2019-2020学年度最新高中数学人教A版必修三教学案:第一章第2节第3课时循环语句-含答案
- 格式:doc
- 大小:1.99 MB
- 文档页数:16
2019-2020年高中数学人教A版必修3教学案:第一章1-1 1-1-2 第二课时条件结构(含解析)(1)什么是条件结构?(2)条件结构有几种形式?[新知初探]1.条件结构算法的流程根据条件是否成立有不同的流向,处理上述过程的结构就是条件结构.2.条件结构的程序框图的两种形式及特征名称形式一形式二结构形式特征两个步骤A,B根据条件选择一个执行根据条件是否成立选择是否执行步骤A[小试身手]1.下列关于条件结构的说法中正确的是()A.条件结构的程序框图有一个入口和两个出口B.无论条件结构中的条件是否满足,都只能执行两条路径之一C.条件结构中的两条路径可以同时执行D.对于一个算法来说,判断框中的条件是唯一的解析:选B条件结构只能执行判断框中的两条路径之一.2.下列问题的算法宜用条件结构表示的是()A.求点P(-1,3)到直线3x-2y+1=0的距离B.由直角三角形的两条直角边求斜边预习课本P10~12,思考并完成以下问题C.解不等式ax+b>0(a≠0)D.计算100个数的平均数解析:选C A、B、D只需顺序结构即可.3.根据如图所示的程序框图,使得当成绩不低于60分时,输出“及格”,当成绩低于60分时,输出“不及格”,则()A.框1中填“是”,框2中填“否”B.框1中填“否”,框2中填“是”C.框1中填“是”,框2中可填可不填D.框2中填“否”,框1中可填可不填解析:选A成绩不低于60分时输出“及格”,即x≥60时满足条件,故框1填“是”,框2填“否”.4.如图所给的程序框图描述的算法的运行结果是()A.-5B.5C.-1 D.-2解析:选A∵x=-1<0,∴y=3×(-1)-2=-5.[典例] (1)如图所示的程序框图,其功能是( ) A .输入a ,b 的值,按从小到大的顺序输出它们的值 B .输入a ,b 的值,按从大到小的顺序输出它们的值 C .求a ,b 中的最大值 D .求a ,b 中的最小值(2)对任意非零实数a ,b ,若a ⊗b 的运算原理如程序框图所示,则3⊗2=________.[解析] (1)取a =1,b =2知,该程序框图输出b =2,因此是求a ,b 中的最大值. (2)由于a =3,b =2, 则a ≤b 不成立, 则输出a +1b =3+12=2.[答案] (1)C (2)2条件结构读图的策略(1)理清所要实现的算法的结构特点和流程规则,分析其功能. (2)结合框图判断所要填入的内容或计算所要输出或输入的值.[活学活用]1.一个算法的程序框图如图所示,则该程序框图的功能是( ) A .求a ,b ,c 三数中的最大数 B .求a ,b ,c 三数中的最小数 C .将a ,b ,c 按小到大排列 D .将a ,b ,c 按从大到小排列解析:选B 经判断框中a >b 处理后a 是a ,b 中的较小者,经判断框a >c 处理后,a 是a ,c 中的较小者,结果输出a ,即a 是a ,b ,c 中的最小数.2.如图,函数f (x )=2x ,g (x )=x 2,若输入的x 值为3,则输出的h (x )的值为________.解析:由框图可知,当x =3时,f (3)=23=8,g (3)=32=9,∴f (3)<g (3),∴h (3)=g (3)=9,故输出的值为9.答案:9条件结构的算法与框图的设计[典例] 已知函数y =⎩⎨⎧1x ,x >0,1x 2,x <0,设计一个算法的程序框图,计算输入x 的值,输出y 的值.[解] 根据题意,其自然语言算法如下: 第一步,输入x .第二步,判断x >0是否成立,若是,则输出y =1x ,结束算法;若不是,则判断x <0是否成立,若是,则输出y =1x2,结束算法;若不是,也结束算法.程序框图如图所示:设计条件结构框图的思路(1)先设计算法,再把算法步骤转化为框图的形式.(2)凡是先根据条件作出判断,再决定进行哪一个步骤的问题,在画算法框图时,都必须引入判断框,采用条件结构.(3)在画出条件结构的框图后,可通过检查各条件分支与已知描述情况是否对应来判断所画框图是否正确.[活学活用]设计程序框图,输入x 的值,求函数y =⎩⎪⎨⎪⎧x 2,x ≥0,-x 2,x <0的值. 解:算法如下: 第一步,输入x 的值.第二步,判断x 的大小.若x ≥0,则y =x 2; 否则,y =-x 2. 第三步,输出y 的值. 程序框图如图:条件结构的实际应用[典例] 为了加强居民的节水意识,某市制定了以下生活用水收费标准:每户每月用水未超过7立方米时,每立方米收费1.0元,并加收每立方米0.2元的城市污水处理费;超过7立方米的部分,每立方米收费1.5元,并加收每立方米0.4元的城市污水处理费.设某户每月用水量为x 立方米,应缴纳水费y 元,请你设计一个输入用水量、输出应缴水费额的算法,画出程序框图.[解] y 与x 之间的函数关系式为y =⎩⎪⎨⎪⎧1.2x ,0≤x ≤7,1.9x -4.9,x >7. 算法设计如下:第一步,输入每月用水量x (x ≥0).第二步,判断输入的x 是否超过7,若x >7,则应缴纳水费y =1.9x -4.9;否则应缴纳水费y =1.2x .第三步,输出应缴水费y . 程序框图如图所示:设计程序框图解决实际问题的步骤(1)读懂题意,分析已知与未知的关系; (2)概括题意写出表达式; (3)设计算法步骤;(4)根据算法步骤画出程序框图.[活学活用]某居民区的物业部门每月向居民收取卫生费,计费方法如下:3人和3人以下的住户,每户收取5元;超过3人的住户,每超出1人加收1.2元.设计一个算法,根据输入的人数,计算应收取的卫生费,并画出程序框图.解:设费用用y (元)表示,人数用x 表示,则y =⎩⎪⎨⎪⎧5,x ≤3,5+1.2(x -3),x >3.算法如下: 第一步,输入x .第二步,若x ≤3,则y =5;否则执行第三步. 第三步,y =5+1.2(x -3). 第四步,输出y . 程序框图如图所示:[层级一 学业水平达标]1.如图是算法流程图的一部分,其算法的逻辑结构是( )A .顺序结构B .条件结构C .判断结构D .以上都不对解析:选B 此逻辑结构是条件结构. 2.给出以下四个问题:①输入一个数x ,输出它的相反数. ②求面积为6的正方形的周长. ③求三个数a ,b ,c 中的最大数.④求函数f (x )=⎩⎪⎨⎪⎧x -1,x ≥0,x +2,x <0的函数值.其中不需要用条件结构来描述其算法的有( ) A .1个 B .2个 C .3个D .4个解析:选B 语句①不需要对x 进行判断,所以不需要用条件结构来描述算法;语句②不需要进行判断,不需要使用条件语句;语句③要比较两个数的大小,需要用到条件结构;语句④为分段函数,需要判断x 的取值范围,所以需要用到条件结构来描述算法.3.一个算法的程序框图如图所示,当输出的结果为8时,输入的x 的值为________.解析:由y =x 2-1=8,得x =±3<5,而由y =2x 2+2=8,得x =±3<5,不合题意,故输入的x 的值为3或-3.答案:±34.如图所示的程序框图,输入x =2,则输出的结果是________.解析:通过程序框图可知本题是求函数y =⎩⎪⎨⎪⎧x +2,x >1,x +1,x ≤1的函数值,根据x =2可知y =2+2=2.答案:2[层级二 应试能力达标]1.给出一个如图所示的程序框图,若要使输入x 的值与输出y 的值相等,则这样的x 的值的个数是( )A .1B .2C .3D .4解析:选C 当x ≤2时,y =x 2=x ,解得x 1=0,x 2=1;当2<x ≤5时,y =2x -3=x ,解得x 3=3;当x >5时,y =1x=x ,解得x =±1(舍去),故x 的值可以为0,1,3.2.程序框图如图所示,若输出的y =0,那么输入的x 为( )A .-3,0B .-3,-5C .0,-5D .-3,0,-5解析:选A 由框图知,当x =-3,0时,输出的y 值均为0.3.某程序框图如图所示,现输入如下四个函数,则可以输出的函数是( )A .f (x )=x 2B .f (x )=1xC .f (x )=ln x +2x -6D .f (x )=x 3+x解析:选D 由框图可知,当输入的函数f (x )为奇函数且存在零点时,才可输出f (x ),由选项可知,仅f (x )=x 3+x 同时满足这两个条件,故选D.4.已知函数y =⎩⎪⎨⎪⎧log 2x ,x ≥2,2-x ,x <2.图中表示的是给定x 的值,求其对应的函数值y 的程序框图①处应为( )A .x <2?B .x >2?C .x ≠2?D .x =2?解析:选A 框图中的①就是分段函数解析式两种形式的判断条件,故①应为x <2?,故选A.5.已知函数f (x )=|x -3|,以下程序框图表示的是给定x 值,求其相应函数值的算法.请将该程序框图补充完整.其中①处应填________,②处应填________.解析:由f (x )=|x -3|=⎩⎪⎨⎪⎧x -3,x ≥3,3-x ,x <3及程序框图知,①处可填x <3?,②处应填y =x -3.答案:x <3? y =x -36.如图所示的算法功能是________.解析:根据条件结构的定义, 当a ≥b 时,输出a -b ; 当a <b 时,输出b -a . 故输出|b -a |. 答案:计算|b -a |7.某铁路客运部门规定甲、乙两地之间旅客托运行李的费用为c =⎩⎪⎨⎪⎧0.53ω,ω≤50,50×0.53+(ω-50)×0.85,ω>50,其中ω(单位:kg)为行李的质量.设计程序框图,输入行李质量,计算费用c (单位:元).解:程序框图如下:8.用程序框图表示解方程ax +b =0(a ,b 为常数)的算法.解:算法设计如下:第一步,输入a ,b 的值.第二步,判断a =0是否成立,若成立,则执行第三步;若不成立,则令x =-b a ,输出x ,结束算法.第三步,判断b =0是否成立,若成立,则输出“方程的解为R ”,结束算法;若不成立,则输出“无解”,结束算法.程序框图为:。
2019-2020学年度最新高中数学新人教版必修3教案:第1章1-1-2 第1课时程序框图、顺序结构-含答案第1课时程序框图、顺序结构1.了解程序框图的含义,理解程序框图的作用.(难点)2.掌握各种程序框和流程线的画法与功能.3.理解程序框图中的顺序结构,会用顺序结构表示算法.(重点)[基础·初探]教材整理1程序框图阅读教材P6的内容,完成下列问题.1.程序框图(1)程序框图又称流程图,是一种用程序框、流程线及文字说明来表示算法的图形.(2)在程序框图中,一个或几个程序框的组合表示算法中的一个步骤;带有方向箭头的流程线将程序框连接起来,表示算法步骤的执行顺序.2.常见的程序框、流程线及各自表示的功能在程序框图中,表示判断框的图形是( )【解析】 四个选项中的程序框依次为处理框,输入、输出框,判断框和起止框.【答案】 C教材整理2 顺序结构阅读教材P 8~P 9,完成下列问题.1.定义:顺序结构是由若干个依次执行的步骤组成的.这是任何一个算法都离不开的基本结构.2.程序框图表示为:3.顺序结构的特点语句与语句之间、框与框之间是按照从上到下的顺序进行的.上图所示虚框内是一个顺序结构,其中“步骤n ”和“步骤n +1”两个框是按顺序执行的,即只有在执行完“步骤n”后,才能接着执行“步骤n+1”.1.判断(正确的打“√”,错误的打“×”)(1)程序框图是算法的一种表现形式.()(2)一个完整的程序框图一定是以起止框开始,同时又以起止框表示结束.()(3)一个程序框图中可以没有顺序结构.()【答案】(1)√(2)√(3)×2.如图1-1-1所示的程序框图,输出的结果是S=7,则输入的A值为________.图1-1-1【解析】该程序框图的功能是输入A,计算2A+1的值.由2A+1=7,解得A=3.【答案】 3[小组合作型]A.程序框图是描述算法的语言B.程序框图中可以没有输出框,但必须要有输入框给变量赋值C.在程序框图中,一个判断框可能同时产生两种结果D.程序框图与流程图不是同一个概念【精彩点拨】根据程序框图的定义和程序框的功能判断.【尝试解答】由于算法设计时要求返回执行的结果,故必须要有输出框,对于变量的赋值可通过处理框完成,故算法设计时不一定要有输入框,因此B 错;一个判断框产生的结果是唯一的,故C错;程序框图就是流程图,所以D 错.故选A.【答案】 A1.理解程序框图中各框图的功能是解此类题的关键,用程序框图表示算法更直观、清晰、易懂.2.起止框用“”表示,是任何流程不可少的,表明程序的开始和结束.3.输入、输出框图用“”表示,可用在算法中任何需要输入、输出的位置,需要输入的字母、符号、数据都填在框内.4.处理框用“”表示,算法中处理数据需要的算式、公式等可以分别写在不同的用以处理数据的处理框内,另外,对变量进行赋值时,也用到处理框.5.判断框是唯一具有超过一个退出点的图形符号.[再练一题]1.关于程序框图的框图符号的理解,正确的是()①任何一个程序框图都必须有起止框;②输入框、输出框可以在算法中任何需要输入、输出的位置出现;③判断框是唯一具有超过一个退出点的框图符号;④对于一个程序来说,判断框内的条件是唯一的.A.1个B.2个C.3个D.4个【解析】任何一个程序都有开始和结束,从而必须有起止框;输入、输出框可以在算法中任何需要输入、输出的位置出现,判断框内的条件不是唯一的,如a>b?也可以写为a≤b?.但其后步骤需相应调整,故①②③正确,④错误.【答案】 C00计算点P到直线l的距离,并画出程序框图.|Ax0+By0+C|,给公式中【精彩点拨】可以利用点到直线的距离公式d=A2+B2的字母赋值,再代入计算.【尝试解答】用自然语言描述算法如下:第一步,输入点P的横、纵坐标x0,y0,输入直线方程的系数,即常数A,B,C.第二步,计算z1=Ax0+By0+C.第三步,计算z2=A2+B2.第四步,计算d=|z1|.z2第五步,输出d.程序框图:2.