数的整除特征 (2)
- 格式:doc
- 大小:55.50 KB
- 文档页数:20
能被2、3、4、5、6、7、8、9等数整除的数的特征性质1:如果数a、b都能被c整除,那么它们的和(a+b)或差(a-b)也能被c 整除。
性质2:几个数相乘,如果其中有一个因数能被某一个数整除,那么它们的积也能被这个数整除。
能被2整除的数,个位上的数能被2整除(偶数都能被2整除),那么这个数能被2整除能被3整除的数,各个数位上的数字和能被3整除,那么这个数能被3整除能被4整除的数,个位和十位所组成的两位数能被4整除,那么这个数能被4整除能被5整除的数,个位上的数都能被5整除(即个位为0或5)那么这个数能被5整除能被6整除的数,如果一个数既能被2整除又能被3整除,那么这个数能被6整除能被7整除的数,若一个整数的个位数字截去,再从余下的数中,减去个位数的2倍,如果差是7的倍数,则原数能被7整除。
如果差太大或心算不易看出是否7的倍数,就需要继续上述「截尾、倍大、相减、验差」的过程,直到能清楚判断为止。
例如,判断133是否7的倍数的过程如下:13-3×2=7,所以133是7的倍数;又例如判断6139是否7的倍数的过程如下:613-9×2=595,59-5×2=49,所以6139是7的倍数,余类推。
能被8整除的数,百位、十位和个位所组成的三位数能被8整除,那么这个数能被8整除能被9整除的数,各个数位上的数字和能被9整除,那么这个数能被9整除能被10整除的数,如果一个数既能被2整除又能被5整除,那么这个数能被10整除(即个位数为零)能被11整除的数,奇数位(从左往右数)上的数字和与偶数位上的数字和之差(大数减小数)能被11整除,则该数就能被11整除。
11的倍数检验法也可用上述检查7的「割尾法」处理!过程唯一不同的是:倍数不是2而是1!能被12整除的数,若一个整数能被3和4整除,则这个数能被12整除能被13整除的数,若一个整数的个位数字截去,再从余下的数中,加上个位数的4倍,如果差是13的倍数,则原数能被13整除。
被0—20以内数整除的数性质(1)1与0的特性:1是任何整数的约数,即对于任何整数a,总有1|a.0是任何非零整数的倍数,a≠0,a为整数,则a|0.(2)若一个整数的末位是0、2、4、6或8,则这个数能被2整除. (3)若一个整数的数字和能被3整除,则这个整数能被3整除. (4) 若一个整数的末尾两位数能被4整除,则这个数能被4整除. (5)若一个整数的末位是0或5,则这个数能被5整除.(6)若一个整数能同时被2和3整除,则这个数能被6整除.(7)若一个整数的个位数字截去,再从余下的数中,减去个位数的2倍,如果差是7的倍数,则原数能被7整除.如果差太大或心算不易看出是否7的倍数,就需要继续上述「截尾、倍大、相减、验差」的过程,直到能清楚判断为止.例如,判断294是否是7的倍数的过程如下:29-4×2=21,所以294是7 的倍数;又例如判断3983是否是7的倍数的过程如下:398-3×2=392 ,39-2×2=35,所以3983是7的倍数,以此类推.(8)若一个整数的未尾三位数能被8整除,则这个数能被8整除. (9)若一个整数的数字和能被9整除,则这个整数能被9整除. (10)若一个整数的末位是0,则这个数能被10整除.(11)若一个整数的奇位数字之和与偶位数字之和的差能被11整除,则这个数能被11整除.例如,判断649是否是11的倍数的过程如下:因为奇数位之和6+9=15,15减去4等于11,所以649是11的倍数. (12)若一个整数能被3和4整除,则这个数能被12整除.(13)若一个整数的个位数字截去,再从余下的数中,加上个位数的4倍,如果差是13的倍数,则原数能被13整除.如果差太大或心算不易看出是否13的倍数,就需要继续上述「截尾、倍大、相加、验差」的过程,直到能清楚判断为止.