠A-∠C⑥∠AEC=∠C-∠A.测试61.判断、语句.2.题设,结论,已知事项,由已知事项推出的事项.3.题设,结论.4.一定成立,总是成立.5.题设是两条直线垂直于同一条直线;结论是这两条直线平行.6.题设是同位角相等;结论是两条直线平行.7.题设是两条直线平行;结论是同位角相等.8.题设是两个角是对顶角;结论是这两个角相等.9.如果一个角是90°,那么这个角是直角.10.如果一个整数的末位数字是零,那么这个整数能被5整除.11.如果有几个角相等,那么它们的余角相等.12.两直线被第三条直线截得的同旁内角互补,那么这两条直线平行.13.是,14.是,15.不是,16.不是,17.不是,18.是.19.√,20.√,21.×,22.×,23.√,24.√,25.×,26.×,27.√,28.√,29.×,30.×.31.正确的命题例如:(1)在四边形ABCD中,如果AB∥CD,BC∥AD,那么∠A=∠C.(2)在四边形ABCD中,如果AB∥CD,BC∥AD,那么AD=BC(3)在四边形ABCD中,如果AD∥BC,∠A=∠C,那么AB∥DC.32.已知:如图,AB∥CD,EF与AB、CD分别交于M,N,MQ平分∠AMN,NH平分∠END.求证:MQ∥NH.证明:略.测试71.LM,KJ,HI.2.(1)某一方向,相等,AB∥A1B1∥A2B2∥A3B3或在一条直线上,AB=A1B1=A2B2=A3B3.(2)平行或共线,相等.3.(1)某一方向,形状、大小.(2)相等,平行或共线.4~7.略.8.B9.利用图形平移的性质及连接两点的线中,线段最短,可知:AC+CD+DB=(ED+DB)+CD=EB+CD.而CD的长度又是平行线PQ与MN之间的距离,所以AC+CD+DB 最短.10.提示:正方形③的面积=正方形①的面积+正方形②的面积.AB2=AC2+BC2.七年级数学第五章相交线与平行线测试一、选择题1.如图,AB ∥CD ,若∠2是∠1的4倍,则∠2的度数是( ).(A)144° (B)135°(C)126° (D)108°2.已知:OA ⊥OC ,∠AOB ∶∠AOC =2∶3,则∠BOC 的度数为( ).(A)30° (B)60°(C)150° (D)30°或150°3.如图,直线l 1,l 2被l 3所截得的同旁内角为α,β ,要使l 1∥l 2,只要使( ).(A)α+β =90° (B)α=β(C)0°<α≤90°,90°≤β <180° (D) 603131=+βα 4.如图,AB ∥CD ,FG ⊥CD 于N ,∠EMB =α,则∠EFG 等于( ).(A)180°-α (B)90°+α(C)180°+α (D)270°-α5.以下五个条件中,能得到互相垂直关系的有( ).①对顶角的平分线②邻补角的平分线③平行线截得的一组同位角的平分线④平行线截得的一组内错角的平分线⑤平行线截得的一组同旁内角的平分线(A)1个 (B)2个 (C)3个 (D)4个6.如图,在下列条件中:①∠1=∠2;②∠BAD =∠BCD ;③∠ABC =∠ADC 且∠3=∠4;④∠BAD +∠ABC =180°,能判定AB ∥CD 的有( ).(A)3个(B)2个(C)1个(D)0个7.在5×5的方格纸中,将图a中的图形N平移后的位置如图b所示,那么正确的平移方法是( ).图a 图b(A)先向下移动1格,再向左移动1格(B)先向下移动1格,再向左移动2格(C)先向下移动2格,再向左移动1格(D)先向下移动2格,再向左移动2格8.在下列四个图中,∠1与∠2是同位角的图是( ).图①图②图③图④(A)①②(B)①③(C)②③(D)③④9.如图,AB∥CD,若EM平分∠BEF,FM平分∠EFD,EN平分∠AEF,则与∠BEM互余的角有( ).(A)6个(B)5个(C)4个(D)3个10.把一张对边互相平行的纸条折成如图所示,EF是折痕,若∠EFB=32°,则下列结论正确的有( ).(1)∠C ′EF =32°(2)∠AEC =148° (3)∠BGE =64°(4)∠BFD =116° (A)1个(B)2个 (C)3个(D)4个二、填空题 11.若角α与β 互补,且 2031=-βα,则较小角的余角为____°. 12.如图,已知直线AB 、CD 相交于O ,如果∠AOC =2x °,∠BOC =(x +y +9)°,∠BOD=(y +4)°,则∠AOD 的度数为____.13.如图,DC ∥EF ∥AB ,EH ∥DB ,则图中与∠AHE 相等的角有____________________________________________________.14.如图,若AB ∥CD ,EF 与AB 、CD 分别相交于点E ,F ,EP 与∠EFD 的平分线相交于点P ,且∠EFD =60°,EP ⊥FP ,则∠BEP =______°.15.王强从A 处沿北偏东60°的方向到达B 处,又从B 处沿南偏西25°的方向到达C 处,则王强两次行进路线的夹角为______°.16.如图,在平面内,两条直线l 1,l 2相交于点O ,对于平面内任意一点M ,若p 、q 分别是点M 到直线l 1,l 2的距离,则称(p ,q )为点M 的“距离坐标”.根据上述规定,“距离坐标”是(2,1)的点共有______个.三、作图题17.如图是某次跳远测验中某同学跳远记录示意图.这个同学的成绩应如何测量,请你画出示意图.四、解答题18.已知:如图,CD是直线,E在直线CD上,∠1=130°,∠A=50°,求证:AB∥CD.19.已知:如图,AE⊥BC于E,∠1=∠2.求证:DC⊥BC.20.已知:如图,CD⊥AB于D,DE∥BC,EF⊥AB于F,求证:∠FED=∠BCD.21.已知:如图,AB∥DE,CM平分∠BCE,CN⊥CM.求证:∠B=2∠DCN.22.已知:如图,AD∥BC,∠BAD=∠BCD,AF平分∠BAD,CE平分∠BCD.求证:AF∥EC.五、问题探究23.已知:如图,∠ABC和∠ACB的平分线交于点O,EF经过点O且平行于BC,分别与AB,AC交于点E,F.(1)若∠ABC=50°,∠ACB=60°,求∠BOC的度数;(2)若∠ABC=α,∠ACB=β ,用α,β 的代数式表示∠BOC的度数.(3)在第(2)问的条件下,若∠ABC和∠ACB邻补角的平分线交于点O,其他条件不变,请画出相应图形,并用α,β 的代数式表示∠BOC的度数.24.已知:如图,AC∥BD,折线AMB夹在两条平行线间.(1)判断∠M,∠A,∠B的关系;(2)请你尝试改变问题中的某些条件,探索相应的结论.建议:①折线中折线段数量增加到n条(n=3,4,…);②可如图1,图2,或M点在平行线外侧.图1 图2参考答案第五章 相交线与平行线测试1.A . 2.D . 3.D . 4.B . 5.B . 6.C . 7.C . 8.B . 9.B . 10.C . 11.60. 12.110° 13.∠FEH ,∠DGE ,∠GDC ,∠FGB ,∠GBA . 14.60. 15.35. 16.4. 17~22.略.23.(1)∠BOC =125°;(2))(21180βα+-=∠ BOC ;(3)⋅+=∠βα2121BOC 24.略.人教版初一数学下册 第六章《实数》试题汇总测试1 平方根学习要求1.了解平方根、算术平方根的概念,会用根号表示数的平方根.2.了解开方与乘方互为逆运算,会用开方运算求某些非负数的平方根,会用计算器求平方根.课堂学习检测一、填空题1.一般的,如果一个________的平方等于a ,即______,那么这个______叫做a 的算术平方根.a 的算术平方根记为______,a 叫做______. 规定:0的算术平方根是______.2.一般的,如果______,那么这个数叫做a 的平方根.这就是说,如果______,那么x 叫做a 的平方根,a 的平方根记为______. 3.求一个数a 的______的运算,叫做开平方.4.一个正数有______个平方根,它们______;0的平方根是______;负数______. 5.25的算术平方根是______;______是9的平方根;16的平方根是______. 6.计算:(1)=121______;(2)=-256______;(3)=±212______;(4)=43______;(5)=-2)3(______;(6)=-412______. 二、选择题7.下列各数中没有平方根的是( ) A .(-3)2 B .0 C .81D .-638.下列说法正确的是( )。
