石墨烯的制备、结构、性能及应用前景
- 格式:doc
- 大小:53.50 KB
- 文档页数:8
石墨烯的性质及其应用前景石墨烯是一种由碳原子组成的单层网格结构,它是一种非常特殊的材料。
石墨烯的独特性质,包括优异的导电性、热导性、力学性能和化学稳定性等,使它成为具有革命性的材料。
这篇文章将探讨石墨烯的性质及其应用前景。
一、石墨烯的性质1. 导电性石墨烯具有极高的电导率,可以将电子传输速度提高到几分钟之内。
由于石墨烯单层是具有零带隙的,其导电性能相当优异,几乎可以实现完美传输。
因此,可以将石墨烯用于建立电子传输设备和高频处理器。
2. 热导性石墨烯具有非常优异的热导率,在室温下,其热导率可以达到5000W/m * K, 而且随着温度的升高,石墨烯的热导率还会迅速增加。
这些优秀的热导性能使得石墨烯成为高效的导热材料,它可以用于制造高效的导热设备和电池。
3. 力学性能石墨烯具有非常优秀的力学性能,它的强度非常高,约为碳纳米管的100倍。
即使在非常高的温度下,石墨烯的强度也不会下降,这使得它成为一种特殊的 MEMS 设备制作材料,可以广泛应用于纳米机器人和纳米传感器。
4. 化学稳定性石墨烯的单层结构使其具有高度的化学稳定性,它甚至可以耐受强酸和强碱的侵蚀,这使得它非常适合用于化学工业领域,如催化剂、分离材料和电极。
二、石墨烯的应用前景随着对石墨烯的研究不断深入,石墨烯的潜在应用迅速被发掘出来,这些应用包括以下几个方面:1. 电子传输器件石墨烯的高导电性和低电阻率使其成为制造电子传输器件的理想材料。
例如,可以将石墨烯用于制造高速的场效应晶体管,在高速计算的应用中,石墨烯的优异特性无疑会扮演重要角色。
2. 纳米传感器由于石墨烯的高灵敏度和可控制的电学特性,它可以用作多种传感器,如压力传感器、生物传感器和光传感器。
此外,利用光电特性,石墨烯还可以制成纳米光电传感器。
3. 储能材料石墨烯可以被用作储能材料,这得益于它的优异电导性和热导性。
例如,可以利用其高效的传热性能将石墨烯用于新型高性能电池的制造。
4. 柔性显示器由于石墨烯的高透明度和高导电性,它可以被用于柔性显示器号等显示设备,这些设备具有更高的耐用性,并且非常适合使用在各种微型设备中。
石墨烯技术的应用前景石墨烯是近年来备受关注的材料,具有优异的导电、导热、力学和化学性质。
在科学家们的不懈努力下,石墨烯制备技术已经得到了较大突破,其广泛的应用前景也逐渐显现出来。
一、电子领域随着芯片制造技术的不断提高,电子产品的性能越来越强大。
而石墨烯作为一种优异的导电材料,则是其应用的一个重要方向。
相比传统的金属导线,石墨烯导线具有更小的线径和更好的导电性,可以大大提高电子产品的传输速度和稳定性。
此外,石墨烯的高透明度也使其成为一种优秀的透明导电膜材料,适用于显示器等电子产品的制造。
二、能源领域随着全球能源消耗的不断增加,石墨烯的应用在能源领域也变得越来越重要。
石墨烯电池作为其中的一种应用,具有高能量密度、长寿命、快速充电等优点,将成为未来可再生能源开发的重要技术之一。
此外,利用石墨烯的吸附性能,可以制造高效的污染物吸附材料,可以用于净水、净空等领域。
三、医疗领域石墨烯的化学稳定性和生物相容性,使其在医疗领域具有巨大的应用前景。
利用石墨烯的导电性和高强度,可以制造医疗器械和人工器官等高科技产品。