例如,判断585是否是13的倍数的过程如下:58+5×4=78,7+8×4=39,所以585是13的倍数;又例如判断8476是否是13的倍数的过程如下:847+6是否是13的倍数的过程如下:4=871,87+1×4=91,9+1×4=13,所以585是13的倍数.(14)若一个整数同时被2和7整除,则这个数能被14整除.例如,判断6328是否是14的倍数的过程如下:首先6328能被2整除,其次判断它被7整除特征,632-8×2=616,61-6×2=49,因此6328是7的倍数,即6328是14的倍数.(15)若一个整数同时被3和5整除,则这个数能被15整除.判断方法与被6、14整除类似,与下文的18,20一样.(16)若一个整数末尾四位数能被16整除,则这个数能被16整除. (17)若一个整数的个位数字截去,再从余下的数中,减去个位数的5倍,如果差是17的倍数,则原数能被17整除.如果差太大或心算不易看出是否17的倍数,就需要继续上述「截尾、倍大、相减、验差」的过程,直到能清楚判断为止.例如,判断7701是否是17的倍数的过程如下:770-1×5=765,76-5×5=51,所以7701是17的倍数.(18)若一个整数同时能被2和9整除,则这个数能被18整除.(19)若一个整数的个位数字截去,再从余下的数中,加上个位数的2倍,如果差是19的倍数,则原数能被19整除.如果差太大或心算不易看出是否19的倍数,就需要继续上述「截尾、倍大、相加、验差」的过程,直到能清楚判断为止.判断4465是否是19的倍数的过程如下:446+5×2=456,45+6×2=57,所以4465是19的倍数.(20)若一个整数同时能被4和5整除,则这个数能被20整除.。
能被2、3、4、5、6、7、8、9等数整除的数的特征性质1:如果数a、b都能被c整除,那么它们的和(a+b)或差(a-b)也能被c整除。
性质2:几个数相乘,如果其中有一个因数能被某一个数整除,那么它们的积也能被这个数整除。
能被2整除的数,个位上的数能被2整除(偶数都能被2整除),那么这个数能被2整除能被3整除的数,各个数位上的数字和能被3整除,那么这个数能被3整除能被4整除的数,个位和十位所组成的两位数能被4整除,那么这个数能被4整除能被5整除的数,个位上为0或5的数都能被5整除,那么这个数能被5整除能被6整除的数,各数位上的数字和能被3整除的偶数,如果一个数既能被2整除又能被3整除,那么这个数能被6整除能被7整除的数,若一个整数的个位数字截去,再从余下的数中,减去个位数的2倍,如果差是7的倍数,则原数能被7整除。
如果差太大或心算不易看出是否7的倍数,就需要继续上述「截尾、倍大、相减、验差」的过程,直到能清楚判断为止。
例如,判断133是否7的倍数的过程如下:13-3×2=7,所以133是7的倍数;又例如判断6139是否7的倍数的过程如下:613-9×2=595 ,59-5×2=49,所以6139是7的倍数,余类推。
能被8整除的数,一个整数的末3位若能被8整除,则该数一定能被8整除。
能被9整除的数,各个数位上的数字和能被9整除,那么这个数能被9整除能被10整除的数,如果一个数既能被2整除又能被5整除,那么这个数能被10整除(即个位数为零)能被11整除的数,奇数位(从左往右数)上的数字和与偶数位上的数字和之差(大数减小数)能被11整除,则该数就能被11整除。
11的倍数检验法也可用上述检查7的「割尾法」处理!过程唯一不同的是:倍数不是2而是1!能被12整除的数,若一个整数能被3和4整除,则这个数能被12整除能被13整除的数,若一个整数的个位数字截去,再从余下的数中,加上个位数的4倍,如果差是13的倍数,则原数能被13整除。
能被2、3、4、5、7、9、11、13、27、99等数整除的数的特征性质1:如果数a、b都能被c整除,那么它们的和(a+b)或差(a-b)也能被c 整除。
性质2:几个数相乘,如果其中有一个因数能被某一个数整除,那么它们的积也能被这个数整除。
1、看末尾。
