当前位置:文档之家› 二阶线性偏微分方程的化简

二阶线性偏微分方程的化简

二阶线性偏微分方程的化简
二阶线性偏微分方程的化简

浅谈微分方程的起源与发展史

浅谈微分方程的起源与发展史 摘要:微分方程起源于17世纪,简单的微分方程分别是牛顿、莱布尼茨和伯努利从几何和力学问题上解决的问题。这些早期发现开始于1690年,这逐渐导致一些特殊的微分方程的“特殊技能”的发展。虽然这些特殊的技术只适用于相对较少的情况下,但是他们可以解决许多微分方程在力学和几何中的问题,所以,他们的研究具有非常重要的现实意义。这些特殊的方法和问题,将有助于我们解决很多问题。 引言:很多的科学问题是需要人们根据事物的变化率来确定事物的特征。比如,我们可以 试着用已知的速度或加速度来计算粒子的位置,又比如,一些放射性物质可能是已知的衰变率,这就要求我们在一个给定的时间内确定材料的总量。通过这些例子,我们可以发现,如果知道自变量、未知函数以及函数的导数(或者微分)组成的关系式,得到的就是微分方程。最后再通过微分方程求出未知函数。 关键字:微分方程起源发展史 一、微分方程的思想萌芽 微分方程就是联系着自变量,未知函数以及其导数的关系式。微分方程理论的发展是跟随着微积分理论的建立发展起来的,一般地,客观世界的时间要服从一定的客观规律,这种连接,用数学语言表达,即是抽象为微分方程,一旦获得或研究的解决方案是明确的空气动力学行为,变量之间的规律是一目了然的。例如在物体运动中,唯一的计算就与瞬间速度之间有着紧密的联系,其结果往往形成一个微分方程,一旦求出解或研究清楚气动力学行为,就明确的掌握了物体的运动规律。 1.1微分方程的起源:微分方程起源于17世纪,简单的微分方程分别是牛顿、莱布 尼茨和伯努利从几何和力学问题上解决的问题。这些早期发现开始于1690年,这逐渐导致一些特殊的微分方程的“特殊技能”的发展。 1.2微分方程在实际问题中的应用:运用微分方程理论解决一些实际问题,即根 据生物学,物理学,化学,几何学等学科的实际问题及相关知识建立微分方程,讨论该方程解的性质,并由所得的解或解的性质反过来解释该实际过程。物质运动和它的变化规律在数学上是用函数关系描述的,但是在实际问题中往往不能直接写出反映运动规律的函数,却比较容易建立这些变量与他们的导数之间的关系式,即微分方程。只有一个自变量的微分方程称为常微分方程,简称微分方程。 例1 传染病模型 传染病(瘟疫)经常在全世界各地流行,假设传染病传播期间其他地区的总 x,在t时的健康人数为)(t y,染病人数不变,为常数n,最开始的染病人数为 人数为)(t x。 因为总人数为常数n

非线性偏微分方程在金融衍生品定价中的应用

非线性偏微分方程在金融衍生品定价中的应用Black-Scholes期权定价公式对金融衍生品的发展起了不可估量的作用,是 金融衍生品的定价的基础。然而BS方程是建立在六大假设的基础上得到的,现实中不可能全部满足这些假设,后来许多研究者对于方程的假设做了一些修改,其中一些结果是应用了非线性偏微分方程对金融衍生品定价。本文主要介绍这方面的成果。 关键词:非线性偏微分方程金融衍生品定价 一般认为Black-Scholes期权定价公式是现代金融的基础,是现代金融产品定价的核心,以后的金融定价理论都是在此基础上发展起来的,从数学角度来讲,这个方程是一个比较简单的二阶线性抛物方程,通过简单的变形容易得到解析解。Willmott(2000)的著作中就用相似解的方法得到解的表达式。但BS方程是建立在六个假设的基础上的,金融市场上变化因素很多,往往很难同时满足BS 模型的这些假设条件,比如现实交易中应该考虑交易成本的问题,波动率不可能是一个常数,股价并不一定服从对数正态分布等等,为了解决这些问题,一些研究者提出了完全非线性方程。大概有两种,本文就此进行了论述。 两阶模型 第一种是两阶模型,这种方法主要是对于BS公式的假设进行改进,主要有: (一)加入证券的交易成本 现实市场中,证券的交易是要有成本的,然而BS模型的假设中没有考虑到交易成本,对于此,Leland(1985)考虑交易成本的期权的定价模型时,他认为不管每一个时间间隔是否是最优,都要进行Delta 对冲,来求算考虑交易成本的期权定价的模型,这样所得出的模型只要将BS模型中的设为常数的波动率进行修改就可以了,比较简单。而后,Hoggard,Whalley&Willmott(1992)中利用Taylor 展开得到了完全非线性方程: ,k为交易费率。 从上式可以看出,对于单个看涨或者看跌期权,因为其Gamma值都为正,通过变形可以得到其BS模型对应的波动率,这和Leland所得到的结果类似。不过这个模型还可以用来处理Gamma值不是单符号的期权组合的定价问题,还讨

