专题复习第4讲:因式分解
- 格式:doc
- 大小:109.00 KB
- 文档页数:9
第4讲因式分解章末重难点题型【题型通关】【考点1 因式分解的概念】【方法点拨】掌握因式分解:(1)把一个多项式化成几个整式的积的形式,叫做把这个多项式因式分解,也叫把这个多项式分解因式.(2)分解因式是对多项式而言的,且分解的结果必须是整式的积的形式.(3)分解因式时,其结果要使每一个因式不能再分解为止.【例1】(鄞州区期中)下列由左到右边的变形中,是因式分解的是()A.(x+2)(x﹣2)=x2﹣4B.x2﹣1=x(x−1 x)C.x2﹣4+3x=(x+2)(x﹣2)+3xD.x2﹣9=(x+3)(x﹣3)【分析】直接利用因式分解的意义分别判断得出答案.【解答】解:A、(x+2)(x﹣2)=x2﹣4,是多项式乘法,故此选项错误;B、x2﹣1=(x+1)(x﹣1),故此选项错误;C、x2﹣4+3x=(x+4)(x﹣1),故此选项错误;D、x2﹣9=(x+3)(x﹣3),故此选项正确.故选:D.【点评】此题主要考查了因式分解的意义.正确把握因式分解的定义是解题的关键.【变式1-1】(东台市期中)下列各式从左到右的变形,是因式分解的为()A.(2x﹣1)(x+3)=2x2+5x﹣3B.a4+4=(a2+2a+2)(a2﹣2a+2)C.﹣6a2b=﹣2a2•3bD.x2﹣9+6x=(x+3)(x﹣3)+6x【分析】根据因式分解的定义逐个判断即可.【解答】解:A、从左到右的变形,不属于因式分解,故本选项不符合题意;B、从左到右的变形,属于因式分解,故本选项符合题意;C、从左到右的变形,不属于因式分解,故本选项不符合题意;D、从左到右的变形,不属于因式分解,故本选项不符合题意;故选:B.【点评】本题考查了因式分解的定义,能熟记因式分解的定义的内容是解此题的关键,注意:把一个多项式化成几个整式的积的形式,叫因式分解.【变式1-2】(高新区校级月考)下列变形属于因式分解的是()A.(x+2)(x﹣2)=x2﹣4B.x﹣1=x(1−1x)(x≠0)C.x3+2x2+1=x2(x+2)+1D.x2﹣9=(x+3)(x﹣3)【分析】根据因式分解的定义逐个判断即可.【解答】解:A.从左边到右边的变形,不属于因式分解,故本选项不符合题意;B.从左边到右边的变形,不属于因式分解,故本选项不符合题意;C.从左边到右边的变形,不属于因式分解,故本选项不符合题意;D.从左边到右边的变形,属于因式分解,故本选项符合题意;故选:D.【点评】本题考查了因式分解的定义,能熟记因式分解的定义的内容是解此题的关键,把一个多项式化成几个整式的积的形式,叫因式分解.【变式1-3】(淮安区期中)下列各式从左到右的变形中,是因式分解的为()A.2x+4y+1=2(x+2y)+1B.(x+2)(x﹣2)=x2﹣4C.x(x﹣10)=x2﹣10x D.x2﹣4x+4=(x﹣2)2【分析】根据因式分解是把一个多项式转化成几个整式积的形式,可得答案.【解答】解:A、没把一个多项式转化成几个整式积的形式,故A不合题意;B、是整式的乘法,故B不合题意;C、是整式的乘法,故C不合题意;D、把一个多项式转化成几个整式积的形式,故D符合题意;故选:D.【点评】本题考查了因式分解的意义,利用了因式分解的意义.【考点2 因式分解—提公因式法】【方法点拨】确定多项式中各项的公因式,可概括为三“定”:①定系数,即确定各项系数的最大公约数;②定字母,即确定各项的相同字母因式(或相同多项式因式);③定指数,即各项相同字母因式(或相同多项式因式)的指数的最低次幂.提公因式法基本步骤:(1)找出公因式;(2)提公因式并确定另一个因式:①第一步找公因式可按照确定公因式的方法先确定系数再确定字母;②第二步提公因式并确定另一个因式,注意要确定另一个因式,可用原多项式除以公因式,所得的商即是提公因式后剩下的一个因式,也可用公因式分别除去原多项式的每一项,求的剩下的另一个因式;【例2】(碑林区校级月考)多项式:①16x2﹣8x;②(x﹣1)2﹣4(x﹣1)+4;③(x+1)4﹣4x(x+1)2+4x2;④﹣4x2﹣1+4x分解因式后,结果中含有相同因式的是()A.①和②B.③和④C.①和④D.②和③【分析】首先把各个多项式分解因式,即可得出答案.【解答】解:①16x2﹣8x=8x(2x﹣1);②(x﹣1)2﹣4(x﹣1)+4=(x﹣1﹣2)2=(x﹣3)2;③(x+1)4﹣4x(x+1)2+4x2=[(x+1)2﹣2x]2=(x2+1)2;④﹣4x2﹣1+4x=﹣(2x﹣1)2;∴结果中含有相同因式的是①和④;故选:C.【点评】本题考查了因式分解的方法以及公因式;熟练掌握因式分解的方法是解题的关键.【变式2-1】(唐河县期末)如果多项式−15abc+15ab2﹣a2bc的一个因式是−15ab,那么另一个因式是()A.c﹣b+5ac B.c+b﹣5ac C.c﹣b+15ac D.c+b−15ac【分析】当一个多项式有公因式,将其分解因式时应先提取公因式,再对余下的多项式继续分解,本题提取公因式−15ab.【解答】解:−15abc+15ab2﹣a2bc=−15ab(c﹣b+5ac),故另一个因式为(c﹣b+5ac),故选:A.【点评】当一个多项式有公因式,将其分解因式时应先提取公因式,提取公因式后剩下的因式是用原多项式除以公因式所得的商得到的.【变式2-2】(﹣2)2021+(﹣2)2020的值为()A.﹣2B.﹣22020C.﹣22019D.﹣24039【分析】直接找出公因式进而提取分解因式即可.【解答】解:(﹣2)2021+(﹣2)2020=(﹣2)2020×(﹣2+1)=﹣22020.故选:B .【点评】此题主要考查了提取公因式法分解因式,正确找出公因式是解题关键.【变式2-3】(安居区期末)化简:a +1+a (a +1)+a (a +1)2+…+a (a +1)99= .【分析】原式提取公因式,计算即可得到结果.【解答】解:原式=(a +1)[1+a +a (a +1)+a (a +1)2+…+a (a +1)98]=(a +1)2[1+a +a (a +1)+a (a +1)2+…+a (a +1)97]=(a +1)3[1+a +a (a +1)+a (a +1)2+…+a (a +1)96]=…=(a +1)100.