能被2整除的数,个位上的数能被2整除(偶数都能被2整除),那么这个数能被2整除能被5整除的数,个位上的数都能被5整除(即个位为0或5)那么这个数能被5整除能被4、25整除的数,末二位所组成的两位数能被4整除,那么这个数能被4整除能被8、125整除的数,末三位数能被8整除,那么这个数能被8整除2、看数字和能被3整除的数,各个数位上的数字和能被3整除,那么这个数能被3整除能被9整除的数,各个数位上的数字和能被9整除,那么这个数能被9整除能被11整除的数,奇数位(从左往右数)上的数字和与偶数位上的数字和之差(大数减小数)能被11整除,则该数就能被11整除。
3、截尾法能被7整除的数,若一个整数的个位数字截去,再从余下的数中,减去个位数的2倍,如果差是7的倍数,则原数能被7整除。
如果差太大或心算不易看出是否7的倍数,就需要继续上述「截尾、倍大、相减、验差」的过程,直到能清楚判断为止。
例如,判断133是否7的倍数的过程如下:13-3×2=7,所以133是7的倍数;又例如判断6139是否7的倍数的过程如下:613-9×2=595,59-5×2=49,所以6139是7的倍数,余类推。
能被11整除的数, 11的倍数检验法也可用上述检查7的「割尾法」处理!过程唯一不同的是:倍数不是2而是1.如:242是不是11的倍数,24—2=22,所以242是11的倍数。
1232,123-2=121, 12—1=11,1232是11的倍数.能被13整除的数,若一个整数的个位数字截去,再从余下的数中,加上个位数的4倍,如果差是13的倍数,则原数能被13整除。
整除的性质和特征整除问题是整数内容最基本的问题。
理解掌握整除的概念、性质及某些特殊数的整除特征,可以简单快捷地解决许多整除问题,增强孩子的数感。
一、整除的概念:如果整数a除以非0整数b,除得的商正好是整数而且余数是零,我们就说a能被b整除(或b能整除a),记作b/a,读作“b整除a”或“a能被b整除”。
a叫做b的倍数,b叫做a的约数(或因数)。
整除属于除尽的一种特殊情况。
二、整除的五条基赋性质:(1)如果a与b都能被c整除,则a+b与a-b也能被c整除;(2)如果a能被b整除,c是任意整数,则积ac也能被b整除;(3)如果a能被b整除,b能被c整除,则积a也能被c整除;(4)如果a能同时被b、c整除,且b与c互质,那么a一定能被积bc整除,反之也成立;(5)任意整数都能被1整除,即1是任意整数的约数;0能被任意非0整数整除,即0是任意非0整数的倍数。
三、一些特殊数的整除特征:根据整除的基赋性质,可以推导出某些特殊数的整除特征,为解决整除问题带来方便。
(1)如果一个数是整十数、整百数、整千数、……的因数,可以通过被除数末尾几位数字确定这个数的整除特征。
①若一个整数的个位数字是2的倍数(0、2、4、6或8)或5的倍数(0、5),则这个数能被2或5整除;②若一个整数的十位和个位数字组成的两位数是4或25的倍数,则这个数能被4或25整除;③若一个整数的百位、十位和个位数字组成的三位数是8或125的倍数,则这个数能被8或125整除。
【推理过程】:2、5都是10的因数,根据整除的基赋性质(2),可知所有整十数都能被10、2、5整除。
任意一个整数都可以看作一个整十数和它的个位数的和,如果一个数的个位数字也能被2或5整除,根据整除的基赋性质(1),则这个数能被2或5整除。
又因为4、25都是100的因数,8、125都是1000的因数,根据整除的基赋性质(2),可知任意整百数都能被4、25整除,任意整千数都能被8、125整除。
1.末位数字为0、2、4、6、8的整数都能被2整除
2.各个数位上数字之和能被3(9)整除的整数必能被3(9)整除
3.末两位数字组成的两位数能被4整除的整数必能被4整除
4.末位数字为0或5的整数必能被5整除
5.一个三位以上的整数能否被7(11或13)整除,只须看这个数的末三位数字表示的三位数与末三位数字以前的数字所组成的数的差(以大减小)能否被7(11或13)整除
6.末三位数字组成的三位数能被8整除的整数必能被8整除