一阶拟线性偏微分方程

天津商业大学 一阶拟线性偏微分方程在物理中的应用及 初值问题求解 院系:机械工程学院 专业:XX 姓名:XXX 学号:XXXXX

摘要 本文首先介绍了一阶拟线性偏微分方程的基本概念,及齐次性的划分,并列举了几种典型拟线性偏微分方程在物理中的应用。然后,通过讨论一阶拟线性偏微分方程的几何意义得出其求解方法。最后以齐次连续性方程初值问题的求解为例,介绍了一阶拟线性偏微分方程的基本求解方法。 关键词:一阶拟线性偏微分方程;连续性方程;初值问题;物理意义

ABSTRACT In this paper, we first introduce the basic concepts of first order quasi linear partial differential equations, and the division of homogeneous properties, and the applications of several typical quasi linear partial differential equations in physics. Then, by discussing the geometric meaning of the first order quasi linear partial differential equations, the solving method is obtained. Finally, the solution of the initial value problem of homogeneous continuity equation is solved as an example, and the basic solution of the first order quasi linear partial differential equation is introduced. KEY WORDS:First order quasi linear partial differential equation;Continuity equation;initial value problem;Physical meaning

基于偏微分方程

数学物理方程论文 ——基于偏微分方程在PKMK型几何积分方法中的应用研究

基于偏微分方程在PKMK型几何积分方法中的应用研究 摘要: 人类的发展历史表明科学的理论总是从简单到复杂,从特殊到一般,从粗糙到 精确,逐渐深化的。因此,以数学为工具,以物理学开路的严密自然科学在初期阶 段总是力图把描述简单化、近似化,在数学方面采取的一个重要办法就是线性化。 但是随着科学的发展和人类向更完美的目标的持续追求,复杂的自然界不断促使我 们把一个个线性理论发展为非线性理论。非线性化是科学发展的必由之路。一些学 者已将非线性科学誉为上世纪继相对论和量子力学之后自然科学的“第三次革命”。 正如一位物理学家所说:“相对论的建立排除了对绝对空间和时间的牛顿幻觉;量 子力学的建立则排除了对可控空间和时间的牛顿幻觉;非线性科学的建立排除了拉 普拉斯决定论的可预见性狂想。”非线性科学的建立是研究非线性现象共性的一门 学问。 关键词:偏微分方程 PKMK型几何积分函数商的零点 正文: 在数学、物理、化学以及生物等领域中,人们遇到大量的非线性现象,这些现 象的表现形式虽然千差万别,但其运动规律却具有相似的数学模型。一般地,它们 可以用常微分方程和偏微分方程的数学模型来描述。许多偏微分方程通过空间离散 化可以化为常微分方程的初值问题。 传统上,人们从两个极端不同的出发点来理解和掌握常微分方程问题。纯数学 家对问题认识深刻,推导严密,并采用大范围整体化的定性知识;而数值分析家通 过构造富有技巧的算法,以获得只有很小的误差的离散解,他们一般不考虑整体的 定性性质。孰优孰劣?这要视具体问题具体分析。如果要问到:“局部误差多大?” 这个问题大可以由传统的数值分析方法来解决。事实上,真实的物理过程都不是极 端的。在数学物理问题的研究中,问题所属的物理学、力学和工程技术本身的特殊 规律,常常会在问题进行严格数学处理之前,提示求解问题定性的思想和方法,并 促使具体问题的解决。本文强调应将微分方程的几何性质等定性信息与数值计算有 机地结合起来,进而处理实际问题。 大部分在物理学中显示巨大威力的新的数学思想均来自于几何与分析的交叉。 我们可以简单地回顾微分方程与几何学不可分割的历史渊源。18世纪以前的物理学 家和自然哲学家,如Copemies,Galileo,Kepler,Newton等都对几何学非常熟悉,他们常用几何概念来表达其物理思想。在19世纪,Descartes对Euclid几何引入坐标后,将几何学的研究看成是代数和分析的应用,这引起了几何学的革命,促进了在 几何学中各种分析工具的应用。与此同时,在物理学中利用坐标概念将自然定律表 示成微分方程,促进了物理学的发展。在此阶段,多数物理学家主要注意对物理体 系局域运动性质的探讨,对运动实体的内部对称性及大范围整体性质往往注意不 足。拓扑学与微分几何在物理学的重要性常被忽视。19世纪中叶,Maxwell从实验 观察总结出电磁现象的运动方程,注意到Maxwell方程组的共性不变性。Lorentz。Minkowski之后,直到20世纪初,Einstein提出了狭义相对论,人们才进一步深入 认识到了时空的基本几何特性的重要性。这时主要应用的数学工具是微分方程及群 论分析等。长期以来,微分方程在自然现象的数学研究中起到了决定性的作用,人 们充分认识到,通过研究微分方程的几何性质,可以获知它的真解的关键性的定性