故答案为:(a +1)100.【点评】此题考查了因式分解﹣提公因式法,熟练掌握提取公因式的方法是解本题的关键.【考点3 因式分解—公式法】【方法点拨】概括整合:①能够运用平方差公式分解因式的多项式必须是二项式,两项都能写成平方的形式,且符号相反. ②能运用完全平方公式分解因式的多项式必须是三项式,其中有两项能写成两个数(或式)的平方和的形式,另一项是这两个数(或式)的积的2倍.【例3】(乳山市期中)下列各式:①﹣x 2﹣y 2;②−14a 2b 2+1; ③a 2+ab +b 2; ④﹣x 2+2xy ﹣y 2;⑤14−mn +m 2n 2,用公式法分解因式的有( )A .2个B .3个C .4个D .5个【分析】根据每个多项式的特征,结合平方差公式、完全平方公式的结构特征,综合进行判断即可.【解答】解:①﹣x 2﹣y 2=﹣(x 2+y 2),因此①不能用公式法分解因式;②−14a 2b 2+1=1﹣(12ab )2=(1+12ab )(1−12ab ),因此②能用公式法分解因式; ③a 2+ab +b 2不符合完全平方公式的结果特征,因此③不能用公式法分解因式;④﹣x 2+2xy ﹣y 2=﹣(x 2﹣2xy +y 2)=﹣(x ﹣y )2,因此④能用公式法分解因式;⑤14−mn +m 2n 2=(12−mn )2,因此⑤能用公式法分解因式; 综上所述,能用公式法分解因式的有②④⑤,故选:B.【点评】本题考查平方差公式、完全平方公式,掌握公式的结果特征是应用的前提.【变式3-1】(鱼台县期末)已知9x2﹣mxy+16y2能运用完全平方公式分解因式,则m的值为()A.12B.±12C.24D.±24【分析】这里首末两项是3和4y个数的平方,那么中间一项为加上或减去3x和4y乘积的2倍,故:m =±24.【解答】解:∵(3x±4y)2=9x2±24xy+16y2,∴在9x2+mxy+16y2中,m=±24.故选:D.【点评】本题是完全平方公式的应用,两数的平方和,再加上或减去它们积的2倍,就构成了一个完全平方式.注意积的2倍的符号,避免漏解.【变式3-2】(厦门期末)运用公式a2+2ab+b2=(a+b)2直接对整式4x2+4x+1进行因式分解,公式中的a 可以是()A.2x2B.4x2C.2x D.4x【分析】直接利用完全平方公式得出答案.【解答】解:∵4x2+4x+1=(2x)2+2×2x+1=(2x+1)2,∴对上式进行因式分解,公式中的a可以是:2x.故选:C.【点评】此题主要考查了公式法分解因式,正确运用完全平方公式是解题关键.【变式3-3】(北碚区期末)若4x2+kx+25=(2x+a)2,则k+a的值可以是()A.﹣25B.﹣15C.15D.20【分析】直接利用完全平方公式分解因式求出答案.【解答】解:4x2+kx+25=(2x+a)2,当a=5时,k=20,当a=﹣5时,k=﹣20,故k+a的值可以是:﹣25.故选:A.【点评】此题主要考查了公式法分解因式,正确应用公式是解题关键.【考点4 因式分解(提公因式与公式法综合)】【方法点拨】先提取公因式,然后再看是不是平方差式或者完全平方式。
第4讲 一元二次方程的解法(四)----因式分解法知识要点梳理:1.分解因式的方法有:提公因式法、利用平方差公式分解因式、利用完全平方公式分解因式、十字相乘法、分组分解法等2.因式分解法解一元二次方程的原理:000==⇔=b a ab 或预习引入:将下列各式分解因式(1)y y 22-(2)942-x (3)2222+-x x(4)862+-x x(5)y y x x 2422--+经典例题例1:用因式分解法解下列方程:(1) t (2t -1)=3(2t -1);(2) y 2+7y +6=0(3)(2x -1)(x -1)=1.(4)0)34()43(22=---x x例2:用适当方法解下列方程: (1)3(1-x )2=27; (2)x 2-6x -19=0;(3)3x 2=4x +1; (4)y 2-15=2y ;(5)5x (x -3)-(x -3)(x +1)=0; (6)4(3x +1)2=25(x -2)2.例3.解关于x 的方程:(1)x 2-4ax +3a 2=1-2a ; (2)x 2+5x +k 2=2kx +5k +6;(3)x 2-2mx -8m 2=0; (4)x 2+(2m +1)x +m 2+m =0.经典练习:一.选择题(1)方程(x -16)(x +8)=0的根是( )A .x 1=-16,x 2=8B .x 1=16,x 2=-8C .x 1=16,x 2=8D .x 1=-16,x 2=-8(2)下列方程4x 2-3x -1=0,5x 2-7x +2=0,13x 2-15x +2=0中,有一个公共解是( )A ..x =21B .x =2C .x =1D .x =-1(3)方程5x (x +3)=3(x +3)解为( )A .x 1=53,x 2=3 B .x =53C .x 1=-53,x 2=-3 D .x 1=53,x 2=-3(4)方程(y -5)(y +2)=1的根为( )A .y 1=5,y 2=-2B .y =5C .y =-2D .以上答案都不对(5)方程(x -1)2-4(x +2)2=0的根为( )A .x 1=1,x 2=-5B .x 1=-1,x 2=-5C .x 1=1,x 2=5D .x 1=-1,x 2=5(6)一元二次方程x 2+5x =0的较大的一个根设为m ,x 2-3x +2=0较小的根设为n ,则m +n 的值为( )A .1B .2C .-4D .4(7)已知三角形两边长为4和7,第三边的长是方程x 2-16x +55=0的一个根,则第三边长是( )A .5B .5或11C .6D .11 *(8)方程x 2-3|x -1|=1的不同解的个数是( )A .0B .1C .2D .3二.填空题(1)方程(2x +1)2+3(2x +1)=0的解为__________.(2)方程t (t +3)=28的解为_______.