7.末位数字为零的整数必能被10整除
8.另外,一个整数的奇数位数字和与偶数位数字和的差如果是11的倍数,那么这个整数也是11的倍数。
(一个整数的个位、百位、万位、…称为奇数位,十位、千位、百万位……称为偶数位。
)
9.至于6和12的整除特性,通过以上的原则判断即可:
各位数之和能被3整除的偶数能被6整除;
各位数之和能被3整除且末两位数字组成的两位数能被4整除的整数能被12整除
2:末尾1位数能被2整除,即所有偶数
3:被三整除的数必须各个位数上的数加起来为三的倍数
4:末尾两位数能被4整除
5:所有末位为0或5的数
7:若一个整数的个位数字截去,再从余下的数中,减去个位数的2倍,如果差是7的倍数,则原数能被7整除
8:后三位能被8整除的数
9:各个位数的数字和能被9整除
11:奇数位的和与偶数位的和的差为11的倍数
13:一个整数的个位数字截去,再从余下的数中,加上个位数的4倍,如果差是13的倍数,则原数能被13整除
25:末尾的两位数是00,25,50,75四种能被25整除
125:后三位能被125整除的数。
一、1与0的特性:1是任何整数的约数,即对于任何整数a,总有1|a.0是任何非零整数的倍数,a≠0,a为整数,则a|0.二、能被2整除的数的特征若一个整数的末位是0、2、4、6或8,则这个数能被2整除。
三、能被3整除的数的特征1,若一个整数的数字和能被3整除,则这个整数能被3整除。
2,由相同的数字组成的三位数、六位数、九位数……这些数字能被3整除。
如111令3整除。
四、能被4整除的数的特征X z若一个整数的末尾两位数能被4整除,则这个数能被4整除。
五、能被5整除的数的特征若一个整数的末位是0或5,则这个数能被5整除。
六、能被6整除的数的特征若一个整数能被2和3整除,则这个数能被6整除。
七、能被7整除的数的特征1.若一个整数的个位数字截去,再从余下的数中,减去个位数的2倍,如果差是7的倍数,则原数能被7整除。
如果差太大或心算不易看出是否7的倍数,就需要继续上述「截尾、倍大、相减、验差」的过程,直到能清楚判断为止。
同能被17整除的数的特征。
2.末三位以前的数与末三位以后的差(或反过来)。
同能被11,13整除的数的特征。
八、能被8整除的数的特征若一个整数的末尾三位数能被8整除,则这个数能被8整除。
九、能被9整除的数的特征若一个整数的数字和能被9整除,则这个整数能被9整除。
十、能被10整除的数的特征若一个整数的末位是0,则这个数能被10整除。
十一、能被11整除的数的特征若一个整数的奇位数字之和与偶位数字之和的差能被11整除,则这个数能被11整除。
11的倍数检验法也可用上述检查7的「割尾法」处理!过程唯一不同的是:倍数不是2而是1!十二、能被12整除的数的特征若一个整数能被3和4整除,则这个数能被12整除。
其他辨别方法十三、能被13整除的数的特征若一个整数的个位数字截去,再从余下的数中,加上个位数的4倍,如果和是13的倍数,则原数能被13整除。
如果和太大或心算不易看出是否13的倍数,就需要继续上述「截尾、倍大、相加、验和」的过程,直到能清楚判断为止。
整除的特征数的乘除特征:1.个位数是偶数的数能被2整除; 2.个位数是0或5的数能被5整除;3.末两位数能被4(或25)整除的数能被4(或25)整除; 4.末三位数能被8(或125)整除的数能被8(或125)整除; 5.能被6整除的数只需满足能被2,3整除。
6.各位数字之和能被3(或9)整除的数能被3(或9)整除;7.奇数位数字之和与偶数位数字之和的差能被11整除的数能被11整除;8.末三位数字所表示的数与末三位以前的数字所表示的数的差(大数减小数) 能被7(或11或13)整除的数能被7(或11或13)整例题1、有72名学生,共捐款b a 7.52,平均每人捐了多少元?2、一个数,它是15的倍数,且各位数字只有8和5两种,当这个数最小它是15的几倍?3、已知整数a a a a a 54321能被11整除,求所有满足这个条件的整数。