一阶线性偏微分方程

第七章 一阶线性偏微分方程 研究对象 一阶线性齐次偏微分方程 0),,,(),,,() ,,,(2122121211=??++??+??n n n n n x u x x x X x u x x x X x u x x x X 1基本概念 1) 一阶线性齐次偏微分方程 形如 0),,,(),,,(),,,(2122121211=??++??+??n n n n n x u x x x X x u x x x X x u x x x X (7.1) 的方程,称为一阶线性齐次偏微分方程,其中n x x x ,,,21 是自变量,u 是n x x x ,,,21 的未知函数,n X X X ,,,21 是域n R D ?内的已知函数,并设n X X X ,,,21 在域D 内不同时为零。 2) 一阶拟线性偏微分方程 形如 );,,,();,,,();,,,(21211211z x x x Z x z z x x x Y x z z x x x Y n n n n n =??++?? (7.2) 的方程,称为一阶拟线性偏微分方程,其中Z Y Y Y n ;,,,21 是1+n 个变元z x x x n ;,,,21 的已知函数。n Y Y Y ,,,21 在其定义域1+?'n R D 内不同时为零。 所谓“拟线性”是指方程仅对未知函数的各个一阶偏导数是线性的,以下总设n Y Y Y ,,,21 和Z 在域D '内连续可微。 3) 特征方程组 常微分方程组 n n X dx X dx X dx === 2211 (7.3) 称为一阶线性齐次偏微分方程(7.1)的特征方程组。 常微分方程组

二阶线性偏微分方程的分类与小结

第六章 二阶线性偏微分方程的分类与小结 一 两个自变量的二阶线性方程 1 方程变换与特征方程 两个自变量的二阶线性偏微分方程总表示成 f cu u b u b u a u a u a y x yy xy xx =+++++212212112 ① 它关于未知函数u 及其一、二阶偏导数都是线性的,其中f u c b b a a a ,,,,,,,21221211都是自变量y x ,的已知函数,假设它们的一阶偏 导数在某平面区域D 内都连续,而且221211a a a ,,不全为0 。 设),(000y x M 是D 内给定的一点,考虑在0M 的领域内对方程进行简化。取自变量变换 ),(y x ξξ=,),(y x ηη= 其中它们具有二连续偏导数,而且在0M 处的雅可比行列式。 = ??),(),(y x ηξy x y x ηηξξ =x y y x ηξηξ- 根据隐函数存在定理,在0M 领域内存在逆变换, ),(ηξx x =,),(ηξy y = 因为 x x x u u u ηξξξ+=,y y y u u u ηξξξ+=

xx xx x x x x xx u u u u u u ηξηηξξηξηηξηξξ++++=222 yy yy y y y y yy u u u u u u ηξηηξξηξηηξηξξ++++=222 xy xy y x x y y x x x xy u u u u u u ηξηηηξηξξξηξηηξηξξ+++++=)( 将代入①使其变为 F Cu u B u B u A u A u A =+++++ηξηηξηξξ212212112 经过变换后,方程的阶数不会升高,由变换的可逆性,方程的阶数也不会降低,所以221211,,A A A 不全为0。并可验证 222112122211212))((x y y x a a a A A A ηξηξ--=- 这表明,在可逆变换下2 22112 12A A A -与22112 12 a a a -保持相同的正负号。 定理 在0M 的领域内,不为常数的函数),(y x ?是偏微分方程022*******=++y y x x a a a ????之解的充分必要条件是: C y x ≡),(?是常微分方程的 0)(2)(22212211=++dx a dxdy a dy a 通解。 2 方程的类型及其标准形式 根据以上结论简化方程的问题归结为寻求其特征曲线。为此将特征方程分解成两个方程: 11 22 11 2 12 12 a a a a a dx dy -+=,11 22 11 2 12 12 a a a a a dz dy --= (1) 若在0M 的邻域内022112 12>-a a a 时,方程可以化为

一阶偏微分方程基本知识

一阶偏微分方程基本知识 这一章我们来讨论一阶线性偏微分方程和一阶拟线性偏微分方程的解法,因为它们都可以化为常微分方程的首次积分问题,所以我们先来介绍常微分方程的首次积分。 1一阶常微分方程组的首次积分 1.1首次积分的定义 从第三章我们知道,n 阶常微分方程 ()()() 1,,'',',-=n n y y y x f y Λ, ( 1.1) 在变换 ()1'12,,,,n n y y y y y y -===L ( 1.2) 之下,等价于下面的一阶微分方程组 ()()()1 112221212,,,,,,,,,,,,,,. n n n n n dy f x y y y dx dy f x y y y dx dy f x y y y dx ?=?? ?=???? ?=??L L M M M M L ( 1.3) 在第三章中,已经介绍过方程组( 1.3)通解的概念和求法。但是除了常系数线性方程组外,求一般的( 1.3)的解是极其困难的。然而在某些情况下,可以使用所谓“可积组合”法求通积分,下面先通过例子说明“可积组合”法,然后介绍一阶常微分方程组“首次积分”的概念和性质,以及用首次积分方法来求解方程组( 1.3)的问题。先看几个例子。

例1 求解微分方程组 ()()22221,1.dx dy y x x y x y x y dt dt =-+-=--+- ( 1.4) 解:将第一式的两端同乘x ,第二式的两端同乘y ,然后相加,得到 ()() 12222-++-=+y x y x dt dy y dt dx x , ()()()2222221 12 d x y x y x y dt +=-++-。 这个微分方程关于变量t 和()22x y +是可以分离,因此不难求得其解为 122 2221C e y x y x t =+-+, ( 1.5) 1C 为积分常数。( 1.5)叫做( 1.4)的首次积分。 注意首次积分( 1.5)的左端(),,V x y t 作为x ,y ,和t 的函数并不等于常数;从上面的推导可见,当(),()x x t y y t ==时微分方程组( 1.4)的解时,(),,V x y t 才等于常数1C ,这里的常数1C 应随解而异。因为式( 1.4)是一个二阶方程组,一个首次积分( 1.5)不足以确定它的解。为了确定( 1.4)的解,还需要找到另外一个首次积分。 将第一式两端同乘y ,第二式两端同乘x ,然后用第一式减去第二式,得到 22y x dt dy x dt dx y +=-, 即 () 22y x dt dx y dt dy x +-=-, 亦即 1arctan -=?? ? ?? dt x y d 。 积分得