应用顺序结构表示算法的步骤(1)认真审题,理清题意,明确解决方法;(2)明确解题步骤;(3)数学语言描述算法,明确输入量、计算过程、输出量;(4)用程序框图表示算法过程.3.顺序结构在程序框图中的表现就是用流程线将程序框自上而下连接起来,按顺序执行.中间没有“转弯”,也没有“回头”,顺序结构只能解决一些简单问题.2.把直线l改为圆C:(x-a)2+(y-b)2=r2,写出求点P0(x0,y0)到圆上的点的距离最大值的算法及程序框图.【解】第一步,输入点P0的横、纵坐标x0,y0,输入圆心C的横、纵坐标a,b,圆的半径r.第二步,计算z1=(x0-a)2+(y0-b)2.第三步,计算d=z1+r.第四步,输出d.程序框图:如图仔细分析各图框内的内容及图框之间的关系,回答下面的问题:(1)该框图解决的是怎样的一个问题?(2)若最终输出的结果y1=3,y2=-2,当x取5时输出的结果5a+b的值应该是多大?(3)在(2)的前提下,输入的x值越大,输出的ax+b是不是越大,为什么?(4)在(2)的前提下,当输入的x值为多大时,输出结果ax+b等于0?图1-1-2【精彩点拨】根据程序框图的意义进行分析.【尝试解答】(1)该框图解决的是求函数f(x)=ax+b的函数值的问题.其中输入的是自变量x的值,输出的是x对应的函数值.(2)y1=3,即2a+b=3.①y2=-2,即-3a+b=-2.②由①②得a=1,b=1.所以f(x)=x+1.所以当x取5时,5a+b=f(5)=5+1=6.(3)输入的x值越大,输出的函数值ax+b越大,因为f(x)=x+1是R上的增函数.(4)令f(x)=x+1=0,得x=-1,因此当输入的x值为-1时,输出的函数值为0.由程序框图识别算法功能应注意的问题根据算法功能求输出结果,或根据输出结果求框图中某一步骤,应注意以下几点:(1)要明确各框图符号的含义及作用;(2)要明确框图的方向流程;(3)要正确认图,即根据框图说明该算法所要解决的问题.其中,明确算法功能是解决此类问题的关键.[再练一题]3.写出下列算法的功能:(1)图1-1-3(1)中算法的功能是(a>0,b>0)________.(2)图1-1-3(2)中算法的功能是__________________________.图1-1-3【答案】(1)求以a,b为直角边的直角三角形斜边c的长(2)求两个实数a,b的和[探究共研型]探究1【提示】(1)使用标准的程序框图的图形符号.(2)程序框图一般按照从上到下、从左到右的顺序画.(3)一个完整的程序框图必须有终端框,用于表示一个算法的开始和结束.(4)除判断框外,大多程序框图的图形符号只有一个进入点和一个退出点,判断框是唯一具有超过一个退出点的框图符号.(5)一种判断框是“是”与“否”两分支的判断,而且有且仅有两个结果;另外一种是多分支判断,可能有几种不同的结果.(6)在程序框图的图形符号内,用于描述的语言要简练、清楚.探究2画程序框图时,一般共分几步?【提示】画程序框图一般分三步:(1)第一步:用自然语言表述算法步骤(又称算法分析);(2)第二步:确定每一个算法步骤所含的逻辑结构,并用相应的程序框图表示;(3)第三步:将所有步骤的程序框图用流程线连接起来,并加上终端框,得到整个表示算法的程序框图.探究3程序框图与计算机程序的关系是什么?【提示】在设计计算机程序时要画出程序运行的程序框图,有了这个程序框图,再去设计程序就有了依据,从而就可以把整个程序用机器语言表述出来,因此程序框图是我们设计程序的基本和开端.1.对程序框图叙述正确的是()A.表示一个算法的起始和结束,程序框是B.表示一个算法输入和输出的信息,程序框是C.表示一个算法的起始和结束,程序框是D.表示一个算法输入和输出的信息,程序框是【解析】由程序框的算法功能可知选项C正确.【答案】 C2.根据所给的程序框图,如图1-1-4所示,输出的结果是()图1-1-4A.3B.1C .2D .0【解析】 由X =Y ,得X =2;由Y =X ,得Y =2;由Z =Y ,得Z =2. 【答案】 C3.若R =8,则如图1-1-5所示的程序框图运行后的结果为a =________.图1-1-5【解析】 由R =8得b =R2=2,a =2b =4.【答案】 44.如图1-1-6是求长方体的体积和表面积的一个程序框图,补充完整,横线处应填________.图1-1-6【解析】 根据题意,长方体的长、宽、高应从键盘输入,故横线处应填写输入框.【答案】5.写出解不等式2x+1>0的一个算法,并画出程序框图.【解】第一步,将1移到不等式的右边;;第二步,不等式的两端同乘12第三步,得到x>-12.程序框图如图所示:学业分层测评(二)程序框图、顺序结构(建议用时:45分钟)[学业达标]一、选择题1.算法的三种基本结构是()A.顺序结构、流程结构、循环结构B.顺序结构、条件结构、循环结构C.顺序结构、条件结构、嵌套结构D.顺序结构、嵌套结构、流程结构【解析】由算法的特征及结构知B正确.【答案】 B2.程序框图中,具有赋值、计算功能的是()A.处理框B.输入、输出框C.终端框D.判断框【解析】在算法框图中处理框具有赋值和计算功能.【答案】 A3.如图1-1-7程序框图的运行结果是( )图1-1-7A.52 B.32 C .-32D .-1【解析】 因为a =2,b =4,所以S =a b -b a =24-42=-32,故选C. 【答案】 C4.如图所示的程序框图是已知直角三角形两直角边a ,b 求斜边c 的算法,其中正确的是( )【解析】 A 项中,没有起始、终端框,所以A 项不正确; B 项中,输入a ,b 和c =a 2+b 2顺序颠倒,且程序框错误,所以B 项不正确;D 项中,赋值框中a 2+b 2=c 错误,应为c =a 2+b 2,左右两边不能互换,所以D 项不正确;很明显C 项正确.【答案】 C5.程序框图符号“ ”可用于( )A.输出a=10B.赋值a=10C.判断a=10 D.输入a=1【解析】图形符号“”是处理框,它的功能是赋值、计算,不是输出、判断和输入的,故选B.【答案】 B二、填空题6.下列说法正确的是________.①程序框图中的图形符号可以由个人来确定;②也可以用来执行计算语句;③输入框只能紧接在起始框之后;④长方形框是执行框,可用来对变量赋值,也可用来计算.【解析】程序框是由通用图形符号构成,并且有特殊含义,①不正确;菱形框是判断框,只能用来判断,所以②不正确;输入框可用在算法中任何需要输入的位置,所以③也不正确;由程序框的功能可知④项正确.【答案】④7.阅读程序框图如图1-1-8所示,若输入x=3,则输出y的值为________.图1-1-8【解析】输入x=3,则a=2×32-1=17,b=a-15=17-15=2,y=a×b =17×2=34,则输出y的值为34.【答案】348.如图1-1-9所示的程序框图,若输出的结果是2,则输入的m=________.图1-1-9【解析】根据程序框图知,lg m=2,故m=100.【答案】100三、解答题9.写出求函数y=2x+3图象上任意一点到原点的距离的算法,并画出相应的程序框图.【解】算法如下:第一步,输入横坐标的值x.第二步,计算y=2x+3.第三步,计算d=x2+y2.第四步,输出d.程序框图:10.如图1-1-10所示的程序框图,要使输出的y的值最小,则输入的x的值应为多少?此时输出的y的值为多少?图1-1-10【解】 将y =x 2+2x +3配方,得y =(x +1)2+2,要使y 的值最小,需x =-1,此时y min =2.故输入的x 的值为-1时,输出的y 的值最小为2.[能力提升]1.如图1-1-11所示的是一个算法的程序框图,已知a 1=3,输出的b =7,则a 2等于( )图1-1-11A .9B .10C .11D .12【解析】 由题意知该算法是计算a 1+a 22的值, 所以3+a 22=7,得a 2=11.故选C. 【答案】 C2.给出如图1-1-12程序框图:图1-1-12若输出的结果为2,则①处的执行框内应填的是()A.x=2B.b=2C.x=1D.a=5【解析】因结果是b=2,所以2=a-3,即a=5.当2x+3=5时,得x=1.故选C.【答案】 C3.写出图1-1-13中算法的功能.图1-1-13【解】求过横坐标不相同的两点(x1,y1),(x2,y2)的直线的斜率k.4.如图1-1-14所示的程序框图,当输入的x的值为0和4时,输出的值相等,根据该图和下列各小题的条件回答下面的几个问题.图1-1-14(1)该程序框图解决的是一个什么问题?(2)当输入的x的值为3时,求输出的f(x)的值.(3)要想使输出的值最大,求输入的x的值.【解】(1)该程序框图解决的是求二次函数f(x)=-x2+mx的函数值的问题.(2)当输入的x的值为0和4时,输出的值相等,即f(0)=f(4).因为f(0)=0,f(4)=-16+4m,所以-16+4m=0,所以m=4,所以f(x)=-x2+4x.因为f(3)=-32+4×3=3,所以当输入的x的值为3时,输出的f(x)的值为3.(3)因为f(x)=-x2+4x=-(x-2)2+4,当x=2时,f(x)max=4,所以要想使输出的值最大,输入的x的值应为2.。
2019-2020学年度最新高中数学新人教版必修3教案:第1章1-1-2 第2课时条件结构-含答案1.了解条件结构的概念,并明确其执行过程.(重点)2.理解条件结构在程序框图中的作用.(难点)3.会用条件结构设计程序框图解决有关问题.(易错易混点)[基础·初探]教材整理1条件结构的概念阅读教材P10例4前面的内容,完成下列问题.在一个算法中,经常会遇到一些条件的判断,算法的流程根据条件是否成立有不同的流向.条件结构就是处理这种过程的结构.判断(正确的打“√”,错误的打“×”)(1)条件结构是一种重要的基本逻辑结构,任何算法都离不开它.()(2)条件结构的条件需要放在判断框内,判断框有两个出口,根据条件的成立与否,要走不同的出口.()(3)条件结构的判断框有两个出口,所以执行条件结构后的结果不唯一.()【答案】 (1)× (2)√ (3)×教材整理2 条件结构程序框图的形式与特征阅读教材P 10例4前面的内容,完成下列问题.是否成立,选择不同的执行框(步骤A 、步骤B ),无论条件是否成立,都要执行步骤A 和步骤B 之一,但不可能既执行步骤A 又执行步骤B ,也不可能步骤A 和步骤B 都不执行.(2)在单条件结构中,步骤A 和步骤B 可以有一个是空的,即不执行任何操作.1.判断给出的整数n 是否为偶数,设计程序框图时所含有的基本逻辑结构是( )A .顺序结构B .条件结构C .顺序结构、条件结构D .以上都不正确【解析】 任何程序框图中都有顺序结构.当n 能被2整除时,n 是偶数;否则,n 不是偶数,所以必须用条件结构来解决.故选C.【答案】 C2.如图1-1-15所示,若输入x =-1,则输出y =________.图1-1-15【解析】 ∵-1<3,∴y =4-(-1)=5.【答案】 5[小组合作型](1)( )图1-1-16A .顺序结构B .条件结构C .判断结构D .以上都不对 (2)给出以下四个问题:①输入一个数x ,输出它的相反数;②求面积为6的正方形的周长;③求三个数a ,b ,c 中的最大数;④求函数f (x )=⎩⎨⎧x -1,x ≥0,x +2,x <0的函数值. 其中不需要用条件结构来描述其算法的有( )A.1个B.2个C.3个D.4个【精彩点拨】根据顺序结构与条件结构的特点判断.【尝试解答】(1)此逻辑结构是条件结构.(2)语句①不需要对x进行判断,所以不需要用条件结构来描述算法;语句②不需要进行判断,不需要使用条件语句;语句③要比较两个数的大小,需要用到条件结构;语句④为分段函数,需要判断x的范围,所以需要用到条件结构来描述算法.【答案】(1)B(2)B条件结构不同于顺序结构的地方:它不是依次执行操作指令进行运算,而是依据条件作出逻辑判断,选择执行不同指令中的一个.一般地,这里的判断主要是判断“是”或“否”,即判断是否符合条件的要求,因而它有一个入口和两个出口,但最后还是只有一个终结口.[再练一题]1.条件结构不同于顺序结构的特征是含有()A.处理框B.判断框C.输入、输出框D.起止框【解析】由于顺序结构中不含判断框,而条件结构中必须含有判断框,故选B.【答案】 B111222画出程序框图.【精彩点拨】先对x1,x2是否相等进行判断,然后利用斜率公式.【尝试解答】算法如下:第一步,输入x1,y1,x2,y2.第二步,如果x1=x2,输出“斜率不存在”;否则,k=y2-y1x2-x1.第三步,输出k.程序框图如图所示:1.已知两点求直线斜率,若条件中已知x1≠x2,则只用顺序结构即可解决问题;若无限制条件,必须分类讨论应用条件结构解决问题.2.程序框图中的判断框内的内容x1=x2,也可改为x1≠x2,此时相应地与“是”、“否”相连的图框必须对换.3.解决这类问题时,首先对问题设置的条件作出判断,设置好判断框内的条件,然后根据条件是否成立选择不同的流向.[再练一题]2.设计求一个数的绝对值的算法并画出程序框图.【解】算法如下:第一步,输入实数x.第二步,若x≥0,则y=x;若x<0,则y=-x.第三步,输出y.程序框图如图所示:1,c=5,则输出结果为________.图1-1-17【精彩点拨】该程序框图的功能是找出三个数中最小的数,所以逐一比较两数的大小即可.【尝试解答】因为a=2,b=-1,c=5,所以根据程序框图可知,先令x =a,即x=2.再比较x与b的大小,因为x>b,所以令x=b,即x=-1,然后比较x与c的大小,因为x<c,所以直接输出x,故输出结果为-1.【答案】-1条件结构读图要注意:(1)理清所要实现的算法的结构特点和流程规则,分析其功能.(2)结合框图判断所要填入的内容或计算所要输出或输入的值.[再练一题]3.某市出租车的起步价为8元(含3千米),超过3千米的里程每千米收2.6元,另外每车次超过3千米收燃油附加费1元(不考虑其他因素).相应的收费系统的程序框图如图1-1-18所示,则(1)处应填________,(2)处应填________.