同时,石墨烯的吸附性能也为生物医学领域提供了新的思路,可以用于抗生素释放、药物输送等方面。
四、材料领域除了以上提到的领域,石墨烯的应用在材料领域也不容忽视。
利用石墨烯的力学特性和吸附性能,可以制造高强度、轻质的复合材料。
同时,石墨烯的导热性能和高表面积特性,使其可以用于制造高效的散热材料。
综合来看,石墨烯的应用前景十分广阔,涵盖了多个重要领域。
尽管目前存在一些瓶颈问题,例如规模化生产、材料稳定性等方面,但相信随着技术的不断提高和研发团队的不懈努力,石墨烯的发展必将迎来前所未有的机遇。
石墨烯的性质及应用石墨烯是一种由碳原子通过共价键结合形成的二维晶体结构,具有一系列独特的性质和应用潜力。
以下将详细介绍石墨烯的性质和应用。
性质:1. 单层结构:石墨烯是由单层碳原子构成的二维晶体结构,在垂直方向上只有一个原子层,具有单层的特点。
2. 高强度:尽管石墨烯只有一个碳原子层,但其强度非常高。
石墨烯的破断强度远远超过钢铁,是已知最强硬的材料之一。
3. 高导电性:石墨烯的碳原子呈现出类似于蜂窝状的排列方式,使得电子能够在其表面自由传导。
石墨烯的电子迁移率是晶体硅的200倍以上,使得其具有非常高的导电性能。
4. 高热导性:由于石墨烯中的碳原子排列紧密,热量传递效率非常高。
石墨烯的热导率超过铜的13000倍,是已知最高的热导材料之一。
5. 弹性:石墨烯具有非常强的弹性,在拉伸过程中可以扩展到原始长度的20%以上,然后恢复到原始形状。
这种弹性使得石墨烯在柔性电子学和拉伸传感器等领域具有广泛应用。
应用:1. 电子器件:石墨烯的高导电性和高迁移率使其成为制造高速电子器件的理想材料。
石墨烯可以作为传统半导体材料的替代品,用于制造更小、更快的电子元件,如晶体管、电容器和电路等。
2. 透明导电膜:石墨烯具有优异的透明导电性能,可以制备成透明导电膜,用于制造触摸屏、显示器和太阳能电池等设备。
相比于传统的氧化铟锡(ITO)薄膜,石墨烯具有更好的柔性和耐久性。
3. 电池材料:石墨烯可以用作锂离子电池的电极材料,具有高电导性和高比表面积的优势。
石墨烯电极可以提高电池的充放电速度和储能密度,有望在电动汽车和可再生能源储存等领域得到应用。
4. 传感器:石墨烯具有优异的电子迁移率和极高的比表面积,使其成为制造高灵敏传感器的理想材料。
石墨烯传感器可以用于检测气体、压力、湿度和生物分子等,具有快速响应和高灵敏度的特点。
5. 柔性电子学:石墨烯的高强度和高弹性使其成为柔性电子学的重要组成部分。
石墨烯可以制备成柔性电路、柔性显示屏和柔性传感器等,有望应用于可穿戴设备、智能医疗和可卷曲设备等领域。
石墨烯负极材料石墨烯是一种由碳原子通过化学键连接形成的二维晶体结构,具有高度的机械强度、导电性和导热性。
石墨烯的发现引起了全球科学界的广泛关注,并被认为是未来材料科学领域的重要发展方向之一。
近年来,石墨烯在电池领域的应用也逐渐受到了人们的关注,特别是在负极材料方面的应用。
本文将介绍石墨烯作为负极材料的研究进展和应用前景。
一、石墨烯的优势作为一种新型材料,石墨烯具有以下优势:1. 高度的导电性和导热性。
石墨烯的电子在平面内运动受到很少的阻碍,因此具有极高的电导率和热导率,这使得石墨烯作为电池负极材料具有良好的传输性能。
2. 高度的机械强度。