变分方法及其在非线性偏微分方程应用方面的进展和未决问题

第42卷第2期2018年3月 江西师范大学学报(自然科学版) Journal of Jiangxi Normal University(Natural Science) Yol.42 No.2 Mar.2018 文章编号=1000-5862(2018)02-0111-19 变分方法及其在非线性偏微分方程 应用方面的进展和未决问题 邹文明 (清华大学数学科学系,北京100084) 摘要:先介绍变分法发展的简单历史以及将来的发展趋势.然后综述变分法应用于非线性偏微分方程的 基本思想和最新成果.通俗介绍环绕理论、变号临界点理论及应用,其中包括对称扰动方程和Rabinowitz 公开问题、Brezis-Nirenberg 临界指数方程、Li-Lin 公开问题、Bose-Einstein 凝聚、Berestycki-Caffarelli-Niren- berg猜测和Lane-Emden方程及猜想. 关键词:变分法;非线性偏微分方程;环绕理论;临界指数;变号临界点理论;薛定谔方程 中图分类号:〇176;0 175.29 文献标志码:A D O I:10.16357/j. cnki. issnlOOO-5862.2018.02.01 〇变分法简史和将来的发展趋势 变分的思想可以追溯到法国科学家费马(Pierre de Fermat,1601 _1665)时代.他在 1662 年提出了现 在被称为的极小作用原理:光传播的路径是光程取 极值的路径.这个极值可能是最大值(或最小值),甚至可以是函数的拐点.在最初提出时,又被人们称 为“最短时间原理”,即光线传播的路径是需时最少 的路径.此时,微积分还没有产生! 17世纪后半叶,更多的非线性问题需要更加严 密的理论工具,这就促使了微积分的产生.当时,许 多科学家,如法国的费马、笛卡尔,英国的巴罗、瓦里 士,德国的开普勒等,都为微积分的产生做了大量的 前期研究工作,为微积分的创立做出了启蒙的贡献. 英国的数学家牛顿(1643—1727)在1684—1685年 写《自然哲学的数学原理》,于1687年正式出版.德 国数学家莱布尼茨(1646—1716)于1684年在《博 学学报》(Acta Eruditorum)发表了《一种求极大极小 和切线的新方法,它也适用于分式和无理量,以及这 种新方法的奇妙类型的计算》.这2个工作标志着 微积分的诞生.牛顿-莱布尼茨发明微积分后,有了 系统且严谨的办法来研究变分问题.但围绕着微积 分的发明权之争,引发了欧洲大陆学派如德国(莱布尼茨学派)和英国(牛顿学派)的数学家们之间的 互相挑战[1]. 约翰?贝努利(Johann Beinoulli,瑞士数学家,I667—1748)在1696年6月提出一个作为向欧洲数 学家(甚至包括他哥哥Jakob Bernoulli,瑞士数学家,1654—1705)挑战的数学问题,即现在被称为的“最 速下降线问题问题提出半年后,仍然未解决.于 是Johann Beinoulli在1697年元旦发表著名的“公 告”(Programma),再次向“全世界最聪明的数学家”(意指牛顿)挑战,1月29日牛顿从英国造币局下班 回到住处,看到了转达Johann Beinoulli挑战的信 件,随后他利用一个晚上的时间解决了这个问题,并 将结果匿名(这是他常用的办法)发表.Johann Bei-nm illi读到这篇文章后惊叹“终于看见了雄狮的利 爪”,意指是牛顿所为.“最速下降线问题”现在被认 为是变分法的起源.瑞士数学家Leonhard Euler (1707—1783)作为 Johann Beinoulli 的学生,也对变 分法做出了极大贡献.例如,Leonhard Euler在1734 年推广了最速降线问题,寻找这类问题的更一般方 法.1744年,Leonhard E uler的《寻求具有某种极大 或极小性质的曲线的方法》一书出版[1].这是变分 学史上的里程碑,它标志着变分法作为一个新的数 学分支的诞生.在这个数学分支中,函数本身就是自 变量,因此比微积分的极值问题更加抽象和复杂. 收稿日期:2018<01-20 基金项目:国家自然科学基金(11771234)资助项目. 作者简介:部文明(1966-),男,江西宁都人,教授,博士生导师,国家杰出青年基金获得者,主要从事变分法和非线性微 分方程的研究.E-mails :zou-wm@ mail, tsinghua. edu. cn

数学物理方法之二阶线性偏微分方程的分类

第十三章二阶线性偏微分方程 的分类 本章将介绍二阶线性偏微分方程的基本概念、分类方法和偏微分方程的标准化. 特别对于常系数的二阶线性偏微分方程的化简方法也进行了详细讨论,这对后面的偏微分方程求解是十分有用的.

