传感器的补偿与标定
- 格式:ppt
- 大小:47.00 KB
- 文档页数:12
航姿参考系统中磁航向传感器误差标定与补偿毛瑞燕;高国伟;徐万芝【摘要】对于航姿参考系统中磁航向传感器的输出精度来说,误差环境对其精确度的影响起着很大的作用.为了校正磁航向传感器的误差,提出了一种基于改进最小二乘法的椭球拟合法,对三轴磁传感器误差做快速标定补偿.首先,对磁航向传感器的误差产生机理进行有效分析,然后,针对分析结果建立误差椭球模型,推导出误差系数的解算公式,利用改进的椭球拟合方法对磁航向传感器进行标定和补偿.实验结果表明,改进的椭球拟合方法能够正确快速的标定补偿磁航向传感器的零偏误差、非正交误差、灵敏度误差,在解决当前磁传感器标定补偿计算量大、操作时间长、标定设备要求高等问题上达到了预期的效果,具有补偿效果显著,简单易行等特点.【期刊名称】《传感器世界》【年(卷),期】2017(023)005【总页数】5页(P33-37)【关键词】磁航向传感器;椭球拟合;标定补偿;误差模型;最小二乘法【作者】毛瑞燕;高国伟;徐万芝【作者单位】北京信息科技大学,北京市传感器重点实验室,北京100101;北京信息科技大学,北京市传感器重点实验室,北京100101;北京信息科技大学,北京市传感器重点实验室,北京100101【正文语种】中文【中图分类】V241.6一、引言航姿参考系统广泛应用在无人机、UXO探测、石油钻井等领域,其中的磁航向传感器作为测量地球磁场的一部分为载体确定航向角。
为获得高可靠性,高精度的导航信息,我们就要对磁航向传感器进行有效地标定和补偿。
国内外学者从误差模型和参数估计方面对磁航向传感器误差校正做了大量研究,目前感器标定方法主要有十六位置翻转法,给定基准法,椭圆拟合法,遗传算法等等[1]。
在这些方法中,十六位置法虽然简单易操作,但是精度却不是很高;给定基准法在磁场强度变化不是很明显时,具有不错的补偿精度,但是对外部仪器的要求较高;椭圆拟合法只需在水平面旋转一周就可以自动拟合出椭圆函数[2],并且精度很高,但是椭圆拟合法,虽无需外部设备,却只能应用在二维罗盘的平面补偿;遗传算法计算量大,控制复杂。
一、概述STM32压力传感器在工业控制、汽车电子和医疗设备等领域有着广泛的应用。
但是由于环境温度、供电电压等因素的变化,传感器的输出信号常常会受到影响,导致测量结果不准确。
对于压力传感器的数据进行补偿处理,是保证其性能稳定和输出准确的关键之一。
二、压力传感器的工作原理1. 压力传感器是一种能够将压力信号转换成电信号输出的传感器,其工作原理主要基于应变规。
当被测压力作用在传感器敏感元件上时,敏感元件产生应变,从而改变元件的电阻值,最终转换成电压信号输出。
2. 传感器的输出信号受到环境温度、供电电压等因素的影响,可能导致输出值的漂移和误差,因此需要通过算法进行补偿处理,提高传感器的准确度和稳定性。
三、压力传感器的补偿算法1. 温度补偿为了消除温度对传感器输出信号的影响,需要进行温度补偿处理。
具体的算法如下:- 采集环境温度数据,并与预先设定的标定温度数据进行比较;- 根据温度变化的规律,建立对应的补偿模型;- 将温度补偿模型应用到传感器的输出信号中,实现温度补偿处理。
2. 零点漂移补偿传感器输出信号在长时间使用后,可能会出现零点漂移,导致测量误差。
需要对传感器的零点偏移进行补偿处理。
具体的算法如下:- 通过特定的校准过程,获取传感器的零点偏移数据;- 记录零点偏移数据,并建立对应的补偿模型;- 将零点漂移补偿模型应用到传感器的输出信号中,实现零点漂移补偿处理。
四、应用案例以工业控制领域为例,我们可以将STM32压力传感器补偿算法应用到液压系统的控制中。
通过温度补偿和零点漂移补偿处理,可以提高液压系统的稳定性和准确度,从而保证工业设备的正常运行。
五、总结在STM32压力传感器的应用中,补偿算法是保证其性能稳定和输出准确的关键之一。
通过对环境温度、供电电压等因素的补偿处理,可以提高传感器的准确度和稳定性,从而满足不同领域的需求。
希望本文对读者在压力传感器的补偿算法方面有所帮助。
六、压力传感器的数据滤波处理传感器的输出信号受噪声干扰,可能会引起输出信号的波动或者干扰,因此需要对传感器的输出信号进行滤波处理。
加速度传感器标定方法
加速度传感器的标定是为了确定传感器的灵敏度、偏移量和线性度等参数,以确保其测量结果的准确性。
以下是一些常见的加速度传感器标定方法:
1. 零点标定:将传感器置于无加速度状态下,记录传感器的输出值作为零点偏移量。
这可以通过将传感器放置在水平表面上或使用特殊的标定设备来实现。
2. 灵敏度标定:通过施加已知的加速度值,并测量传感器的输出,来确定传感器的灵敏度。