(3)方程(2y +1)2+3(2y +1)+2=0的解为__________.(4)关于x 的方程x 2+(m +n )x +mn =0的解为__________.(5)方程x (x -5)=5 -x 的解为__________.三.用因式分解法解下列方程:(1)x 2+12x =0; (2)4x 2-1=0; (3)x 2=7x ;(4)x 2-4x -21=0; (5)(x -1)(x +3)=12; (6)3x 2+2x -1=0;(7)10x2-x-3=0;(8)(x-1)2-4(x-1)-21=0.4.用适当方法解下列方程:(1)x2-4x+3=0; (2)(x-2)2=256; (3)x2-3x+1=0;(4)x2-2x-3=0; (5)(2t+3)2=3(2t+3);(6)(3-y)2+y2=9; (7)(1+2)x2-(1-2)x=0;(8)5x2-(52+1)x+10=0; (9)2x2-8x=7(10)(x+5)2-2(x+5)-8=0.拓展练习1.已知x 2+3xy -4y 2=0(y ≠0),试求y x yx +-的值.2.已知(x 2+y 2)(x 2-1+y 2)-12=0.求x 2+y 2的值.3.为解方程(x 2-1)2-5(x 2-1)+4=0,我们可以将x 2-1视为一个整体,然后设x 2-1=y ,则y 2=(x 2-1)2,原方程化为y 2-5y +4=0,解此方程,得y 1=1,y 2=4.当y =1时,x 2-1=1,x 2=2,∴x =±2.当y =4时,x 2-1=4,x 2=5,∴x =±5.∴原方程的解为x 1=-2,x 2=2,x 3=-5,x 4=5.以上方法就叫换元法,达到了降次的目的,体现了转化的思想.(1)运用上述方法解方程:x 4-3x 2-4=0.(2)既然可以将x 2-1看作一个整体,你能直接运用因式分解法解这个方程吗巩固作业:1.分别用三种方法来解以下方程(1)x2-2x-8=0 (2)3x2-24x=0用因式分解法:用配方法:用公式法:用因式分解法:用配方法:用公式法:2.已知x2+3x+5的值为9,试求3x2+9x-2的值.3.当x取何值时,能满足下列要求?(1)3x2-6的值等于21;(2)3x2-6的值与x-2的值相等.4.一跳水运动员从10米高台上跳水,他跳下的高度h(单位:米)与所用的时间t(单位:秒)的关系式h=-5(t-2)(t+1).求运动员起跳到入水所用的时间.。
第四讲 因式分解【基础知识回顾】一、因式分解的定义:1、把一个 式化为几个整式 的形式,叫做把一个多项式因式分解。
2、因式分解与整式乘法是 运算,即:多项式 整式的积 【名师提醒:判断一个运算是否是因式分解或判断因式分解是否正确,关键看等号右边是否为 的形式。
】二、因式分解常用方法:1、提公因式法:公因式:一个多项式各项都有的因式叫做这个多项式各项的公因式。
提公因式法分解因式可表示为:ma+mb+mc= 。
【名师提醒:1、公因式的选择可以是单项式,也可以是 ,都遵循一个原则:取系数的 ,相同字母的 。
2、提公因式时,若有一项被全部提出,则括号内该项为 ,不能漏掉。
3、提公因式过程中仍然要注意符号问题,特别是一个多项式首项为负时,一般应先提取负号,注意括号内各项都要 。
】2、运用公式法:将乘法公式反过来对某些具有特殊形式的多项式进行因式分解,这种方法叫做公式法。
①平方差公式:a 2-b 2= ,②完全平方公式:a 2±2ab+b 2= 。
【名师提醒:1、运用公式法进行因式分解要特别掌握两个公式的形式特点,找准里面的a 与b 。
如:x 2-x+14符合完全平方公式形式,而x 2- x+12就不符合该公式的形式。
】三、因式分解的一般步骤1、 一提:如果多项式的各项有公因式,那么要先 。
2、 二用:如果各项没有公因式,那么可以尝试运用 法来分解。
3、 三查:分解因式必须进行到每一个因式都不能再分解为止。
【名师提醒:分解因式不彻底是因式分解常见错误之一,中考中的因式分解题目一般为两步,做题时要特别注意,另外分解因式的结果是否正确可以用整式乘法来检验】【重点考点例析】考点一:因式分解的概念例1 (2013•株洲)多项式x 2+mx+5因式分解得(x+5)(x+n ),则m= ,n= . 思路分析:将(x+5)(x+n )展开,得到,使得x 2+(n+5)x+5n 与x 2+mx+5的系数对应相等即可.解:∵(x+5)(x+n )=x 2+(n+5)x+5n ,∴x 2+mx+5=x 2+(n+5)x+5n∴555n m n +=⎧⎨=⎩,∴16n m =⎧⎨=⎩, 故答案为6,1.点评:本题考查了因式分解的意义,使得系数对应相等即可.对应训练1.(2013•河北)下列等式从左到右的变形,属于因式分解的是( )( ) ( )A.a(x-y)=ax-ay B.x2+2x+1=x(x+2)+1C.(x+1)(x+3)=x2+4x+3 D.x3-x=x(x+1)(x-1)1.D考点二:因式分解例2 (2013•无锡)分解因式:2x2-4x= .思路分析:首先找出多项式的公因式2x,然后提取公因式法因式分解即可.解:2x2-4x=2x(x-2).故答案为:2x(x-2).点评:此题主要考查了提公因式法分解因式,关键是掌握找公因式的方法:当各项系数都是整数时,公因式的系数应取各项系数的最大公约数;字母取各项的相同的字母,而且各字母的指数取次数最低的;取相同的多项式,多项式的次数取最低的.例3 (2013•南昌)下列因式分解正确的是()A.x2-xy+x=x(x-y)B.a3-2a2b+ab2=a(a-b)2C.x2-2x+4=(x-1)2+3 D.ax2-9=a(x+3)(x-3)思路分析:利用提公因式法分解因式和完全平方公式分解因式进行分解即可得到答案.解:A、x2-xy+x=x(x-y+1),故此选项错误;B、a3-2a2b+ab2=a(a-b)2,故此选项正确;C、x2-2x+4=(x-1)2+3,不是因式分解,故此选项错误;D、ax2-9,无法因式分解,故此选项错误.故选:B.点评:此题主要考查了公式法和提公因式法分解因式,关键是注意口诀:找准公因式,一次要提净;全家都搬走,留1把家守;提负要变号,变形看奇偶.