石墨烯的单层结构非常薄,但具有高度的机械强度和韧性,这使得石墨烯在电池的循环过程中能够承受较大的应力和变形。
3. 高度的化学稳定性。
石墨烯的碳-碳键结构非常稳定,能够抵御化学腐蚀和氧化,这使得石墨烯在电池中能够长期稳定地工作。
二、石墨烯作为负极材料的研究进展目前,石墨烯作为电池负极材料的研究主要集中在以下几个方面: 1. 石墨烯的制备方法。
目前,石墨烯的制备方法主要包括机械剥离法、化学气相沉积法、化学还原法等,其中化学还原法是最常用的方法之一。
这些方法可以制备出高质量的石墨烯,为其在电池负极材料方面的应用提供了基础。
2. 石墨烯的改性。
为了进一步提高石墨烯作为负极材料的性能,研究人员对石墨烯进行了各种改性,如掺杂、氧化、还原等,以增加其容量、循环性能和稳定性。
3. 石墨烯的应用。
石墨烯作为电池负极材料的应用主要包括锂离子电池、钠离子电池、锂硫电池等。
研究表明,石墨烯作为负极材料具有高的比容量、良好的循环性能和高的放电平台,能够提高电池的能量密度和循环寿命。
三、石墨烯作为负极材料的应用前景随着人们对新型材料的需求不断增加,石墨烯作为负极材料的应用前景也越来越广阔。
石墨烯作为电池负极材料的应用前景主要体现在以下几个方面:1. 提高电池能量密度。
石墨烯具有高的比容量和良好的循环性能,能够提高电池的能量密度,满足人们对高能量密度电池的需求。
石墨烯的物理特性和应用前景石墨烯是晶体材料中最具有前途的一种,它具有一系列独特的物理和化学性质,被誉为“材料学领域的瑰宝”,是继发现全球第一种新物质锂离子电池之后的又一次突破。
本文将从物理特性和应用前景两个方面对其进行探讨。
一、石墨烯的物理特性1. 热稳定性石墨烯是由一个石墨层剥离而来,具有非常高的热稳定性,可以在高温下保持稳定的结构和性质。
这使其成为一种理想的热电材料,可应用于电子设备、能源存储、传感器等领域。
2. 机械强度高石墨烯的强度非常高,比钢铁还要强,而且柔韧性也非常好,具有超强的抗拉强度和弹性模量。
这使其成为一种非常有用的材料,可以制作高性能的机器人和其他基于机械的设备。
3. 光电性能优异由于石墨烯具有独特的晶体结构和电子性质,可以吸收和产生光辐射,同时还具有优异的导电性和透明性,因此可以应用于太阳能电池、光伏发电和其他光电器件。
4. 超导性能在低温下,石墨烯可以表现出超导性,因此可以应用于超导器件等领域。
其具有更高的超导临界温度和临界电场,这使其与其他超导材料相比具有更大的优势。
二、石墨烯的应用前景1. 电子学石墨烯具有非常优异的电子输运性能,可以应用于高性能场效应晶体管和其他微电子器件。
此外,还可制备电子学设备中的电极和传感器。
2. 能源存储石墨烯具有非常高的比表面积和极高的电容值,可以应用于制备超级电容器和电池,成为一种具有巨大潜力的能源存储材料。
3. 生物医学石墨烯是一种非常生物相容性、生物耐受性的新型材料,因此可以应用于生物医学领域,如生物传感器、图像诊断和癌症治疗等。
4. 光电子学石墨烯的导电率非常高,同时具有很好的光学性能,因此可以应用于制备光学器件,如太阳能电池、光伏发电等。
总之,石墨烯具有非常广泛的应用前景和潜力,被广泛认为是开启新时代的材料之一,我们有信心相信石墨烯在未来必将离我们越来越近。