4、超市里有6箱货物,分别重16、19、20、15、18、31千克,两顾客买了其中5箱货物,其中一个顾客的货物重量是另一个顾客的2倍,超市里剩下的那箱货物是多少千克?练习:1、有一个四位数24aa ,它能被9整除,请问a 代表什么数字?2、一个正整数,它与13的和为5的倍数,与13的差是3的倍数,那么这个数最小是多少?3、012005 (200520052005)个n 能被11整除,那么n 最小值是多少?4、七箱油分别是汽油、柴油、机油,它们容量分别是12升、13升、16升、17升、22升、27升和32升。
现在知道汽油有一桶,而柴油的总量分别是机油的3倍,但是不哪箱是什么油。
请你判断每只油桶里装的各是什么油?5、在六位数3□2□1□的三个方框里分别填入数字,是得到的数能被15整除,这样的六位数中最小的是多少?。
能被2、3、4、5、6、7、8、9等数整除的数的特征性质1:如果数a、b都能被c整除,那么它们的和(a+b)或差(a-b)也能被c 整除。
性质2:几个数相乘,如果其中有一个因数能被某一个数整除,那么它们的积也能被这个数整除。
能被2整除的数,个位上的数是0、2、4、6、8、的数能被2整除(偶数都能被2整除),那么这个数能被2整除能被3整除的数,各个数位上的数字和能被3整除,那么这个数能被3整除能被4整除的数,个位和十位所组成的两位数能被4整除,那么这个数能被4整除如果一个数的末两位数能被4或25整除,那么,这个数就一定能被4或25整除.例如:4675=46×100+75由于100能被25整除,100的倍数也一定能被25整除,4600与75均能被25整除,它们的和也必然能被25整除.因此,一个数只要末两位数能被25整除,这个数就一定能被25整除.又如: 832=8×100+32由于100能被4整除,100的倍数也一定能被4整除,800与32均能被4整除,它们的和也必然能被4整除.因此,因此,一个数只要末两位数字能被4整除,这个数就一定能被4整除.能被5整除的数,个位上的数都能被5整除(即个位为0或5)那么这个数能被5整除能被6整除的数,个数位上的数字和能被3整除的偶数,如果一个数既能被2整除又能被3整除,那么这个数能被6整除能被7整除的数,若一个整数的个位数字截去,再从余下的数中,减去个位数的2倍,如果差是7的倍数,则原数能被7整除。
如果差太大或心算不易看出是否7的倍数,就需要继续上述「截尾、倍大、相减、验差」的过程,直到能清楚判断为止。
例如,判断133是否7的倍数的过程如下:13-3×2=7,所以133是7的倍数;又例如判断6139是否7的倍数的过程如下:613-9×2=595 , 59-5×2=49,所以6139是7的倍数,余类推。
能被8整除的数,百位、个位和十位所组成的三位数能被8整除,那么这个数能被8整除能被9整除的数,各个数位上的数字和能被9整除,那么这个数能被9整除能被10整除的数,如果一个数既能被2整除又能被5整除,那么这个数能被10整除(即个位数为零)能被11整除的数,奇数位(从左往右数)上的数字和与偶数位上的数字和之差(大数减小数)能被11整除,则该数就能被11整除。
1、一个整数的末尾一位数能被2或5整除,那么这个数就能被2或5整除。
2、一个整数的末尾两位数能被4或25整除,那么这个数就能被4或25整除。
3、一个整数的末尾三位数能被8或125整除,那么这个数就能被8或125整除。
4、能被9和3整除的数的特征,如果各位上的数字和能被9或3整除,那么这个数能被9
或3整除。
5、一个整数的末尾三位数与末尾三位数以前的数字组成的数的差(大数减小数)能被 7、11、13整除,那么这个数就能被7、11、13整除。
6、一个整数的奇数位上的数字和与偶数位上的数字之和的差(大减小)能被11整除,这个数就能被11整除。
【例1】七位数 23A45AB 一一一一一一一
能被15整除,A 与B 可以是哪些数字?