图1-1-18【解析】当x>3时,y=8+2.6(x-3)+1=9+2.6(x-3)=2.6x+1.2;当x≤3时,y=8.【答案】y=2.6x+1.2y=8[探究共研型]探究1【提示】 1.条件结构是依据指定条件选择执行不同指令的控制结构.2.条件结构主要用在需要根据条件进行判断的算法中,如分段函数的求值、比较数据的大小关系等.探究2 一个判断框有两条流出线,能说条件结构执行的结果不唯一吗?【提示】 一个判断框有两个退出点,但根据判断条件是否成立,选择的退出点是确定的,所以条件结构执行的结果是唯一的,即条件结构只有一个退出点,不能将判断框的退出点和条件结构的退出点混为一谈.探究3 在条件结构中,“条件”可以改变吗?【提示】 求分段函数的函数值的程序框图画法不唯一,判断框内的内容可以改变,但相应处理框的内容也要发生改变.“特快专递”是目前人们经常使用的异地邮寄信函或托运物品的一种快捷方式.某快递公司规定甲、乙两地之间物品的托运费用根据下列方法计算:f =⎩⎨⎧0.53ω, ω≤50,50×0.53+(ω-50)×0.85, ω>50. 其中f (单位:元)为托运费,ω为托运物品的重量(单位:千克).试设计计算费用f 的算法并画出程序框图.【精彩点拨】 在计算费用f 时,需要讨论ω与50的大小.所以要用条件结构画程序框图.【尝试解答】 算法步骤如下:第一步,输入物品的重量ω.第二步,如果ω≤50,则令f =0.53ω,否则执行第三步.第三步,f =50×0.53+(ω-50)×0.85.第四步,输出托运费f .程序框图如下:[再练一题]4.设火车托运质量为w (kg)的行李时,每千米的费用(单位:元)标准为: f =⎩⎨⎧0.4w , w ≤30,0.4×30+0.5(w -30), w >30, 试画出路程为s 千米时,行李托运费用M 的程序框图.【解】 算法如下:第一步:输入物品质量w 、路程s ,第二步:若w >30.那么f =0.4×30+0.5(w -30);否则,f =0.4w .第三步:计算M =s ×f .第四步:输出M .程序框图如图所示:探究4 什么是条件结构的嵌套?有哪些特征?【提示】 所谓嵌套,是指条件结构内,又套有小的分支,对条件进行二次或更多次的判断.常用于一些分段函数的求值问题.一般地,如果是分三段的函数,则需要引入两个判断框;如果是分四段的函数,则需要引入三个判断框;以此类推.探究5 在条件结构的嵌套中,判断框中的条件是唯一的吗?【提示】 不是.在具体的程序设计中,这里的条件可以不同,但相应的条件下对应的结果是相同的.因此对于一个具体问题,编写的程序可以是不一样的.已知函数y =f (x )=⎩⎨⎧ 1, x >0,0, x =0,-1, x <0,试写出求该函数的函数值的算法,并画出程序框图.【精彩点拨】 解答本题可先对x 的值进行判断,然后根据不同情况y 取不同的值.【尝试解答】 算法如下:第一步,输入x .第二步,判断x >0是否成立,若成立,则y =1,转执行第四步;若不成立,则执行第三步.第三步,判断x =0是否成立,若成立,则y =0,转执行第四步;否则y =-1,执行第四步.第四步,输出y .程序框图:1.下列关于条件结构的说法中正确的是()A.条件结构的程序框图有一个入口和两个出口B.无论条件结构中的条件是否满足,都只能执行路径之一C.条件结构中两条路径可以同时执行D.对于一个算法来说,判断框中条件是唯一的【解析】根据条件结构的特征可知,选B.【答案】 B2.如图1-1-19所示的程序框图,其功能是()图1-1-19A.输入a,b的值,按从小到大的顺序输出它们的值B.输入a,b的值,按从大到小的顺序输出它们的值C.求a,b的最大值D.求a,b的最小值【解析】取a=1,b=2知,该程序框图输出b=2,因此是求a,b的最大值.【答案】 C3.如图1-1-20所示的程序框图,输入x =2,则输出的结果是________.图1-1-20【解析】 通过程序框图可知本题是求函数y =⎩⎪⎨⎪⎧x +2,x >1,x +1,x ≤1的函数值,根据x =2可知y =2+2=2.【答案】 24.已知函数y =⎩⎨⎧log 2x ,x ≥2,2-x ,x <2.如图1-1-21表示的是给定x 的值,求其对应的函数值y 的程序框图.图1-1-21①处应填写________;②处应填写________.【解析】 由框图可知只要满足①中的条件则对应的函数解析式为y =2-x ,故此处应填写x <2?,则②处应填写y =log 2x .【答案】 x <2? y =log 2x5.某居民区的物业管理部门每月向居民收取卫生费,计费方法是:3人和3人以下的住户,每户收取5元;超过3人的住户,每超出一人加收1.2元.设计一个算法,根据住户的人数,计算应收取的卫生费,并画出程序框图.【解】算法如下:第一步,输入x.第二步,若x≤3,则y=5;否则,y=5+1.2(x-3).第三步,输出y.程序框图如图所示:学业分层测评(三)条件结构(建议用时:45分钟)[学业达标]一、选择题1.下列算法中含有条件结构的是()A.求点到直线的距离B.已知三角形三边长求面积C.解一元二次方程x2+bx+4=0(b∈R)D.求两个数的平方和【解析】A、B、D均为顺序结构,由于解一元二次方程时需判断判别式值的符号,故C选项要用条件结构来描述.【答案】 C2.下列关于条件结构的描述,不正确的是()A.条件结构的出口有两个,但在执行时,只有一个出口是有效的B.条件结构的判断条件要写在判断框内C.条件结构只有一个出口D.条件结构根据条件是否成立,选择不同的分支执行【解析】条件结构的出口有两个,算法的流程根据条件是否成立有不同的流向.【答案】 C3.若f(x)=x2,g(x)=log2x,则如图1-1-22所示的程序框图中,输入x=0.25,输出h(x)=()图1-1-22A.0.25B.2C.-2D.-0.25【解析】h(x)取f(x)和g(x)中的较小者.g(0.25)=log20.25=-2,f(0.25)=0.252=1 16.【答案】 C4.若输入-5,按图1-1-23中所示程序框图运行后,输出的结果是()图1-1-23A.-5 B.0C.-1 D.1【解析】因为x=-5,不满足x>0,所以在第一个判断框中执行“否”,在第2个判断框中,由于-5<0,执行“是”,所以得y=1.【答案】 D5.下列算法中,含有条件结构的是()A.求两个数的积B.求点到直线的距离C.解一元二次方程D.已知梯形两底和高求面积【解析】解一元二次方程时,当判别式Δ<0时,方程无解,当Δ≥0时,方程有解,由于分情况,故用到条件结构.【答案】 C二、填空题6.如图1-1-24所示,是求函数y=|x-3|的函数值的程序框图,则①处应填________,②处应填________.图1-1-24【解析】 ∵y =|x -3|=⎩⎪⎨⎪⎧x -3, x ≥3,3-x , x <3.∴①中应填x <3? 又∵若x ≥3,则y =x -3. ∴②中应填y =x -3. 【答案】 x <3? y =x -37.如图1-1-25所示的算法功能是________.图1-1-25【解析】 根据条件结构的定义, 当a ≥b 时,输出a -b ; 当a <b 时,输出b -a . 故输出|b -a |的值. 【答案】 计算|b -a |8.如图1-1-26是求某个函数的函数值的程序框图,则满足该程序的函数的解析式为________.图1-1-26【解析】 由框图可知f (x )=⎩⎪⎨⎪⎧2x -3,x <0,5-4x ,x ≥0.【答案】 f (x )=⎩⎨⎧2x -3,x <0,5-4x ,x ≥0三、解答题9.写出输入一个数x ,求分段函数y =⎩⎨⎧ x ,e x,x ≥0,x <0的函数值的程序框图.【解】 程序框图如图所示:10.设计一个程序框图,使之能判断任意输入的数x 是奇数还是偶数. 【解】 程序框图如下:[能力提升]1.根据图1-1-27中的流程图操作,使得当成绩不低于60分时,输出“及格”,当成绩低于60分时,输出“不及格”,则()图1-1-27A.①框中填“是”,②框中填“否”B.①框中填“否”,②框中填“是”C.①框中填“是”,②框中可填可不填D.①框中填“否”,②框中可填可不填【解析】当x≥60时,应输出“及格”;当x<60时,应输出“不及格”.故①中应填“是”,②中应填“否”.【答案】 A2.执行如图1-1-28所示的程序框图,如果输入t∈[-1,3],则输出的s属于()图1-1-28A .[-3,4]B .[-5,2]C .[-4,3]D .[-2,5]【解析】 因为t ∈[-1,3],当t ∈[-1,1)时,s =3t ∈[-3,3);当t ∈[1,3]时,s =4t -t 2=-(t 2-4t )=-(t -2)2+4∈[3,4],所以s ∈[-3,4].【答案】 A3.某程序框图如图1-1-29所示,若输出的结果是8,则输入的数是________.图1-1-29【解析】 由程序框图知,⎩⎪⎨⎪⎧ x 2≥x 3,x 2=8或⎩⎪⎨⎪⎧x 2<x 3,x 3=8,解得x =-22或x =2. 【答案】 -22或24.如图1-1-30所示是某函数f (x )给出x 的值,求相应函数值y 的程序框图.图1-1-30(1)写出函数f (x )的解析式;(2)若输入的x 取x 1和x 2(|x 1|<|x 2|)时,输出的y 值相同,试简要分析x 1与x 2的取值范围.【解】 (1)f (x )=⎩⎪⎨⎪⎧x 2-1,|x |≥1,1-x 2,|x |<1.(2)画出y =f (x )的图象:由图象及y =f (x )为偶函数,且|x 1|<|x 2|时,f (x 1)=f (x 2)知x 1∈(-1,1),x 2∈[-2,-1)∪(1,2].21 / 21。
目录第一章算法初步 (2)第1课时算法的概念 (2)第2、3课时程序框图 (7)第4课时输入、输出语句和赋值语句 (14)第5、6课时条件语句和循环语句 (19)第7、8课时辗转相除法与更相减损术 (25)第9、10课时秦九韶算法与排序 (29)第11课时进位制 (32)第12课时复习课 (36)第二章统计 (41)第1课时简单随机抽样 (41)第2课时系统抽样 (43)第3课时分层抽样 (46)第4课时用样本的频率分布估计总体分布 (49)第5课时用样本的数字特征估计总体的数字特征 (53)第三章概率 (56)第1、2课时随机事件的概率及概率的意义 (56)第3课时概率的基本性质 (59)第4、5课时古典概型及随机数的产生 (61)第6课时几何概型及均匀随机数的产生 (66)第一章算法初步第1课时算法的概念一、教学目标:1、知识与技能:(1)了解算法的含义,体会算法的思想。
(2)能够用自然语言叙述算法。
(3)掌握正确的算法应满足的要求。
(4)会写出解线性方程(组)的算法。
(5)会写出一个求有限整数序列中的最大值的算法。
(6)会应用Scilab求解方程组。
2、过程与方法:通过求解二元一次方程组,体会解方程的一般性步骤,从而得到一个解二元一次方程组的步骤,这些步骤就是算法,不同的问题有不同的算法。
由于思考问题的角度不同,同一个问题也可能有多个算法,能模仿求解二元一次方程组的步骤,写出一个求有限整数序列中的最大值的算法。
3、情感态度与价值观:通过本节的学习,使我们对计算机的算法语言有一个基本的了解,明确算法的要求,认识到计算机是人类征服自然的一各有力工具,进一步提高探索、认识世界的能力。
二、重点与难点:重点:算法的含义、解二元一次方程组和判断一个数为质数的算法设计。
难点:把自然语言转化为算法语言。
三、学法与教学用具:学法:1、写出的算法,必须能解决一类问题(如:判断一个整数n(n>1)是否为质数;求任意一个方程的近似解;……),并且能够重复使用。
第一章算法初步算法与程序框图1.1.1 算法的概念授课时间:第周年月日(星期)教学分析算法在中学数学课程中是一个新的概念,但没有一个精确化的定义,教科书只对它作了如下描述:“在数学中,算法通常是指按照一定规则解决某一类问题的明确有限的步骤.”为了让学生更好理解这一概念,教科书先从分析一个具体的二元一次方程组的求解过程出发,归纳出了二元一次方程组的求解步骤,这些步骤就构成了解二元一次方程组的算法.教学中,应从学生非常熟悉的例子引出算法,再通过例题加以巩固.三维目标1.正确理解算法的概念,掌握算法的基本特点.2.通过例题教学,使学生体会设计算法的基本思路.3.通过有趣的实例使学生了解算法这一概念的同时,激发学生学习数学的兴趣.重点难点教学重点:算法的含义及应用.教学难点:写出解决一类问题的算法.教学过程导入新课思路1(情境导入)一个人带着三只狼和三只羚羊过河,只有一条船,同船可容纳一个人和两只动物,没有人在的时候,如果狼的数量不少于羚羊的数量狼就会吃羚羊.该人如何将动物转移过河?请同学们写出解决问题的步骤,解决这一问题将要用到我们今天学习的内容——算法.思路2(情境导入)大家都看过赵本山与宋丹丹演的小品吧,宋丹丹说了一个笑话,把大象装进冰箱总共分几步?答案:分三步,第一步:把冰箱门打开;第二步:把大象装进去;第三步:把冰箱门关上.上述步骤构成了把大象装进冰箱的算法,今天我们开始学习算法的概念.思路3(直接导入)算法不仅是数学及其应用的重要组成部分,也是计算机科学的重要基础.在现代社会里,计算机已成为人们日常生活和工作中不可缺少的工具.听音乐、看电影、玩游戏、打字、画卡通画、处理数据,计算机是怎样工作的呢?要想弄清楚这个问题,算法的学习是一个开始.推进新课新知探究提出问题(1)解二元一次方程组有几种方法?(2)结合教材实例总结用加减消元法解二元一次方程组的步骤.(3)结合教材实例总结用代入消元法解二元一次方程组的步骤.(4)请写出解一般二元一次方程组的步骤.(5)根据上述实例谈谈你对算法的理解.(6)请同学们总结算法的特征.(7)请思考我们学习算法的意义.讨论结果:(1)代入消元法和加减消元法.(2)回顾二元一次方程组的求解过程,我们可以归纳出以下步骤:第一步,①+②×2,得5x=1.③第三步,②-①×2,得5y=3.④第四步,解④,得y=.第五步,得到方程组的解为(3)用代入消元法解二元一次方程组我们可以归纳出以下步骤:第一步,由①得x=2y-1.