石墨烯电池材料的制备与性能研究石墨烯是一种由单层碳原子组成的材料,具有高导电性和高度机械强度等优良性质,是目前材料领域研究的热点之一。
石墨烯材料在能量存储领域也有广泛的研究应用,其中在电池领域的应用备受关注。
本文将主要探讨石墨烯电池材料的制备与性能研究。
一、石墨烯电池材料的制备由于石墨烯的单层结构和极高的比表面积,使得其作为电极材料有着广阔的应用前景。
目前制备石墨烯材料有多种方法,如化学气相沉积法、机械剥离法、溶液剥离法等。
其中,化学气相沉积法制备的石墨烯材料在电极材料中的应用最为广泛。
化学气相沉积法主要是在惰性气体中将石墨烯材料进行热解或化学反应,然后将过程中产生的气体送入到基板表面得到石墨烯。
与其它方法相比,化学气相沉积法可以制备单晶质量高、具有工业化生产条件、可以控制多层石墨烯等收益。
在石墨烯材料的电池应用中,电化学沉积法也是石墨烯电池材料制备中的一种重要方法。
二、石墨烯电池材料的性能研究石墨烯电池材料具有极高的导电性和高比表面积,并有望替代传统锂离子电池中的石墨负极材料和传统电容器中的活性炭等材料。
石墨烯电池材料的优良性质赋予了其在储能方面有着较高的研究价值。
目前,石墨烯电池材料在超级电容器、铅酸电池、锂离子电池和锂硫电池等领域都有广泛的应用。
值得一提的是,在锂离子电池领域,石墨烯材料作为负极材料的电化学性能得到了很好的提升。
石墨烯电池材料的研究工作中,除了制备工艺,石墨烯材料在电池性能中的变化也是研究的重点之一。
一般来说,石墨烯材料的性能表现与其表面形态和结构密切相关,如石墨烯电池材料的比表面积影响其电容性能与能量密度,孔隙大小、密度等因素将影响这些材料的电荷传输和储存性能。
不仅如此,超级电容器中的石墨烯电池材料的电容性能也受到电解液的影响,这包括电解液的缓冲能力、离子浓度以及容积效应等。
三、未来展望石墨烯电池材料的制备和性能方面的研究将会是一个长期的过程。
随着对其导电性、比表面积和电化学性能等方面的深入研究,石墨烯材料在储能领域的应用将会越来越广泛。
激光诱导石墨烯的制备、改性与应用目录一、激光诱导石墨烯的制备 (1)1.1 化学气相沉积法 (2)1.2 激光蒸发法 (3)1.3 光电化学法 (4)1.4 其他制备方法 (5)二、激光诱导石墨烯的改性 (6)2.1 表面官能团化修饰 (7)2.2 形状调控 (8)2.3 纳米结构调控 (9)2.4 功能化修饰 (10)三、激光诱导石墨烯的应用 (11)3.1 电子器件 (12)3.2 能源领域 (13)3.3 复合材料 (14)3.4 生物医学领域 (15)3.5 其他应用领域 (17)一、激光诱导石墨烯的制备随着科学技术的不断发展,石墨烯作为一种具有广泛应用前景的新型材料,受到了越来越多的关注。
激光诱导石墨烯(LaserInduced Graphene,简称LIG)是一种通过激光诱导自组装技术制备的石墨烯薄膜。
相较于传统的化学气相沉积法(CVD)和物理气相沉积法(PVD),激光诱导石墨烯具有更高的产率、更好的晶体质量以及更低的成本,因此在石墨烯研究领域具有重要的研究价值和应用前景。
石墨烯前驱体的选择:石墨烯前驱体是激光诱导石墨烯的关键组成部分,其性质直接影响到石墨烯的性能。
目前常用的石墨烯前驱体有碳纳米管(CNT)、过渡金属硫化物(TMS)等。
这些前驱体具有良好的导电性、导热性和机械强度,有利于石墨烯的形成。