第1页 共6页第六章 实数 单元测试学校: 姓名: 班级: 考号:一、选择题(每小题3分,共30分)1. 8的平方根是( )A. 2B. ±2C. 2√2D. ±2√22. 下列各式表示正确的是( )A. √25=±5B. ±√25=5C. ±√25=±5D. ±√(−5)2=5 3. 一个正数的算术平方根是a ,那么比这个正数大2的数的算术平方根是 ( )A. a 2+2B. ±√a 2+2C. √a 2+2D. √a +24. 下列说法正确的是 ( )A. 1的立方根是±1B. √4=±2C. √81的平方根是±3D. 0没有平方根5. 如果x 2=3,那么在如图的数轴上与实数x 对应的点可能是 ( )A. P 1B. P 4C. P 2或P 3D. P 1或P 46. 若√x −2y +9与|x -y -3|互为相反数,则x +y 的值为 ( )A. 3B. 9C. 12D. 277. 下列实数中,属于无理数的是( )A. -3B. 3.14C. 27D. √28. 设边长为3的正方形的对角线长为a .则下列关于a 的四种说法①a 是无理数;②a 可以用数轴上的一个点来表示;③3<a <4;④a 是18的算术平方根中,正确说法的序号是( )A. ①④B. ②③C. ①②④D. ①③④9. 如果m 是(−3)2的平方根,那么√m 3等于( )A. -3B. ±3C. −√33D. ±√3310. 如果正方体A 的体积是正方体B 的体积的27倍,那么正方体A 的棱长是正方体B 的棱长的( )倍.A. 2B. 3C. 4D. 5二、填空题(每小题3分,共24分)11. 如果实数x 满足|x|<√5−1,且x 为整数,则x =____.12. 若a <√13<b ,且a,b 为连续正整数,则b 2−a 2=____.13. √−273等于____,√116的算术平方根是____.14. 如图,M,N,P,Q 是数轴上的四个点,这四个点中最适合表示√7的点是____.15. 若a ,b 满足|a +2|+√b −4=0,则a 2b =____.16. 若无理数a 满足不等式1<a <4,请写出两个符合条件的无理数____、____.17. 交警通常根据刹车时后车轮滑过的距离估计车辆行驶的速度,所用的经验公式v =16√df ,其中v 表示车速(单位:km/h),d 表示刹车后车轮滑过的距离(单位:m),f 表示摩擦系数.在某次交通事故调查中,测得d =24 m,f =1.3,则肇事汽车的车速大约是____km/h(精确到0.1). 18. 观察下列计算过程:∵112=121, ∴√121=11;∵1112=12 321, ∴√12 321=111;由此猜想:√12 345 678 987 654 321=____.三、解答题(8+8+10+10+10=46分)19. 求下列各式中的x .(1)8x 3+125=0; (2)(x +3)3+27=0;(3)√x 3=5; (4)2x 3−6=34.20. 已知2x+1的一个平方根是−5,求5x+4的算术平方根.21. 已知P是满足不等式−√3<x<√6的所有整数x的和,Q是满足不等式x≤√37−2的最大2整数,求P+Q的平方根.πR3,其中V 22. 某塑钢球内装满水后,量得水的体积为3.5m³,已知球体的体积公式为V=43表示球的体积,单位:m³,R表示球的半径,单位:m.如果球体的厚度不计,请你求此塑钢球的半径.(精确到0.01m)第3页共6页23. 已知x是36的平方根,y是-8的立方根,z的算术平方根是3,求x+y+z的值.第5页 共6页参考答案1—10 DCCCD DDCDB11. 【答案】-1,0,1.12. 【答案】713. 【答案】-3;1214. 【答案】P15. 【答案】116. 【答案】√2;√13(答案不唯一)17. 【答案】89.418. 【答案】11…11︸共9个19.(1) 【答案】移项,得8x 3=−125,系数化为1,得x 3=−1258, ∴x =√−12583=−52. (2) 【答案】移项,得(x +3)3=−27,∴x +3=−3,∴x =−6. (3) 【答案】两边立方,得x =53,∴x =125. (4) 【答案】移项,得2x 3=6+34,即2x 3=274,∴x 3=278,∴x =32.20. 【答案】∵−√3<x <√6且x 为整数,∴x 的值可以为-1,0,1,2,∴P =2. ∵6<√37<7,∴2<√37−22<2.5,∴Q =2,∴P +Q =4,∴P +Q 的平方根是±2.21. 【答案】由题意知2x +1=(−5)2,所以x =12,5x +4=64. 因为82=64,所以√5x +4=√64=8, 即5x +4的算术平方根是8.22. 【答案】设此塑钢球的半径为x m ,根据球的体积公式,得3.5=43π⋅x 3,整理,得x 3=3.5×34π,利用计算器,解得x ≈0.94,答:此塑钢球的半径约为0.94m.23. 【答案】因为36的平方根是±6,所以x =±6; 因为-8的立方根是-2,所以y =-2;因为3的平方是9,所以z =9.当x=6时,x+y+z=6-2+9=13;当x=-6时,x+y+z=-6-2+9=1;所以x+y+z=13或1.。
人教版七年级数学下册第六章实数章末能力测试卷一.选择题(共10小题)1( )A .3B .±3C .D .-2.下列实数0, 23π, 其中,无理数共有( ) A .1个B .2个C .3个D .4个3.若a 2=4,b 2=9,且ab<0,则a-b 的值为( ) A .-2B .±5C .5D .-54.如果一个实数的平方根与它的立方根相等,则这个数是( ) A .0B .正实数C .0和1D .15.给出下列说法:①-2是49;③;④2的平) A .0个B .1个C .2个D .3个6.下列变形正确的是( )A 4±3B 3C -4D .±117.一个数的立方根是4,这个数的平方根是( ) A .8B .-8C .±8D .±48.实数a 、b 在数轴上的对应点的位置如图所示,则正确的结论是( ) A .b>-2B .-b<0C .-a>bD .a>-b9.在数-1和2之间的数是( )A .-3B .-(-2)C .0D10.如图将1(m,n)表示第m 排从左向右第n 个数,则(5,4)与(15,8)表示的两数之积是( )A .1B C D .二.填空题(共6小题)11.49的平方根是,1的立方根是的算术平方根是.12.16的算术平方根与-8的立方根之和是.13.一个正方体,它的体积是棱长为2cm的正方体的体积的8倍,则这个正方体的棱长是cm.14.对于正实数a,b作新定义:a⊙b=2 -若25⊙x2=4,则x的值为.15.|4|-= .16.数轴上从左到右依次有A、B、C三点表示的数分别为a、b其中b为整数,且满足|a+3|+|b-2|=b-2,则b-a= .三.解答题(共7小题)17||-18.求下列各式中x的值:(1)9x2-4=0;(2)(3x-1)3+64=0.19.已知一个数的两个平方根分别是312a和a+13,求这个数的立方根.20.已知-8的平方等于a,b的平方等于121,c的立方等于-27,d的算术平方根为5.(1)写出a,b,c,d的值;(2)求d+3c的平方根;(3)求代数式a-b2+c+d的值.21.有一个边长为9cm的正方形和一个长为24cm、宽为6cm的长方形,要作一个面积为这两个图形的面积之和的正方形,问边长应为多少厘米?22.已知表示a,b两个实数的点在数轴上的位置如图所示,化简|a-b|+|a+b|.23.阅读完成问题:数轴上,已知点A、B、C.其中,C为线段AB的中点:(1)如图,点A表示的数为-1,点B表示的数为3,则线段AB的长为,C点表示的数为;(2)若点A表示的数为-1,C点表示的数为2,则点B七年级下册数学第六章实数单元试题一、选择题(共10小题,每小题2分,共20分)1.4的算术平方根是( )A.2 B.±2C.16 D.±162.下列说法不正确的是( )A.125的平方根是±15B.-9是81的一个平方根C.0.2的算术平方根是0.04D.-27的立方根是-33.数3.032 032 032是( )A.有限小数B.无限循环小数C.无理数D.不能确定4.满足-3<x<5的整数是( )A.-2,-1,0,1,2,3 B.-1,0,1,2,3C.-2,-1,0,1,2 D.-1,0,1,25.已知31.51≈1.147,315.1≈2.472,30.151≈0.532 5,则31 510的值约是( )A.24.72 B.53.25C.11.47 D.114.76.下列算式中,错误的是( )A.-0.64=-0.8 B.± 1.96=±1.4C.925=±35D .3-278=-327.3-8的相反数是( ) A .2 B .-2 C .+2 D .-8 8.若a 的算术平方根有意义,则a 的取值范围是( )A .一切数B .正数C .非负数D .非零数9.在数轴上表示5和-3的两点间的距离是( ) A.5+ 3 B .5- 3 C .-(5+3)D .3- 510.()-92的平方根是x,64的立方根是y ,则x +y 的值为( ) A .3 B .7 C .3或7D .1或7二、填空题(共5小题,每小题4分,共20分) 11.化简:()3-π2= .12.已知||2a +1+b +2=0,则b a= .13.比较下列实数的大小:(-2;②11 3 5.14.若无理数m 满足1<m <4,请写出两个符合条件的无理数: , .15.已知一个正数x 的两个平方根是a +1和a -3,则a = ,x = . 三、解答题(共5小题,每小题10分,共50分) 16.计算:(1)38+99-14×0.16-(-5)2;(2)23+52-100.04.(精确到0.01)17.求下列各式中x 的值:(1)4()2-x 2=9; (2)()2x -13+8=0.18.如图,数轴上A ,B 两点表示的数分别是-1和3,点B 关于点A 的对称点为C ,求点C 所表示的实数.19. 阅读理解:∵4<5<9,即2<5<3,∴5的整数部分为2,小数部分为5-2, ∴1<5-1<2,∴5-1的整数人教版七年级下册第六章实数单元能力检测卷人教版七年级数学下册第六章 实数 单元检测卷1.若,则a 的值为( )A.B.C.4D.±42.下列各对数是互为相反数的是()A.–2与0.5B.与C.与D.与3.若x,y为实数,且|x+1|+=0,则的值是()A.0B.1C.-1D.-20114.有一个数的相反数、平方根、立方根都等于它本身,这个数是( )A.