例4 (2013•湖州)因式分解:mx2-my2.思路分析:先提取公因式m,再对余下的多项式利用平方差公式继续分解.解:mx2-my2,=m(x2-y2),=m(x+y)(x-y).点评:本题考查了用提公因式法和公式法进行因式分解,一个多项式有公因式首先提取公因式,然后再用其他方法进行因式分解,同时因式分解要彻底,直到不能分解为止.其他方法进行因式分解,同时因式分解要彻底,直到不能分解为止.对应训练2.(2013•温州)因式分解:m2-5m= .2.m(m-5)3.(2013•西宁)下列分解因式正确的是()A.3x2-6x=x(3x-6)B.-a2+b2=(b+a)(b-a)C.4x2-y2=(4x+y)(4x-y)D.4x2-2xy+y2=(2x-y)23.B4.(2013•北京)分解因式:ab2-4ab+4a= .4.a(b-2)2考点三:因式分解的应用例5 (2013•宝应县一模)已知a+b=2,则a2-b2+4b的值为.思路分析:把所给式子整理为含(a+b)的式子的形式,再代入求值即可.解:∵a+b=2,∴a2-b2+4b=(a+b)(a-b)+4b=2(a-b)+4b=2a+2b=2(a+b)=2×2=4.故答案为:4.点评:本题考查了利用平方差公式分解因式,利用平方差公式和提公因式法整理出a+b 的形式是求解本题的关键,同时还隐含了整体代入的数学思想.对应训练 5.(2013•鹰潭模拟)已知ab=2,a-b=3,则a 3b-2a 2b 2+ab 3= .5.187.2(31)3x --8.(2013•菏泽)分解因式:3a 2-12ab+12b 2= .8.3(a-2b )2【备考真题过关】一、选择题1.(2013•张家界)下列各式中能用完全平方公式进行因式分解的是( )A .x 2+x+1B .x 2+2x-1C .x 2-1D .x 2-6x+9 1.D2.(2013•佛山)分解因式a 3-a 的结果是( )A .a (a 2-1)B .a (a-1)2C .a (a+1)(a-1)D .(a 2+a )(a-1)2.C3.(2013•恩施州)把x 2y-2y 2x+y 3分解因式正确的是( )A .y (x 2-2xy+y 2)B .x 2y-y 2(2x-y )C .y (x-y )2D .y (x+y )23.C二、填空题4.(2013•自贡)多项式ax 2-a 与多项式x 2-2x+1的公因式是 .4.x-15.(2013•太原)分解因式:a 2-2a= .5.a (a-2)6.(2013•广州)分解因式:x 2+xy= .6.x (x+y )7.(2013•盐城)因式分解:a 2-9= .7.(a+3)(a-3)8.(2013•厦门)x2-4x+4=()2.8.x-29.(2013•绍兴)分解因式:x2-y2= .9.(x+y)(x-y)10.(2013•邵阳)因式分解:x2-9y2= .11.(x+3y)(x-3y)12.(2013•南充)分解因式:x2-4(x-1)= .12.(x-2)213.(2013•遵义)分解因式:x3-x= .13.x(x+1)(x-1)14.(2013•舟山)因式分解:ab2-a= .14.a(b+1)(b-1)15.(2013•宜宾)分解因式:am2-4an2=.15.a(m+2n)(m-2n)16.(2013•绵阳)因式分解:x2y4-x4y2= .16.x2y2(y-x)(y+x)17.(2013•内江)若m2-n2=6,且m-n=2,则m+n= .17.318.(2013•廊坊一模)已知x+y=6,xy=4,则x2y+xy2的值为.18.2419.(2013•凉山州)已知(2x-21)(3x-7)-(3x-7)(x-13)可分解因式为(3x+a)(x+b),其中a、b均为整数,则a+3b=.19.-31。
专题04 和差化积----因式分解的方法(2)阅读与思考因式分解还经常用到以下两种方法1.主元法所谓主元法,即在解多变元问题时,选择其中某个变元为主要元素,视其他变元为常量,将原式按降幂排列重新整理成关于这个字母的多项式,使问题获解的一种方法.2.待定系数法即对所给的数学问题,根据已知条件和要求,先设出一个或几个待定的字母系数,把所求问题用式子表示,然后再利用已知条件,确定或消去所设系数,使问题获解的一种方法,用待定系数法解题的一般步骤是:(1)在已知问题的预定结论时,先假设一个等式,其中含有待定的系数;(2)利用恒等式对应项系数相等的性质,列出含有待定系数的方程组;(3)解方程组,求出待定系数,再代入所设问题的结构中去,得出需求问题的解.例题与求解【例l 】xyz y z x y z x x z z y y x 2222222-++-+-因式分解后的结果是().A .()()()z x y x z y -+-B .()()()z x y x z y +--C .()()()z x y x z y +-+D .()()()z x y x z y -++(上海市竞赛题)解题思路:原式是一个复杂的三元二次多项式,分解有一定困难,把原式整理成关于某个字母的多项式并按降幂排列,改变原式结构,寻找解题突破口.【例2】分解因式:(1)bc ac ab c b a 54332222+++++;(“希望杯”邀请赛试题)(2)z y xy xyz y x z x x 222232242-++--.(天津市竞赛题)解题思路:两个多项式的共同特点是:字母多、次数高,给分解带来一定的困难,不妨考虑用主元法分解.【例3】分解因式1)12()12(2223-+-++++a x a a x a x .(“希望杯”邀请赛试题)解题思路:因a 的最高次数低于x 的最高次数,故将原式整理成字母a 的二次三项式.【例4】k 为何值时,多项式k y x y xy x +++-+108222有一个因式是?22++y x(“五羊杯”竞赛试题)解题思路:由于原式本身含有待定系数,因此不能先分解,再求值,只能从待定系数法入手.【例5】把多项式12544234+-+-x x x x 写成一个多项式的完全平方式.(江西省景德镇市竞赛题)解题思路:原多项式的最高次项是44x ,因此二次三项式的一般形式为b ax x ++22,求出b a 、即可.