第十一章三角形单元分析
- 格式:docx
- 大小:7.79 KB
- 文档页数:2
第十一章三角形11.1与三角形有关的线段11.1.1三角形的边◇教学目标◇【知识与技能】1.认识三角形的概念及其基本要素;2.掌握三角形三条边之间的关系.【过程与方法】1.通过操作对比、观察、推理、交流等活动认识三角形及其概念和表示方法,运用分类思想对三角形进行分类;2.经历度量三角形边长的实践活动中,理解三角形的三边关系.【情感、态度与价值观】培养学生的符号语言表达能力,体会三角形在日常生活中的应用价值.◇教学重难点◇【教学重点】三角形的三边关系.【教学难点】三角形三边关系的应用.◇教学过程◇一、情境导入埃及金字塔、常见的交通标志和移动信号塔都是什么形状?在我们日常生活中还有哪些东西是三角形的?二、合作探究探究点1三角形的概念典例1看图填空:(1)图中共有个三角形,它们是;(2)△BGE的三个顶点分别是,三条边分别是,三个角分别是;(3)△AEF中,顶点A所对的边是;(4)∠ACB是△的内角,∠ACB的对边是.[解析]根据三角形的概念:由不在同一条直线上的三条线段首尾顺次相接所组成的图形叫做三角形.组成三角形的线段叫做三角形的边.相邻两边的公共端点叫做三角形的顶点.相邻两边组成的角叫做三角形的内角,简称三角形的角.[答案](1)4;△ABC,△EBG,△AEF,△CGF(2)B,G,E;BE,EG,BG;∠B,∠BEG,∠BGE(3)EF(4)ACB;AB探究点2三角形的分类典例2如图,过A,B,C,D,E五个点中的任意三点画三角形.(1)以AB为边画三角形,能画几个?写出各三角形的名称.(2)分别指出(1)中的三角形中的等腰三角形和钝角三角形.[解析](1)如图所示,以AB为边的三角形能画3个,分别是△EAB,△DAB,△CAB.(2)△ABD是等腰三角形,△EAB,△CAB是钝角三角形.探究点3三角形的三边关系典例3已知三角形的三条边互不相等,且有两边长分别为7和9,另一条边长为偶数.(1)请写出一个符合上述条件的第三边长.(2)符合上述条件的三角形有多少个?[解析](1)第三边长是4.(答案不唯一)(2)设三角形的另一边长为m.∵2<m<16,∴m 的值为4,6,8,10,12,14,共六个.在运用三角形三边关系判定三条线段能否构成三角形时并不一定要列出三个不等式,只要两条较短的线段长度之和大于第三条线段的长度即可判定这三条线段能构成一个三角形. 三、板书设计三角形的边三角形{三角形的相关概念{三角形的边三角形的角三角形的顶点三角形的分类三边关系◇教学反思◇由于初次接触三角形的相关元素,教师要注意引导学生发现三角形的三边关系,要留给学生充足的时间和空间去思考讨论,培养学生解决问题的能力.11.1.2三角形的高、中线与角平分线◇教学目标◇【知识与技能】1.了解三角形的高、中线、角平分线的概念;2.会用工具准确画出三角形的高、中线、角平分线.【过程与方法】1.让学生经历画三角形的高、中线、角平分线过程,理解三角形的高、中线、角平分线的特点以及符号语言和图形语言的表达方法;2.培养学生观察、分析、作图、解决问题的能力.【情感、态度与价值观】培养学生敢于实践操作、勇于发现、大胆探索、合作创新的精神.◇教学重难点◇【教学重点】三角形的高线、中线、角平分线的概念及画法.【教学难点】探究三角形的三条高线、三条角平分线、三条中线都交于一点的过程.◇教学过程◇一、情境导入有一块三角形的地,小明的爸爸想种花草,妈妈想种菜.于是想平分三角形的面积,一半种花草,一半种菜,不知如何做,小明说,这还不好办,作一边的中线就行了,聪明的你,能帮他们家把这块地分成面积相等的两部分吗?知道小明这样做的原因吗?二、合作探究探究点1三角形的高典例1如图,在△ABC中,AD⊥BC,垂足为D,BE⊥AC,垂足为E,AD,BE相交于点F,连接CF.