-1B.1C.0D.±15.若与的整数部分分别为,则的立方根是( )A.B.C.3D.6.有一个数值转换器,原理如图所示.当输入的x为-512时,输出的y是()A.-2B.-C.-D.-7.计算的结果估计在()A.4至5之间B.5至6之间C.6至7之间D.4至6之间8.在-,0,-2,1,-1这五个数中,最大的数和最小的数的和是()A.0B.-C.-2D.-19.如图,以数轴的单位长度线段为边作一个正方形,以表示数2的点为圆心、正方形对角线的长为半径画弧,交数轴于点A,则点A表示的数是( )A.-B.2-C.1-D.1+10.规定新运算a*b=ab-(a+b),若(-3)*x=3,则x的值是()A.0B.1C.2D.-1二、填空题11.若a是4的平方根,b=-42,那么a+b的值为___ _____.12.小明的卧室面积为18 m2,他数了一下地面所铺的正方形地板砖恰好是200块,则每块地板砖的边长为___ _____m.13.若│x2-16│+=0,则x+ y= __ ___.14.若x-1是125的立方根,则x-7的立方根是__ ____.15.用适当的符号填空:若b>c>0,则b﹣c_ _0,|c﹣b|_ _0,_ _0.16.观察下列算式:①=+=16+4=20;②=+=40+4=44;③=+=72+4=76;④=+=112+4=116;…根据以上规律计算:=___ _______.三、解答题未命名17.计算:-+||+.18.求下列各式中的.(1)(2).19.如图,实数a、b在数轴上的位置,化简.20.小明家装修用了大小相同的正方形瓷砖共66块铺成10.56米2的房间,小明想知道每块瓷砖的边长,请你帮助算一算.21.数学老师在课堂上提出一个问题:“通过探究知道:≈1.414…,它是个无限不循环小数,也叫无理数,它的整数部分是1,那么有谁能说出它的小数部分是多少”,小明举手回答:它的小数部分我们无法全部写出来,但可以用﹣1来表示它的小数部分,张老师夸奖小明真聪明,肯定了他的说法.现请你根据小明的说法解答:(1)的小数部分是a,的整数部分是b,求a+b﹣的值.(2)已知8+=x+y,其中x是一个整数,0<y<1,求3x+(y﹣)2018的值.22.已知a是最大的负整数,b是多项式2m2n﹣m3n2﹣m﹣2的次数,c是单项式﹣2xy2的系数,且a、b、c分别是点A、B、C在数轴上对应的数.(1)求a、b、c的值,并在数轴上标出点A、B、C.(2)若M点在此在此数轴上运动,请求出M点到AB两点距离之和的最小值;(3)若动点P、Q同时从A、B出发沿数轴负方向运动,点P的速度是每秒个单位长度,点Q的速度是每秒2个单位长度,求运动几秒后,点Q能追上点P?(4)在数轴上找一点N,使点M到A、B、C三点的距离之和等于10,请直接写出所有的N 对应的数.(不必说明理由)参考答案:1.B2.B3.C4. C5.A6.D7.B8.D9. B10.A二、填空题11.-14或-1812.0.313.7或-114.-115.>,>,<16.4076356三、解答题未命名17.原式=7-3+-1+=+18.(1)x2=x=±(2)2x-9=-32x=6..x=3.19.解:由数轴知,a<0,且b>0,a-b<0,=│a│-│b│-[-(a-b)]=(-a)-b+a-b=-2b.20.解:设每块瓷砖的边长是x米,由题意得66x2=10.56,x=0.4.每块瓷砖的边长是0.4米.21.解:(1)∵4<5<9,9<13<16,∴2<<3,3<<4.∴a=-2,b=3.∴a+b-=-2+3-=1.(2)∵1<<2,.∴9<8+<10,∴x=9.∵y=8+-x.∴y-=8-x=-1∴原式=3×9+1=28.22.(1)∵a是最大的负整数,∴a=-1,∵b是多项式2m2n-m3n2.m-2的次数,∴b=3+2=5,∵c是单项式-2x2的系数,∴c=-2,如图所示:(2)当M点在线段AB上时,M点到AB两点距离之和的最小值为5-(-1)=6;(3):∵动点P、Q同时从A、B出发沿数轴负方向运动,点P的速度是每秒个单位长度,点Q的速度是每秒2个单位长度,∴AB=6,两点速度差为:2—,∴6+(2—)=4,答:运动4秒后,点Q可以追上点P。
一、选择题1.一次数学测试后,某班80名学生的成绩被分为5组,第一至第四组的频数分别为8、10、16、14,则第五组的频率是()A.0.1 B.0.2 C.0.3 D.0.42.下列调查中,适合采用全面调查的是()A.对中学生目前睡眠质量的调查B.开学初,对进入我校人员体温的测量C.对我市中学生每天阅读时间的调查D.对我市中学生在家学习网课情况的调查3.某校对学生上学方式进行了一次抽样调查,如图是根据此次调查结果所绘制的扇形统计图,已知该学校共2560人,被调查的学生中骑车的有21人,则下列四种说法中,不正确的是()A.被调查的学生有60人B.被调查的学生中,步行的有27人C.估计全校骑车上学的学生有1152人D.扇形图中,乘车部分所对应的圆心角为54°4.下列调查中,适宜采用全面调查方式的是()A.了解全国中学生的视力情况B.调查某批次日光灯的使用寿命C.调查市场上矿泉水的质量情况D.调查某校九年级一班50名同学的身高情况5.如图是一个扇形统计图,那么以下从图中得出的结论:①A占总体的25%;②表示B的扇形的圆心角是18 ;③C和D所占总体的百分比相等;④分别表示A、B、C的扇形的圆心角的度数之比为5:1:7.正确的有()A.1个B.2个C.3个D.4个6.小明家1至6月份的用水量统计如图所示,则5月份的用水量比4月份增加的百分率为()A.25% B.20% C.50% D.33%7.已知一组数据:10,8,6,10,8,13,11,12,10,10,7,9,8,12,9,11,12,9,10,11,则频率为0.2的范围是()A.6~7 B.10~11 C.8~9 D.12~138.某地区经过两年的产业扶贫后,经济总收入增加了一倍.为更好地了解该地区的经济收入变化情况,统计了产业扶贫前后的经济收入相关数据,得到下列统计图:下面结论不正确的是()A.经过产业扶贫后.养殖收入增加了一倍B.经过产业扶贫后,种植收入减少了C.经过产业共贫后,养殖收入与第二产业收人的总和超过了经济收入的一半D.经过产业扶贫后.其他收入增加了一倍以上9.党的十八大以来,脱贫工作取得巨大成效,全国农村贫困人口大幅减少.如图的统计图分别反映了2012﹣2019年我国农村贫困人口和农村贫困发生率的变化情况(注:贫困发生率=贫困人数(人)÷统计人数(人)×100%).根据统计图提供的信息,下列推断不正确的是()A.2012﹣2019年,全国农村贫困人口逐年递减B.2013﹣2019年,全国农村贫困发生率较上年下降最多的是2013年C.2012﹣2019年,全国农村贫困人口数累计减少9348万D.2019年,全国各省份的农村贫困发生率都不可能超过0.6%10.下列调查中,最适合采用抽样调查的是()A.了解全班同学每周体育锻炼的时间B.对市场上某一品牌电脑使用寿命的调查C.对旅客上飞机前的安检D.对“神州十一号”运载火箭发射前的零部件质量状况的调查11.已知10个数据:63,65,67,69,66,64,65,67,66,68,对这些数据编制频数分布表,那么数据在64.5~67.5之间的频率为:()A.0.5 B.0.6 C.5 D.612.要了解某种产品的质量,从中抽取出300个产品进行检验,在这个问题中,300是()A.总体B.个体C.样本D.样本容量二、填空题13.如图所示,是幸福村农作物统计图,看图回答问题:(1)在扇形统计图中的括号内填上适当的数据:___;(2)棉花的扇形圆心角是144°,表示它占百分数是___;(3)水稻种了240公顷,那么棉花种了___公顷;(4)该村的农作物总种植面积是___.14.田大伯从鱼塘捞出200条鱼做上标记再放入池塘,经过一段时间后又捞出300条,发现有标记的鱼有20条,田大伯的鱼塘里鱼的条数约是_____________.15.某灯具厂从1万件同批次产品中随机抽取了1000件进行质检,发现其中有50件不合格,估计该厂这1万件产品中合格品约为______件.16.生物工作者为了估计一片山林中雀鸟的数量,设计了如下方案:先捕捉50只雀鸟,给它们做上标记后放回山林;一段时间后,再从中随机捕捉200只,其中有标记的雀鸟有2只.请你帮助工作人员估计这片山林中雀鸟的数量约为_______只.17.福建省森林覆盖率连续40多年保持全国第一,所占百分比如图,是全国生态环境、水、空气质量均为优的省份.福建省面积12.4万平方千米,则福建省森林面积为__________万平方千米(精确到0.01).18.山西地质博物馆是山西唯一一家普及矿产资源和地球科学知识的博物馆,为了解全省人民参观山西地质博物馆的情况,宜采用______________的方式调查.(填“普查”或“抽样调查”)19.某养殖户养殖鸡、鸭、鹅数量的扇形统计图如图所示,则养鸡的数量占鸡、鸭、鹅总数的百分比为____.20.为落实“停课不停学”,某校在线上教学时,要求学生因地制宜开展体育锻炼.为了解学生居家体育锻炼情况,学校对学生四月份平均每天开展体育锻炼的时长情况随机抽取了部分同学进行问卷调查,将调查结果进行了统计分析,并绘制如下两幅不完整的统计图: (A 类:时长10≤分钟;B 类:10分钟<时长20≤分钟;C 类:20分钟<时长30≤分钟;D 类:30分钟<时长40≤分钟;E 类:时长40>分钟).该校共有学生2000人,请根据以上统计分析,估计该校四月份平均每天体育锻炼时长超过20分钟且不超过40分钟的学生约有________人.