运动控制课程综述(最新版)
- 格式:doc
- 大小:1.43 MB
- 文档页数:6
运动控制知识
运动控制是指尝试控制和管理运动及其表现的过程。
运动控制是运动学的重要部分,从简单的运动到复杂的运动,都是需要控制的。
运动控制的基本概念包括认知控制、知觉控制和运动控制。
认知控制是指运动员需要在练习的过程中,以有限的资源来理解部分信息,并且运用它们来实现运动技巧的特定组合。
知觉控制是指通过运动员对外部环境的感知,来控制自己身体的运动,实现运动动作的平衡、精准和协调。
最后,运动控制是指通过运动员的动态调整,来调整肌肉力量和运动技巧,来完成自己的动作。
为了更好地控制运动,运动员必须具备足够的体能,因为体能是控制运动的基础,体能越强,运动员可以控制的力量越大,而且运动员可以使用更多样化的动作来实现特定的运动目标。
其次,运动员也需要充分的动态调整能力,这是控制运动的核心,通过不断调整力量、速度和运动技巧,运动员可以实现更好的运动效果。
此外,运动员还必须具备足够的认知能力,这是控制运动的重要组成部分。
认知能力是指运动员能够通过理解自己的运动特点,以及通过实践来学习运动技巧和改善自己的运动技能,来达到提高运动控制能力的目的。
最后,为了获得更好的运动控制效果,运动员需要经过持续的训练,以提高自己的动态调整能力,提高体能,提升认知能力,提高运动灵活性,以及提高运动的精准度。
运动控制有时也可以通过缓慢的冥想运动,来帮助运动员集中注意力,提高内在的稳定性,从而提高
运动的控制水平。
以上就是关于运动控制知识的介绍。
只有通过不断的练习,运动员才能够掌握运动控制的技巧,突破自己的技术障碍,从而获得更好的运动成绩。
第十一章学习的阶段The Stages of Learning 概念:区分技能学习过程中绩效和绩效特点的变化Concept: Distinct performance and performer characteristics change duringskill learningAfter completing this chapter, you will be able to●Describe characteristics of learners as they progress through the stages of learning as proposed by Fitts and Posner and by Gentile(Gentile’s Two-Dimensions taxonomy)●Describe several performer-and performance-related changes that occur as a person progresses through the stages of learning a motor skill●Describe several characteristics that distinguish an expert motor skill performer from a nonexpert●Discuss two type of research evidence that help predict a person’s future performance achievement●Relate Ackerman’s model of individual differences to the stages of learning a motor skill一、应用•①你是否曾注意过有些人能够很熟练的完成某个动作,但在向别人传授该项技能时缺经常出现困难。
运动技能的学习与控制《运动技能学习与控制》(一)Unit One 动作技能和运动能力概述Chapter One 动作机能的分类人类的各种行为活动都可以统称为动作技能。
技能(skill):1.为实现特定目标而操作的动作或任务;2.以操作质量为表征。