【例2】从0, 4, 9, 5这四个数中任选三个排列成能同时被2, 5, 5 整除的三位 数。
问:这样的三位数有几个?
【例3】五年级(1)班有36名同学,每人买了一本英语词典,共花了
问:每本词典多少钱?
【例4】在568后面补上三个数字,组成一个六位数,使它能分别被3,4,5整除,而且使这个数尽可能小。
【例5】要使27A3B 一一一一一一这个五位数能被44整除,那么个位,百位各应该是几?
【例6】能被11整除,首位数字是6,其余各位数字均不相同的最大与最小六位数分别是几?
数的整除专项练习:
1、五位数6A25B 一一一一一一一一的A ,B 各是什么数字时,这个五位数能被75整除?问:这样的五位数共有几个?
2、在
内填上合适的数使七位数
能被72
整除。
3、在1978后面补上三个数字,组成一个七位数,使它能同时被3,4,5整除,并且使这个数尽可能小。
4能被11整除,求这个六位数。
5、能被11整除,首位数字是6,其余各位数字均不相同的最大和最小六位数分别是几?
6、一个六位数37A46B 一一一一一一一一
是99的倍数,求这个数除以33的商。
7、在15整除?填上什么数字就能被45整除?填上什么数字就能被21整除?
8、四年级有72名学生,共交5月份课间营养加餐费。
平均每人交多少钱?
9、四位数能被2和3中应填()。
10、在下列各数中,能被3整除,又能被11整除的是()。
1001 2375 1155 3772 1515 8415
11、在里填上适当的数字,使这个数能同时被2、5、9整除。
12、一个数能被11整除,首位数字是7,其余各位数字各不相同的最小六位数是什么?
13能被33整除,那么这个六位数是多少?
14、能同时被9、25、8整除的7,这个七位数是多少?
15、五位数2A89B 一一一一一一一
能同时被4和9整除,求这样的五位数。
16、自然数1—100中,共有多少个不能被3或11整除的数?
17、判断306741, 3287690 能否被7整除,能否被13整除?
18、五(1)班数学测验平均分90分,总分A86B 一一一一一一。
问这个班多少名同学?
19、七位数72AAABB 是6的倍数,问,这样的七位数有几个?
20、在1—100这100个自然数中,不能被2整除,或者不能被3整除,不能被5整除的数有几个?
质数与合数,分解质因数
1、质数:只能被1或它本身整除的自然数。
合数:除了能被1和它本身整除外还能被其他一些自然数整除的数。
2、质数除了2以外,其余的全都是奇数。
3、100以内质数顺口溜:二、三、五、七、一十一,
一三、一九、一十七,
二三、二九、三十七,
三一、四一、四十七,
四三、五三、五十九,
六一、七一,六十七,
七三、八三,八十九,
还有七九,九十七。
【例1】A是一个质数,而且A+6,A+8,A+12,A+14都是质数,求A。
【例2】有一个长方体,它的正面和上面的面积之和是143,如果它的长、宽、高都是质数。
那么这个长方体的体积是多少?
【例3】有4名同学参加数学夏令营,他们的年龄恰好一个比一个大1岁,而他们年龄的乘积是17160.他们分别是多少岁?
【例4】写出从小到大的五个质数,要求后面的质数都比它前面一个质数大12。
【例5】(1)如果两个质数的和是1999,那么这两个质数的积是多少?
(2)如果三个质数和是130,那么这三个质数的积最大是多少?
【例6】小瑜同学参加高年级数学竞赛,她的成绩、名次及年龄的乘积是3492。
问:小瑜的年龄、名次、成绩各是多少?
