第三章二阶线性偏微分方程的分类化简
- 格式:pdf
- 大小:488.57 KB
- 文档页数:9
关于化简2阶线性偏微分方程的一些直观想法课本第一章谈到化简2阶2元线性偏微分方程,以便更好的分类进而方便其求解,个人认为其方法稍显突兀,并且难以向高维情况推广,以下讨论一些对于课本方法的改进。
2阶半线性偏微分方程的一般形式是:1,()()(,,...,)0i ji ij x x i x n i jia x ua x u F u x x ++=∑∑其二次的主部为:0,i jij x x i jL u a u =∑化简的实质是做变换,而现阶段我们能够使用的仅有2种:①自变量变换 ;②未知函数变换第一部分:过程推导§1首先我们知道,二阶方程困难之处是在于它的主部,于是我们单独就0L u 进行讨论。
受到二次型理论的启发,我们利用算子复合的概念将0L 写成二次型的形式:111121212221012121..........................n n n n n nn x a a a a a a x L x x x a a a x ∂⎛⎫ ⎪∂ ⎪⎛⎫ ⎪∂ ⎪⎛⎫∂∂∂ ⎪ ⎪∂=⎪⎪⎪∂∂∂⎝⎭ ⎪ ⎪ ⎪⎝⎭∂ ⎪ ⎪∂⎝⎭在这里要注意的一点的是,虽然ij a 是x 的函数,但在这个二次型里只当作系数,即不能理解为:()ij i i a x x ∂∂∂∂,而应该理解为2ij ij i j i ja a x x x x ∂∂∂=∂∂∂∂,这一点在后面仍会碰到。
§2接下来,首先我们看一般的自变量的光滑变换会产生什么效果。
令() i=1,2,...,n i i y y x =记 12...T n x x x x⎛⎫∂∂∂∂= ⎪∂∂∂∂⎝⎭ , 111212122212....................n n n n nn a a a a a a A a a a ⎛⎫⎪⎪= ⎪⎪⎝⎭, 121111222212....................n n n nnn y y y x x x y y y x x x J y y y x x x ∂∂∂⎛⎫ ⎪∂∂∂ ⎪ ⎪∂∂∂ ⎪∂∂∂= ⎪ ⎪⎪∂∂∂ ⎪ ⎪∂∂∂⎝⎭ 当然我们可以要求A 是对称阵。
§3 二阶偏微分方程一、 二阶偏微分方程的分类、标准形式与特征方程考虑二阶偏微分方程()0),,,,,,(111,2=∂∂∂∂+∂∂∂∑=n nnj i j i ij x u x u u x x F y x u x a (1) 式中a ij (x )=a ij (x 1,x 2,…,x n )为x 1,x 2,…,x n 的已知函数.[特征方程·特征方向·特征曲面·特征平面·特征锥面]代数方程()01,=∑=nj i jiijaa x a称为二阶方程(1)的特征方程;这里a 1,a 2,…,a n 是某些参数,且有012≠∑=ni ia.如果点x ︒=(x 1︒,x 2︒,…,x n ︒)满足特征方程,即()01,o =∑=nj i jiijaa x a则过x ︒的平面()01o=-∑=nk kk k x x a 的法线方向l :(a 1,a 2,…,a n )称为二阶方程的特征方向;如果一个(n 1-)维曲面,其每点的法线方向都是特征方向,则称此曲面为特征曲面;过一点的(n 1-)维平面,如其法线方向为特征方向,则称这个平面为特征平面,在一点由特征平面的包络组成的锥面称为特征锥面.[n 个自变量方程的分类与标准形式] 在点P (x 1︒,x 2︒,…,x n ︒),根据二次型()∑=nj i jinijaa x x x a 1,o o 2o 1,,, (a i 为参量)的特征根的符号,可将方程分为四类:(i) 特征根同号,都不为零,称方程在点P 为椭圆型.(ii) 特征根都不为零,有n 1-个具有同一种符号 ,余下一个符号相反,称方程在点P 为双曲型.(iii) 特征根都不为零,有m n -个具有同一种符号(n >m >1),其余m 个具有另一种符号,称方程在点P 为超双曲型.