三、解答题21.在新冠肺炎疫情期间,某市防控指挥部想了解各学校教职工参与志愿服务的情况.在全市各学校随机调查了部分参与志愿服务的教职工,对他们的志愿服务时间进行统计,整理并绘制成两幅不完整的统计图表.请根据两幅统计图表中的信息回答下列问题:志愿服务时间(小时)频数A0<x≤30aB30<x≤6010C60<x≤9016D90<x≤12020(1)本次被抽取的教职工共有名;(2)表中a=,扇形统计图中“C”部分所占百分比为 %;(3)扇形统计图中,“D”所对应的扇形圆心角的度数为 °;(4)若该市共有30000名教职工参与志愿服务,那么志愿服务时间多于60小时的教职工大约有多少人?22.全民健身运动已成为一种时尚,为了解宝鸡市居民健身运动的情况,某健身馆的工作人员开展了一项问卷调查,问卷包括五个项目:A:健身房运动;B:跳广场舞;C:参加暴走团;D:散步;E:不运动.以下是根据调查结果绘制的统计图表的一部分.运动形式A B C D E人数1230m549请你根据以上信息,回答下列问题:(1)接受问卷调查的共有______人,图表中的m=______,n=______;(2)统计图中,A类所对应的扇形圆心角的度数是多少?(3)宝鸡市团结公园是附近市民喜爱的运动场所之一,每晚都有“暴走团”活动,若最邻近的某社区约有1500人,那么估计一下该社区参加体育公园“暴走团”的大约有多少人?23.“校园安全”受到全社会的广泛关注,某校政教处对部分学生及家长就校园安全知识的了解程度进行了随机抽样调查,并绘制成如图所示的两幅统计图,请根据统计图中的信息,解答下列问题:(1)求调查中“非常了解”校园安全知识的学生人数,并补全条形统计图;(2)在扇形统计图中,求“基本了解”所对应的扇形的圆心角的度数;(3)若某区有学生及学生家长共计30万人,请估计这其中有多少人对校园安全知识课非常了解.24.随着科技的进步和网络资源的丰富,在线阅读已成为很多人选择的阅读方式.为了解同学们在线阅读情况,某校园小记者随机调查了本校部分同学,并统计他们平均每天的在线阅读时间t(单位:min),然后利用所得数据绘制成如图不完整的统计图表.在线阅读时间频数分布表组别在线阅读时间t人数A10≤t<308B30≤t<5016C50≤t<70aD70≤t<9032E90≤t<1104根据以上图表,解答下列问题:(1)这次被调查的同学共有人,a=,m=;(2)扇形统计图中扇形D的圆心角的度数为;(3)若该校有2000名学生,请估计全校有多少学生平均每天的在线阅读时间不少于50min?25.七年三班的小雨同学想了解本校七年级学生对第二课堂哪门课程感兴趣,随机抽取了部分七年级学生进行调查(每名学生必只能选择一门课程).将获得的数据整理绘制如下两幅不完整的统计图.据统计图提供的信息,解答下列问题:(1)在这次调查中一共抽取了______名学生,m的值是______.(2)请根据以上信息直接在答题卡上补全条形统计图;(3)扇形统计图中,“数学”所对应的圆心角度数是______度;(4)若该校七年级共有1200名学生,根据抽样调查的结果,请你估计该校七年级学生中有多少名学生对数学感兴趣.26.小敏为了解本市的空气质量情况,从环境监测网随机抽取了若干天的空气质量情况作为样本进行统计,绘制了如图所示的条形统计图和扇形统计图(部分信息未给出).请你根据图中提供的信息,解答下列问题:(1)计算被抽取的天数.(2)请补全条形统计图.(3)请估计该市这一年(365天)达到优和良的总天数.【参考答案】***试卷处理标记,请不要删除一、选择题1.D解析:D【分析】先求出第5组的频数,再利用频率=频数总数即可求解.【详解】解:第5组的频数为80810161432----=,∴第5组的频率为320.480=,故选:D.【点睛】本题考查求频率,掌握频率=频数总数是解题的关键.2.B解析:B【分析】由普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比较近似.【详解】解:A、对中学生目前睡眠质量的调查,调查范围广适合抽样调查,故A不符合题意;B、对进入我校人员体温的测量,人数较少也为确保安全必须进行全面调查,故B符合题意;C、对我市中学生每天阅读时间的调查,调查范围广适合抽样调查,故C不符合题意;D、对我市中学生在家学习网课情况的调查,调查范围广适合抽样调查,故D不符合题意;故选:B.【点睛】本题考查了抽样调查和全面调查的区别,选择普查还是抽样调查要根据所要考查的对象的特征灵活选用,一般来说,对于具有破坏性的调查、无法进行普查、普查的意义或价值不大,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用普查.3.C解析:C【解析】试题分析:根据汽车的人数和百分比可得:被调查的学生数为:21÷35%=60人,故A正确;步行的人数为60×(1-35%-15%-5%)=27人,故B正确;全校骑车上学的学生数为:2560×35%=896人,故C错误;乘车部分所对应的圆心角为360°×15%=54°,故D正确,则本题选C.4.D解析:D【分析】根据普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比较近似解答.【详解】解:A.了解全国中学生的视力情况的调查适宜采用抽样调查方式;B.调查某批次日光灯的使用寿命的调查适宜采用抽样调查方式;C.调查市场上矿泉水的质量情况的调查适宜采用抽样调查方式;D.调查某校九年级一班50名同学的身高情况适宜采用全面调查方式;故选:D.【点睛】本题考查的是抽样调查和全面调查的区别,选择普查还是抽样调查要根据所要考查的对象的特征灵活选用,一般来说,对于具有破坏性的调查、无法进行普查、普查的意义或价值不大,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用普查.5.D解析:D【分析】①根据A的圆心角是90°,即可得到结论;②用360°×5%即可得到结论;③根据C和D所占总体的百分比得到结论;④A、B、C的扇形的圆心角的度数即可得到结论.【详解】解:①90360×100%=25%;故符合题意;②表示B的扇形的圆心角是360°×5%=18°,故符合题意;③∵C所占总体的百分比=1-5%-25%-35%=35%,故符合题意;④表示A、B、C的扇形的圆心角的度数分别为90°,18°,126°,∴表示A、B、C的扇形的圆心角的度数之比为5:1:7,故符合题意;故选:D.【点睛】本题考查了扇形统计图,正确的识别图形是解题的关键.6.B解析:B【分析】先在统计图找到4月份、5月份的用水量,再根据增长率的定义即可求解.【详解】由图可知4月份、5月份的用水量分别为5、6吨,故5月份的用水量比4月份增加的百分率为(6-5)÷5×100%=20%,故选B【点睛】此题主要考查统计图的应用,解题的关键是熟知增长率的定义.7.D解析:D【分析】分别计算出各组的频数,再除以20即可求得各组的频率,看谁的频率等于0.2.【详解】A中,其频率=2÷20=0.1;B中,其频率=6÷20=0.3;C中,其频率=8÷20=0.4;D中,其频率=4÷20=0.2.故选D.【点睛】首先数出数据的总数,然后数出各个小组内的数据个数,即频数.根据频率=频数÷总数进行计算.8.B解析:B【分析】根据统计表信息,依次判断各选项即可.【详解】设扶贫前总收入为a,则扶贫后总收入为2aA中,扶贫前后养殖收入都占总收入的30%,但扶贫后总收入增加了一倍,故扶贫后养殖收入也相应增加了一倍,A中说法正确;B中,扶贫前种植收入为:60%a,扶贫后种植总收入为37%×2a=74%a,故B中说法错误;C中,扶贫后养殖收入和第二产业收入占总和为:30%+28%=58%,超过了一半,C中说法正确;D中,扶贫前其他收入为:4%a,扶贫后为5%×2a=10%a,增加了一倍以上,D中说法正确故选:B.【点睛】本题考查根据扇形图信息判断对错,需要注意扶贫前后的经济总量是不同的.9.D解析:D【分析】观察统计图可得,2012﹣2019年,全国农村贫困人口逐年递减,可判断A;2013﹣2019年,全国农村贫困发生率较上年下降最多的是2013年,可判断B;2012﹣2019年,全国农村贫困人口数累计减少9899﹣551=9348万,可判断C;2019年,全国各省份的农村贫困发生率有可能超过0.6%,可判断D.【详解】观察统计图可知:A、2012﹣2019年,全国农村贫困人口逐年递减,正确;B、2013﹣2019年,全国农村贫困发生率较上年下降最多的是2013年,正确;C、2012﹣2019年,全国农村贫困人口数累计减少9899﹣551=9348万,正确;D、2019年,全国各省份的农村贫困发生率有可能超过0.6%,错误.故选:D.【点睛】本题考查了折线统计图、条形统计图的应用,读懂统计图,从统计图中得到必要的信息是解决问题的关键.10.B解析:B【分析】一般来说,对于具有破坏性的调查、无法进行普查、普查的意义或价值不大时,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用普查.【详解】A.了解全班同学每周体育锻炼的时间,适合全面调查;B.对市场上某一品牌电脑使用寿命的调查,有破坏性,适合抽样调查;C.对旅客上飞机前的安检,需要全面调查;D. 