13.1 基本概念 (1)偏微分方程含有未知多元函数及其偏导数的方程,如 22222(,,,,,,,,,,)0u u u u u F x y u x y x y x y ??????????????=??????其中(,,)u x y ???是未知多元函数,而,,x y ???是未知变量;,,u u x y ???????为u 的偏导数. 有时为了书

写方便,通常记 2 2,,,,x y xx u u u u u u x y x ???==???=??????(2)方程的阶偏微分方程中未知函数偏导数的最高阶数称为方程的阶.(3)方程的次数偏微分方程中最高阶偏导数的幂次数称为偏微分方程的次数.

(4)线性方程一个偏微分方程对未知函数和未知函数的所有偏导数的幂次数都是一次的,就称为线性方程,高于一次以上的方程称为非线性方程. (5)准线性方程一个偏微分方程,如果仅对方程中所有最 高阶偏导数是线性的,则称方程为准线性方程. (6)自由项在偏微分方程中,不含有未知函数及其偏导数的项称为自由项.

例13.1.2:方程的通解和特解概念 二阶线性非齐次偏微分方程2xy u y x =?的通解为 2 21(,)()()2u x y xy x y F x G y =?++其中(),()F x G y 是两个独立的任意函数.因为方程为 例13.1.1:偏微分方程的分类(具体见课本P268)

(整理)一阶线性偏微分方程.

第七章 一阶线性偏微分方程 例7-1 求方程组 ()()()yz B A Cdz xz A C Bdy yz C B Adx -=-=- 通积分,其中C B A ,,为互不 相等的常数。 解 由第一个等式可得 xyz ydy A C B xyz xdx C B A -=-, 即有 0=---ydy A C B xdx C B A , 两边积分得方程组的一个首次积分 122,C y A C B x C B A z y x Φ=---= ),(。 由第二个等式可得 xyz zdz B A C xyz ydy A C B -=-, 即有 0=---zdz B A C ydy A C B , 两边积分得方程组的另一个首次积分 222,C z B A C y A C B z y x Ψ=---= ),(。 由于,雅可比矩阵 ? ???? ?????------=????? ???? ????ψ??ψ??ψ ??Φ??Φ ??Φ ?=?ψΦ?z B A C y A C B y A C B x C B A y y x z y x z y x 002),,(),( 的秩为2,这两个首次积分相互独立,于是原方程组的通积分为 122C y A C B x C B A =--- 222C z B A C y A C B =--- 。

评注:借助于方程组的首次积分求解方程组的方法称为首次积分法。要得到通积分需要求得n 个独立的首次积分,n 为组成方程组的方程个数。用雅可比矩阵的秩来验证首次积分的独立性。 例7-2 求方程组 () () ???????-+--=-+-=11d 222 2y x y x dt dy y x x y dt x 的通解。 解 由原方程组可得 )1)((2222-++-=+y x y x dt dy y dt dx x 即 dt y x y x y x d )1)((2)(2 2 2 2 2 2 -++-=+ 这个方程关于变量t 和2 2 y x +是可以分离的,因此易求得它的通积分为 122 2221),,(C e y x y x t y x t =+-+=Φ 这是原方程组的一个首次积分。 再次利用方程组,得到 )(22y x dt dx y dt dy x +-=-, 即有 1arctan -=?? ? ?? x y dt d 由此得到原方程组的另一个首次积分 2arctan ),,(C t x y t y x =+=ψ 。 由于,雅可比矩阵为 ()( ) ???? ? ?????? ?++-++=????????? ????ψ??ψ ??Φ??Φ ?=?ψΦ?2222 222 222 2222),(),(y x x y x y e y x y e y x x y x y x y x t t ,

二阶线性微分方程解的结构

附录A 线性常微分方程 本课程的研究内容与常微分方程理论有非常密切的联系,因此在本附录里,我们将对线性常微分方程的知识——包括解的存在性、解的结构和求解方法做一些回顾和总结。 把包含未知函数和它的j 阶导数()j y (的方程称为常微分方程。线性常微分方程的标准形式 ()(1)110()()'()()n n n y p x y p x y p x y f x --++++=L (A.1) 其中n 称为方程的阶数,()j p x 和()f x 是给定的函数。可微函数()y y x =在区间 I 上满足方程(A.1),则称其为常微分方程(A.1)在 I 上的一个解。,()f x 称为方程(A.1)的自由项,当自由项()0f x ≡时方程(A.1)称为是齐次方程,否则称为非齐次方程。一般来说常微分方程的解是不唯一的,我们将方程的全部解构成的集合称为解集合,解集合中全部元素的一个通项表达式称为方程的通解,而某个给定的解称为方程的特解。 在本附录里,我们重点介绍一阶和二阶常微分方程的相关知识。 A.1 一阶线性常微分方程 一阶线性常微分方程表示为 '()()y p x y f x x I +=∈,. (A.2) 当()0f x ≡,方程退化为 '()0y p x y +=, (A.3) 假设()y x 不恒等于零,则上式等价于 而()'ln 'y y y =,从而(A.3)的通解为 ()d ()p x x y x Ce -?= ( A.4) 对于非齐次一阶线性常微分方程(A.2),在其两端同乘以函数()d p x x e ?