(iv) 特征根至少有一个是零,称方程在点P 为抛物型.若在区域D 内每一点方程为椭圆型,双曲型或抛物型,则分别称方程在区域D 内是椭圆型、双曲型或抛物型.在点P 作自变量的线性变换可将方程化为标准形式:椭圆型:∑==+∂∂ni ix u1220Φ双曲型:∑==+∂∂-∂∂n i ix ux u 22120Φ超双曲型:()10112222>>=+∂∂-∂∂∑∑=+=m n x ux u mi nm i ii Φ抛物型:()00122>=+∂∂∑-=m x umn i iΦ式中Φ为不包含二阶导数的项.[两个自变量方程的分类与标准形式] 方程的一般形式为0,,,,222222122211=⎪⎪⎭⎫⎝⎛∂∂∂∂+∂∂+∂∂∂+∂∂y u x u u y x F y u a y x u a x u a (2) a 11,a 12,a 22为x ,y 的二次连续可微函数,不同时为零. 方程a 11d y 22-a 12d x d y +a 22d x 2=0称为方程(2)的特征方程.特征方程的积分曲线称为二阶方程(2)的特征曲线. 在某点P (x 0,y 0)的邻域D 内,根据Δ=a 122-a 11a 12的符号将方程分类: 当Δ>0时,方程为双曲型; 当Δ=0时,方程为抛物型; 当Δ<0时,方程为椭圆型.在点P 的邻域D 内作变量替换,可将方程化为标准形式:(i ) 双曲型:因Δ>0,存在两族实特征曲线11),(c y x =ϕ,22),(c y x =ϕ,作变换),(1y x ϕξ=,),(2y x ϕη=和,,ηηξ-=+=s t s 方程化为标准形式),,,,(2222t us u u t s t u s u ∂∂∂∂=∂∂-∂∂Φ 或),,,,(12ηξηξΦηξ∂∂∂∂=∂∂∂uu u u (ii ) 抛物型: 因Δ=0,只存在一族实的特征曲线c y x =),(ϕ,取二次连续可微函数),(y x ψ,使0),(),(≠∂∂y x ψϕ,作变换),(y x ϕξ=,),(y x ψη=,方程化为标准形式),,,,(222ηξηξΦη∂∂∂∂=∂∂uu u u (iii ) 椭圆型:因Δ<0,不存在实特征曲线,设c y x i y x y x =+=),(),(),(21ϕϕϕ为11221121212d d a a a a a x y -+=的积分,y x ϕϕ,不同时为零,作变量替换),(1y x ϕξ=,),(2y x ϕη=,方程化为标准形式),,,,(32222ηξηξΦηξ∂∂∂∂=∂∂+∂∂uu u u u二、 极值原理·能量积分·定解问题的惟一性定理椭圆型方程、抛物型方程的极值原理及双曲型方程的能量守恒原理是相应方程的解所具有的最基本性质之一,在定解问题的研究中起着重要的作用. [椭圆型方程的极值原理与解的惟一性定理]1︒ 极值原理 设D 为n 维欧氏空间E n 的有界区域,S 是D 的边界,在D 内考虑椭圆型方程()()()()x x x x f u c x ub x x u a Lu ni i i n j i j i ij =+∂∂+∂∂∂≡∑∑==11,2式中a ij (x ),b i (x ),c (x ),f (x )在D 上连续,c (x )≤0且二次型()∑=nj i j i ij a a a 1,x 正定,即存在常数μ>0,i ()∑∑==≥ni i n j i j i ij a a a a 121,μx定理1 设u (x )为D 内椭圆型方程的解,它在D 内二次连续可微,在D 上连续,且不是常数,如f (x )≤0(或f (x )≥0),则u (x )不能在D 的内点取非正最小值(或非负最大值).如果过边界S 上的任一点P 都可作一球,使它在P 点与S 相切且完全包含在区域D 内,则有 定理2 设u (x )为椭圆型方程在D 内二次连续可微,在D 上连续可微的解,且不是常数,并设f (x )≤0(或f (x )≥0).若u (x )在边界S 上某点M 处取非正最小值(或非负最大值),只要外法向导数错误!未定义书签。