运动技能(motor skill):指有特定操作目标,涉及自主身体或肢体运动的技能。
动作(action):由身体和/或肢体运动产生的指向目标的运动。
【疑】百度——身体:指人或动物的整个生理组织,有时特指驱干和四肢。
既然身体包括四肢,关于动作的解释不就可以直接定义为由身体运动产生的指向目标的运动嘛。
也许是翻译的问题,body和limb的意思还是不一样的,原因也许就在这吧。
运动(movement):构成动作或运动技能的肢体或肢体联合的行为特征。
一维分类系统通常我们根据技能间的相似特征来对动作技能进行分类。
最常见的方法是根据技能的共同特征将技能进行归类。
每一种共同特征包含两个范畴(注意并非二元范畴),用一个连续区间的两端来表示。
【疑】两个范畴和二元范畴有何不同呢?1.参与操作的技能肌肉系统的大小:大、小肌肉群2.动作开始和结束的特征:连续动作技能--任意动作开始和结束;重复性活动分立技能--指定动作开始和结束;单一性活动3.环境背景的稳定性:开放性动作技能--支撑面、操作对象和/或操作中处于运动状态的其他人封闭性动作技能--支撑面、操作对象和/或操作中处于静止状态的其他人【疑】有绝对的封闭性动作技能吗?日常生活中绝大部分都是开放性动作技能。
大肌肉群动作技能(gross motor skill):指需要大肌肉系统参与工作才能实现操作目标的动作技能。
小肌肉群动作技能(fine motor skill):指需要小肌肉群参与动作控制才能实现操作目标的动作技能;包括手眼协调动作和高度精确性的手指、手腕动作。
分立动作技能(discrete motor skill):指具有明显开始和结束界限的运动技能,一般由简单动作构成。
《运动控制系统》教案一、教学目标1. 了解运动控制系统的概念、组成和作用。
2. 掌握运动控制系统的常用传感器、执行器和控制器。
3. 学会分析运动控制系统的原理和应用。
4. 能够运用运动控制系统知识解决实际问题。
二、教学内容1. 运动控制系统的概念及组成1.1 运动控制系统的定义1.2 运动控制系统的组成要素1.3 运动控制系统的分类2. 运动控制系统的常用传感器2.1 速度传感器2.2 位置传感器2.3 力传感器2.4 加速度传感器3. 运动控制系统的执行器3.1 电动机3.2 液压执行器3.3 气动执行器3.4 步进执行器4. 运动控制系统的控制器4.1 开环控制器4.2 闭环控制器4.3 模糊控制器4.4 神经网络控制器三、教学方法1. 讲授法:讲解运动控制系统的概念、原理和特点。
2. 案例分析法:分析运动控制系统的应用实例。
3. 实验法:进行运动控制系统的实验操作。
4. 小组讨论法:探讨运动控制系统相关问题。
四、教学重点与难点1. 教学重点:运动控制系统的概念、组成、原理及应用。
2. 教学难点:运动控制系统的传感器、执行器和控制器的选择与配置。
五、教学课时本课程共48课时,其中理论教学32课时,实验教学16课时。
教案内容请根据实际教学需求进行调整和补充。
希望这份教案能对您的教学有所帮助!如有其他问题,请随时联系。
六、教学过程1. 引入:通过生活中的运动控制实例,如智能家居中的窗帘自动打开、关闭,引出运动控制系统的基本概念。
2. 讲解:详细讲解运动控制系统的概念、组成和作用,以及常用传感器、执行器和控制器的工作原理及应用。
3. 案例分析:分析典型的运动控制系统应用实例,如、数控机床等,让学生了解运动控制系统在实际工程中的应用。
4. 实验操作:安排实验室实践环节,让学生动手操作运动控制系统,加深对理论知识的理解。
5. 总结:对本次课程内容进行总结,强调运动控制系统在现代工业中的重要性。
七、教学评价1. 平时成绩:考察学生在课堂上的表现,如发言、提问等。
运动控制知识运动控制是一种由信息传递、决策计算与执行组成的技术,它是机器人或其他自动控制系统实施任务的一个重要基础。