③第二步,把③代入②,得2(2y-1)+y=1.④第三步,解④得y=.⑤第四步,把⑤代入③,得x=2×-1=.第五步,得到方程组的解为(4)对于一般的二元一次方程组其中a1b2-a2b1≠0,可以写出类似的求解步骤:第一步,①×b2-②×b1,得(a1b2-a2b1)x=b2c1-b1c2.③第二步,解③,得x=.第三步,②×a1-①×a2,得(a1b2-a2b1)y=a1c2-a2c1.④第四步,解④,得y=.第五步,得到方程组的解为(5)算法的定义:广义的算法是指完成某项工作的方法和步骤,那么我们可以说洗衣机的使用说明书是操作洗衣机的算法,菜谱是做菜的算法等等.在数学中,算法通常是指按照一定规则解决某一类问题的明确有限的步骤.现在,算法通常可以编成计算机程序,让计算机执行并解决问题.(6)算法的特征:①确定性:算法的每一步都应当做到准确无误、不重不漏.“不重”是指不是可有可无的,甚至无用的步骤,“不漏” 是指缺少哪一步都无法完成任务.②逻辑性:算法从开始的“第一步”直到“最后一步”之间做到环环相扣,分工明确,“前一步”是“后一步”的前提,“后一步”是“前一步”的继续.③有穷性:算法要有明确的开始和结束,当到达终止步骤时所要解决的问题必须有明确的结果,也就是说必须在有限步内完成任务,不能无限制地持续进行.(7)在解决某些问题时,需要设计出一系列可操作或可计算的步骤来解决问题,这些步骤称为解决这些问题的算法.也就是说,算法实际上就是解决问题的一种程序性方法.算法一般是机械的,有时需进行大量重复的计算,它的优点是一种通法,只要按部就班地去做,总能得到结果.因此算法是计算科学的重要基础.应用示例思路1例1 (1)设计一个算法,判断7是否为质数.(2)设计一个算法,判断35是否为质数.算法分析:(1)根据质数的定义,可以这样判断:依次用2—6除7,如果它们中有一个能整除7,则7不是质数,否则7是质数.算法如下:(1)第一步,用2除7,得到余数1.因为余数不为0,所以2不能整除7.第二步,用3除7,得到余数1.因为余数不为0,所以3不能整除7.第三步,用4除7,得到余数3.因为余数不为0,所以4不能整除7.第四步,用5除7,得到余数2.因为余数不为0,所以5不能整除7.第五步,用6除7,得到余数1.因为余数不为0,所以6不能整除7.因此,7是质数.(2)类似地,可写出“判断35是否为质数”的算法:第一步,用2除35,得到余数1.因为余数不为0,所以2不能整除35.第二步,用3除35,得到余数2.因为余数不为0,所以3不能整除35.第三步,用4除35,得到余数3.因为余数不为0,所以4不能整除35.请写出判断n(n>2)是否为质数的算法.分析:对于任意的整数n(n>2),若用i表示2—(n-1)中的任意整数,则“判断n是否为质数”的算法包含下面的重复操作:用i除n,得到余数r.判断余数r是否为0,若是,则不是质数;否则,将i的值增加1,再执行同样的操作.这个操作一直要进行到i的值等于(n-1)为止.算法如下:第一步,给定大于2的整数n.第二步,令i=2.第三步,用i除n,得到余数r.第四步,判断“r=0”是否成立.若是,则n不是质数,结束算法;否则,将i的值增加1,仍用i表示.第五步,判断“i>(n-1)”是否成立.若是,则n是质数,结束算法;否则,返回第三步.例2 写出用“二分法”求方程x2-2=0 (x>0)的近似解的算法.分析:令f(x)=x2-2,则方程x2-2=0 (x>0)的解就是函数f(x)的零点.“二分法”的基本思想是:把函数f(x)的零点所在的区间[a,b](满足f(a)·f(b)<0)“一分为二”,得到[a,m]和[m,b].根据“f(a)·f(m)<0”是否成立,取出零点所在的区间[a,m]或[m,b],仍记为[a,b].对所得的区间[a,b]重复上述步骤,直到包含零点的区间[a,b]“足够小”,则[a,b]内的数可以作为方程的近似解.解:第一步,令f(x)=x2-2,给定精确度d.第二步,确定区间[a,b],满足f(a)·f(b)<0.第三步,取区间中点m=.第四步,若f(a)·f(m)<0,则含零点的区间为[a,m];否则,含零点的区间为[m,b].将新得到的含零点的区间仍记为[a,b].第五步,判断[a,b]的长度是否小于d或f(m)是否等于0.若是,则m是方程的近似解;否则,返回第三步.当d=时,按照以上算法,可以得到下表.似值的一个算法.例1 一个人带着三只狼和三只羚羊过河,只有一条船,同船可容纳一个人和两只动物,没有人在的时候,如果狼的数量不少于羚羊的数量就会吃羚羊.该人如何将动物转移过河?请设计算法.分析:任何动物同船不用考虑动物的争斗但需考虑承载的数量,还应考虑到两岸的动物都得保证狼的数量要小于羚羊的数量,故在算法的构造过程中尽可能保证船里面有狼,这样才能使得两岸的羚羊数量占到优势.解:具体算法如下:算法步骤:第一步:人带两只狼过河,并自己返回.第二步:人带一只狼过河,自己返回.第三步:人带两只羚羊过河,并带两只狼返回.第四步:人带一只羊过河,自己返回.第五步:人带两只狼过河.时应精练、简练、清晰地表达,要善于分析任何可能出现的情况,体现思维的严密性和完整性.本题型解决问题的算法中某些步骤重复进行多次才能解决,在现实生活中,很多较复杂的情境经常遇到这样的问题,设计算法的时候,如果能够合适地利用某些步骤的重复,不但可以使得问题变得简单,而且可以提高工作效率.知能训练设计算法判断一元二次方程ax2+bx+c=0是否有实数根.解:算法步骤如下:第一步,输入一元二次方程的系数:a,b,c.第二步,计算Δ=b2-4ac的值.第三步,判断Δ≥0是否成立.若Δ≥0成立,输出“方程有实根”;否则输出“方程无实根”,结束算法.强调:用算法解决问题的特点是:具有很好的程序性,是一种通法.并且具有确定性、逻辑性、有穷性.让我们结合例题仔细体会算法的特点.拓展提升中国网通规定:拨打市内电话时,如果不超过3分钟,则收取话费元;如果通话时间超过3分钟,则超出部分按每分钟元收取通话费,不足一分钟按一分钟计算.设通话时间为t(分钟),通话费用y(元),如何设计一个程序,计算通话的费用.解:算法分析:数学模型实际上为:y关于t的分段函数.关系式如下:y=其中[t-3]表示取不大于t-3的整数部分.算法步骤如下:第一步,输入通话时间t.第二步,如果t≤3,那么y=;否则判断t∈Z是否成立,若成立执行y=+×(t-3);否则执行y=+×([t-3]+1).第三步,输出通话费用c.课堂小结(1)正确理解算法这一概念.(2)结合例题掌握算法的特点,能够写出常见问题的算法.作业课本本节练习1、2.程序框图与算法的基本逻辑结构整体设计授课时间:第周年月日(星期)三维目标1.熟悉各种程序框及流程线的功能和作用.2.通过模仿、操作、探索,经历通过设计程序框图表达解决问题的过程.在具体问题的解决过程中,理解程序框图的三种基本逻辑结构:顺序结构、条件结构、循环结构.3.通过比较体会程序框图的直观性、准确性.重点难点数学重点:程序框图的画法.数学难点:程序框图的画法.教学过程第1课时程序框图及顺序结构导入新课思路1(情境导入)我们都喜欢外出旅游,优美的风景美不胜收,如果迷了路就不好玩了,问路有时还听不明白,真是急死人,有的同学说买张旅游图不就好了吗,所以外出旅游先要准备好旅游图.旅游图看起来直观、准确,本节将探究使算法表达得更加直观、准确的方法.今天我们开始学习程序框图.思路2(直接导入)用自然语言表示的算法步骤有明确的顺序性,但是对于在一定条件下才会被执行的步骤,以及在一定条件下会被重复执行的步骤,自然语言的表示就显得困难,而且不直观、不准确.因此,本节有必要探究使算法表达得更加直观、准确的方法.今天开始学习程序框图.推进新课新知探究提出问题(1)什么是程序框图?(2)说出终端框(起止框)的图形符号与功能.(3)说出输入、输出框的图形符号与功能.(4)说出处理框(执行框)的图形符号与功能.(5)说出判断框的图形符号与功能.(6)说出流程线的图形符号与功能.(7)说出连接点的图形符号与功能.(8)总结几个基本的程序框、流程线和它们表示的功能.(9)什么是顺序结构?讨论结果:(1)程序框图又称流程图,是一种用程序框、流程线及文字说明来表示算法的图形.在程序框图中,一个或几个程序框的组合表示算法中的一个步骤;带有方向箭头的流程线将程序框连接起来,表示算法步骤的执行顺序.(2)椭圆形框:表示程序的开始和结束,称为终端框(起止框).表示开始时只有一个出口;表示结束时只有一个入口.(3)平行四边形框:表示一个算法输入和输出的信息,又称为输入、输出框,它有一个入口和一个出口.(4)矩形框:表示计算、赋值等处理操作,又称为处理框(执行框),它有一个入口和一个出口.(5)菱形框:是用来判断给出的条件是否成立,根据判断结果来决定程序的流向,称为判断框,它有一个入口和两(6)流程线:表示程序的流向.(7)圆圈:连接点.表示相关两框的连接处,圆圈内的数字相同的含义表示相连接在一起.(9)很明显,顺序结构是由若干个依次执行的步骤组成的,这是任何一个算法都离不开的基本结构.三种逻辑结构可以用如下程序框图表示:顺序结构条件结构循环结构应用示例例1请用程序框图表示前面讲过的“判断整数n(n>2)是否为质数”的算法.解:程序框图如下:强调:程序框图是用图形的方式表达算法,使算法的结构更清楚,步骤更直观也更精确.这里只是让同学们初步了解程序框图的特点,感受它的优点,暂不要求掌握它的画法.变式训练观察下面的程序框图,指出该算法解决的问题.解:这是一个累加求和问题,共99项相加,该算法是求的值.例2 已知一个三角形三条边的边长分别为a,b,c,利用海伦—秦九韶公式设计一个计算三角形面积的算法,并画出程序框图表示.(已知三角形三边边长分别为a,b,c,则三角形的面积为S=),其中p=.这个公式被称为海伦—秦九韶公式)算法分析:这是一个简单的问题,只需先算出p的值,再将它代入分式,最后输出结果.因此只用顺序结构应能表达出算法.算法步骤如下:第一步,输入三角形三条边的边长a,b,c.第二步,计算p=.第三步,计算S=.第四步,输出S.程序框图如下:强调:很明显,顺序结构是由若干个依次执行的步骤组成的,它是最简单的逻辑结构,它是任何一个算法都离不开的基本结构.下图所示的是一个算法的流程图,已知a1=3,输出的b=7,求a2的值.解:根据题意=7,∵a1=3,∴a2=11.即a2的值为11.知能训练有关专家建议,在未来几年内,中国的通货膨胀率保持在3%左右,这将对我国经济的稳定有利无害.所谓通货膨胀率为3%,指的是每年消费品的价格增长率为3%.在这种情况下,某种品牌的钢琴2004年的价格是10 000元,请用流程图描述这种钢琴今后四年的价格变化情况,并输出四年后的价格.解:用P表示钢琴的价格,不难看出如下算法步骤:2005年P=10 000×(1+3%)=10 300;2006年P=10 300×(1+3%)=10 609;2007年P=10 609×(1+3%)=10 ;2008年P=10 ×(1+3%)=11 ;因此,价格的变化情况表为:年份20042005200620072008钢琴的价格10 00010 30010 60910 11程序框图如下:强调:顺序结构只需严格按照传统的解决数学问题的解题思路,将问题解决掉.最后将解题步骤“细化”就可以.“细化”指的是写出算法步骤、画出程序框图.拓展提升如上给出的是计算的值的一个流程图,其中判断框内应填入的条件是______________.答案:i>10.课堂小结(1)掌握程序框的画法和功能.(2)了解什么是程序框图,知道学习程序框图的意义.(3)掌握顺序结构的应用,并能解决与顺序结构有关的程序框图的画法.作业习题1.1A 1.第2课时条件结构导入新课思路1(情境导入)我们以前听过这样一个故事,野兽与鸟发生了一场战争,蝙蝠来了,野兽们喊道:你有牙齿是我们一伙的,鸟们喊道:你有翅膀是我们一伙的,蝙蝠一时没了主意.过了一会儿蝙蝠有了一个好办法,如果野兽赢了,就加入野兽这一伙,否则加入另一伙,事实上蝙蝠用了分类讨论思想,在算法和程序框图中也经常用到这一思想方法,今天我们开始学习新的逻辑结构——条件结构.思路2(直接导入)前面我们学习了顺序结构,顺序结构像是一条没有分支的河流,奔流到海不复回,事实上多数河流是有分支的,今天我们开始学习有分支的逻辑结构——条件结构.提出问题(1)举例说明什么是分类讨论思想?(2)什么是条件结构?(3)试用程序框图表示条件结构.(4)指出条件结构的两种形式的区别.讨论结果:(1)例如解不等式ax>8(a≠0),不等式两边需要同除a,需要明确知道a的符号,但条件没有给出,因此需要进行分类讨论,这就是分类讨论思想.(2)在一个算法中,经常会遇到一些条件的判断,算法的流程根据条件是否成立有不同的流向.条件结构就是处理这种过程的结构.(3)用程序框图表示条件结构如下.条件结构:先根据条件作出判断,再决定执行哪一种操作的结构就称为条件结构(或分支结构),如图1所示.执行过程如下:条件成立,则执行A框;不成立,则执行B框.图1 图2注:无论条件是否成立,只能执行A、B之一,不可能两个框都执行.A、B两个框中,可以有一个是空的,即不执行任何操作,如图2.(4)一种是在两个“分支”中均包含算法的步骤,符合条件就执行“步骤A”,否则执行“步骤B”;另一种是在一个“分支”中均包含算法的步骤A,而在另一个“分支”上不包含算法的任何步骤,符合条件就执行“步骤A”,否则执行这个条件结构后的步骤.应用示例例1 任意给定3个正实数,设计一个算法,判断以这3个正实数为三边边长的三角形是否存在,并画出这个算法的程序框图.算法分析:判断以3个任意给定的正实数为三条边边长的三角形是否存在,只需验证这3个数中任意两个数的和是否大于第3个数.这个验证需要用到条件结构.算法步骤如下:第一步,输入3个正实数a,b,c.第二步,判断a+b>c,b+c>a,c+a>b是否同时成立.若是,则存在这样的三角形;否则,不存在这样的三角形.程序框图如右图:强调:根据构成三角形的条件,判断是否满足任意两边之和大于第三边,如果满足则存在这样的三角形,如果不满足则不存在这样的三角形.