【例6】如果多项式15)5(2-++-a x a x 能分解成两个一次因式)(b x +,)(c x +的乘积(c b ,为整数),则a 的值应为多少?(江苏省竞赛试题)解题思路:由待定系数法得到关于a c b ,,的方程组,通过消元、分解因式解不定方程,求出a c b ,,的值.能力训练A 级1.分解因式:222449c bc b a -+-=___________________________.(“希望杯”邀请赛试题)2.分解因式:22635y y x xy x ++++=_______________________(河南省竞赛试题)3.分解因式:)(3)(322y x y y x x -+-+++=____________________________.(重庆市竞赛试题)4.多项式78622++-+y x y x 的最小值为____________________.(江苏省竞赛试题)5.把多项式822222--++-y x y xy x 分解因式的结果是() A .)2)(4(+---y x y x B .)8)(1(----y x y xC . )2)(4(--+-y x y xD .)8)(1(--+-y x y x6.已知122-+ax x 能分解成两个整系数的一次因式的乘积,则符合条件的整数a 的个数是( ).A .3 个B .4 个C .5 个D .6个7.若4323+-kx x 被13-x 除后余3,则k 的值为( ).A .2B .4C .9D .10(“CASIO 杯”选拔赛试题)8.若51-=+b a ,13=+b a ,则53912322+++b ab a 的值是( ). A .92 B .32 C .54 D .0 (大连市“育英杯”竞赛试题)9.分解因式:(1)ac bc ab b a 2222++--;(吉林省竞赛试题)(2)))((4)(2b a c b a c ----;(昆明市竞赛试题)(3)a x a x x 2)2(323-++-;(天津市竞赛试题)(4)12267222--++-y x y xy x ;(四川省联赛试题)(5)2)1()21(2)3()1(-+-++-+++y x y x xy xy xy(天津市竞赛试题)10.如果1)4)((---x a x 能够分割成两个多项式b x +和c x +的乘积(c b 、为整数),那么a 应为多少?(兰州市竞赛试题)11.已知代数式24322-+---by x y xy x 能分解为关于y x ,的一次式乘积,求b 的值.(浙江省竞赛试题)B 级1.若k x x x +-+3323有一个因式是1+x ,则k =_______________.(“希望杯”邀请赛试题)2.设y kx xy x x 42323---+可分解为一次与二次因式的乘积,则k =_____________.(“五羊杯”竞赛试题)3.已知4+-y x 是4322+++-y mx y x 的一个因式,则m =________________________.(“祖冲之杯”邀请赛试题)4.多项式6522++-++y x by axy x 的一个因式是2-+y x ,则b a +的值为__________. (北京市竞赛试题)5.若823+++bx ax x 有两个因式1+x 和2+x ,则b a +=( ).A .8B .7C . 15D .21E .22(美国犹他州竞赛试题)6.多项式251244522+++-x y xy x 的最小值为( ).A .4B .5C .16D .25(“五羊杯”竞赛试题)7.若136498322++-+-=y x y xy x M (y x ,为实数),则M 的值一定是( ).A .正数B .负数C .零D .整数(“CASIO 杯”全国初中数学竞赛试题)8.设n m ,满足016102222=++++mn n m n m ,则),(n m =( )A .(2,2)或(-2,-2)B .(2,2)或(2,-2)C .(2,-2)或(-2,2)D .(-2,-2)或(-2,2)(“希望杯”邀请赛试题)9.k 为何值时,多项式253222+-++-y x ky xy x 能分解成两个一次因式的积?(天津市竞赛试题)10.证明恒等式:222444)(2)(b ab a b a b a ++=+++.(北京市竞赛试题)11.已知整数c b a ,,,使等式)1)(11()10())((+-=-+++x x x c b x a x 对任意的x 均成立,求c 的值.(山东省竞赛试题)12.证明:对任何整数y x ,,下列的值都不会等于33. 543223451241553y xy y x y x y x x ++--+(莫斯科市奥林匹克试题)。
第04讲因式分解温故知新回忆:因式分解的一般方法:1、提公因式法2、公式法3、十字相乘法智慧乐园课题扩展:因式分解是初中代数中一种重要的恒等变形,也是处理数学问题的重要手段和工具,学习因式分解,除了掌握提公因式法、公式法、分组分解法等基本方法外,还要熟悉一些特殊的方法和技巧。
一、巧拆项在某些多项式的因式分解过程中,若将多项式的某一项(或某几项)适当拆成几项的代数和,再用基本方法分解,会使问题化难为易,迎刃而解。
二、巧添项在某些多项式的因式分解过程中,若在所给多项式中加、减相同的项,再用基本方法分解,也可使问题化难为易。
三、巧换元在某些多项式的因式分解过程中,通过换元,可把形式复杂的多项式变形为形式简单、易于分解的多项式,从而使问题化繁为简,迅速获解。
四、展开巧组合若一个多项式的某些项是积的形式,直接分解比较困难,则可展开重新组合,然后再用基本方法分解。
五、巧用主元对于含有两个或两个以上字母的多项式,若无法直接分解,可以其中一个字母为主元进行变形整理。
知识要点一因式分解1、因式分解的定义:把一个多项式化成几个整式的积的形式,这种变形叫做因式分解。
2、因式分解与整式乘法的关系如果把整式乘法看成一个变形过程,那么多项式的因式分解就是整式乘法的逆过程;如果把多项式的因式分解看成一个变形过程,那么整式乘法又是多项式的因式分解的逆过程。