对“神州十一号”运载火箭发射前的零部件质量状况的调查,需要全面调查;【点睛】本题主要考查了全面调查及抽样调查,解题的关键是熟记由普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比较近似.11.B解析:B【分析】首先正确数出在64.5~67.5这组的数据;再根据频率、频数的关系:频率=频数数据总和,进行计算.【详解】解:其中在64.5~67.5组的有65,67,66,65,67,66共6个,则64.5~67.5这组的频率是:60.6 10.故选择:B.【点睛】本题考查频率、频数的关系,解题的关键是熟记求频率的公式.12.D解析:D【分析】总体:所要考察对象的全体;个体:总体的每一个考察对象叫个体;样本:抽取的部分个体叫做一个样本;样本容量:样本中个体的数目.【详解】根据样本及样本容量的定义可知,题目中300是样本容量.故选:D.【点睛】本题难度较低,主要考查学生对总体、个体、样本、样本容量.理清概念是关键.二、填空题13.4840200500公顷【分析】(1)用1-棉花的百分比-玉米的百分比即可;(2)用圆心角度数除以360°即可;(3)用水稻的数量除以百分比求出农作物总数再乘以棉花的百分比即可;(4)用水稻的数量除解析:48% 40% 200 500公顷.【分析】(1)用1-棉花的百分比-玉米的百分比即可;(2)用圆心角度数除以360°即可;(3)用水稻的数量除以百分比求出农作物总数,再乘以棉花的百分比即可;(4)用水稻的数量除以百分比求出农作物总数.【详解】解:(1)水稻所占百分比=1﹣40%﹣12%=48%;(2)棉花所占百分比为144÷360°=40%;(3)农作物总数为240÷48%=500公顷,所以棉花为500×40%=200公顷;(4)农作物总数为240÷48%=500公顷.故答案为:48%、40%、200、500公顷.【点睛】此题考查扇形统计图,读懂统计图,得到相应的数据,还应掌握求百分比的计算公式,求总数的计算公式.14.3000【分析】设鱼塘中估计有鱼条第一次捞出200条并将每条鱼做上记号再放入水中当做了记号完全混于鱼群中又捞出300条发现带有记号的鱼有20条由此根据样本估计总体的思想可以列出方程解方程即可求解【详解析:3000【分析】设鱼塘中估计有鱼条,第一次捞出200条,并将每条鱼做上记号再放入水中,当做了记号完全混于鱼群中,又捞出300条,发现带有记号的鱼有20条,由此根据样本估计总体的思想可以列出方程300:20:200x ,解方程即可求解.【详解】解:∵20÷300=115 ∴200÷115=3000. 故答案为:3000【点睛】本题考查的是概率问题,利用样本估计总体的思想,理解题意找到相等关系是解题关键. 15.9500【分析】首先可以求出样本的合格率然后利用样本估计总体的思想即可求出这一万件产品中合格品约为多少件【详解】解:∵某灯具厂从1万件同批次产品中随机抽取了100件进行质检发现其中有5件不合格合格的 解析:9500【分析】首先可以求出样本的合格率,然后利用样本估计总体的思想即可求出这一万件产品中合格品约为多少件.【详解】解:∵某灯具厂从1万件同批次产品中随机抽取了100件进行质检,发现其中有5件不合格,合格的产品数为100-5=95件∴合格率为:95÷100=95%,∴估计该厂这一万件产品中合格品为10000×95%=9500件.故答案为:9500.【点睛】此题主要考查了利用样本估计总体的思想,解题时首先求出样本的合格率,然后利用样本估计总体的思想即可解决问题.16.5000【分析】由题意可知:重新捕获200只其中带标记的有2只可以知道在样本中有标记的占到而在总体中有标记的共有50只根据比例即可解答【详解】根据题意得:50÷=5000(只)答:估计这片山林中雀鸟解析:5000【分析】由题意可知:重新捕获200只,其中带标记的有2只,可以知道,在样本中,有标记的占到2100.而在总体中,有标记的共有50只,根据比例即可解答. 【详解】根据题意得:50÷2100=5000(只),答:估计这片山林中雀鸟的数量约为5000只;故答案为:5000.【点睛】本题考查了用样本估计总体的知识,体现了统计思想,统计的思想就是用样本的信息来估计总体的信息.17.28【分析】福建省森林面积应该等于福建省面积乘以森林覆盖率即可得到结果【详解】解:124×(1-332)=82832≈828(万平方千米)故答案为:828【点睛】此题主要考查了学生获取信息以及计算的解析:28【分析】福建省森林面积应该等于福建省面积乘以森林覆盖率即可得到结果.【详解】解:12.4×(1-33.2%)=8.2832≈8.28(万平方千米),故答案为:8.28.【点睛】此题主要考查了学生获取信息以及计算的能力,熟练掌握运算法则是解答此题的关键.18.抽样调查【分析】调查方式的选择需要将普查的局限性和抽样调查的必要性结合起来具体问题具体分析普查结果准确所以在要求精确难度相对不大实验无破坏性的情况下应选择普查方式当考查的对象很多或考查会给被调查对象解析:抽样调查【分析】调查方式的选择需要将普查的局限性和抽样调查的必要性结合起来,具体问题具体分析,普查结果准确,所以在要求精确、难度相对不大,实验无破坏性的情况下应选择普查方式,当考查的对象很多或考查会给被调查对象带来损伤破坏,以及考查经费和时间都非常有限时,普查就受到限制,这时就应选择抽样调查.【详解】解:了了解全省人民参观山西地质博物馆的情况,人数多,范围广,故为抽样调查.故答案为:抽样调查.【点睛】本题考查的是调查方法的选择;正确选择调查方式要根据抽样调查和全面调查的优缺点再结合实际情况去分析.19.25【分析】用扇形图中鸡对应的圆心角除以周角度数即可得【详解】养鸡的数量占鸡鸭鹅总数的百分比为100=25故答案为:25【点睛】本题主要考查扇形统计图扇形统计图是用整个圆表示总数用圆内各个扇形的大小解析:25%.【分析】用扇形图中鸡对应的圆心角除以周角度数即可得.【详解】养鸡的数量占鸡、鸭、鹅总数的百分比为90360⨯100%=25%.故答案为:25%.【点睛】本题主要考查扇形统计图,扇形统计图是用整个圆表示总数用圆内各个扇形的大小表示各部分数量占总数的百分数.通过扇形统计图可以很清楚地表示出各部分数量同总数之间的关系.用整个圆的面积表示总数(单位1),用圆的扇形面积表示各部分占总数的百分数.20.【分析】根据条形统计图和扇形统计图对应求出本次参与调查的总人数求出BD组人数求出平均每天体育锻炼时长超过分钟且不超过分钟的学生在本次调查中的比例再用全校人数乘以此比例即可【详解】由图可知:A组人数为解析:1040【分析】根据条形统计图和扇形统计图对应,求出本次参与调查的总人数,求出B,D组人数,求出平均每天体育锻炼时长超过20分钟且不超过40分钟的学生在本次调查中的比例,再用全校人数乘以此比例即可.【详解】由图可知:A组人数为12人,A组比例为12%,∴本次参与调查人数人:1212%100÷=(人)B组人数为:100⨯30%=30(人)D组人数为:100123042610----=(人)∴本次调查中该校四月份平均每天体育锻炼时长超过20分钟且不超过40分钟的学生比例为:421052% 100+=∴该校2000人中,四月份平均每天体育锻炼时长超过20分钟且不超过40分钟的学生的人数为:200052%⨯=1040(人)故答案为:1040.【点睛】本题考查了从统计图中读取信息的能力,同时考查了频数,频率,总体之间的关系,熟知以上运算是解题的关键.三、解答题21.(1)50;(2)4,32;(3)144;(4)21600【分析】(1)利用B部分的人数÷B部分人数所占百分比,即可算出本次被抽取的教职工人数;(2)a=被抽取的教职工总数−B部分的人数−C部分的人数−D部分的人数,扇形统计图中“C”部分所占百分比=C部分的人数÷被抽取的教职工总数;(3)D部分所对应的扇形的圆心角的度数=360°×D部分人数所占百分比;(4)利用样本估计总体的方法,用30000×被抽取的教职工总数中志愿服务时间多于60小时的教职工人数所占百分比.【详解】(1)本次被抽取的教职工共有:10÷20%=50(名),故答案为:50;(2)a=50−10−16−20=4,扇形统计图中“C”部分所占百分比为:16÷50×100%=32%,故答案为:4,32;(3)扇形统计图中,“D”所对应的扇形圆心角的度数为:360°×2050=144°.故答案为:144;(4)30000×162050+=21600(人).答:志愿服务时间多于60小时的教职工大约有21600人.【点睛】此题主要考查了扇形统计图、频数(率)分布表,以及样本估计总体,关键是正确从扇形统计图和表格中得到所用信息.22.(1)150,45,36;(2)A类所对应的扇形圆心角的度数是28.8︒;(3)估计该社区参加“暴走团”的大约有450人.【分析】(1)由B项目的人数及其百分比求得总人数,根据各项目人数之和等于总人数求得m=45,再用D项目人数除以总人数可得n的值;(2)360°乘以A项目人数占总人数的比例可得;(3)总人数乘以样本中C人数所占比例.【详解】(1)接受问卷调查的共有:30÷20%=150人,m=150-(12+30+54+9)=45,n%=54÷150×100%=36%,∴n=36,故答案为:150、45、36;(2)A类所对应的扇形圆心角的度数为360°×12150=28.8°;(3)1500×45150=450(人),答:估计该社区参加“暴走团”的大约有450人.【点睛】本题考查的是统计表和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.扇形统计图直接反映部分占总体的百分比大小.23.