注意到上面等式的左端 因此有 两端积分 其中C 是任意常数。进一步有 综上有如下结论 定理A.1 假设()()p x f x I 和在上连续,则一阶线性非齐次常微分方程(A.1)的通解具有如下形式 ()d ()d ()d ()()d p x x p x x p x x y x Ce e e f x x --? ??=+?‘ (A.5) 其中C 是任意常数。 观察(A.4)式和(A.5)式,我们发现一阶线性非齐次常微分方程(A.1)的解等于 一阶线性齐次常微分方程( A.2)的通解()d p x x Ce -?加上函数()d ()d *()()d p x x p x x y x e e f x x -??=?。容易验证,*()y x 是方程(A.1)的一个特解。这符合线性方程解的结构规律。 例1 求解一阶常微分方程 解 此时()2()1p x f x =-=,,由(A.5)式,解为 其中C 是任意常数。 A.2 二阶线性常微分方程 将具有以下形式的方程 "()'()()y p x y q x y f x x I ++=∈,, (A.6) 称为二阶线性常微分方程,其中(),(),()p x q x f x 都是变量x 的已知连续函数。称 "()'()0y p x y q x y x I ++=∈,, (A.7) 为与(A.6)相伴的齐次方程. A .2.1 二阶线性微分方程解的结构 首先讨论齐次方程(A.7)解的结构。

非线性偏微分方程 偏微分方程数值方法

非线性偏微分方程偏微分方程数值方法非线性偏微分方程偏微分方程数值方 法 非线性偏微分方程定义:各阶微分项有次数高于一的,该微分方程即为非线性微分方程 (一)主要研究内容 非线性偏微分方程是现代数学的一个重要分支,无论在理论中还是在实际应用中,非线性偏微分方程均被用来描述力学、控制过程、生态与经济系统、化工循环系统及流行病学等领域的问题。利用非线性偏微分方程描述上述问题充分考虑到空间、时间、时滞的影响,因而更能准确的反映实际。本方向主要研究非线性偏微分方程、H-半变分不等式、最优控制系统的微分方程理论及其在电力系统的应用。 1.非线性偏微分方程的研究:我们主要研究偏微分方程解的存在唯一性(和多解性)及稳定性;偏微分方程的初值问题、初边值问题的整体解(包括周期解和概周期解)的存在性及渐近性;平衡解的存在性,尤其是当问题依赖于某些参数时平衡解的分叉结构,以及平衡解的稳定性问题;非线性方程的数值解。 2.H-半变分不等式的研究:建立具有极大单调算子扰动的多值(S)型和伪单调型映象的广义度理论,广义不动点指标理论和具有非凸、不可微泛函的非线性发展型H-半变分不等式理论,由此来研究含间断项的非线性偏微分方程。 3.最优控制系统的微分方程理论及其在电力系统的应用:主要研究与电力生产有关的控制系统的理论和应用。首先提出了对Banach空间中抽象非线性发展方程所描述的最优控制系统的研究。引进非光滑分析,研究最优控制系统的微分方程,利用变分不等式理论研究多值问题、数值计算等,所获理论成果应用于电力系统的

许多最优控制问题(如:电力系统励磁调节器传递函数的辨识、牛顿最优潮流的数学模型等)。 (二)研究方向的特色 1.变分不等式理论与能量泛函的凸性密切相关,由于现代科学技术的需要,特别是研究自由边界和固体力学问题的需要,传统的方法往往都无法解决这类问题,人们对H-半变分不等式进行研究,研究涉及现代分析及应用、偏微分方程以及科学计算等众多领域中亟待解决和发展的重要课题。 2.该研究是现代数学与电力生产的交叉学科研究课题,它对电力生产及管理有着十分重要的理论指导意义和实际应用价值,为控制系统设计、分析和计算都可提供一些重要的理论依据。在应用数学学科的这一研究领域中本课题属于国内外前沿性研究工作。 (三)可取得的突破 1.深入研究空间、时间、时滞对解的性质的影响,诸如静态解、周期解的存在性、解的存在性、渐近性等问题;寻求它们在含间断项的非线性偏微分方程方面的突破。 2.寻求和发现新的处理非单调、非凸不可微能量泛函的方法(如建立Ishikawa 迭代序列收敛准则),建立发展型方程G-收敛准则,寻求可行的光滑方法将算子方程光滑化,创建新的先验估计方法。 3.应用现代数学所获得的理论,研究最有控制系统的微分方程,为控制系统设计、分析和计算提供一些重要的理论依据和方法。 1747年,法国的达朗贝尔等由弦振动的研究而开创偏微分方程论。 1760~1761年,法国的拉格朗日系统地研究了变分法及其在力学上的应用。 随机微分方程数值解

非线性偏微分方程

非线性偏微分方程及其几种解法综述 姓名:柏宝红 学号:BY1004120

目录 1、绪论 (3) 1.1背景 (3) 1.2 现状 (7) 2、非线性偏微分方程的几种解法 (10) 2.1逆算符法 (10) 2.2 齐次平衡法 (11) 2.3 Jacobi椭圆函数方法 (12) 2.4 辅助方程方法 (14) 2.5 F-展开法 (15) 2.6 双曲正切函数展开法 (17)