3、公因式的定义:我们把多项式各项都含有的相同因式,叫做这个多项式各项的公因式。
4、确定公因式的方法:确定公因式的一般步骤:(1)如果多项式的第一项系数是负数,应把公因式的符 号取“—”;(2)确定公因式的数字因数:当各项系数都是整数时,取多项式各项系 数的最大公约数为公因式的系数;(3)确定公因式的字母及其指数:取多项式各项都 含有的相同字母(或因式),其指数取最低次。
5、提公因式法:如果一个多项式的各项含有公因式,那么就可以把这个公因式提出来,从而将多 项式化成两个因式乘积的形式,这种因式分解的方法叫做提公因式法。
八升九数学精品(第4讲 讲义)因式分解专题一 因式分解的意义把一个多项式化成几个整式的积的形式,这种变形叫做因式分解. (1)因式分解专指多项式的恒等变形,即等式的左边必须是多项式.(2)因式分解的要求:分解的结果要以积的形式表示;每个因式必须是整式;因式分解必须分解到每个因式都不能再分解为止.(3)因式分解与整式乘法是互逆变形.如果把整式乘法看做是一个变形过程,那么多项式的因式分解就是它的逆过程;如果把多项式的因式分解看做是一个变形过程,那么整式乘法就是它的逆过程.下面式子从左边到右边的变形是因式分解的是 ( ) A.x 2-x-2=x(x-1)-2 B.(a+b)(a-b)=a 2-b 2C.x 2-4=(x+2)(x-2)D.x 2-)1)(1(12yx y x y -+=【针对训练1】 ①若mx+A 能分解为m(x-y+2),则A= . ②下列式子是因式分解的是 ( )A.x(x-1)=x 2-1B.x 2-x=x(x+1)C.x 2+x=x(x+1)D.x 2-x=(x+1)(x-1) 专题二 提公因式法我们把多项式中各项都含有的相同因式,叫做这个多项式的公因式.如果一个多项式的各项含有公因式,那么就可以把这个公因式提出来,从而将多项式化成两个因式乘积的形式,这种因式分解的方法叫做提公因式法.把下列各式因式分解: (1)3x+x 3; (2)7x 3-21x 2; (3)8a 3b 2-12ab 3c+ab; (4)-24x 3+12x 2-28x.【针对训练2】 把2a(x-y)+6b(y-x)因式分解.【基础巩固】1.把多项式4a 2b+10ab 2分解因式时,应提取的公因式是 .2.因式分解:x 2-3x= .3.分解因式:12x 3y-18x 2y 2+24xy 3= · . 【能力提升】4.把下列各式因式分解.(1)3x 2y-6xy (2)5x 2y 3-25x 3y 2(3)-4m 3+16m 2-26m (4)15x 3y 2+5x 2y-20x 2y 3.专题三 公式法运用平方差公式因式分解: 64(a-b)2-4(a+b)2.【针对训练3】 ①分解因式: 81(a+b)2-4(a-b)2.②尝试将它们的结果分别写成两个因式的乘积:(1)x 2-25= ; (2)9x 2-y 2= ; (3)9m 2-4n 2= .运用完全平方公式因式分解:(a+b)2+10(a+b)+25.【针对训练4】①因式分解:x3y3-2x2y2+xy.②把下列完全平方式因式分解:(1)x2+14x+49;(2)(m+n)2-6(m+n)+9.③分解因式:(a-b)2-4b2= .④分解因式:a3b-4ab= .专题四因式分解的应用39992+3999能被4000整除吗?【针对训练5】计算:1998+19982-19992.将一条400 cm长的金色彩带剪成两段,恰好可用来镶嵌两张大小不同的正方形壁画的边(不计算接头处),已知两张壁画的面积相差4000 cm2.这条金色彩带应剪成多长的两段?【针对训练6】王师傅铸造了如右图所示的一种零件,在边长为10 cm的正方形内部有四个大小不同的圆,它们的直径分别为 1 cm,2 cm,3 cm,4 cm,他想知道阴影部分的面积,请你帮他算一算(π取3.14).专题五易错点对分解因式的方法掌握得不够彻底例7.分解因式:36x2-36x+9.例8.分解因式:9a2-4b2.例9.分解因式:-3m2n+6mn-3n.例10.分解因式:21a2-ab+21b2.。
2013年中考数学专题复习第四讲:因式分解【基础知识回顾】一、因式分解的定义:1、把一个式化为几个整式的形式,叫做把一个多项式因式分解。
2、因式分解与整式乘法是运算,即:多项式___________整式的积【名师提醒:判断一个运算是否是因式分解或判断因式分解是否正确,关键看等号右边是否为的形式。
】二、因式分解常用方法:1、提公因式法:公因式:一个多项式各项都有的因式叫做这个多项式各项的公因式。
提公因式法分解因式可表示为:ma+mb+mc= 。
【名师提醒:1、公因式的选择可以是单项式,也可以是,都遵循一个原则:取系数的,相同字母的。
2、提公因式时,若有一项被全部提出,则括号内该项为,不能漏掉。
3、提公因式过程中仍然要注意符号问题,特别是一个多项式首项为负时,一般应先提取负号,注意括号内各项都要。
】2、运用公式法:将乘法公式反过来对某些具有特殊形式的多项式进行因式分解,这种方法叫做公式法。
①平方差公式:a2-b2= ,②完全平方公式:a2±2ab+b2= 。
【名师提醒:1、运用公式法进行因式分解要特别掌握两个公式的形式特点,找准里面a与b。
如:x2-12x+14即是完全平方公式形式而x2-x+12就不符合该公式。
】一、公式分解的一般步骤1、一提:如果多项式即各项有公因式,即分要先2、二用:如果多项没有公因式,即可以尝试运用法来分解。
3、三查:分解因式必须进行到每一个因式都解因为止。