溶液处理:将石墨烯前驱体溶解在适当的溶剂中,形成均匀的溶液。
溶液中的石墨烯前驱体可以通过吸附、沉淀等作用与溶剂分子结合,形成稳定的复合物。
激光诱导:将含有石墨烯前驱体的溶液置于激光器中,利用激光束对溶液进行照射。
激光束的能量会导致溶液中的石墨烯前驱体发生晶化反应,形成石墨烯薄膜。
通过调整激光功率、波长等参数,可以实现对石墨烯薄膜厚度、晶体结构等方面的精确控制。
剥离和后处理:将激光诱导形成的石墨烯薄膜从基底上剥离,并进行后续的纯化和功能化处理。
常见的后处理方法包括氧化、还原、硼化等,以提高石墨烯的稳定性和功能性。
石墨烯纳米复合材料的制备及应用随着材料科学技术的不断发展,石墨烯这种特殊材料被越来越多地应用于诸如高强度材料、高导电材料、高热导材料等领域。
但是石墨烯纯粹的形态在某些领域中不一定能够满足要求,因此需要与其他材料结合起来形成复合材料,以期获得更好的性能。
本文将介绍石墨烯纳米复合材料的制备方法及其应用。
一、石墨烯纳米复合材料制备方法1.机械混合法这是一种较为简单的制备方法,将石墨烯和其他纳米材料一起经过机械混合后再进行压制成材料。
但是这种方法难以获得优秀的分散效果和界面相容性,因此在性能方面存在局限。
2.沉积法这是一种常见的制备方法,通过将纳米材料分散在溶液中,然后将石墨烯沉积在纳米材料上面。
这种方法可以获得较好的分散效果和界面相容性,但是需要进行复杂的前处理和后处理过程。
3.化学还原法这种方法通过化学反应来制备石墨烯纳米复合材料。
将还原剂与石墨烯和其他纳米材料混合,利用还原剂产生的化学反应来将石墨烯还原,然后与其他纳米材料结合形成材料。
这种方法具有优秀的分散效果和界面相容性,制备操作简单,成本低廉,因此被广泛应用。
二、石墨烯纳米复合材料的应用及优势1.高强材料石墨烯具有优秀的强度和刚度,而与其他材料结合可以进一步提高强度。
例如,与纳米碳管混合的石墨烯可以形成更加坚韧且抗弯曲的材料,因此可以应用于强度要求较高的结构材料中。
2.高导电和高热导材料石墨烯本身具有优秀的导电和热导性能,当与其他材料结合可以形成具有更高导电和热导性能的材料。
例如,与金属纳米颗粒混合的石墨烯可以形成高效的热界面材料,用于导热和散热。
3.吸附材料石墨烯和其他纳米材料结合可以形成高效的吸附材料,例如,与氧化镁纳米颗粒混合的石墨烯可以应用于吸附有机污染物的处理。
4.传感器石墨烯和其他纳米材料结合可以形成高灵敏、高精度的传感器,例如,与金属纳米颗粒混合的石墨烯可以应用于制备高灵敏的压力传感器。
综上所述,石墨烯纳米复合材料可以应用于很多领域,具有优良的性能和广阔的应用前景。
石墨烯的介绍及应用
石墨烯是一种由碳原子形成的单层蜂窝结构的二维材料,具有极高的
强度、导电性、热性能和透明度等特点,是目前材料领域的研究热点
之一。
石墨烯自从2004年被英国曼彻斯特大学的安德烈·盖姆和康斯
坦丁·诺沃肖洛夫等人发现以来,受到了全球科学家的广泛关注和研究。
石墨烯的应用十分广泛,其中最具潜力的是电子学领域。
石墨烯具有
极高的电子迁移率和电子密度,可用于制造超高速的电子器件和集成
电路。
此外,石墨烯还具有良好的热稳定性和导热性能,可以应用于
制造高性能的热界面材料和热电材料。
石墨烯的应用不仅局限于电子学领域,还可以应用于材料学、生物医