(1)62人,补全统计图见解析;(2)135°;(3)10.875万人【分析】(1)先根据不了解的部分的百分比和人数求出被调查的总人数,再求出“非常了解”中学生的人数,即可补全条形统计图:(2)样本中,“基本了解”的人数占得总人数的7377400+,因此圆心角占360°的7377400+就是“基本了解”所对应的圆心角度数;(3)用样本中非常了解部分的人数除以被调查的总人数,再乘以该区总人数30万人,可得结果.【详解】 解:(1)(16+4)÷5%=400人,400-83-73-77-54-31-16-4=62人,补全统计图如下:(2)7377360400+⨯︒=135°, ∴“基本了解”所对应的扇形的圆心角为135°; (3)304362008+⨯=10.875万人, ∴有10.875万人对校园安全知识课非常了解.【点睛】本题考查的是条形统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.24.(1)100,40,8;(2)115.2°;(3)1520人【分析】(1)根据B 组的频数和所占的百分比,可以求出这次被调查的学生总数,用被调查的学生总数乘以C 组所占的百分比可得到a 的值,用A 组人数除以被调查的学生总数,即可得到m ;(2)用360°乘以D 组所占百分比即可得到D 的圆心角的度数;(3)利用样本估计总体,用该校学生数乘以样本中平均每天的在线阅读时间不少于50min 的人数所占的百分比即可.。
人教版七年级初一数学第二学期第六章 实数单元达标综合模拟测评检测试卷一、选择题1.已知1x ,2x ,…,2019x 均为正数,且满足()()122018232019M x x x x x x =++++++,()()122019232018N x x x x x x =++++++,则M ,N 的大小关系是( )A .M N <B .M N >C .MND .M N ≥2.如图将1、2、3、6按下列方式排列.若规定(,)m n 表示第m 排从左向右第n 个数,则(5,4)与(15,8)表示的两数之积是( ).A .1B 2C 3D 63.若()2320m n -++=,则m n +的值为( ) A .5-B .1-C .1D .54.下列说法错误的是( ) A .﹣4是16的平方根 B 162 C .116的平方根是14D 2555.下列各数中3.1415926,390.131131113 (9)4,-117无理数的个数有( )A .1个B .2个C .3个D .4个6.若3y +,则xy 的值为( )A .8B .2C .-6D .±27.下列各式中,正确的是( ) A 4±2B 42=C 2(2)2-=-D 3644-=-8.下列说法中不正确的是( )A .2-是2的平方根B 22的平方根C .22D .229.若一个数的平方根与它的立方根完全相同.则这个数是()A .1B .1-C .0D .10±,10.已知m 是整数,当|m 40取最小值时,m 的值为( ) A .5B .6C .7D .8二、填空题11.用“☆”定义一种新运算:对于任意有理数a 和b ,规定a ☆b=.例如:(-3)☆2=32322-++-- = 2.从﹣8,﹣7,﹣6,﹣5,﹣4,﹣3,﹣2,﹣1,0,1,2,3,4,5,6,7,8,中任选两个有理数做a ,b(a≠b)的值,并计算a ☆b ,那么所有运算结果中的最大值是_____. 12.定义一种对正整数n 的“F”运算:①当n 为奇数时,结果为3n+5;②当n 为偶数时,结果为2k n (其中k 是使2kn为奇数的正整数),并且运算重复进行.例如:取n=26,则:若449n =,则第201次“F”运算的结果是 .13.如果一个有理数a 的平方等于9,那么a 的立方等于_____. 14.估计512-与0.5的大小关系是:512-_____0.5.(填“>”、“=”、“<”) 15.按下面的程序计算:若输入n=100,输出结果是501;若输入n=25,输出结果是631,若开始输入的n 值为正整数,最后输出的结果为656,则开始输入的n 值可以是________.16.任何实数a ,可用[a]表示不大于a 的最大整数,如[4]=4,31⎡⎤=⎣⎦,现对72进行如下操作:72→72⎡⎤⎣⎦=8→82⎡⎤=⎣⎦→2⎡⎤⎣⎦=1,类似地:(1)对64只需进行________次操作后变为1;(2)只需进行3次操作后变为1的所有正整数中,最大的是________. 17.为了求2310012222+++++的值,令2310012222S =+++++,则234101222222S =+++++,因此101221S S -=-,所以10121S =-,即231001*********+++++=-,仿照以下推理计算23202013333+++++的值是____________.18.对于实数a ,我们规定:用符号[]a 表示不大于[]a 的最大整数,称为a 的根整数,例如:,如果我们对a 连续求根整数,直到结果为1为止.例如:对10连续求根整数2次: 10]33]1=→=这时候结果为1.则只需进行3次连续求根整数运算后结果为1的所有正整数中,最大的是__________. 19.已知a 、b 为两个连续的整数,且a 19b ,则a +b =_____.20.任何实数,可用[a]表示不超过a 的最大整数如[4]=4,5=2,现对72进行如下操作:72[72]8[8]2[2]1→=→=→=,这样对72只需进行3次操作后变为1,类似地,对正整数x 只进行3次操作后的结果是1,则x 在最大值是_____.三、解答题21.如图,长方形ABCD 的面积为300cm 2,长和宽的比为3:2.在此长方形内沿着边的方向能否并排裁出两个面积均为147cm 2的圆(π取3),请通过计算说明理由.22.观察下列两个等式:112-2133=⨯+,225-5133=⨯+,给出定义如下:我们称使等式 1a b ab -=+ 成立的一对有理数a ,b 为“共生有理数对”,记为(a ,b ),如:数对(2,13),(5,23),都是“共生有理数对”. (1)数对(-2,1),(3,12)中是“共生有理数对”吗?说明理由. (2)若(m ,n )是“共生有理数对”,则(-n ,-m )是“共生有理数对”吗?说明理由. 23.计算:(1)()()232018311216642⎛⎫-+-- ⎪⎝⎭(253532324.阅读下列解题过程:为了求23501222...2+++++的值,可设23501222...2S =+++++,则2345122222...2S =+++++,所以得51221S S -=-,所以5123505121:1222...221S =-+++++=-,即;仿照以上方法计算:(1)2320191222...2+++++= . (2)计算:2320191333...3+++++ (3)计算:101102103200555...5++++25.阅读材料,解答问题:如果一个四位自然数,十位数字是千位数字的2倍与百位数字的差,个位数字是千位数字的2倍与百位数字的和,则我们称这个四位数“依赖数”,例如,自然数2135,其中3=2×2﹣1,5=2×2+1,所以2135是“依赖数”. (1)请直接写出最小的四位依赖数;(2)若四位依赖数的后三位表示的数减去百位数字的3倍得到的结果除以7余3,这样的数叫做“特色数”,求所有特色数.(3)已知一个大于1的正整数m 可以分解成m =pq+n 4的形式(p≤q ,n≤b ,p ,q ,n 均为正整数),在m 的所有表示结果中,当nq ﹣np 取得最小时,称“m =pq+n 4”是m 的“最小分解”,此时规定:F (m )=q np n++,例:20=1×4+24=2×2+24=1×19+14,因为1×19﹣1×1>2×4﹣2×1>2×2﹣2×2,所以F (20)=2222++=1,求所有“特色数”的F (m )的最大值. 26.已知a 是最大的负整数,b 是多项式2m 2n ﹣m 3n 2﹣m ﹣2的次数,c 是单项式﹣2xy 2的系数,且a 、b 、c 分别是点A 、B 、C 在数轴上对应的数.(1)求a 、b 、c 的值,并在数轴上标出点A 、B 、C .(2)若M 点在此数轴上运动,请求出M 点到AB 两点距离之和的最小值; (3)若动点P 、Q 同时从A 、B 出发沿数轴负方向运动,点P 的速度是每秒12个单位长度,点Q 的速度是每秒2个单位长度,求运动几秒后,点Q 能追上点P ?(4)在数轴上找一点N ,使点M 到A 、B 、C 三点的距离之和等于10,请直接写出所有的N 对应的数.(不必说明理由)【参考答案】***试卷处理标记,请不要删除一、选择题 1.B 解析:B 【分析】 设122018p x x x =+++,232018q x x x =++,然后求出M -N 的值,再与0进行比较即可. 【详解】解:根据题意,设122018p x x x =+++,232018q x x x =++,∴1p q x -=, ∴()()12201823201920192019()M x x x x x x p q x pq p x =++++++=•+=+•; ()()12201923201820192019()N x x x x x x p x q pq q x =++++++=+•=+•;∴20192019()M N pq p x pq q x -=+•-+•=2019()x p q •-=201910x x •>; ∴M N >; 故选:B.