【名师提醒:分解因式不彻底是因式分解常见错误之一,中考中的因式分解题目一般为两点,做题时要特别注意,另外分解因式的结果是否正确可以用整式乘法来检验】【重点考点例析】考点一:因式分解的概念例1 (2012•安徽)下面的多项式中,能因式分解的是()A.m2+n B.m2-m+1 C.m2-n D.m2-2m+1思路分析:根据多项式特点和公式的结构特征,对各选项分析判断后利用排除法求解.解:A、m2+n不能分解因式,故本选项错误;B、m2-m+1不能分解因式,故本选项错误;C、m2-n不能分解因式,故本选项错误;D、m2-2m+1是完全平方式,故本选项正确.故选D.点评:本题主要考查了因式分解的意义,熟练掌握公式的结构特点是解题的关键.对应训练1.(2012•凉山州)下列多项式能分解因式的是()A.x2+y2B.-x2-y2C.-x2+2xy-y2D.x2-xy+y2答案:C考点二:因式分解例2 (2012•天门)分解因式:3a2b+6ab2= .思路分析:首先观察可得此题的公因式为:3ab,然后提取公因式即可求得答案.解:3a2b+6ab2=3ab(a+2b).故答案为:3ab(a+2b).点评:此题主要考查了提公因式法分解因式,关键是掌握找公因式的方法:当各项系数都是整数时,公因式的系数应取各项系数的最大公约数;字母取各项的相同的字母,而且各字母的指数取次数最低的;取相同的多项式,多项式的次数取最低的.例3 (2012•广元)分解因式:3m3-18m2n+27mn2= .思路分析:先提取公因式3m,再对余下的多项式利用完全平方公式继续分解.解:3m3-18m2n+27mn2=3m(m2-6mn+9n2)=3m(m-3n)2.故答案为:3m(m-3n)2.点评:本题考查了用提公因式法和公式法进行因式分解,一个多项式有公因式首先提取公因式,然后再用其他方法进行因式分解,同时因式分解要彻底,直到不能分解为止.对应训练2.(2012•温州)把a2-4a多项式分解因式,结果正确的是()A.a(a-4)B.(a+2)(a-2)C.a(a+2)(a-2)D.(a-2)2-4 答案:A.3.(2012•恩施州)a4b-6a3b+9a2b分解因式得正确结果为()A.a2b(a2-6a+9)B.a2b(a-3)(a+3)C.b(a2-3)2 D.a2b(a-3)2答案:D考点三:因式分解的应用例4 8.(2012•随州)设a2+2a-1=0,b4-2b2-1=0,且1-ab2≠0,则(2231ab b aa+-+)5= .考点:因式分解的应用;分式的化简求值.分析:根据1-ab2≠0的题设条件求得b2=-a,代入所求的分式化简求值.解答:解:∵a2+2a-1=0,b4-2b2-1=0,∴(a2+2a-1)-(b4-2b2-1)=0,化简之后得到:(a+b2)(a-b2+2)=0,若a-b2+2=0,即b2=a+2,则1-ab2=1-a(a+2)=1-a2-2a=0,与题设矛盾,所以a-b2+2≠0,因此a+b2=0,即b2=-a,∴(2231 ab b aa+-+)5=(231 a a aa---+)5=-(221 a aa+-)5=(121aa--)5=(-2)5=-32.故答案为-32.点评:本题考查了因式分解、根与系数的关系及根的判别式,解题关键是注意1-ab2≠0的运用.对应训练4.(2012•苏州)若a=2,a+b=3,则a2+ab= .答案:6【聚焦山东中考】1.(2012•济宁)下列式子变形是因式分解的是()A.x2-5x+6=x(x-5)+6 B.x2-5x+6=(x-2)(x-3)C.(x-2)(x-3)=x2-5x+6 D.x2-5x+6=(x+2)(x+3)答案:B.2.(2012•临沂)分解因式:a-6ab+9ab2= .答案:a(1-3b)2.3.(2012•潍坊)分解因式:x3-4x2-12x= .考点:因式分解-十字相乘法等;因式分解-提公因式法.分析:首先提取公因式x,然后利用十字相乘法求解即可求得答案,注意分解要彻底.解答:解:x3-4x2-12x=x(x2-4x-12)=x(x+2)(x-6).故答案为:x(x+2)(x-6).点评:此题考查了提公因式法、十字相乘法分解因式的知识.此题比较简单,注意因式分解的步骤:先提公因式,再利用其它方法分解,注意分解要彻底.4.(2012•威海)分解因式:3x2y+12xy2+12y3= .考点:提公因式法与公式法的综合运用.分析:先提取公因式3y,再对余下的多项式利用完全平方公式继续分解.解答:解:3x2y+12xy2+12y3,=3y(x2+4xy+4y2),=3y(x+2y)2.故答案为:3y(x+2y)2.点评:本题考查了用提公因式法和公式法进行因式分解,一个多项式有公因式首先提取公因式,然后再用其他方法进行因式分解,同时因式分解要彻底,直到不能分解为止.【备考真题过关】一、选择题1.(2012•无锡)分解因式(x-1)2-2(x-1)+1的结果是()A.(x-1)(x-2)B.x2C.(x+1)2D.(x-2)2答案:D2.(2012•呼和浩特)下列各因式分解正确的是()A.-x2+(-2)2=(x-2)(x+2)B.x2+2x-1=(x-1)2C.4x2-4x+1=(2x-1)2D.x2-4x=x(x+2)(x-2)答案:C3.(2012•台湾)下列四个选项中,哪一个为多项式8x2-10x+2的因式?()A.2x-2 B.2x+2 C.4x+1 D.4x+2答案:A4.(2012•西宁)下列分解因式正确的是()A.3x2-6x=x(3x-6)B.-a2+b2=(b+a)(b-a)C.4x2-y2=(4x+y)(4x-y)D.4x2-2xy+y2=(2x-y)2考点:因式分解-运用公式法;因式分解-提公因式法.专题:计算题.分析:根据因式分解的定义,把一个多项式写成几个整式积的形式叫做因式分解,并根据提取公因式法,利用平方差公式分解因式法对各选项分析判断后利用排除法求解.解答:解:A、3x2-6x=3x(x-2),故本选项错误;B、-a2+b2=(b+a)(b-a),故本选项正确;C、4x2-y2=(2x+y)(2x-y),故本选项错误;D、4x2-2xy+y2不能分解因式,故本选项错误.故选B.点评:本题主要考查了因式分解的定义,熟记常用的提公因式法,运用公式法分解因式的方法是解题的关键.5.(2012•温州)把a2-4a多项式分解因式,结果正确的是()A.a(a-4)B.(a+2)(a-2)C.a(a+2)(a-2)D.(a-2)2-4 考点:因式分解-提公因式法.分析:直接提取公因式a即可.解答:解:a2-4a=a(a-4),故选:A.点评:此题主要考查了提公因式法分解因式,关键是掌握找公因式的方法:当各项系数都是整数时,公因式的系数应取各项系数的最大公约数;字母取各项的相同的字母,而且各字母的指数取次数最低的;取相同的多项式,多项式的次数取最低的.