1、绪论 以应用为目的,或以物理、力学等其他学科问题为背景的微分方程的研究,不仅是传统应用数学中一个最主要的内容,也是当代数学的一个重要组成部分.它是数学理论与实际应用之间的一座重要桥梁,研究工作一直十分活跃,研究领域日益扩大。 目前微分方程研究的主体是非线性微分方程,特别是非线性偏微分方程(NLPDE).很多意义重大的自然科学和工程技术问题都可归结为非线性偏微分方程的研究.现实生活的许多领域内数学模型都可以用NLPDE来描述,很多重要的物理、力学等学科的基本方程本身就是NLPDE,另外,随着研究的深入,有些原先可用线性微分方程近似处理的问题,也必须考虑非线性的影响,所以对NLPDE的研究,特别是NLPDE求解精确解的研究工作就显示出了很重要的理论和应用价值,但是数学研究的结果,在目前还未能提供一种普遍有效的求精确解的方法.20世纪50年代以来,人们对非线性现象的研究中提出了“孤子”的概念,进而使得对NLPDE求解的研究成为非线性科学中的热点。下面介绍一下孤立子理论的研究背景、研究现状。 1.1背景 孤立子理论己经成为应用数学和数学物理的一个重要组成部分,在流体力学,等离子物理,经典场论,量子论等领域有着广泛的应用。 随着近代物理学和数学的发展,早在1834年由英国科学家Russell发现的孤立波现象近二十多年来引起了人们的极大关注,对

第一章 偏微分方程和一阶线性偏微分方程解

第一章 偏微分方程和一阶线性偏微分方程解 本章介绍典型的几个偏微分方程。给出了最简单的偏微分方程(一阶线性偏微分方程)解的特征线方法。 典型的偏微分方程:扩散方程t xx u ku =,t u k u =?;波动方程2tt xx u c u =,2tt u c u =?。这是本课程讨论的主要两类方程。 偏微分方程的各类边值条件也是本章讨论的一个重点。 §1.1 一维空间中的偏微分方程 例1 (刚性污染流的方程) 假设均匀直线管道中的水流含污染物质的线密度是(,)u x t (即x 处在时刻t 的污染物的密度) 。如果流速是c ,问题:(,)u x t 满足什么样的方程? 解 如图,在[,]x x x +?内的流体,经过时间t ?,一定处于[,]x c t x x c t +?+?+?。所含污染物应相同,即 (,)(,)x x x x c t x x c t u t d u t t d ξξξξ+?+?+?+?= +?? ? , 由此 (,)(,)u x t u x c t t t =+?+?, 从而, 0t x u cu +=。 【End 】 可见偏微分方程是一个至少为两元的函数及其偏导数所满足的方程。 例2 (扩散方程) 假设水流静止,在t ?时间内,流经x 处的污染物质(不计高阶无穷小)与该处浓度的方向导数(浓度变化)成正比,比例系数为k : ()x u dm t k dt ku dt x ?==?, 所以,在时间段12[,]t t 内,通过12[,]x x 的污染物为 2 1 2 1 [(,)(,)]t x x t k u x t u x t dt -?。 在时刻1t 和2t ,在12[,]x x 内的污染物分别为2 1 1(,)x x u x t dx ?和2 1 2(,)x x u x t dx ? ,由物质守恒定律 2 2 2 1 1 1 2 1 2 1 (,)(,)[(,)(,)]x x t x x x x t u x t dx u x t dx k u x t u x t dt -=-??? 由1t ,2t 的任意性,

二阶线性微分方程解的结构

附录A 线性常微分方程 本课程的研究内容与常微分方程理论有非常密切的联系,因此在本附录里,我们将对线性常微分方程的知识——包括解的存在性、解的结构和求解方法做一些回顾和总结。 把包含未知函数和它的j 阶导数()j y (的方程称为常微分方程。线性常微分方程的标准形式 ()(1)110()()'()()n n n y p x y p x y p x y f x --++++= (A.1) 其中n 称为方程的阶数,()j p x 和()f x 是给定的函数。可微函数()y y x =在区间 I 上满足方程(A.1),则称其为常微分方程(A.1)在 I 上的一个解。,()f x 称为方程(A.1)的自由项,当自由项()0f x ≡时方程(A.1)称为是齐次方程,否则称为非齐次方程。一般来说常微分方程的解是不唯一的,我们将方程的全部解构成的集合称为解集合,解集合中全部元素的一个通项表达式称为方程的通解,而某个给定的解称为方程的特解。 在本附录里,我们重点介绍一阶和二阶常微分方程的相关知识。 A.1 一阶线性常微分方程 一阶线性常微分方程表示为 '()()y p x y f x x I +=∈,. (A.2) 当()0f x ≡,方程退化为 '()0y p x y +=, (A.3) 假设()y x 不恒等于零,则上式等价于 '()y p x y =-

而()'ln 'y y y =,从而(A.3)的通解为 ()d ()p x x y x Ce -?= ( A.4) 对于非齐次一阶线性常微分方程(A.2),在其两端同乘以函数()d p x x e ? ()d ()d ()d '()()p x x p x x p x x e y p x e y e f x ???+= 注意到上面等式的左端 ()d ()d ()d ''()p x x p x x p x x e y p x e y e y ?????+= ??? ‘ 因此有 ()d ()d '()p x x p x x e y e f x ????= ??? ‘ 两端积分 ()d ()d ()d p x x p x x e y C e f x x ??=+?‘ 其中C 是任意常数。进一步有 ()d ()d ()d p x x p x x y e C e f x x -??? ?=+ ??? ?‘ 综上有如下结论 定理A.1 假设()()p x f x I 和在上连续,则一阶线性非齐次常微分方程(A.1)的通解具有如下形式 ()d ()d ()d ()()d p x x p x x p x x y x Ce e e f x x --???=+?‘ (A.5) 其中C 是任意常数。 观察(A.4)式和(A.5)式,我们发现一阶线性非齐次常微分方程(A.1) 的解等于一阶线性齐次常微分方程(A.2)的通解()d p x x Ce -?加上函数