这种分类讨论思想是高中的重点,在画程序框图时,常常遇到需要讨论的问题,这时要用到条件结构.2x1=,x2=;若Δ=0,则原方程有两个相等的实数根x1=x2=;若Δ<0,则原方程没有实数根.也就是说,在求解方程之前,可以先判断判别式的符号,根据判断的结果执行不同的步骤,这个过程可以用条件结构实现.又因为方程的两个根有相同的部分,为了避免重复计算,可以在计算x1和x2之前,先计算p=,q=.解决这一问题的算法步骤如下:第一步,输入3个系数a,b,c.第二步,计算Δ=b2-4ac.第三步,判断Δ≥0是否成立.若是,则计算p=,q=;否则,输出“方程没有实数根”,结束算法.第四步,判断Δ=0是否成立.若是,则输出x1=x2=p;否则,计算x1=p+q,x2=p-q,并输出x1,x2.程序框图如下:例3 设计算法判断一元二次方程ax2+bx+c=0是否有实数根,并画出相应的程序框图.解:算法步骤如下:第一步,输入3个系数:a,b,c.第二步,计算Δ=b2-4ac.第三步,判断Δ≥0是否成立.若是,则输出“方程有实根”;否则,输出“方程无实根”.结束算法.相应的程序框图如右:强调:根据一元二次方程的意义,需要计算判别式Δ=b2-4ac的值.再分成两种情况处理:(1)当Δ≥0时,一元二次方程有实数根;(2)当Δ<0时,一元二次方程无实数根.该问题实际上是一个分类讨论问题,根据一元二次方程系数的不同情况,最后结果就不同.因而当给出一个一元二次方程时,必须先确定判别式的值,然后再用判别式的值的取值情况确定方程是否有解.该例仅用顺序结构是办不到的,要对判别式的值进行判断,需要用到条件结构.例4 (1)设计算法,求ax+b=0的解,并画出流程图.解:对于方程ax+b=0来讲,应该分情况讨论方程的解.我们要对一次项系数a和常数项b的取值情况进行分类,分类如下:(1)当a≠0时,方程有唯一的实数解是;(2)当a=0,b=0时,全体实数都是方程的解;(3)当a=0,b≠0时,方程无解.联想数学中的分类讨论的处理方式,可得如下算法步骤:第一步,判断a≠0是否成立.若成立,输出结果“解为”.第二步,判断a=0,b=0是否同时成立.若成立,输出结果“解集为R”.第三步,判断a=0,b≠0是否同时成立.若成立,输出结果“方程无解”,结束算法.程序框图如右:强调:这是条件结构叠加问题,条件结构叠加,程序执行时需依次对“条件1”“条件2”“条件3”……都进行判断,只有遇到能满足的条件才执行该条件对应的操作.知能训练设计算法,找出输入的三个不相等实数a、b、c中的最大值,并画出流程图.解:算法步骤:第一步,输入a,b,c的值.第二步,判断a>b是否成立,若成立,则执行第三步;否则执行第四步.第三步,判断a>c是否成立,若成立,则输出a,并结束;否则输出c,并结束.第四步,判断b>c是否成立,若成立,则输出b,并结束;否则输出c,并结束.间物品的托运费用根据下列方法计算:f=其中f(单位:元)为托运费,ω为托运物品的重量(单位:千克).试画出计算费用f的程序框图.分析:这是一个实际问题,根据数学模型可知,求费用f的计算公式随物品重量ω的变化而有所不同,因此计算时先看物品的重量,在不同的条件下,执行不同的指令,这是条件结构的运用,是二分支条件结构.其中,物品的重量通过输入的方式给出.解:算法程序框图如右图:拓展提升有一城市,市区为半径为15 km的圆形区域,近郊区为距中心15—25 km的范围内的环形地带,距中心25 km 以外的为远郊区,如右图所示.市区地价每公顷100万元,近郊区地价每公顷60万元,远郊区地价为每公顷20万元,输入某一点的坐标为(x,y),求该点的地价.分析:由该点坐标(x,y),求其与市中心的距离r=,确定是市区、近郊区,还是远郊区,进而确定地价p.由题意知,p=解:程序框图如下:课堂小结(1)理解两种条件结构的特点和区别.(2)能用学过的两种条件结构解决常见的算法问题.作业习题组3.3课时循环结构授课时间:第周年月日(星期)导入新课思路1(情境导入)我们都想生活在一个优美的环境中,希望看到的是碧水蓝天,大家知道工厂的污水是怎样处理的吗?污水进入处理装置后进行第一次处理,如果达不到排放标准,则需要再进入处理装置进行处理,直到达到排放标准.污水处理装置是一个循环系统,对于处理需要反复操作的事情有很大的优势.我们数学中有很多问题需要反复操作,今天我们学习能够反复操作的逻辑结构——循环结构.思路2(直接导入)前面我们学习了顺序结构,顺序结构像一条没有分支的河流,奔流到海不复回;上一节我们学习了条件结构,条件结构像有分支的河流最后归入大海;事实上很多水系是循环往复的,今天我们开始学习循环往复的逻辑结构——循环结构.提出问题(1)请大家举出一些常见的需要反复计算的例子.(2)什么是循环结构、循环体?(3)试用程序框图表示循环结构.(4)指出两种循环结构的相同点和不同点.讨论结果:(1)例如用二分法求方程的近似解、数列求和等.(2)在一些算法中,经常会出现从某处开始,按照一定的条件反复执行某些步骤的情况,这就是循环结构.反复执行的步骤称为循环体.(3)在一些算法中要求重复执行同一操作的结构称为循环结构.即从算法某处开始,按照一定条件重复执行某一处理的过程.重复执行的处理步骤称为循环体.循环结构有两种形式:当型循环结构和直到型循环结构.1°当型循环结构,如图(1)所示,它的功能是当给定的条件P成立时,执行A框,A框执行完毕后,返回来再判断条件P是否成立,如果仍然成立,返回来再执行A框,如此反复执行A框,直到某一次返回来判断条件P不成立时为止,此时不再执行A框,离开循环结构.继续执行下面的框图.2°直到型循环结构,如图(2)所示,它的功能是先执行重复执行的A框,然后判断给定的条件P是否成立,如果P仍然不成立,则返回来继续执行A框,再判断条件P是否成立.继续重复操作,直到某一次给定的判断条件P 时成立为止,此时不再返回来执行A框,离开循环结构.继续执行下面的框图.见示意图:当型循环结构直到型循环结构(4)两种循环结构的不同点:直到型循环结构是程序先进入循环体,然后对条件进行判断,如果条件不满足,就继续执行循环体,直到条件满足时终止循环.当型循环结构是在每次执行循环体前,先对条件进行判断,当条件满足时,执行循环体,否则终止循环.两种循环结构的相同点: 两种不同形式的循环结构可以看出,循环结构中一定包含条件结构,用于确定何时终止执行循环体.应用示例思路1例1 设计一个计算1+2+……+100的值的算法,并画出程序框图.算法分析:。
第一章算法初步1.1算法与程序框图 1.1.1算法的概念授课时间:第_周 _____________ 年_月—日(星期_)教学分析算法在中学数学课程中是一个新的概念,但没有一个精确化的定义,教科书只对它作了如下描述: 在数学中,算法通常是指按照一定规则解决某一类问题的明确有限的步骤• ”为了让学生更好理解这一概念,教科书先从分析一个具体的二元一次方程组的求解过程出发,归纳出了二元一次方程组的求解步骤,这些步骤就构成了解二元一次方程 组的算法•教学中,应从学生非常熟悉的例子引出算法,再通过例题加以巩固 三维目标1•正确理解算法的概念,掌握算法的基本特点• 2•通过例题教学,使学生体会设计算法的基本思路3•通过有趣的实例使学生了解算法这一概念的同时,激发学生学习数学的兴趣 重点难点教学重点:算法的含义及应用 • 教学难点:写出解决一类问题的算法•教学过程导入新课思路1 (情境导入)一个人带着三只狼和三只羚羊过河,只有一条船,同船可容纳一个人和两只动物,没有人在的时候,如果狼的数 量不少于羚羊的数量狼就会吃羚羊 •该人如何将动物转移过河?请同学们写出解决问题的步骤,解决这一问题将要用到我们今天学习的内容 一一算法•思路2 (情境导入)大家都看过赵本山与宋丹丹演的小品吧,宋丹丹说了一个笑话,把大象装进冰箱总共分几步? 答案:分三步,第一步:把冰箱门打开;第二步:把大象装进去;第三步:把冰箱门关上 上述步骤构成了把大象装进冰箱的算法,今天我们开始学习算法的概念思路3 (直接导入)算法不仅是数学及其应用的重要组成部分,也是计算机科学的重要基础•在现代社会里,计算机已成为人们日常生活和工作中不可缺少的工具 •听音乐、看电影、玩游戏、打字、画卡通画、处理数据,计算机是怎样工作的呢?要 想弄清楚这个问题,算法的学习是一个开始 推进新课 新知探究 提出问题(1)解二元一次方程组有几种方法?x 2y 1,(1)总结用加减消元法解二元一次方程组的步骤2x y 1, (2) x 2v 1 (1)总结用代入消元法解二元一次方程组的步骤2x y 1, (2)(4 )请写出解一般二元一次方程组的步骤 (5) 根据上述实例谈谈你对算法的理解 (6) 请同学们总结算法的特征 .(7) 请思考我们学习算法的意义 • 讨论结果:(2)结合教材实例(3)结合教材实例(1) 代入消元法和加减消元法 (2) 回顾二元一次方程组x 2v 1 (1)的求解过程,我们可以归纳出以下步骤:2x v 1, (2)第一步,①+②疋,得5x=1.③ 1 第二步,解③,得x=-.5 第三步,②-①X2,得5y=3.④ 3 第四步,解④,得 y=.5第五步,得到方程组的解为(3) 用代入消元法解二元一次方程组x 2v 1 (1) 我们可以归纳出以下步骤:2x y 1, (2)第一步,由①得x=2y — 1.③ 第二步,把③代入②,得 2(2y — 1)+y=1.④3第三步,解④得y=.⑤53 1 第四步,把⑤代入③,得x=2X 3 —仁丄.55第五步,得到方程组的解为1 x53 y(4)对于一般的二元一次方程组a 1x C 1,⑴a ?xb 2yC 2, (2)其中a 1b 2 — 32b 1M 可以写出类似的求解步骤: 第一步,①©2-②心,得(a 1b 2 — a 2b 1) x=b 2C 1 — be.③第三步,② Xa 1-① 吃,得(a 1b 2— a 2b 1)y=a 1C 2 — a 2C 1.④a 1 C 2 a 2C 1第四步,解④,得 y=4a 〔b 2 a ?b 1第二步,解③,得b 2C ] b 1c 2x=玄1匕 2 玄x b2& be (5)算法的定义:广义的算法是指完成某项工作的方法和步骤,那么我们可以说洗衣机的使用说明书是操作洗衣机的 算法,菜谱是做菜的算法等等 •在数学中,算法通常是指按照一定规则解决某一类问题的明确有限的步骤 现在,算法通常可以编成计算机程序,让计算机执行并解决问题(6)算法的特征:①确定性:算法的每一步都应当做到准确无误、不重不漏 •不重”是指不是可有可无的,甚至无用的步骤,不漏”是指缺少哪一步都无法完成任务 •②逻辑性:算法从开始的第一步”直到最后一步”之间做到环环相扣, 分工明确, 前一步”是 后一步”的前提,后一步”是 前一步”的继续•③有穷性:算法要有明确的开始和结束,当到 达终止步骤时所要解决的问题必须有明确的结果,也就是说必须在有限步内完成任务,不能无限制地持续进行(7)在解决某些问题时,需要设计出一系列可操作或可计算的步骤来解决问题,这些步骤称为解决这些问题的算法 •也就是说,算法实际上就是解决问题的一种程序性方法 •算法一般是机械的,有时需进行大量重复的计算,它的优点是 一种通法,只要按部就班地去做,总能得到结果 •因此算法是计算科学的重要基础 •应用示例思路1例1( 1)设计一个算法,判断 7是否为质数.(2) 设计一个算法,判断 35是否为质数•算法分析:(1 )根据质数的定义,可以这样判断:依次用 2 — 6除7,如果它们中有一个能整除 7,则7不是质数,否则7是质数.算法如下: (1)第一步,用2除7,得到余数1.因为余数不为0,所以2不能整除7. 第二步,用3除7,得到余数1•因为余数不为 第三步,用4除7,得到余数3•因为余数不为 第四步,用5除7,得到余数2•因为余数不为 第五步,用6除7,得到余数1•因为余数不为 (2)类似地,可写出 判断35是否为质数”的算法:第一步,用 2除35,得到余数1•因为余数不为0,所以2不能 整除35. 第二步,用3除35,得到余数2•因为余数不为0,所以3不能整除35. 第三步,用4除35,得到余数3•因为余数不为0,所以4不能整除35.第四步,用5除35,得到余数0•因为余数为0,所以5能整除35.因此,35不是质数. 变式训练请写出判断n(n>2)是否为质数的算法.分析:对于任意的整数n(n>2),若用i 表示2— (n-1)中的任意整数,则判断n 是否为质数”的算法包含下面的重复操作:用i 除n,得到余数r.判断余数r 是否为0,若是,则不是质数;否则,将 i 的值增加1,再执行同样的操作.这个操作一直要进行到i 的值等于(n-1)为止.算法如下:第一步,给定大于 2的整数n.第二步,令i=2.第三步,用i 除n,得到余数r.第四步,判断“r=0是否成立.若是,则n 不是质数,结束算法;否则,将 i 的值增加1,仍用i 表示. 第五步,判断“A (n-1)”是否成立.若是,则n 是质数,结束算法;否则,返回第三步 . 例2写出用 二分法”求方程x 2-2=0 (x>0)的近似解的算法. 分析:令f(x)=x 2-2,则方程x 2-2=0 (x>0)的解就是函数f(x)的零点.第五步,得到方程组的解为ai b 2 a 2 b i a 〔C 2 a ?C i a 〔b 2 a ?b i0,所以3不能整除7. 0,所以4不能整除7.0,所以5不能整除7. 0,所以6不能整除7•因此,7是质数.二分法”的基本思想是:把函数f(x)的零点所在的区间[a,b](满足f(a) f(b)<0 ) 一分为二”,得到[a,m]和]m,b:. 根据“ f(a)x- f(m)是否成立,取出零点所在的区间]a,m]或[m,b],仍记为[a,b].对所得的区间[a,b]重复上述步骤,直到包含零点的区间]a,b]足够小”则]a,b]内的数可以作为方程的近似解•解:第一步,令f(x)=x2_2,给定精确度d.第二步,确定区间]a,b],满足f(a) f(b)<0.第三步,取区间中点m=a b.2第四步,若f(a) f(m)<0 ,则含零点的区间为]a,m];否则,含零点的区间为]m,b].