(1)在△ABC中,AC边上的高为,BC边上的高为;(2)在△ABD中,AD边上的高为;(3)在△BCE中,CE边上的高为;(4)在△BCF中,BC边上的高为;(5)在△ABF中,AF边上的高为,BF边上的高为.[解析]三角形的高即从三角形的一个顶点向它的对边所在直线引垂线,顶点和垂足间的线段. [答案](1)BE;AD(2)BD(3)BE(4)FD(5)BD;AE锐角三角形的三条高在三角形内部,相交于三角形内一点;直角三角形有两条高与直角边重合,另一条高在三角形内部,它们的交点是直角顶点;钝角三角形有两条高在三角形外部,一条高在三角形内部,三条高所在直线相交于三角形外一点.探究点2中线的特性典例2三角形一边上的中线把原三角形分成两个()A.形状相同的三角形B.面积相等的三角形C.直角三角形D.周长相等的三角形[解析]根据三角形的面积公式以及三角形的中线定义,知三角形的一边上的中线把三角形分成了等底同高的两个三角形,所以它们的面积相等.[答案]B【技巧点拨】三角形的中线把三角形分为两个等底同高的三角形,这两个三角形的面积相等.探究点3三角形的角平分线典例3如图,CD,BE分别是△ABC的角平分线,它们相交于点I,则:(1)∠ACD=∠=∠ACB,∠ABC=∠ABE.(2)BI是∠的平分线,CI是∠的平分线.(3)若∠ABC=60°,∠ACB=80°,则∠BIC=度.(4)你能画出△ABC的第三条角平分线吗?[解析] (1)BCD ;12;2.(2)ABC ;ACB. (3)110°.(4)连接AI 并延长,即为∠BAC 的角平分线. 探究点4 三角形的中线与周长典例4 如图,AD 是△ABC 的中线,且AB =10 cm,AC =6 cm,求△ABD 与△ACD 的周长之差.[解析] ∵AD 为中线,∴BD =CD ,∴△ABD 与△ACD 的周长之差=(AB +AD +BD )-(AC +AD +CD )=AB -AC , ∵AB =10,AC =6,∴△ABD 与△ACD 的周长之差=10-6=4 cm . 三、板书设计三角形的高、中线与角平分线三角形的高、中线与角平分线{三角形的高{定义画法符号表达三角形的中线{定义画法符号表达三角形的角平分线{定义画法符号表达◇教学反思◇通过本课时的教学要让学生认识三角形的三条重要线段的概念、图形和它们的相关特性,如三角形的中线把三角形分为面积相等的两部分,三角形的三条高线、三条中线、三条角平分线都相交于一点的性质,应逐步加强学生几何语言的表达能力.11.1.3三角形的稳定性◇教学目标◇【知识与技能】了解三角形的稳定性以及三角形的稳定性在实际生活中的应用.【过程与方法】培养动手操作、归纳概括能力,提高运用知识解题的能力,训练思维的灵活性.【情感、态度与价值观】感受生活中数学的美学价值,体会生活中处处有数学,体验学习数学的乐趣.◇教学重难点◇【教学重点】三角形的稳定性.【教学难点】三角形稳定性的应用.◇教学过程◇一、情境导入三角形在我们日常生活中应用广泛,仔细观察上面一组图片,你知道有些物体的形状做成三角形的原因吗?三角形形状的物体有什么作用?二、合作探究探究点1三角形的稳定性典例1如图,一扇窗户打开后,用窗钩AB可将其固定,这里所运用的几何原理是()A.垂线段最短B.两点之间线段最短C.两点确定一条直线D.三角形的稳定性[解析]观察图可发现图中窗钩构造了一个三角形AOB,根据三角形稳定性,可得答案.[答案]D变式训练如图所示是一个起重机的示意图,在起重架中间增加了很多斜条,它所运用的几何原理是()A.三角形两边之和大于第三边B.三角形具有稳定性C.三角形两边之差小于第三边D.直角三角形[答案]B探究点2四边形的不稳定性的应用典例2(1)工程建筑中经常采用三角形的结构,如屋顶的钢架,输电线的支架等,这里运用的三角形的性质是.(2)下列图形具有稳定性的有个.①正方形;②长方形;③直角三角形;④平行四边形.(3)已知四边形的四边长分别为2,3,4,5,这个四边形的四个内角的大小能否确定?