学等领域。
石墨烯纳米材料具有其他材料无法比拟的机械强度和表面
活性,可用于制造高强度的纳米复合材料和涂层材料。
此外,石墨烯
还具有优异的生物相容性和生物成像性能,可以应用于生物医学领域
的药物送达、诊断和治疗等方面。
石墨烯的应用潜力巨大,但目前还存在一些制备和应用上的难点。
石
墨烯的大规模制备和低成本制备是当前的研究热点之一,同时石墨烯
在实际应用中还存在一些安全隐患和环境污染问题,需要进一步加强
研究和探索。
总之,石墨烯是一种具有广泛应用前景的材料,其强大的性能特点和丰富的应用场景,将会对人类社会的发展产生深刻影响。
今后,进一步创新和探索石墨烯材料的性能和应用,将是材料科学领域的重点研究方向之一。
华东理工大学化工学院2010(春) 硕士研究生《碳材料》课程考核
学号*********姓名 陈学林 任课教师 乔文明 成绩
论文题目:石墨烯的制备、结构、性质及应用前景 论文要求:
导师评语: 导师签名: 年 月 日 任课教师评语:
任课教师签名: 年 月 日 石墨烯的制备、结构、性质及应用前景 前言:石墨烯是碳原子紧密堆积成单层二维蜂窝状(honeycomb)晶格结构的一种炭质新材料,这种石墨晶体薄膜的厚度只有0.335 nm,仅为头发的20万分之一,是构建其他维数炭质材料(如零维富勒烯、一维纳米碳管、三维石墨)的基本单元,具有极好的结晶性及电学性。完美的石墨烯(graphene)是二维的,只包括六角元胞(等角六边形);如果有五角元胞和七角元胞存在,会构成石墨烯的缺陷;少量的五角元胞存在会使石墨烯翘曲入形状;12个五角元胞会形成富勒烯(fullerene)。石墨烯的理论研究已有60多年的历史,被广泛用来描述不同结构炭质材料的性能。20世纪80年代,科学家们开始认识到石墨烯可以作为 (2+1)维量子电动力学的理想理论模型。但一直以来人们普遍认为这种严格的二维晶体结构由于热力学不稳定性而难以独立稳定的存在。然而真正能够独立存在的二维石墨烯晶体在2004年由英国曼彻斯特大学的Novoselov等[1]利用胶带剥离高定向石墨的方法获得,并发现石墨烯载流子的相对论粒子特性,从而引发石墨烯研究热。石墨烯在过去的短短3年内已充分展现出在理论研究和实际应用方面的无穷魅力,迅速成为材料科学和凝聚态物理领域最为活跃的研究前沿[2]。研究发现,在不需要任何传统化学稳定剂的情况下,石墨烯可以在水中稳定地分解分层,有望应用于可减少静电现象的涂层的研制。 1.石墨烯的性质 1.1力学性质 石墨烯中各碳原子之间的连接非常柔韧,当施加外部机械力时,碳原子面就弯曲变形,从而使碳原子不必重新排列来适应外力,也就保持了结构稳定。美国哥伦比亚大学的一支物理学研究小组经过大量的试验,发现石墨烯是现在世界上已知的最为牢固的材料,并对石墨烯的机械特性进行了全面的研究。他们选取10-20微米的石墨烯微粒作为研究对象。试验发现,在石墨烯样品微粒开始碎裂前,它们每100 nm距离上可承受的最大压力居然达到了大约2.9微牛。如果用石墨烯制成包装袋,那么它将能承受大约两吨重的物品。半导体工业有意利用石墨烯晶体管制造微型处理器, 进而生产出比现有计算机更快的计算机。 1.2热学性质 石墨烯是一种稳定材料.在发现石墨烯以前,大多数物理学家认为,热力学涨落不允许任何二维晶体在有限温度下存在。