将新得到的含零点的区间仍记为[a,b].第五步,判断[a,b]的长度是否小于d或f(m )是否等于0•若是,则m是方程的近似解;否则,返回第三步•当d=0.005时,按照以上算法,可以得到下表.于是,开区间(1.414 062 5,1.417 968 75 )中的实数都是当精确度为0.005时的原方程的近似解•实际上,上述步骤也是求,2的近似值的一个算法.例1 一个人带着三只狼和三只羚羊过河,只有一条船,同船可容纳一个人和两只动物,没有人在的时候,如果狼的数量不少于羚羊的数量就会吃羚羊•该人如何将动物转移过河?请设计算法.分析:任何动物同船不用考虑动物的争斗但需考虑承载的数量,还应考虑到两岸的动物都得保证狼的数量要小于羚羊的数量,故在算法的构造过程中尽可能保证船里面有狼,这样才能使得两岸的羚羊数量占到优势解:具体算法如下:算法步骤:第一步:人带两只狼过河,并自己返回.第二步:人带一只狼过河,自己返回.第三步:人带两只羚羊过河,并带两只狼返回第四步:人带一只羊过河,自己返回.第五步:人带两只狼过河.强调:算法是解决某一类问题的精确描述,有些问题使用形式化、程序化的刻画是最恰当的•这就要求我们在写算法时应精练、简练、清晰地表达,要善于分析任何可能出现的情况,体现思维的严密性和完整性.本题型解决问题的算法中某些步骤重复进行多次才能解决,在现实生活中,很多较复杂的情境经常遇到这样的问题,设计算法的时候,如果能够合适地利用某些步骤的重复,不但可以使得问题变得简单,而且可以提高工作效率知能训练设计算法判断一元二次方程ax2+bx+c=0是否有实数根.解:算法步骤如下:第一步,输入一元二次方程的系数:a, b, c.第二步,计算△=呂—4ac的值.第三步,判断是否成立•若成立,输出方程有实根”;否则输出方程无实根”结束算法.强调:用算法解决问题的特点是:具有很好的程序性,是一种通法.并且具有确定性、逻辑性、有穷性•让我们结合例题仔细体会算法的特点.拓展提升中国网通规定:拨打市内电话时,如果不超过3分钟,则收取话费0.22元;如果通话时间超过3分钟,则超出部分按每分钟0.1元收取通话费,不足一分钟按一分钟计算.设通话时间为t (分钟),通话费用y (元),如何设计一个程序,计算通话的费用.解:算法分析:数学模型实际上为:y关于t的分段函数. 关系式如下:0.22,(0 t 3),y= 0.22 0.1(t 3),(t 3,t Z),0.22 0.1([T 3] 1),仃3,t Z).其中]t- 3]表示取不大于t- 3的整数部分.算法步骤如下:第一步,输入通话时间t.第二步,如果t 那么y=0.22 ;否则判断t€ Z是否成立,若成立执行y=0.2+0.1 (t—3);否则执行y=0.2+0.1 >(:t —3] +1). 第三步,输出通话费用c.课堂小结(1 )正确理解算法这一概念.⑵结合例题掌握算法的特点,能够写出常见问题的算法作业课本本节练习1、2.1.1.2 程序框图与算法的基本逻辑结构整体设计授课时间:第 _周____________ 年_月_日(星期_)三维目标1 •熟悉各种程序框及流程线的功能和作用.2 •通过模仿、操作、探索,经历通过设计程序框图表达解决问题的过程•在具体问题的解决过程中,理解程序框图的三种基本逻辑结构:顺序结构、条件结构、循环结构3•通过比较体会程序框图的直观性、准确性.重点难点数学重点:程序框图的画法• 数学难点:程序框图的画法•教学过程第1课时程序框图及顺序结构导入新课思路1 (情境导入)我们都喜欢外出旅游,优美的风景美不胜收,如果迷了路就不好玩了,问路有时还听不明白,真是急死人,有的同学说买张旅游图不就好了吗,所以外出旅游先要准备好旅游图•旅游图看起来直观、准确,本节将探究使算法表达得更加直观、准确的方法•今天我们开始学习程序框图•思路2 (直接导入)用自然语言表示的算法步骤有明确的顺序性,但是对于在一定条件下才会被执行的步骤,以及在一定条件下会被重复执行的步骤,自然语言的表示就显得困难,而且不直观、不准确•因此,本节有必要探究使算法表达得更加直观、准确的方法•今天开始学习程序框图•推进新课新知探究提出问题(1)什么是程序框图?(2)说出终端框(起止框)的图形符号与功能•(3 )说出输入、输出框的图形符号与功能•(4)说出处理框(执行框)的图形符号与功能•(5 )说出判断框的图形符号与功能•(6 )说出流程线的图形符号与功能•(7 )说出连接点的图形符号与功能•(8 )总结几个基本的程序框、流程线和它们表示的功能(9)什么是顺序结构?讨论结果:(1)程序框图又称流程图,是一种用程序框、流程线及文字说明来表示算法的图形在程序框图中,一个或几个程序框的组合表示算法中的一个步骤;带有方向箭头的流程线将程序框连接起来,表示算法步骤的执行顺序•(2)椭圆形框:f二】表示程序的开始和结束,称为终端框(起止框) •表示开始时只有一个出口;表示结束时只有一个入口.(3)平行四边形框:.—「表示一个算法输入和输出的信息,又称为输入、输出框,它有一个入口和一个出口.(4 )矩形框:表示计算、赋值等处理操作,又称为处理框(执行框) ,它有一个入口和一个出口.(5 )菱形框:是用来判断给出的条件是否成立,根据判断结果来决定程序的流向,称为判断框,它有一个入口和两个出口.(6 )流程线:—•.表示程序的流向. (7)圆圈: 连接点.表示相关两框的连接处,圆圈内的数字相同的含义表示相连接在一起.(8) 总结如下表.图形符号名称功能终端框(起止框)表示一个算法的起始和结束 /」F输入、输出框 表示 个算法输入和输出的信息处理框(执行框)赋值、计算<>判断框判断某一条件是否成立,成立时在出口处标明 是”或“ Y ;不成立时标明否”或“ N”1 H 1流程线 连接程序框O连接点 连接程序框图的两部分(9)很明显,顺序结构是由若干个依次执行的步骤组成的,这是任何一个算法都离不开的基本结构 三种逻辑结构可以用如下程序框图表示:例2已知一个三角形三条边的边长分别为 a , b , c ,利用海伦一秦九韶公式设计一个计算三角形面积的算法,并画a,b,c ,则三角形的面积为 S=yl—a)(p ―b)(p —C)),其中,出卞不是欣輕/出检&质 畛"顺序结构 应用示例 例1请用程序框图表示前面讲过的判断整数n(n>2)是否为质数的算法•解:程序框图如下:强调:程序框图是用图形的方式表达算法,使算法的结构更清楚,步骤更直观也更精确 程序框图的特点,感受它的优点,暂不要求掌握它的画法•这里只是让同学们初步了解变式训练观察下面的程序框图,指出该算法解决的问题解:这是一个累加求和问题,共99项相加,该算法是求1 99 100的值.出程序框图表示•(已知三角形三边边长分别为条件结构循环结构a b cp=•这个公式被称为海伦一秦九韶公式)2算法分析:这是一个简单的问题,只需先算出 p 的值,再将它代入分式,最后输出结果•因此只用顺序结构应能表达出算法• 算法步骤如下:第一步,输入三角形三条边的边长 a,b,c.第三步,计算 s= p(p a)(p b)( p c). 第四步,输出s.程序框图如下: 强调:很明显,顺序结构是由若干个依次执行的步骤组成的,它是最简单的逻辑结构,它是任何一个算法都离不开 的基本结构. 变式训练下图所示的是一个算法的流程图,已知 a i =3,输出的b=7,求a 2的值• 解:根据题意亚=7,2T a i =3, /. a 2=11.即卩 a 2 的值为 11.知能训练有关专家建议,在未来几年内,中国的通货膨胀率保持在 3 %左右,这将对我国经济的稳定有利无害 .所谓通货 膨胀率为3%,指的是每年消费品的价格增长率为 3% .在这种情况下,某种品牌的钢琴2004年的价格是10 000元, 请用流程图描述这种钢琴今后四年的价格变化情况,并输出四年后的价格.解:用P 表示钢琴的价格,不难看出如下算法步骤:2005 年 P=10 000 ( 1+3%) =10 300 ;2006 年 P=10 300 ( 1+3%) =10 609 ; 2007 年 P=10 609 ( 1+3% ) =10 927.27; 2008 年 P=10 927.27 (1+3%) =11 255.09 ;因此,价格的变化情况表为:111 1如上给岀的是计算 一 一 一一的值的一个流程图,其中判断框内应填入的条件是程序框图如下:强调:顺序结构只需严格按照传统的解决数学问题的解题思路, 指的是写出算法步骤、画出程序框图 .拓展提升第二步,计算a b p=2将问题解决掉.最后将解题步骤细化”就可以.细化2 4 6 20答案:i>10.课堂小结(1)掌握程序框的画法和功能•(2)了解什么是程序框图,知道学习程序框图的意义(3)掌握顺序结构的应用,并能解决与顺序结构有关的程序框图的画法作业习题1.1A 1.导入新课思路1 (情境导入)我们以前听过这样一个故事,野兽与鸟发生了一场战争,蝙蝠来了,野兽们喊道:你有牙齿是我们一伙的,鸟 们喊道:你有翅膀是我们一伙的,蝙蝠一时没了主意 •过了一会儿蝙蝠有了一个好办法,如果野兽赢了,就加入野兽这一伙,否则加入另一伙,事实上蝙蝠用了分类讨论思想,在算法和程序框图中也经常用到这一思想方法,今天我 们开始学习新的逻辑结构 ——条件结构•思路2 (直接导入)前面我们学习了顺序结构,顺序结构像是一条没有分支的河流,奔流到海不复回,事实上多数河流是有分支的, 今天我们开始学习有分支的逻辑结构 ——条件结构•提出问题(1) 举例说明什么是分类讨论思想? (2) 什么是条件结构?(3) 试用程序框图表示条件结构 •(4) 指出条件结构的两种形式的区别 • 讨论结果:(1) 例如解不等式 ax>8(a 工0不等式两边需要同除 a,需要明确知道a 的符号,但条件没有给出,因此需要进行分类 讨论,这就是分类讨论思想 •(2) 在一个算法中,经常会遇到一些条件的判断, 算法的流程根据条件是否成立有不同的流向•条件结构就是处理这种过程的结构•(3)用程序框图表示条件结构如下.条件结构:先根据条件作出判断,再决定执行哪一种操作的结构就称为条件结构(或分支结构) 程如下:条件成立,则执行 A 框;不成立,则执行 B 框.行任何操作,如图 2. (4)一种是在两个 分支”中均包含算法的步骤,符合条件就执行 步骤A ” ,否则执行步骤B”;另一种是在一个 分支”中均包含算法的步骤 A ,而在另一个 分支”上不包含算法的任何步骤,符合条件就执行步骤A ”,否则执行这个 条件结构后的步骤 应用示例例1任意给定3个正实数,设计一个算法,判断以这3个正实数为三边边长的三角形是否存在, 并画出这个算法的程序框图•算法分析:判断以3个任意给定的正实数为三条边边长的三角形是否存在,只需验证这 3个数中任意两个数的和是否大于第3个数.这个验证需要用到条件结构• 算法步骤如下:第一步,输入3个正实数a, b , c ・第二步,判断a+b>c , b+c>a , c+a>b 是否同时成立•若是,则存在这样的三角形;否则,不存在这样的三角形 程序框图如右图:第2课时条件结构,如图1 所示•执行过即不执注:无论条件是强调:根据构成三角形的条件,判断是否满足任意两边之和大于第三边,如果满足则存在这样的三角形,如果不满 足则不存在这样的三角形•这种分类讨论思想是高中的重点,在画程序框图时,常常遇到需要讨论的问题,这时要用 到条件结构• 例2 设计一个求解一元二次方程ax 2+bx+c=0的算法,并画出程序框图表示 算法分析:我们知道,若判别式 △ =&-4ac>0,则原方程有两个不相等的实数根b i b 、 X 1= ------------ ,X 2=—2a2a若△ =Q 则原方程有两个相等的实数根X i =X 2=—;2a若△ <Q 则原方程没有实数根•也就是说,在求解方程之前,可以先判断判别式的符号,根据判断的结果执行不同的 步骤,这个过程可以用条件结构实现•解决这一问题的算法步骤如下: 第一步,输入3个系数a , b , c. 第二步,计算 △ =&-4ac.第四步,判断 △ =0是否成立.若是,则输出X I =X 2=p ;否则,计算 X i =p+q , X 2=p-q ,并输出X i , X 2. 程序框图如下:例3设计算法判断一元二次方程 ax 2+bx+c=0是否有实数根,并画出相应的程序框图 .解:算法步骤如下:第一步,输入3个系数:a, b , c. 第二步,计算 △ =8— 4ac. 第三步,判断是否成立.若是,则输出 方程有实根”;否则,输出 方程无实根”结束算法.相应的程序框图如右:强调:根据一元二次方程的意义,需要计算判别式 △ =b — 4ac 的值.再分成两种情况处理:(1)当4^0寸,一元二次方程有实数根;(2)当△<0时,一元二次方程无实数根 .该问题实际上是一个分类讨论问题,根据一元二次方程系数的不同情况, 最后结果就不同.因而当给出一个一元二次方程时,必须先确定判别式的值,然后再用判别式的值的取值情况确定方 程是否有解.该例仅用顺序结构是办不到的,要对判别式的值进行判断,需要用到条件结构例4 (1 )设计算法,求ax+b=0的解,并画出流程图.解:对于方程ax+b=0来讲,应该分情况讨论方程的解 我们要对一次项系数a 和常数项b 的取值情况进行分类,分类如下:(1 )当时,方程有唯一的实数解是 b;a(2) 当a=0, b=0时,全体实数都是方程的解; (3)当a=0, 时,方程无解.又因为方程的两个根有相同的部分,为了避免重复计算,可以在计算X 1和X 2之前,先计算p=b2a,q =~2a 第三步,判断是否成立•若是,则计算p= — , q= ;否则,输出2a 2a方程没有实数根”,结束算法联想数学中的分类讨论的处理方式,可得如下算法步骤: 第一步,判断a^O是否成立•若成立,输出结果解为b”.a第二步,判断a=0, b=0是否同时成立•若成立,输出结果解集为R”.