可以使用振动台、旋转平台或其他产生已知加速度的设备来进行标定。
3. 线性度标定:通过在不同加速度范围内进行标定,来确定传感器的线性度。
可以使用多个已知加速度值进行测量,并检查传感器输出与加速度之间的线性关系。
4. 温度补偿:加速度传感器的性能可能会受到温度的影响。
因此,在标定过程中,可以考虑在不同温度下进行测量,并使用数学模型或查表法对温度进行补偿。
5. 交叉灵敏度标定:某些加速度传感器可能对不同方向的加速
度敏感。
为了修正这种交叉灵敏度,可以在不同方向上施加加速度,并记录传感器的输出。
压力传感器温度补偿技术压力传感器温度补偿技术摘要压力传感器是一种较为常用的传感器件,由于自身的非线性特点以及外界因素的影响,传感器的输出结果容易产生误差,其中温度的影响最大,因此,对传感器的温度补偿就显得尤为重要。
文章对目前常用的温度补偿方法进行了分析,在此基础上,提出了一种新的温度补偿方法,并对BP神经网络进行了改进,从研究结果来看,该方法有效提高了传感器的稳定性及精度。
关键词压力传感器;温度漂移;温度补偿压力传感器的输出结果精度容易受到多种因素的影响,其中,唯独是影响传感器输出精度的最主要因素。
目前,国内经常使用硬件补偿和软件补偿两类方法对压力传感器进行温度补偿。
硬件补偿方法调试难度较高、精度低、通用性也较差,在实际工程中应用时,难以去得较好的效果;而软件补偿方法有效弥补了硬件补偿的缺点,其中BP神经网络补偿在实际工程中运用十分广泛,但是典型BP神经网络补偿法虽然精确度高,但是整个流程过于复杂、整个过程耗时较长,因此,本文提出了一种基于主成分分析的BP神经网络补偿方法,希望对提高补偿效率和准确性起到一定的.作用。
1 典型BP神经网络补偿原理分析BP神经网络是目前研究中应用范围最广的神经网络模型之一,BP神经网络术语单向传输网络结构,整个信息传输的过程呈现出高度的非线性特点。
典型的BP神经网络结构包括输入层、隐含层和输出层3层结构。
通常情况下BP神经网络只有这3层结构,这主要是由于单隐层的BP神经网络既可以完成从任意n维到m 维的映射。
其典型结构如下图所示。
BP神经网络结构模型BP算法设计到了信息的正向传播以及误差的反向传播,信息首先从输入层传入,然后经过隐含层的处理传入输出层,最终输出的信息可以用下面的形式进行表示:其中:、分别代表了隐含层及输出层的权值;n0、n1分别对应了输入节点数及隐含层节点数。
输出层神经元的激励函数f1通常呈现出线性特点;而隐含层神经元的激励函数f2通常采用如下所示的形式在(0,1)的S型函数中进行输出:由于BP神经网络隐含层采用的传递函数为对数S型曲线,其输出范围在(0,1)之间。
关于压力传感器误差修正和标定1.如何对压力传感器进行误差补偿压力传感器精度高,要求误差合理,进行压力传感器的误差补偿是其应用的关键。
压力传感器主要有偏移量误差、灵敏度误差、线性误差和滞后误差,本文将介绍这几种误差产生的机理和对测试结果的影响,同时将介绍为提高测量精度的压力标定方法以及应用实例。
目前市场上传感器种类丰富多样,这使得设计工程师可以选择系统所需的压力传感器。
这些传感器既包括最基本的变换器,也包括更为复杂的带有片上电路的高集成度传感器,对于光学压力传感器主要考虑光强度损耗和距离对传感器性能的幸运。
由于存在这些差异,设计工程师必须尽可能够补偿压力传感器的测量误差,这是保证传感器满足设计和应用要求的重要步骤。
在某些情况下,补偿还能提高传感器在应用中的整体性能。
传感器最简单的数学模型即为传递函数。
该模型可在整个标定过程中进行优化,并且模型的成熟度将随标定点的增加而增加。
从计量学的角度看,测量误差具有相当严格的定义:它表征了测量压力与实际压力之间的差异。
而通常无法直接得到实际压力,但可以通过采用适当的压力标准加以估计,计量人员通常采用那些精度比被测设备高出至少10 倍的仪器作为测量标准。
由于未经标定的系统只能使用典型的灵敏度和偏移值将输出波长转换为压力,测得的压力的误差。
这种未经标定的初始误差由以下几个部分组成:偏移量误差由于在整个压力范围内垂直偏移保持恒定,因此光缆距离修正将产生偏移量误差。
灵敏度误差产生误差大小与压力成正比。
如果设备的灵敏度高于典型值,灵敏度误差将是压力的递增函数。
如果灵敏度低于典型值,那么灵敏度误差将是压力的递减函数。
该误差的产生原因在于扩散过程的变化。
线性误差这是一个对初始误差影响较小的因素,该误差的产生原因在于硅片的物理非线性。
线性误差曲线可以是凹形曲线,也可以是凸形曲线。
对于光纤MEMS压力传感器线性误差极小,线性误差误差主要来源反而是设备大波长和小波长输出的误差。
主要依靠设备校准,保证测试设备的波长输出线性度,降低线性度误差。