分解质因数专项练习:
1、写出50以内5个连续自然数,要求每个数都是合数。
2、把一个一位数的质数A,写在另一个两位数质数B的后面,得到一个新的三位数,这个三位数是A的119倍,求A和B。
3、一个整数a 与720相乘是一个完全平方数,求a的最小值。
4、有五位同学的年龄恰好一个比一个大一岁,五个人的年龄乘积是95040。
问:这五个同学的年龄各是多少?
5、一个质数的3倍与另一个质数的2倍之和为100,求这两个质数的积是多少?
6、岸上有867名学生,准备乘船到对岸,来了一批小船,每船载人数相等,3次往返把学生全部运到对岸。
有多少只船?每船每次载多少人?
7、用2,3,4,5中的3个数码能组成的三位质数是()。
8、已知M×N+5=ᵡ,其中M,N,为质数,而且都小于1000,ᵡ为奇数,问ᵡ最大是多少?
9、3个质数的和是能被2、3整除的最小三位数,这3个质数的积最小是多少?最大是多少?
10、长方体的体积是2100立方厘米,它的高是10厘米,长和宽都大于高。
求长方体的长和宽各是多少?
11、一个长方体,它的正面和上面面积之和是299平方厘米,如果它的长、宽、高都是质数,那么这个长方体的体积是多少?
奇偶数分析:
1、能被2整除的自然数叫偶数,不能被2整除的自然数叫奇数。
依据因数、被除数、除数的奇偶性可判断积、商的奇偶性;依据加数、被减数、减数的奇偶性可判断和、差的奇偶性。
2、奇、偶数的运算性质:奇数±奇数=偶数;偶数±偶数=偶数;奇数±偶数=奇数;奇数×奇数=奇数;偶数×偶数=偶数,偶数×奇数=偶数;奇数个奇数的和(或差)是奇数;偶数个奇数的和(或差)是偶数;任意个偶数和是偶数;奇数的连乘积是奇数;因数中有一个偶数,积是偶数。
【例1】 1+2+3+…+1997的和是奇数还是偶数
【例2】有一本180页的故事书,从中任意撕下40张纸,这40张纸的所有页码之和能否等于2009?请说明理由。
【例3】某次数学竞赛,试卷共有30道题,评分方法是:答对一题得5分,不答得1分,答错倒扣1分。
问:某班参加数学竞赛同学的总分是奇数还是偶数?
【例4】有11只杯口向上的杯子放在桌上,每次将其中8只杯同时翻转,使其杯口向下,能否经过若干次翻动后,11只杯口全部向下?
【例5】幼儿园有25名小朋友,坐成5行5列。
每个座位的前后左右的位置叫做这个位置的邻座。
如果想让每一个小朋友都换到邻座上去,能成功吗?为什么?
【例6】某展览馆共有36个陈列室,相邻两室之间都有门通行,有人希望每个展览馆只去一次,你能帮他设计参观路线吗?
奇偶数分析专项练习:
1、25人参加羽毛球比赛,能不能让每个队员都恰好与另5个球员各赛一场,为什么?
2、电影院小放映厅有50个观众,坐成10行5列。
每个座位的前后左右的位置叫做这个位置的邻座。
如果想让每一个观众都换到邻座上去,能成功吗?为什么?
3、从1—1995中,共有多少个奇数?多少个偶数?
4、(1+2+3+4+5+...+99+100)×(1+2+2+3+3+3+4+4+4+4+...+11)的积是奇数还是偶数?
5、49个学生做游戏,每一次都有8个学生向后转。
能不能经过若干次的向后转,使每个学生全部都转过身去?
6、五年级二班参加数学竞赛,试题共有50道。
评分标准是:答对一题得3分,不答得1分,答错倒扣1分。
问:请你说明这个班参加数学竞赛同学的总分一定是偶数。
7、能不能用8张1×3的长方形纸片完全盖住下面的图。
8、正方形的展厅如下图,共分16个展室,每个展室之间互通,你能不能设计一条路线,使参观的人不重复地走完全部展室?。