本题考查了比较实数的大小,以及数字规律性问题,解题的关键是熟练掌握作差法比较大小.2.B解析:B【分析】首先从排列图中可知:第1排有1个数,第2排有2个数,第3排有3个数,然后抽象出第5排第4个数,第15排第8个数,然后可以得到答案.【详解】解:(5,4)表示第5排从左往右第4,(15,8)表示第15排第8个数,从上面排列图中可以看出奇数行1排在最中间,所以第15行最中间是1,且为第8个,所以1和.故本题选B.【点睛】本题是规律题的呈现,考查学生的从具体情境中抽象出一般规律,考查学生观察与归纳能力.3.C解析:C【分析】根据非负数的性质列式求出m、n的值,然后代入代数式进行计算即可得解.【详解】由题意得,m-3=0,n+2=0,解得m=3,n=-2,所以,m+n=3+(-2)=1.故选:C.【点睛】此题考查非负数的性质,解题关键在于掌握几个非负数的和为0时,这几个非负数都为0.4.C解析:C【分析】分别根据平方根的定义,算术平方根的定义判断即可得出正确选项.【详解】A.﹣4是16的平方根,说法正确;B.2,说法正确;C.116的平方根是±14,故原说法错误;D.,说法正确.【点睛】此题考查了平方根以及算术平方根的定义,熟记相关定义是解题的关键.5.B解析:B【解析】【分析】根据无理数是无限不循环小数,可得答案.【详解】3 2,3.1415926,-117是有理数,0.131131113……是无理数,共2个.故选B.【点睛】本题考查了无理数,无理数是无限不循环小数,注意带根号的数不一定是无理数.6.C解析:C【分析】根据非负数的性质列出方程求出x、y的值,代入所求代数式计算即可.【详解】根据题意得:2030 xy-⎧⎨+⎩==,解得:23 xy⎧⎨-⎩==,则xy=-6.故选:C.【点睛】此题考查绝对值和偶次方非负数的性质,解题关键在于掌握几个非负数的和为0时,这几个非负数都为0.7.D解析:D【分析】根据平方根及立方根的定义依次计算各项后即可解答.【详解】选项A=2,选项A错误;选项B2=±,选项B错误;选项C=,选项C错误;选项D4=-,选项D正确.【点睛】本题考查了平方根及立方根的定义,熟练运用平方根及立方根的定义是解决问题的关键.8.C解析:C【详解】解:A. 是2的平方根,正确;是2的平方根,正确;C. 2的平方根是±,故原选项不正确;D. 2,正确.故选C.9.C解析:C【详解】任何实数的立方根都只有一个,而正数的平方根有两个,它们互为相反数,0的平方根是0,负数没有平方根,所以这个数是0,故选C.10.B解析:B【分析】根据绝对值是非负数,所以不考虑m为整数,则m取最小值是0,又0的绝对值为0,令0m=,得出m=m的整数可得:m =6.【详解】解:因为m取最小值,∴=,mm∴=,解得:m=240m=,m∴<<,且m更接近6,67∴当6m=时,m有最小值.故选:B.【点睛】本题考查绝对值的非负性,以及估算二次根式的大小,理解并熟练掌握绝对值的非负性是本题解题关键;在估算二次根式大小的时候,先算出二次根式的平方,再看这个平方在哪两个平方数之间,就相应的得出二次根式在哪两个整数之间,即可估算出二次根式的大小.二、填空题 11.8 【解析】解:当a >b 时,a☆b= =a,a 最大为8;当a <b 时,a☆b==b,b 最大为8,故答案为:8.点睛:此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键.解析:8 【解析】解:当a >b 时,a ☆b =2a b a b++- =a ,a 最大为8;当a <b 时,a ☆b =2a b a b++-=b ,b 最大为8,故答案为:8.点睛:此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键.12.. 【详解】第一次:3×449+5=1352,第二次:,由题意k=3时结果为169;第三次:3×169+5=512,第四次:因为512是2的9次方,所以k=9,计算结果是1; 第五次:1×3+5解析:8. 【详解】第一次:3×449+5=1352,第二次:13522k,由题意k=3时结果为169; 第三次:3×169+5=512,第四次:因为512是2的9次方,所以k=9,计算结果是1; 第五次:1×3+5=8; 第六次:82k,因为8是2的3次方,所以k=3,计算结果是1,此后计算结果8和1循环.因为201是奇数,所以第201次运算结果是8. 故答案为8.13.±27 【分析】根据a 的平方等于9,先求出a ,再计算a3即可. 【详解】 ∵(±3)2=9,∴平方等于9的数为±3, 又∵33=27,(-3)3=-27. 故答案为±27. 【点睛】 本题考查了解析:±27 【分析】根据a 的平方等于9,先求出a ,再计算a 3即可. 【详解】 ∵(±3)2=9,∴平方等于9的数为±3, 又∵33=27,(-3)3=-27. 故答案为±27. 【点睛】本题考查了平方根及有理数的乘方.解题的关键是掌握平方根的概念及有理数乘方的法则.14.> 【解析】∵ . , ∴ , ∴ ,故答案为>.解析:> 【解析】∵11120.52222-=-=20-> , ∴202> , ∴10.52> ,故答案为>.15.131或26或5. 【解析】试题解析:由题意得,5n+1=656, 解得n=131, 5n+1=131, 解得n=26, 5n+1=26, 解得n=5.解析:131或26或5. 【解析】试题解析:由题意得,5n+1=656, 解得n=131, 5n+1=131, 解得n=26, 5n+1=26,解得n=5.16.255 【分析】(1)根据题意的操作过程可直接进行求解;(2)根据题意可得最后取整为1,得出前面的一个数最大是3,再向前推一步取整的最大整数为15,依此可得出答案. 【详解】 解:(1)解析:255 【分析】(1)根据题意的操作过程可直接进行求解;(2)根据题意可得最后取整为1,得出前面的一个数最大是3,再向前推一步取整的最大整数为15,依此可得出答案. 【详解】解:(1)由题意得:64→=8→2=→=1,∴对64只需进行3次操作后变为1, 故答案为3;(2)与上面过程类似,有256→=16→4=→=2→1=,对256只需进行4次操作即变为1,类似的有255→=15→3=→=1,即只需进行3次操作即变为1,故最大的正整数为255; 故答案为255. 【点睛】本题主要考查算术平方根的应用,熟练掌握算术平方根是解题的关键.17.【分析】令,然后两边同时乘以3,接下来根据题目中的方法计算即可. 【详解】 令 则 ∴ ∴故答案为:. 【点睛】本题考查了有理数的混合运算问题,掌握题目中的运算技巧以及有理数混合运算法则是解解析:2021312- 【分析】令23202013333S =+++++,然后两边同时乘以3,接下来根据题目中的方法计算即可.【详解】令23202013333S =+++++ 则23202133333S =++++∴2021331S S -=- ∴2021312S -= 故答案为:2021312-. 【点睛】本题考查了有理数的混合运算问题,掌握题目中的运算技巧以及有理数混合运算法则是解题的关键.18.255【分析】根据材料的操作过程,以及常见的平方数,可知分别求出255和256进行几次操作,即可得出答案.【详解】解:∴对255只需要进行3次操作后变成1,∴对256需要进行4次操作解析:255【分析】根据材料的操作过程,以及常见的平方数,可知分别求出255和256进行几次操作,即可得出答案.【详解】解:25515,3,1,⎡⎤===⎣⎦ ∴对255只需要进行3次操作后变成1,25616,4,2,1,⎡⎤====⎣⎦ ∴对256需要进行4次操作后变成1,∴只需进行3次连续求根整数运算后结果为1的所有正整数中,最大的是255; 故答案为:255.【点睛】本题考查了估算无理数的大小应用,主要考查学生的阅读能力和猜想能力,同时也要考了一个数的平方数的计算能力.19.9【分析】首先根据的值确定a、b的值,然后可得a+b的值.【详解】∵<,∴4<<5,∵a<<b,∴a=4,b=5,∴a+b=9,故答案为:9.【点睛】本题主要考查了估算无理数的解析:9【分析】a、b的值,然后可得a+b的值.【详解】∴45,∵a b,∴a=4,b=5,∴a+b=9,故答案为:9.【点睛】本题主要考查了估算无理数的大小,关键是正确确定a、b的值.20.255【分析】根据规律可知,最后的取整是1,则操作前的一个数字最大是3,再向前一步推,操作前的最大数为15,再向前一步推,操作前的最大数为255;据此得出答案即可.【详解】解:∵,,,∴只解析:255【分析】根据规律可知,最后的取整是1,则操作前的一个数字最大是3,再向前一步推,操作前的最大数为15,再向前一步推,操作前的最大数为255;据此得出答案即可.【详解】解:∵1=,3=,15=,∴只进行3次操作后变为1的所有正整数中,最大的是255,故答案为:255.【点睛】本题考查了估算无理数大小的应用,主要考查学生的阅读能力和逆推思维能力.三、解答题21.不能,说明见解析.【分析】根据长方形的长宽比设长方形的长DC 为3xcm ,宽AD 为2xcm ,结合长方形ABCD 的面积为300cm 2,即可得出关于x 的一元二次方程,解方程即可求出x 的值,从而得出AB 的长,再根据圆的面积公式以及圆的面积147cm 2 ,即可求出圆的半径,从而可得出两个圆的直径的长度,将其与AB 的长进行比较即可得出结论.【详解】解:设长方形的长DC 为3xcm ,宽AD 为2xcm .由题意,得 3x•2x=300,∵x >0,∴x =∴AB=,BC=cm .