第三步,判断a=0, 是否同时成立•若成立,输出结果方程无解”,结束算法• 程序框图如右:强调:这是条件结构叠加问题,条件结构叠加,程序执行时需依次对条件1”条件2”条件3” ••…都进行判断,只有遇到能满足的条件才执行该条件对应的操作•知能训练设计算法,找出输入的三个不相等实数a、b、c中的最大值,并画出流程图•解:算法步骤:第一步,输入a, b, c的值•第二步,判断a>b是否成立,若成立,则执行第三步;否则执行第四步第三步,判断a>c是否成立,若成立,则输出a,并结束;否则输出c,并结束•第四步,判断b>c是否成立,若成立,则输出b,并结束;否则输出c,并结束•程序框图如右:例5 特快专递”是目前人们经常使用的异地邮寄信函或托运物品的一种快捷方式•某快递公司规定甲、乙两地之间物品的托运费用根据下列方法计算:0.53 ,( 50),f=50 0.53 ( 50) 0.85,( 50).其中f (单位:元)为托运费,3为托运物品的重量(单位:千克) •试画出计算费用f的程序框图•分析:这是一个实际问题,根据数学模型可知,求费用f的计算公式随物品重量3的变化而有所不同,因此计算时先看物品的重量,在不同的条件下,执行不同的指令,这是条件结构的运用,是二分支条件结构•其中,物品的重量通过输入的方式给出• 解:算法程序框图如右图:拓展提升有一城市,市区为半径为15 km的圆形区域,近郊区为距中心15—25 km的范围内的环形地带,距中心25 km 以外的为远郊区,如右图所示•市区地价每公顷100万元,近郊区地价每公顷60万元,远郊区地价为每公顷20万元,输入某一点的坐标为(x,y),求该点的地价.II 2 2分析:由该点坐标(x, y),求其与市中心的距离r=、x2y2,确定是市区、近郊区,还是远郊区,进而确定地价p.由100,0 r 15,题意知,p= 60,15 r 25,20, r 25.解:程序框图如下: 课堂小结(1)理解两种条件结构的特点和区别•(2)能用学过的两种条件结构解决常见的算法问题作业习题1.1A组3.3课时循环结构授课时间:第 _周 ____________ 年_月_日(星期 _)导入新课思路1 (情境导入)我们都想生活在一个优美的环境中,希望看到的是碧水蓝天,大家知道工厂的污水是怎样处理的吗?污水进入处理装置后进行第一次处理,如果达不到排放标准,则需要再进入处理装置进行处理,直到达到排放标准•污水处理装置是一个循环系统,对于处理需要反复操作的事情有很大的优势•我们数学中有很多问题需要反复操作,今天我们学习能够反复操作的逻辑结构——循环结构•思路2 (直接导入)前面我们学习了顺序结构,顺序结构像一条没有分支的河流,奔流到海不复回;上一节我们学习了条件结构,条件结构像有分支的河流最后归入大海;事实上很多水系是循环往复的,今天我们开始学习循环往复的逻辑结构一一循环结构•提出问题(1 )请大家举出一些常见的需要反复计算的例子(2 )什么是循环结构、循环体?(3)试用程序框图表示循环结构•(4 )指出两种循环结构的相同点和不同点讨论结果:(1 )例如用二分法求方程的近似解、数列求和等(2)在一些算法中,经常会出现从某处开始,按照一定的条件反复执行某些步骤的情况,这就是循环结构•反复执行的步骤称为循环体.(3)在一些算法中要求重复执行同一操作的结构称为循环结构•即从算法某处开始,按照一定条件重复执行某一处理的过程•重复执行的处理步骤称为循环体•循环结构有两种形式:当型循环结构和直到型循环结构1°当型循环结构,如图(1)所示,它的功能是当给定的条件P成立时,执行A框,A框执行完毕后,返回来再判断条件P是否成立,如果仍然成立,返回来再执行A框,如此反复执行A框,直到某一次返回来判断条件P不成立时为止,此时不再执行A框,离开循环结构•继续执行下面的框图•2。
2019-2020学年度最新高中数学人教A 版必修3教学案:第一章1-21-2-2条件语句-含解析(1)条件语句的格式、功能分别是什么?(2)程序中的条件语句与程序框图中的条件结构存在怎样的对应关系?(3)条件语句中的两种形式有什么区别与联系?[新知初探]1.条件语句的一般格式及功能 类别单支双支条件结构框图条件语句IF 条件 THEN语句体 END IFIF 条件 THEN语句体1 ELSE语句体2 END IF语句功能首先对IF 后的条件进行判断,如果首先对IF 后的条件进行判断,如果预习课本P25~29,思考并完成以下问题2.两种条件语句的区别与联系[小试身手]1. 下列关于IF 语句的叙述正确的是( ) A .IF 语句中必须有ELSE 和END IF B .IF 语句中可以没有END IFC .IF 语句中可以没有ELSE ,但必须以END IF 结束 D .IF 语句中可以没有END IF ,但必须有ELSE解析:选C IF 语句中的IF 和END IF 是成对出现的,但是ELSE 可以没有,即满足条件执行,否则跳过IF 语句.故选C.2.条件语句的一般形式为:IF A THEN B ELSE C ,其中B 表示的是( ) A .满足条件时执行的内容 B .条件语句 C .条件D .不满足条件时,执行的内容解析:选A IF A THEN B ELSE C 表示如果条件A 成立,则执行B 步骤,否则执行C 步骤.3.给出以下四个问题,①输入一个数x ,输出它的绝对值.②求表面积为6的正方体的体积.③求三个数a ,b ,c 中的最小数.④求函数f (x )=⎩⎪⎨⎪⎧x 2+1,x ≥0,2x -2,x <0的函数值.其中需要用条件语句来描述其算法的有________.解析:②直接用顺序结构即可,不需用条件语句;而①需要判断这个数的正负;③需要判断这三个数的大小;④是分段函数求值问题,故需用到条件语句.答案:①③④4.写出下列程序的运行结果.若a =4,则b =________;若a =-4,则b =________.解析:分析程序可知,上述程序是一个分段函数的程序,即b =⎩⎪⎨⎪⎧0.5a ,a <0,a 2+3a +1,a ≥0,所以当a =4时,b =42+3×4+1=29; 当a =-4时,b =0.5×(-4)=-2. 答案:29 -2[典例] (1)根据下面的程序,填写程序框图. ①________,②________,③________.(2)根据下面的程序框图,写出程序.[解析] (1)根据条件语句可知该语句为求分段函数y =⎩⎨⎧2x -5,x≥52,5-2x ,x <52的值.所以三个空中分别填的内容为: ①x ≥52?,②y =2x -5,③y =5-2x .答案:(1)①x ≥52? ②y =2x -5 ③y =5-2x(2)解:程序如下:INPUT “a ,b =”;a ,b IF a <b THEN x =a a =b b =x END IFPRINT a ,b END条件语句与条件结构的转化(1)根据条件结构写条件语句:①首先选择语句格式.当判断语句的两个出口语句都要执行时,采用“IF -THEN -ELSE ”语句,当判断语句的两个出口语句只有一个要执行时,采用“IF -THEN ”语句.②然后确定条件和语句体.条件即为判断框内的条件,放在IF 后.判断框中“是”后的执行框中的内容,是THEN 后的语句体1,“否”后的执行框中(如果有的话)的内容,是ELSE 后的语句体2.③最后应注意所用程序符合书写格式.(2)如果是由条件语句画条件结构,可相应变化.[活学活用]求函数y =|x -4|+1的函数值,则①处应填________. INPUT “x =”;x IF x >=4 THEN y =x -3ELSE① END IF PRINT y END解析:如果x <4,则y =4-x +1=5-x , 故①处应填y =5-x . 答案:y =5-x条件语句的简单应用[典例] (1)( ) INPUT “x =”;xIF x MOD 4=0 THENPRINT xEND IFENDA .0,8B .4,8C .0,4,8D .0,1,4,8,9,10(2)若输入8,则下列程序执行后输出的结果是________.[解析] (1)算法的功能是输入一个数,判断其是否能被4整除,若能,则输出该数.在输入的数中,能被4整除的有0,4,8.(2)本题中的程序实际上解决的是求分段函数c =⎩⎪⎨⎪⎧0.2,t ≤3,0.2+0.1(t -3),t>3,在t =8时的函数值的问题.因为t =8>3,所以c =0.2+0.1×(8-3)=0.7.[答案] (1)C (2)0.7解决根据条件语句写出运行结果的思路根据程序写运行结果,首先观察所给语句是IF -THEN -END IF 型条件语句还是IF -THEN -ELSE -END IF 型条件语句,再看输入的值是否符合条件,进而执行相应的步骤,也可转化为数学式子,再代入求值.[活学活用]下列算法语句,若输入x 为60时,则输出y 的值为( )A .25B .30C .31D .61解析:选C 因为60>50,所以y =25+0.6×(60-50)=31.条件语句的叠加和嵌套[典例] S <60,则输出“不及格”;若60≤S ≤90,则输出“及格”;若S >90,则输出“优秀”.[解] 程序如下:INPUT “S =”;S IF S<60 THENPRINT “不及格”END IFIF S>=60 AND S<=90 THEN PRINT “及格”END IFIF S>90 THEN PRINT “优秀”END IF END使用条件语句嵌套应关注两点(1)适用范围:适用于判断条件多于一个时.此时,若重复应用条件语句,书写程序繁琐,可用条件语句的嵌套.(2)分清层次:编写条件时,要注意IF 和END IF 的配对,常常利用文字的缩进来表示嵌套的层次,以便于程序的阅读与理解.嵌套可以多于2个.[活学活用]已知分段函数y =⎩⎪⎨⎪⎧-x +1,x <0,0,x =0,x +1,x >0,编写程序,输入自变量x 的值,输出其相应的函数值.解:程序为: INPUT xIF x <0 THEN y =-x +1ELSEIF x =0 THEN y =0ELSEy =x +1END IF END IF PRINT y END[层级一学业水平达标]1.对于程序:若输入a=4,则输出的结果为()A.11B.-11C.11或-11 D.4解析:选B∵a=4>0,∴a=2×4+3=11,b=-a=-11.2.阅读下面程序:INPUT xIF x<0THENx=-xEND IFPRINT xEND若输入x=5,则输出结果x为()A.-5B.5C.0 D.不确定解析:选B当x≥0时,不符合条件,执行END IF之后的语句,直接输出x的值,即5.3.下面程序的算法功能是:判断任意输入的数x是不是正数,若是,则输出它的平方值;若不是,则输出它的相反数.则横线处填入的条件应该是________.解析:条件成立时,执行y =-x ;条件不成立时,执行y =x *x .由程序的算法功能,知条件应为x <=0.答案:x <=0 4.运行程序: INPUT A ,B IF A >B THEN C =A/2ELSEC =B/2END IF PRINT C END在两次运行中分别输入8,4和2,4,则两次运行程序的输出结果分别为________. 解析:对A ,B 的情况进行区分,当输入8,4的时候,A >B ,所以C =A2=4;当输入2,4时,A >B 不成立,所以选择执行C =B2=2.答案:4 2[层级二 应试能力达标]1.阅读下列程序:如果输入x =-2,则输出结果为( ) A .2 B .-12 C .10D .-4解析:选D 输入x =-2,则x <0,执行“y =7] 2.阅读下列程序:如果输入的t ∈[-1,3],则输出的S ∈( ) A .[-3,4] B .[-5,2] C .[-4,3]D .[-2,5]解析:选A 该程序语句的功能是求分段函数S =⎩⎪⎨⎪⎧3t ,t <1,4t -t 2,t ≥1的值.所以当-1≤t <1时,S =3t ∈[-3,3);当1≤t ≤3时,S =4t -t 2=-(t -2)2+4,此时3≤S ≤4.综上,可得输出的S ∈[-3,4]. 3.阅读下面的程序:a =3IF a<=3 THEN PRINT 3END IFIF a<=4 THEN PRINT 4END IFIF a<=5 THEN PRINT 5END IFIF a<=6 THEN PRINT 6END IF END程序运行的结果是( ) A .3 B .3,4 C .3,4,5D .3,4,5,6解析:选D 本题主要考查了条件语句的叠加,程序执行条件语句的叠加的过程中对于所有的条件都要进行判断,依次验证每一个条件,直到结束.在本题中共出现四次条件判断,每一个条件都成立,故输出结果为3,4,5,6.4.给出如图所示的程序:执行该程序时,若输入的x 为3,则输出的y 值是( )A .3B .6C .9D .27解析:选B x =3时,条件x >3不成立,执行y =2]5.读如图所示的判断输入的任意整数x 的奇偶性的程序,并填空.解析:由题意知此程序是判断输入的数x 的奇偶性,可以用此数除以2取余数,若余数为0,则为偶数,否则(余数不为零),则为奇数.答案:m =06.如图给出的是用条件语句编写的程序,该程序的功能是求函数________的函数值.解析:由程序可知,当x <3时,y =2x ;当x >3时,y =x 2+1;当x =3时,y =2.故y =⎩⎪⎨⎪⎧ 2x ,x <3,2,x =3,x 2+1,x >3.答案:y =⎩⎪⎨⎪⎧ 2x ,x <3,2,x =3,x 2+1,x >37.读程序,完成下列问题:(1)若执行程序时,没有执行语句y =x +1,则输入的x 的取值范围是________.(2)若执行结果为3,则执行的赋值语句是________,输入的x 的值是________.解析:(1)不执行y =x +1语句,说明不满足条件x ≥1,故有x <1.所以输入的x 的取值范围是(-∞,1).(2)当x <1时,y <2×1+1=3,只有x +1=3,x =2.答案:(1)(-∞,1) (2)y =x +1 28.某城市出租车公司规定在内搭乘出租车的收费标准为:不超过3公里收7元,超过3公里的里程每公里收1.5元,另每车次超过3公里收燃油附加费1元(不考虑其他因素).请画出计算出租车费用的程序框图,并写出程序.解:设x 为出租车行驶的公里数,y 为收取的费用,则y =⎩⎪⎨⎪⎧ 7,x ≤3,8+1.5(x -3),x >3,即y =⎩⎪⎨⎪⎧7,x ≤3,1.5x +3.5,x >3. 程序框图如图所示:其程序如下:9.某地电信部门规定:拨打市内电话时,如果通话时间不超过3 min ,则收取通话费0.22元;如果通话时间超过3 min ,则超过部分按每分钟0.1元收取通话费,不足1 min 按1 min 计.设通话时间为t (min),通话费用为y (元),编写一个计算通话费用的程序,并画出程序框图.解:y 是关于t 的分段函数,关系式为y =⎩⎪⎨⎪⎧ 0.22,0<t ≤3,0.22+0.1(t -3),t >3且t ∈Z ,0.22+0.1([t -3]+1),t >3且t ∉Z ,[t -3]表示取t -3的整数部分.程序如下:程序框图如图所示.。