所以,它的发现立即震撼了凝聚态物理界。虽然理论和实验界都认为完美的二维结构无法在非绝对零度稳定存在,但是单层石墨烯在实验中被制备出来,这归结于石墨烯在纳米级别上的微观扭曲。石墨烯是由碳原子按六边形晶格整齐排布而成的碳单质,结构非常稳定。迄今为止,研究者仍未发现石墨烯中有碳原子缺失的情况,即六边形晶格中的碳原子全都没有丢失或发生移位。各个碳原子问的连接非常柔韧,当施加外部机械力时,碳原子面就弯曲变形。因此,碳原子就不需要重新排列来适应外力,也就保持了结构的稳定。 1.3电学性质 稳定的晶格结构使碳原子具有优秀的导电性,石墨烯中电子是没有质量的,而且是以恒定的速率移动,石墨烯还表现出了异常的整数量子霍尔行为。其霍尔电导等于2 e2/h ,6 e2/h ,10e2/h,为量子电导的奇数倍,且可以在室温下观测到。这个行为已被科学家解释为电子在石墨烯里有效质量为零,这和光子的行为极为相似;不管石墨烯中的电子带有多大的能量, 电子的运动速率都约是光子运动速率的三百分之一,为10 m/s。石墨烯的室温量子霍尔效应,无质量狄拉克费米子型载流子,高达200 000 cm /(V·S)的迁移率等新奇物性相继被发现。在室温下有微米级的平均自由程和很长的相干长度。石墨烯是纳米电路的理想材料,也是验证量子效应的理想材料。石墨烯具有明显的二维电子特性。近来所观测到的显著的量子霍尔效应和分数量子霍尔效应,证实了石墨烯是未来纳米电子器件的极有前景的材料。在2006-2008年间,石墨烯已被制成弹道输运晶体管,人们不仅成功地制造了平面场效应管而且观测到了量子干涉效应,引起大批科学家的兴趣[3]。 2. 石墨烯的合成 鉴于石墨烯极好的结晶性及电学和非凡的电子学、热力学和力学性能,国际上已有越来越多的学者参与到石墨烯的合成与性能的研究,目前石墨烯的合成方法主要有两种:机械方法和化学方法。机械方法包括微机械分离法、取向附生法- 晶膜生长和加热SiC的方法;化学方法是化学分散法。 2.1 微机械分离法 最普通的是微机械分离法,直接将石墨烯薄片从较大的晶体上剪裁下来。Novoselovt等[4]用这种方法制备出了单层石墨烯,并验证了其独立存在。即用另外一种材料膨化或者引入缺陷的热解石墨进行摩擦,体相石墨的表面会产生絮片状的晶体,在这些絮片状的晶体中含有单层的石墨烯。但此法是利用摩擦石墨表面获得的薄片来筛选出单层的石墨烯薄片,其尺寸不易控制,无法可靠地制造长度足供应用的石墨薄片样本。 2.2 取向附生法- 晶膜生长 取向附生法则是利用生长基质的原子结构“种”出石墨烯,但采用这种方法生产的石墨烯薄片往往厚度不均匀,且石墨烯和基质之间的黏合会影响碳层的特性。Peter W.Sutter等[5]使用的基质是稀有金属钌,首先让碳原子在1 150℃下渗入钌,然后冷却,冷却到850℃后,之前吸收的大量碳原子就会浮到钌表面,镜片形状的单层的碳原子“孤岛”布满了整个基质表面,最终它们可长成完整的一层石墨烯。第一层覆盖80%后,第二层开始生长。底层的石墨烯会与钌产生强烈的交互作用,而第二层后就几乎与钌完全分离,只剩下弱电耦合,得到的单层石墨烯薄片表现令人满意。 2.3 加热S-C的方法 Claire Berger等利用此种方法制备出单层和多层[6]石墨烯薄片并研究了其性能,该方法是在单晶6H-SiC的Si-terminated面上通过热解脱除Si来制取石墨烯。