∵圆的面积为147cm 2,设圆的半径为rcm ,∴πr 2=147,解得:r=7cm .∴两个圆的直径总长为28cm .∵382428<=⨯=<,∴不能并排裁出两个面积均为147cm 2的圆.22.(1) (−2,1)不是“共生有理数对”,13,2⎛⎫ ⎪⎝⎭是“共生有理数对”;理由见详解.(2) (−n ,−m )是“共生有理数对”, 理由见详解.【分析】(1)根据“共生有理数对”的定义即可判断;(2)根据“共生有理数对”的定义即可判断;【详解】(1)−2−1=−3,−2×1+1=1,∴−2−1≠−2×1+1,∴(−2,1)不是“共生有理数对”, ∵15153,312222-=⨯+=, ∴1133122-=⨯+, ∴(13,2)是“共生有理数对”;(2)是. 理由:− n −(−m )=−n +m ,−n ⋅(−m )+1=mn +1∵(m ,n )是“共生有理数对”∴m −n =mn +1∴−n +m =mn +1∴(−n ,−m )是“共生有理数对”,【点睛】考查有理数的混合运算,整式的加减—化简求值,等式的性质,读懂题目中“共生有理数对”的定义是解题的关键.23.(1)-34;(2)3【分析】(1)利用乘方、立方、二次根式、开立方等概念分别化简每项,再整理计算即可; (2)利用绝对值的意义化简每一项,再整理计算即可.【详解】解:(1)()2320181122⎛⎫-+- ⎪⎝⎭ ()()118444=-+-⨯+-⨯()1321=--+-=-34;(233=-+-+-3=【点睛】此题考查了有理数的混合运算,以及实数的运算,熟练掌握运算法则是解本题的关键.24.(1)202021-;(2)2020312-;(3)201101554-. 【分析】仿照阅读材料中的方法求出所求即可.【详解】解:(1)根据2350511222...221+++++=-得:2320191222...2+++++=202021-(2)设2320191333...3S =+++++,则234202033333...3S =+++++,∴2020331S S -=-, ∴2020312S -= 即:2020232019311333 (32)-+++++= (3)设232001555...5S =+++++,则23420155555...5S =+++++,∴201551S S -=-, ∴201514S -= 即:20123200511555 (5)4-+++++= 同理可求⸫10123100511555 (5)4-+++++= ∵1011021032002320023100555...51555...5)(1555...5)++++=+++++-+++++( 201101201101101102103200515155555 (5444)---∴++++=-= 【点睛】此题考查了规律型:数字的变化类,弄清题中的规律是解本题的关键.25.(1)1022;(2)3066,2226;(3)6736 【分析】(1)由于千位不能为0,最小只能取1;根据题目得出相应的公式:十位=2×千位﹣百位,个位=2×千位+百位,分别求出十位和个位,即可求出最小的四位依赖数;(2)设千位数字是x ,百位数字是y ,根据“依赖数”定义,则有:十位数字是(2x ﹣y ),个位数字是(2x+y ),依据题意列出代数式然后表示为7的倍数加余数形式,然后求出x 、y 即可,从而求出所有特色数;(3)根据最小分解的定义可知: n 越小,p 、q 越接近,nq ﹣np 才越小,才是最小分解,此时F (m )=q n p n ++,故将(2)中特色数分解,找到最小分解,然后将n 、p 、q 的值代入F (m )=q n p n++,再比较大小即可.【详解】解:(1)由题意可知:千位一定是1,百位取0,十位上的数字为:2×1-0=2,个位上的数字为:2×1+0=2则最小的四位依赖数是1022;(2)设千位数字是x,百位数字是y,根据“依赖数”定义,则有:十位数字是(2x﹣y),个位数字是(2x+y),根据题意得:100y+10(2x﹣y)+2x+y﹣3y=88y+22x=21(4y+x)+(4y+x),∵21(4y+x)+(4y+x)被7除余3,∴4y+x=3+7k,(k是非负整数)∴此方程的一位整数解为:x=4,y=5(此时2x+y>10,故舍去);x=3,y=7(此时2x﹣y<0,故舍去);x=3,y=0;x=2,y=2;x=1,y=4(此时2x﹣y<0,故舍去);∴特色数是3066,2226.(3)根据最小分解的定义可知: n越小,p、q越接近,nq﹣np才越小,才是最小分解,此时F(m)=q np n ++,由(2)可知:特色数有3066和2226两个,对于3066=613×5+14=61×50+24∵1×613-1×5>2×61-2×50,∴3066取最小分解时:n=2,p=50,q=61∴F(3066)=61263= 50252++对于2226=89×25+14=65×34+24,∵1×89-1×25>2×65-2×34,∴2226取最小分解时:n=2,p=34,q=65∴F(2226)=636 5267= 342++∵6367 5236<故所有“特色数”的F(m)的最大值为:67 36.【点睛】此题考查的是新定义类问题,理解题意,并根据新定义解决问题是解决此题的关键. 26.(1)a=﹣1,b=5,c=﹣2,数轴详见解析;(2)6;(3)运动4秒后,点Q可以追上点P;(4)M对应的数为2或﹣223.【解析】【分析】(1)根据题意易得a,b,c的值,然后在数轴上表示出来即可;(2)当M点在线段AB上时,M点到AB两点距离之和的最小值为AB的长;(3)用AB的长度除以点Q与点P的速度差即可得解;(4)分析M点在不同的位置时,所得到的M的值即可.【详解】(1)∵a是最大的负整数,∴a=﹣1,∵b是多项式2m2n﹣m3n2﹣m﹣2的次数,∴b=3+2=5,∵c是单项式﹣2xy2的系数,∴c=﹣2,如图所示:(2)当M点在线段AB上时,M点到AB两点距离之和的最小值为5﹣(﹣1)=6;(3)∵动点P、Q同时从A、B出发沿数轴负方向运动,点P的速度是每秒12个单位长度,点Q的速度是每秒2个单位长度,∴AB=6,两点速度差为:2﹣12,∴6÷(2﹣12)=4,答:运动4秒后,点Q可以追上点P;(4)存在点M,使P到A、B、C的距离和等于10,当M在AB之间,则M对应的数是2,当M在C点左侧,则M对应的数是:﹣22 3 .综上所述,M对应的数为2或﹣223.【点睛】本题主要考查实数与数轴,数轴上两点之间的距离.解此题的关键在于根据题意准确画出数轴上各点所表示的数.。
最新人教版七年级数学下册第六单元测试卷(共2套)
第六章 平面直角坐标系
A 卷•能力训练级级高
班级 姓名得分
一、选择题(4×6=24)
1.坐标平面内下列各点中,在x 轴上的点是 ( ) A 、(0,3) B 、)0,3(- C 、)2,1(- D 、)3,2(--
2.如果
y
x
<0,),(y x Q 那么在( )象限 ( ) A 、 第四 B 、 第二 C 、 第一、三 D 、 第二、四 3.已知03)2(2=++-b a ,则),(b a P --的坐标为 ( ) A 、 )3,2( B 、 )3,2(- C 、 )3,2(- D 、 )3,2(-- 4.若点),(n m P 在第三象限,则点),(n m Q --在 ( ) A、第一象限 B、第二象限 C、第三象限 D、第四象限 5. 如图:正方形ABCD 中点A 和点C 的坐标分别为 )3,2(-和)2,3(-,则点B 和点D 的坐标分别为(
A 、)2,2(和)3,3(
B 、)2,2(--和)3,3(
C 、 )2,2(--和)3,3(--
D 、 )2,2(和)3,3(--
6.已知平面直角坐标系内点),(y x 的纵、横坐标满足x y =,则点),(y x 位 于( )
A 、 x 轴上方(含x 轴)
B 、 x 轴下方(含x 轴)
C 、 y 轴的右方(含y 轴)
D 、 y 轴的左方(含y 轴) 二、填空(2分×28=56分)
7.有了平面直角坐标系,平面内的点就可以用一个来表示了。
点)4,3(-的横坐
标是,纵坐标是。
8.若)4,2(表示教室里第2列第4排的位置,则)2,4(表示教室里第列 第排的位置。
9.设点P 在坐标平面内的坐标为),(y x P ,则当P 在第一象限时x 0 y 0, 当点P 在第四象限时,x 0,y 0。
10.到x 轴距离为2,到y 轴距离为3的坐标为 11.按照下列条件确定点),(y x P 位置:
⑴ 若x=0,y ≥0,则点P 在 ⑵ 若xy=0,则点P 在 ⑶ 若022=+y x ,则点P 在 ⑷ 若3-=x ,则点P 在 ⑸ 若y x =,则P 在
12.温度的变化是人们经常谈论的话题。
请你根据右图,讨论某地某天温度变化
的情况:
⑴上午9时的温度是度
12时的温度是度
⑵这一天最高温度是度,
是在时达到的;
最低温度是度, 是在时达到的, ⑶这一天最低温度是℃,
从最低温度到最高温度
经过了小时;
⑷温度上升的时间范围为,
温度下降的时间范围为
⑸图中A 点表示的是,
B 点表示的是
⑹你预测次日凌晨1时的 温度是。
三、解下列各题 13.(10分)在平面直角坐标系中,描出下列各点,并将各点用线段依次连接起来:
(2,1) (6,1) (6,3) (7,3) (4,6) (1,3) (2,
3)
观察得到的图形,你觉得它像什么?
时间/时
温度/c ︒
037353331
27
25
232421181512963。