二阶线性偏微分方程的解法和特解在数学领域中,二阶线性偏微分方程是一种重要的方程类型。
它在物理学、工程学以及其他领域的建模和问题求解中具有广泛的应用。
解决这类方程的问题既有理论上的方法,也有实用的数值解法。
本文将介绍二阶线性偏微分方程的求解方法,包括一般解法和特解法。
一、一般解法对于形如:\[a(x, y) \frac{{\partial^2 u}}{{\partial x^2}} + b(x, y) \frac{{\partial^2 u}}{{\partial x \partial y}} + c(x, y) \frac{{\partial^2 u}}{{\partial y^2}} + d(x, y) \frac{{\partial u}}{{\partial x}} + e(x, y) \frac{{\partial u}}{{\partial y}} + f(x, y) u = g(x, y)\]的二阶线性偏微分方程,其中\(a(x, y), b(x, y), c(x, y), d(x, y), e(x, y), f(x, y), g(x, y)\)是已知函数,我们希望求解未知函数\(u(x, y)\)满足该方程。
首先,我们可以采用变量分离法将方程化简。
令\(u(x, y) = X(x)Y(y)\),代入原方程,可以得到两个方程:\[ a(x) \frac{{X''(x)}}{{X(x)}} + d(x) \frac{{X'(x)}}{{X(x)}} + f(x) = -\lambda \]\[ c(y) \frac{{Y''(y)}}{{Y(y)}} + e(y) \frac{{Y'(y)}}{{Y(y)}} +\lambda = -g(x, y) \]其中\(\lambda\)是常数。
我们先考虑第一个方程,它可以化为一个常系数齐次线性微分方程:\[ a(x) X''(x) + d(x) X'(x) + \left(f(x) + \lambda\right) X(x) = 0 \]接下来根据常系数线性微分方程的解法,可以求得\(X(x)\)的解。
二阶偏微分方程分类二阶偏微分方程是指含有两个独立变量的二阶偏导数的方程。
在数学中,它是一个重要的研究对象,具有广泛的应用领域,如物理学、工程学、生物学等。
本文将对二阶偏微分方程进行分类和介绍。
一、常系数二阶线性偏微分方程常系数二阶线性偏微分方程是指系数不随自变量变化而保持不变的二阶线性偏微分方程。
它们可以写成以下形式:$$\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} + a\frac{\partial u}{\partial x} + b\frac{\partial u}{\partial y} + cu = f(x,y)$$其中$a$、$b$、$c$为常数,$f(x,y)$为已知函数。
这类方程可以通过特征方程法求解。
二、非齐次线性偏微分方程非齐次线性偏微分方程是指右端项不为零的线性偏微分方程。
它们可以写成以下形式:$$\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} = f(x,y)$$其中$f(x,y)$为已知函数。
这类方程可以通过格林函数法求解。
三、椭圆型偏微分方程椭圆型偏微分方程是指二阶偏微分方程中的系数满足$b^2 - 4ac < 0$,即判别式小于零的方程。
它们可以写成以下形式:$$a\frac{\partial^2 u}{\partial x^2} + 2b\frac{\partial^2 u}{\partial x \partial y} + c\frac{\partial^2 u}{\partial y^2} = f(x,y)$$其中$a$、$b$、$c$为常数,$f(x,y)$为已知函数。
这类方程在物理学中有广泛的应用,如热传导方程和电场方程等。
四、双曲型偏微分方程双曲型偏微分方程是指二阶偏微分方程中的系数满足$b^2 - 4ac > 0$,即判别式大于零的方程。