2019-2020学年度最新高中数学人教A版必修三教学案:第一章第2节第3课时循环语句-含答案[核心必知]1.预习教材,问题导入根据以下提纲,预习教材P29~P32,回答下列问题.(1)循环语句与程序框图中的哪个结构相对应?提示:循环结构.(2)与图1.1-12中的直到型循环结构对应的UNTIL语句的一般格式是什么?提示:一般格式为:DO循环体LOOP UNTIL条件2.归纳总结,核心必记(1)UNTIL语句①UNTIL语句的格式:②UNTIL语句的执行过程:当计算机执行上述语句时,先执行一次DO和UNTIL之间的循环体,再对UNTIL后的条件进行判断.如果条件不符合,继续执行循环体;然后再检查上述条件,如果条件仍不符合,再次执行循环体,直到条件符合时为止.这时,计算机将不执行循环体,直接跳到UNTIL 语句后,接着执行UNTIL语句之后的语句.③UNTIL语句对应的程序框图:(2)WHILE语句①WHILE语句的格式:WHILE条件循环体WEND②WHILE语句的执行过程:当计算机遇到WHILE语句时,先判断条件的真假,如果条件符合,就执行WHILE和WEND之间的循环体;然后再检查上述条件,如果条件仍符合,再次执行循环体,这个过程反复进行,直到某一次条件不符合为止.这时,计算机将不执行循环体,直接跳到WEND 语句后,接着执行WEND之后的语句.③WHILE语句对应的程序框图:[问题思考](1)循环语句与条件语句有何关系?提示:循环语句中一定有条件语句,条件语句是循环语句的一部分,离开条件语句,循环语句无法循环.但条件语句可以脱离循环语句单独存在,可以不依赖循环语句独立地解决问题.(2)编写程序时,什么情况下使用循环语句?提示:在问题处理中,对不同的运算对象进行若干次相同运算或处理时,编写程序要用到循环语句.[课前反思]通过以上预习,必须掌握的几个知识点:(1)UNTIL语句的格式:;(2)WHILE语句的格式:;(3)循环语句的功能:.观察如图所示的内容:[思考] 怎样认识UNTIL 语句?名师指津:使用UNTIL 语句应注意以下几点:(1)DO 语句只是循环体的开始标记,遇到DO 语句,程序只是记住这个标记,其他什么也不做,接着执行后面的循环体,在执行一次循环体后,再检查UNTIL 后的条件是否成立,如果不成立,就重复执行循环体,直到条件符合时退出循环.(2)在循环体内,应注意务必有相应的语句使“条件”改变,保证能终止循环,否则循环将无休止地进行下去.讲一讲1.编写一个程序计算11×2+13×4+15×6+…+12 015×2 016的值,并画出程序框图.[尝试解答] 程序如下: s =0i =1DOs =s +1/(i*(i +1))i =i +2LOOP UNTIL i >2 015PRINT s END程序框图如图:对UNTIL 语句的几点说明(1)直到型循环语句中先执行一次循环体,再判断条件是否满足,以决定继续循环还是退出循环.(2)循环次数的控制往往是判断条件,在循环体内要控制条件的改变,否则会陷入死循环.(3)控制循环次数的变量要综合考虑初始化时和LOOP UNTIL 后两处,若初始值为1,则循环体中累加,若初始值为循环的次数,则循环体中递减.练一练1.(1)用UNTIL 语句写出求1-12+13-14+…+1999-11 000的程序.(2)根据下列程序,画出相应的程序框图. s =0k =1DOs =s +1/(k*(k +1))k =k +1LOOP UNTIL k>99PRINT s END解:(1)程序如下:s =0i=1DOs =s +((-1)^(i -1))/i i =i +1LOOP UNTIL i >1 000PRINT s END(2)程序框图如图所示.观察如图所示的内容:[思考] 怎样认识WHILE 语句?名师指津:使用WHILE 语句应注意以下几点:(1)当型循环以WHILE 语句开头,以WEND 作为结束标志.WEND 是WHILE END 的缩写,表示WHILE 循环到此为止.(2)执行WHILE 语句时,先判断条件,再执行循环体,然后再判断条件,再执行循环体,反复执行,直到条件不满足.(3)WHILE 语句中的条件是指循环体的条件,满足此条件时,执行循环体,不满足时则执行循环体结构后面的内容.(4)WHILE 语句由于先条件,再循环体,因此循环体可能一次也不执行就退出循环结构. 讲一讲2.给出了30个数,1,2,4,7,11,…,其规律是第1个数是1,第2个数比第1个数大1,第3个数比第2个数大2,第4个数比第3个数大3,…,依次类推,要求计算这30个数的和,先将下面所给出的程序框图补充完整,再依据程序框图写出程序.(1)把程序框图补充完整:①________,②________; (2)写出程序.[尝试解答] (1)①i ≤30? ②P =P +i (2)程序:i =1P =1S =0WHILE i <=30 S =S +PP =P +i i =i +1WEND PRINT S END对WHILE 语句的几点说明(1)计算机执行当型循环语句时,先判断条件的真假,若条件为真,执行循环体,若为假则退出.这是确定是否应用当型语句的关键.(2)当型循环语句中WHILE 和WEND 成对出现. (3)判断条件往往是控制循环次数的变量.练一练2.设计计算1+2+3+4+…+99的值的一个算法,画出程序框图,并编写程序. 解: 程序框图如图所示:程序如下: i=1S =0WHILE i <=99 S =S +i i =i +1WEND PRINT S END讲一讲3.分别用当型和直到型循环语句编写一个程序,同时计算1×3×5×…×99和2×4×6×…×100的值.[尝试解答] 用UNTIL 语句编写程序: i =1A =1B =1DOA =A*i i =i +1B =B*i i =i +1LOOP UNTIL i >100PRINT A ,B END用WHILE 语句编写程序:i =1A =1B =1WHILE i <=100 A =A*ii =i +1B =B*i i =i +1WENDPRINT A ,B END两种循环语句的异同两种循环语句的相同点是:(1)进入循环前的语句相同;(2)循环体相同;(3)输出部分相同.不同点是:(1)循环条件的位置不同;(2)循环条件不同. 练一练3.分别写出下列算法语句(1)和(2)运行的结果(1)________;(2)________. S =0i =0DO S =S +i i =i +1LOOP UNTIL S>20PRINT i END S =0i =0DO i =i +1S =S +i LOOP UNTIL S>20PRINT i END(1) (2)解析:由程序(1),知S =0+1+2+3+4+5+6=21>20时,终止运行,此时i =7. 对于程序(2)有S =1+2+3+4+5+6=21>20时,终止运行,此时,循环执行了6次,所以i =6.答案:(1)7 (2)6——————————————[课堂归纳·感悟提升]———————————————1.本节课的重点是理解两种循环语句的格式与功能.难点是会用两种循环语句编写算法语句,能根据程序写出运行结果.2.本节课要掌握以下几类问题:(1)把握两种语句的内涵,准确使用两种语句解题,见讲1,2.(2)把握两种语句的转化方法,见讲3.3.本节课的易错点有两个:(1)混淆两种语句,如讲3;(2)对控制循环的条件理解不清而致错,如讲1,2,3.课下能力提升(七)[学业水平达标练]题组1UNTIL语句及应用1.下列循环语句是程序的一部分,循环终止时,i等于()i=1DOi=i+1LOOP UNTIL i>4A.3 B.4C.5 D.6解析:选C该循环语句是直到型循环语句,当条件i>4开始成立时,循环终止,则i =5,故选C.2.下面程序输出的结果为()A.17 B.19C.21 D.23解析:选C当i=9时,S=2×9+3=21,判断条件9≥8成立,跳出循环,输出S.3.如果下列程序执行后输出的结果是132,那么在程序UNTIL后面的“条件”应为()A.i>11 B.i>=11C.i<=11 D.i <11解析:选D当i=12时,s=1×12=12;当i=11时,s=11×12=132.故应填i <11.题组2WHILE语句及应用4.下列循环语句是程序的一部分,循环终止时,i等于()i=1WHILE i<3i=i+1WENDA.2 B.3C.4 D.5解析:选B该循环语句是WHILE语句,当条件i<3开始不成立时,循环结束,则所求i=3.故选B.5.求出下面语句的输出结果.i=4S=0WHILE i<6i=i+2S=S+i^2WENDPRINT SEND解:该程序的执行过程是i=4,S=0,i=4<6成立,i=4+2=6,S=0+62=36;i=6<6不成立输出S=36.6.给出一个算法的程序框图(如图所示).(1)说明该程序的功能;(2)请用WHILE 型循环语句写出程序.解:(1)该程序的功能是求1+12+13+…+199的值. (2)程序如下: S =0K =1WHILE K <=99S =S +1/KK =K +1WENDPRINT SEND题组3 循环语句的综合应用7.已知有如下两段程序: i =21sum =0WHILE i<=20sum =sum +i i =i +1WENDPRINT sumENDi =21sum =0DO sum =sum +i i =i +1LOOP UNTIL i>20PRINT sum END 程序1 程序2程序1运行的结果为________,程序2运行的结果为________.解析:程序1是计数变量i =21开始,不满足i ≤20,终止循环,累加变量sum =0,这个程序计算的结果为0;程序2计数变量i=21,开始进入循环,sum=0+21=21,i=i+1=21+1=22,i >20,循环终止,此时,累加变量sum=21,这个程序计算的结果为21.答案:0218.下面是“求满足1+2+3+…+n>2 014的最小的自然数n”的一个程序,其中有3处错误,请找出错误并予以更正.i=1S=1n=0DOS=S+ii=i+1n=n+1LOOP UNTIL S>2 014输出n+1解:错误1:“S=1”改为“S=0”;错误2:无END语句,在输出下面加“END”;错误3:“输出n+1”改为“PRINT n”.[能力提升综合练]1.如下程序的循环次数为()x=0WHILE x<20x=x+1x=x^2WENDPRINT xENDA.1 B.2 C.3 D.4解析:选C程序执行如下:(1)x<20,x=0+1=1,x=12=1;(2) x<20,x=1+1=2,x=22=4,(3) x<20,x=4+1=5,x=52=25,此时跳出循环,并输出x.∴一共进行3次循环,故选C.2.读程序:甲:乙:i =1S =0WHILE i<=1 000S =S +i i =i +1WENDPRINT SENDi =1 000S =0DO S =S +i i =i -1LOOP UNTIL i<1PRINT S END 对甲、乙程序和输出结果判断正确的是( )A .程序不同,结果不同B .程序不同,结果相同C .程序相同,结果不同D .程序相同,结果相同解析:选B 执行甲、乙程序后,可知都是计算1+2+3+…+1 000的值.3.(2015·高考)执行如图所示的程序框图,输出的k 值为( )A .3B .4C .5D .6 解析:选B 程序框图运行如下:k =0,a =3×12=32,k =1,此时32>14;a =32×12=34,k =2,此时34>14;a =34×12=38,k =3,此时38>14;a =38×12=316,k =4,此时316<14,输出k =4,程序终止.4.(2016·吉林高一检测)已知有下面的程序,如果程序执行后输出的结果是360,那么在程序UNTIL后面的“条件”应为________.解析:因为输出的结果是360,即s=1×6×5×4×3,需执行4次,s需乘到3,i<3后结束算法.所以,程序中UNTIL后面的“条件”应为i<3(或i<=2).答案:i<3(或i<=2)5.在下面的程序中,若输出k=3,则输入的最小整数n=________.INPUT nk=0DOn=2n+1k=k+1LOOP UNTIL n>100PRINT kEND解析:设n=a,则第一次循环,n=2 a+1,k=1;第二次循环,n=2(2 a+1)+1=4 a +3,k=2;第三次循环,n=2(4 a+3)+1=8 a+7,k=3,此时,执行“是”,结束循环,,故n最小为12.输出k=3.因此8 a+7>100,即a>938答案:126.编写一个程序计算12+32+52+…+992,并画出相应的程序框图.解:程序如下:S=0i=1DOS=S+i^2i=i+2LOOP UNTIL i>99PRINT SEND程序框图如图所示:7.输入100个数,将其中正数的个数输出.试用循环语句设计程序.解:用WHILE语句编写程序如下:n=1m=0WHILE n<=100INPUT xIF x>0THENm=m+1END IFn=n+1WENDPRINT mEND或用UNTIL语句编写程序如下:n=1m=0DOINPUT xIF x>0THENm=m+1END IFn=n+1LOOP UNTIL n>100PRINT mEND。