此外,运动控制的广泛用途将其涉及的领域拓展到了各种应用领域,其中包括机械、农业、医疗、电力、航空、机器视觉、楼宇自动化系统、自动驾驶和工业机器人。
运动控制是一项复杂的学术研究,集机械工程、电子工程、自动控制、信息技术、机器人学和计算机等学科知识于一体,主要的研究内容包括机械制造、运动控制、传动原理、节能减速机、电机控制、伺服系统、传感器技术、智能控制及模拟、数字信号控制、机器人视觉技术、车辆控制系统及仿真技术等。
由于其多重性能特征,运动控制在机器人与其他自动控制系统中发挥着重要作用,它可以进行运动路径规划,控制机器人运动,以及实现机械设备的精确控制。
针对机器人的运动控制,需要解决的技术问题主要有:运动控制系统的建立,用于运动控制的传感器技术,机器人运动控制的数字信号处理,运动控制系统的参数设置,运动控制系统的实时调节,机器人的运动学、动力学和逆向等等。
除机器人运动以外,运动控制在其他自动控制系统中也发挥着重要作用。
例如,在工业机器人领域,运动控制可以用于实现机器人的插补控制以及其他任务控制;在数控系统中,运动控制可以用于实现各种类型的坐标运动控制,以及各种坐标系联动控制;在机械制造领域,运动控制可以用于实现机械加工过程的控制;在楼宇自动化系统中,运动控制可以用于实现楼宇装置的自动控制;在机器视觉领域,运动控制可以用于实现目标物体的实时跟踪;在质量检测领域,运动控制可以用于实现产品质量自动检测。
为了实现运动控制,采用了一系列新型技术,其中包括了运动控制芯片,传感器技术、控制系统软件设计、数字电路与模拟电路混合技术、精密机械制造技术等等。
首先,运动控制芯片的发展为运动控制的实施奠定了基础。
例如,通过PLC型号的控制芯片,可以执行简单的运动控制指令,从而实现对设备的运动控制。
其次,传感器技术的发展,为运动控制的实现提供了可靠的数据支持。
Hefei University
电力拖动自动控制系统课程综述
课题名称:电力拖动自动控制系统
姓名:
学号:
指导教师:孟芳芳老师
完成时间: 2015.6.13
一、概述
《运动控制系统》是为自动化专业学生开设的一门专业课。
该课程的研究对象是生产实践中应用广泛的运动控制系统,包括调速和位置随动自动控制系统,具有理论联系实际的突出特点,对自动化技术专业学生掌握专业知识和技能,提高理论联系实际的能力,起着重要的作用,并为今后的工作打下基础。
电力拖动实现了电能和机械能之间的能量转换,而电力拖动自动控制系统——运动控制系统(以下简称运动控制系统)的任务是通过控制电动机电压、电流和频率等输入量,来改变工作机械的转矩、速度、位移等机械量,使各种工作机械按照人们期望的要求去运行,以满足生产工艺及其他应用的需要。
现代运动控制系统技术以各类电动机为控制对象,以计算机和其他电子装置为控制手段,以电力电子装置为弱电控制强电的纽带,以自动控制理论和信息处理理论为理论基础,以计算机数字仿真和计算机辅助设计(CAD)为研究教学时间安排上,本课程安排了教学周的1~12周进行理论教学,还有三次实验课,任课教师是孙强博士,考核方法是课后作业(5%)+课堂提问(10%)+平时考试(15%)+实验(20%)+期末考试(50%)。
教学目标上,通过本课程的教学,使学生较好地掌握交直流调速系统、随动系统的基本组成、工作原理以及系统的静、动态分析方法,能够按性能指标要求,应用工程设计方法设计运动控制系统。
培养理论联系实际的能力,提高分析问题和解决问题的能力。
图1 运动控制系统与其支持学科
二、课程主要内容
教材的主线是控制系统的原理、分析和设计。
这本教材设计的主要思路是理论与实际相结合,应用自动控制理论解决运动控制系统的分析和设计等实际问题。
以转矩和磁链(磁通)控制规律为主线,由简入繁、由低及高地循序渐进,按照从开环到闭环、从直流到交流、从调速到伺服的层次论述运动控制系统的静、动态性能和设计方法。
直流调速系统是运动控制系统的基础,教材从直流调速系统入门,建立了扎实的控制系统分析和设计的概括和能力之