非线性发展方程及其应用

非线性发展方程及其应用 成果简介 本项目是非线性科学中的一个重要的研究方向,共研究的对象是来源于化学反应、微电子学、生物学等领域中用非线性偏微方程描述的动力学模型。因此,它具有交叉学科的特征。所获得的成果不仅为有关学科提供了定量分析的理论依据,而且也能为研究非线性偏微分方程带来新的研究思路和新的研究课题。 1.首次借助于构造适当的上、下控制函数、利用有界边值问题逼近方法,解决了Belensov-Zhabotinskii化学反应模型波前解的存在性,并给出子最小波速的值;同时还给出了一种求解显示行波解的方法。 2.利用摄动初值问题逼近、相空间的打靶法与变分思想,解决了退化的反应扩散方程行波解的存在性,并给出了最小波速的变分刻划和估计; 3.对带有非线性非局部项和非线性边界条件的抛物型方程和方程组的研究,主要利用上、下解方法。但是,上、下解的构造却有很大的灵活性和很高的技巧。我们首次借助于研究非负矩阵的性质,得到了方程组整体解存在的充分必要条件;首次通过构造在有限时刻爆破的精细上解和解的逐次延拓方法研究了解的整体存在性。同时,我们发表在美国数学会会刊上的一篇论文,还否定了Wolainskii于93年发表在SIAM J. Math. Anal.上的一个工作。发表在JMAA上的两篇论文,成功地解决了在边界上带有非线性强迫外力的非线性对流扩散问题。 4.反应扩散方程研究领域的一个基本问题是:扩散是否会引起爆破?多数人认为扩散不会引起爆破且是一个显而易见的问题,不须证明。但是数学结果

总是要证明的,有一部分人就致力于证明,给出了该结论成立的各式各样的充分条件。我们于96年发表在JMAA上的一篇论文给出了一个反例,说明扩散会引起爆破,彻底澄清了这个问题。 5.当反应扩散方程中反应项较扩散项占优时,利用经典有限元、有限差分或有限箱法离散时,解会出现数值振荡,常用的抑制振荡的方法有:S-G方法,SUPG方法等,但都存在局限性。我们从变分原理出发要求振荡最小,建立了新的离散数值理论; 6.半导体器件的漂移扩散模型是一个特殊形式,由非线性抛物型与椭圆型方程耦合起来的,反应扩散方程组,带有混合形式边界条件,特别是载流子又有不同的产生一复合过程,再加上热效应和磁场影响,难度大。我们建立了基于紧致性原理的正则化的统一框架。 该成果获江苏省科技进步二等奖。 非线性统计模型与非线性诊断方法 成果简介 本系统地研究了近代非线性回归模型的几何理论和渐近推断理论,把微分几何方法应用于非线性回归分析;系统地研究了具有广泛应用价值的指数族非线性模型,建立了该模型的几何结构,在此基础上,研究了这些模型基于统计曲率的渐近推断理论以及统计诊断的非线性方法;这些研究填补了国内空白,在国内外都有一定影响。近10年来共获得 3 项国家自然科学基金,1项 95 重点基金,2 项江苏省自然科学基金;出版专著2本,发表论文50多篇,其中国外14 篇,

第二章 二阶线性偏微分方程的分类

第二章 二阶线性偏微分方程的分类 1.把下列方程化为标准形式: (1)02=+++++u cu bu au au au y x yy xy xx 解:因为 02 22112 12=?-=-a a a a a a 所以该方程是抛物型方程,其特征方程为 12 2 =-± =a a a a dx dy 。 它只有一族实的特征线 c x y =- 在这种情况下,我们设x y -=ξ,x =η(或令y =η,总之,此处η是与ξ无关的任一函数,当然宜取最简单的函数形式x =η或y =η)。 方法一:用抛物型方程的标准形式 ][12122 F Cu u B u B A +++- =ηξηηη 先算出: ? ??? ? ? ?? ? ? ?-====?+?+?+?+?=++++=?+-+?+?+?=++++==?+?+=++=b c C b c b a a a b b a a a B c b a a a b b a a a B a a a a a a a A y x yy xy xx y x yy xy xx y y x x 0F ,1010020 2 1)1(0020 2 002 2212212112 2122121112 221221122ηηηηηξξξξξηηηη ∴])[(1 u bu u c b a u +++--=ηξηη 即 01=+ + -+ u a u a b u a b c u ηξηη 方法二:应用特征方程,作自变量变换,求出 ??? ??=+-=+-=+--==+-= ,2 ,ξξηξξξηηξηξξηηηξξηξξξηξu u u u u u u u u u u u u u u u u u yy xy xx y x 代入原方程得,0)(=++-+u bu u b c au ηξξη

相关主题
文本预览
相关文档 最新文档