将表面经过氧化或H 蚀刻后的样品在高真空下通过电子轰击加热到1 000℃以除掉表面的氧化物(多次去除氧化物以改善表面质量),用俄歇电子能谱确定氧化物被完全去除后,升温至1250- 1450℃ ,恒温1-20 min,形成石墨烯薄片,其厚度由加热温度决定。 2.4 化学分散法 化学分散法[7]是将氧化石墨与水以1 mg/mL的比例混合,用超声波振荡至溶液清晰无颗粒状物质,加入适量肼在100℃ 回流24 h,产生黑色颗粒状沉淀,过滤、烘干即得石墨烯。 3.石墨烯的应用 3.1 石墨烯在纳电子器件方面的应用 2005年,Geim研究组与Kim研究组[8]发现,室温下石墨烯具有l0倍于商用硅片的高载流子迁移率(约10 am /V·s),并且受温度和掺杂效应的影响很小,表现出室温亚微米尺度的弹道传输特性(300 K下可达0.3 m),这是石墨烯作为纳电子器件最突出的优势,使电子工程领域极具吸引力的室温弹道场效应管成为可能。较大的费米速度和低接触电阻则有助于进一步减小器件开关时间,超高频率的操作响应特性是石墨烯基电子器件的另一显著优势。此外,与目前电子器件中使用的硅及金属材料不同,石墨烯减小到纳米尺度甚至单个苯环同样保持很好的稳定性和电学性能,使探索单电子器件成为可能。 最近,Geim研究组[9]利用电子束光刻与干刻蚀的方法将同一片石墨烯加工成量子点,引线和栅极,获得了室温下可以操作的石墨烯基单电子场效应管,解决了目前单电子场效应由于纳米尺度材料的不稳定性所带来的操作温度受限问题。荷兰科学家则报道了第一个石墨烯基超导场效应管,发现在电荷密度为零的情况下石墨烯还是可以传输一定的电流[10],可能为低能耗,开关时间快的纳米尺度超导电子器件带来突破。与一维纳米材料相比,石墨烯基电子器件的显著优势是整个电路,包括导电通道、量子点、电极、势垒、分子开关及联结部件等,可在同一片石墨烯上获得,有可能避免一维材料基器件中难以实现的集成问题。目前,IBM,Intel等公司已相继投人巨资开展石墨烯在纳电子器件方面的应用探索。 3.2 未来的计算机芯片材料:石墨烯取代硅 马里兰大学物理学家的研究显示,未来的计算机芯片材料可能是石墨烯(Graphene)而不是硅。电子在石墨烯中的传导速度比硅快100倍,这将为高速计算机芯片和生化传感器带来诸多进步。。马里兰大学纳米技术和先进材料中心的物理学教授Michael S.Fuhrer领导的研究小组称,他们首次测量了石墨烯中电子传导的热振动效应,发现的结果显示石墨烯中电子传导的热振动效应非常细微。在任何材料中,温度和能量会引起电子的振动。电子穿过材料时,它们会试探振动的电子,诱发了电子的反作用力。这种电子的反作用力是材料的固有属性,不能被消除,除非冷却到绝对零度,热振动效应对传导性有重要的影响。 3.3 石墨烯在减少噪声方面的运用 美国IBM宣布,通过重叠2层相当于石墨单原子层的“石墨烯(Graphene)”,试制成功了新型晶体管,同时发现可大幅降低纳米元件特有的1/f[11]噪声 。石墨烯作为形成纳米级晶体管和电路的“Post-Si材料”,正在全球进行研究开发。普通的纳米元件随着尺寸的减小,被称作1/f的难以控制的噪音越来越明显,存在信噪比恶化的问题。这种现象就是众所周知的“波格定律(Hogue’s law)”,即使