后,再进入交流调速系统的学习。
最后,在掌握了调速系统的基本规律和设计方法的基础上,进一步学习伺服系统的分析和设计。
第一章是绪论部分。
绪论部分对运动控制系统的历史与发展以及相关学科做了一个简单的介绍,着重指出转矩控制是运动控制系统的根本规律,磁场(磁链)控制也相当重要。
最后介绍了典型的负载特性。
第二章是转速反馈控制的交流调速系统。
本章节首先描述两类可控直流电源的特性和数字模型。
当用可控直流电源和直流电动机组成一个直流调速系统时,它们所表现出来的性能指标和人们的期望值总是存在差距的,接着对此做出了分析,解决此问题的方法是设计具有转速反馈控制的直流调速系统。
接着介绍了转速反馈控制直流调速系统的控制规律,分析了系统的静差率,介绍了P调节器和PI调节器的控制作用。
随着技术的发展,各种自动控制系统越来越多采用微机数字控制,然后分析了数字控制系统的特点,着重介绍了数字测速方法和数字调节器。
由于只带转速反馈的控制系统的控制对象是转速,没有控制电流,该系统需要实施限流保护,最后分析了限流的方法。
同时也介绍了MATLAB/SIMULINK在直流调速系统设计中的基本应用方法,为以后各章节中的电力拖动系统仿真设计打下基础。
第三章是转速、电流反馈控制的直流调速系统。
本章节首先介绍转速、电流反馈控制直流调速系统的组成及其静特性,接着阐述系统的动态数学模型,并从起动和抗扰两个方面分析其性能和转速与电流两个调节器的控制作用。
同时介绍了调节器的工程设计方法,和经典控制理论的动态校正方法相比,这种设计方法计算简单,应用方便,容易掌握。
应用工程设计方法能很好的解决转速、电流反馈控制直流调速系统两个调节器的设计问题。
最后用MATLAB仿真软件对转速、电流反馈控制的直流调速系统进行仿真。
第四章是可逆控制和弱磁控制的直流调速系统。
本章进一步讨论了可逆直流调速系统和弱磁控制的直流调速系统。
首先讨论了直流PWM可逆直流调速系统,PWM调速系统的可逆控制比较简单,但它的可逆控制存在着能量的反馈问题。
然后讨论了V-M可逆直流系统,包括主电路的可逆线路、晶闸管装置的逆变与回馈、可逆线路的环流及其控制系统。
接着又讨论了弱磁控制的直流调速系统,在转速、电流双闭环直流调速系统的基础上增设电动势控制环和励磁电流控制环,可以控制直流电动机的气隙磁通,实现弱磁调速。
以上三章构成了第一篇章,直流调速系统。
第五章是基于稳态模型的异步电动机调速系统。
异步电动机具有结构简单、制造容易、维修工作量小等优点,早期多用于不可调拖动。
随着电力电子技术的发展,静止式变频器的诞生,异步电动机在可调拖动中逐渐得到广泛的应用。
本章首先基于稳态等效电路的异步电动机稳态模型,分析异步电动机调速的基本方法和气隙磁通。
接着介绍了调压调速的基本特征和机械特性,讨论闭环控制的调压调速系统,介绍了降压控制在软启动器和轻载降压节能运行中的应用。
接着介绍了变压变频调速的基本原理和机械特性,讨论了基频以下的电压补偿控制。
通过介绍交流PWM变频器的主电路,讨论了正弦PWM(SPWM)、电流跟踪PWM(CFPWM)、消除指定次数谐波PWM(SHEPWM)和电压空间矢量PWM(SVPWM)四种控制方式,着重分析SVPWM中电压矢量与定子磁链的关系和控制,并介绍交流PWM 变频器在异步电动机调速系统中应用的特殊问题。
最后讨论了转速开环电压频率协调控制的变压变频调速系统及其实现和转速闭环转差频率控制系统的工作原理、控制规律和性能分析。
第六章是基于动态模型的异步电动机调速系统。
异步电动机具有非线性、强耦合、多变量的性质,要获得高动态调速性能,必须从动态模型出发,分析异步电动机的转矩和磁链控制系统,研究高性能异步电动机的调速方案。
本章首先讨论了异步电动机的数学模型的非线性、强耦合、多变量的性质,论述了异步电动机三相原始动态数学模型,证明三相原始数学模型的非独立性,说明简化的必要性和可能性。
接着讨论两种坐标变换及其物理意义,后又。