二、填空题6.(2012•湘潭)因式分解:m2-mn= .答案:m(m-n)7.(2012•桂林)分解因式:4x2-2x= .答案:2x(2x-1)8.(2012•沈阳)分解因式:m2-6m+9= .答案:(x-3)2.9.(2012•黔西南州)分解因式:a4-16a2= .答案:a2(a+4)(a-4).10.(2012•北海)因式分解:-m2+n2= .答案:(n+m)(n-m)11.(2012•北京)分解因式:mn2+6mn+9m= .答案:m(n+3)2.12.(2012•益阳)写出一个在实数范围内能用平方差公式分解因式的多项式:.答案:解:答案不唯一,如x2-3=x2-(3)2=(x+3)(x-3).故可填x2-3.13.(2012•宜宾)分解因式:3m2-6mn+3n2= .答案:3(m-n)214.(2012•绥化)分解因式:a3b-2a2b2+ab3= .答案:ab(a-b)2.15.(2012•宜宾)已知P=3xy-8x+1,Q=x-2xy-2,当x≠0时,3P-2Q=7恒成立,则y 的值为.解:∵P=3xy-8x+1,Q=x-2xy-2,∴3P-2Q=3(3xy-8x+1)-2(x-2xy-2)=7恒成立,∴9xy-24x+3-2x+4xy+4=7,13xy-26x=0,13x(y-2)=0,∵x≠0,∴y-2=0,∴y=2;故答案为:2.16.(2012•广东)分解因式:2x2-10x= .考点:因式分解-提公因式法.分析:首先确定公因式是2x,然后提公因式即可.解答:解:原式=2x(x-5).故答案是:2x(x-5).点评:本题考查了提公因式法,正确确定公因式是关键.17.(2012•黄石)分解因式:x2+x-2= .考点:因式分解-十字相乘法等.专题:探究型.分析:因为(-1)×2=-2,2-1=1,所以利用十字相乘法分解因式即可.解答:解:∵(-1)×2=-2,2-1=1,∴x2+x-2=(x-1)(x+2).故答案为:(x-1)(x+2).点评:本题考查的是十字相乘法分解因式,运用十字相乘法分解因式时,要注意观察,尝试,并体会它实质是二项式乘法的逆过程.18.(2012•黑河)因式分解:27x2-3y2= .考点:提公因式法与公式法的综合运用.分析:首先提公因式3,然后利用平方差公式分解.解答:解:原式=3(9x2-y2)=3(3x+y)(3x-y).故答案是:3(3x+y)(3x-y).点评:本题考查了用提公因式法和公式法进行因式分解,一个多项式有公因式首先提取公因式,然后再用其他方法进行因式分解,同时因式分解要彻底,直到不能分解为止19.(2012•六盘水)分解因式:2x2+4x+2= .考点:提公因式法与公式法的综合运用.分析:先提取公因式2,再根据完全平方公式进行二次分解.完全平方公式:a2±2ab+b2=(a±b)2.解答:解:2x2+4x+2=2(x2+2x+1)=2(x+1)2.故答案为:2(x+1)2.点评:本题考查了提公因式法,公式法分解因式,提取公因式后利用完全平方公式进行二次分解,注意分解要彻底.20.(2012•南充)分解因式:x2-4x-12= .考点:因式分解-十字相乘法等.专题:计算题.分析:因为-6×2=-12,-6+2=-4,所以利用十字相乘法分解因式即可.解答:解:x2-4x-12=(x-6)(x+2).故答案为(x-6)(x+2).点评:本题考查十字相乘法分解因式,运用十字相乘法分解因式时,要注意观察,尝试,并体会它实质是二项式乘法的逆过程.21.(2012•哈尔滨)把多项式a3-2a2+a分解因式的结果是.考点:提公因式法与公式法的综合运用.分析:先提取公因式a,再利用完全平方公式进行二次分解因式解答:解:a3-2a2+a=a(a2-2a+1)=a(a-1)2.故答案为:a(a-1)2.点评:本题主要考查提公因式法分解因式和利用完全平方公式分解因式,难点在于需要进行二次分解因式.22.(2012•广州)分解因式:a3-8a= .考点:提公因式法与公式法的综合运用.专题:常规题型.分析:先提取公因式a,再对余下的多项式利用平方差公式继续分解.解答:解:a3-8a=a(a2-8)=a(a+22)(a-22).故答案为:a(a+22)(a-22).点评:本题考查了用提公因式法和公式法进行因式分解,一个多项式有公因式首先提取公因式,然后再用其他方法进行因式分解,同时因式分解要彻底,直到不能分解为止.23.(2012•广西)分解因式:2xy-4x2= .考点:因式分解-提公因式法.分析:利用提取公因式法分解即可,公因式的确定方法是:公因式的系数是各项的系数的最大公约数,字母是各项中共同含有的字母,并且字母的次数是各项中字母的最低的次数作为公因式的次数.解答:解:原式=2x(y-2x).故答案是:2x(y-2x).点评:本题考查了利用提公因式法分解因式,正确确定公因式是关键.24.(2012•大庆)分解因式:ab-ac+bc-b2= .考点:因式分解-分组分解法.分析:首先把前两项分成一组,后两项分成一组,每一组可以提公因式,然后再利用提公因式法即可.解答:解:ab-ac+bc-b2=(ab-ac)+(bc-b2)=a(b-c)-b(b-c)=(b-c)(a-b)故答案是:(b-c)(a-b).点评:本题考查了分组分解法分解因式,此题因式分解方法灵活,注意认真观察各项之间的联系.三、解答题25.(2012•扬州)(1)计算:9-(-1)2+(-2012)0(2)因式分解:m3n-9mn.考点:提公因式法与公式法的综合运用;实数的运算;零指数幂.专题:常规题型.分析:(1)根据算术平方根的定义,乘方的定义,以及任何非0数的0次幂等于1解答;(2)先提取公因式mn,再对余下的多项式利用平方差公式继续分解.解答:解:(1)9-(-1)2+(-2012)0=3-1+1=3;(2)m3n-9mn=mn(m2-9)=mn(m+3)(m-3)点评:本题考查了用提公因式法和公式法进行因式分解,一个多项式有公因式首先提取公因式,然后再用其他方法进行因式分解,同时因式分解要彻底,直到不能分解为止.。