(4)要使五边形木架(用5根木条钉成)不变形,工人准备再钉上两根木条,如图的两种钉法中正确的是.(5)要使四边形木架(用4根木条钉成)不变形,至少需要加1根木条固定,要使五边形木架不变形,至少需要加2根木条固定,要使六边形木架不变形,至少需要加3根木条固定,……,如果要使一个n边形木架不变形,至少需要加根木条固定.[解析](1)三角形的稳定性.(2)1.(3)不能确定.(4)方法1.(5)根据三角形具有稳定性,可以知道需要的木条数等于过多边形的一个顶点的对角线的条数.过n 边形的一个顶点可以作(n -3)条对角线,把多边形分成(n -2)个三角形,所以,要使一个n 边形木架不变形,至少需要(n -3)根木条固定.【技巧点拨】这里是利用三角形的稳定性以及多边形的对角线解决问题,考虑到利用对角线把多边形分成三角形是解题的关键. 探究点3 克服四边形的不稳定性典例3如图,工人师傅做了一个长方形窗框ABCD ,E ,F ,G ,H 分别是四条边上的中点,为了使它稳固,需要在窗框上钉一根木条,这根木条不应钉在( )A.A ,C 两点之间B.E ,G 两点之间C.B ,F 两点之间D.G ,H 两点之间[解析] 用木条固定长方形窗框,即是组成三角形,故可用三角形的稳定性解释. [答案] B【方法点拨】三角形的稳定性在实际生活中有着广泛的应用,如钢架桥、房屋架梁等,因此要使一些图形具有稳定的结构,往往通过连接辅助线转化为三角形而获得.三、板书设计三角形的稳定性三角形的稳定性{三角形的稳定性{自行车框架学校篮球架起重机等四边形的不稳定性{应用:放缩尺、活动门、晾衣架等克服:把四边形转化成三角形◇教学反思◇通过对生活中三角形稳定性的探索,吸引学生的注意力,调动学生的积极性,体会数学的应用价值.11.2与三角形有关的角11.2.1三角形的内角第1课时三角形的内角和◇教学目标◇【知识与技能】应用三角形内角和定理解决一些简单的实际问题.【过程与方法】通过小组学习,经历得出三角形内角和等于180°的过程,进一步提高学生利用所学知识解决问题的能力.【情感、态度与价值观】经历猜想、归纳、证明等过程,学会研究问题的方法.◇教学重难点◇【教学重点】三角形内角和定理.【教学难点】三角形内角和定理的推理过程.◇教学过程◇一、情境导入如图,小学的时候我们通过度量或剪拼得到:∠A+∠B+∠ACB=180°.现在你能用我们学习的方法给出证明吗?二、合作探究探究点1三角形内角和定理典例1如图,在△ABC中,BD为△ABC的角平分线,如果∠A=47°,∠ADB=116°,求∠ABC和∠C的度数.[解析]∵∠A=47°,∠ADB=116°,∴∠ABD=180°-47°-116°=17°.∵BD为△ABC的角平分线,∴∠ABC=2∠ABD=34°,∴∠C=180°-47°-34°=99°.探究点2三角形内角和定理的应用典例2如图,△ABC中,∠B=65°,∠BAD=40°,∠AED=100°,∠CDE=45°,求∠CAD的度数.[解析]在△ABD中,∵∠B=65°,∠BAD=40°,∴∠BDA=180°-(∠B+∠BAD)=180°-(65°+40°)=75°.∵∠CDE=45°,∴∠ADE=180°-(∠BDA+∠CDE)=180°-(75°+45°)=60°.在△ADE中,∵∠AED=100°,∴∠CAD=180°-∠ADE-∠AED=180°-60°-100°=20°.变式训练完成下面的推理过程:如图,在三角形ABC中,已知∠2+∠3=180°,∠1=∠A,试说明∠CFD=∠B.解:∵∠2+∠DEF=180°(邻补角定义),∠2+∠3=180°(已知),∴(同角的补角相等).∴AC∥EF().∴∠CDF=(两直线平行,内错角相等).∵∠1=∠A(已知),∴∠CDF=∠A(等量代换).∴DF∥AB().∴∠CFD=∠B().[答案]∠DEF=∠3;内错角相等,两直线平行;∠1;同位角相等,两直线平行;两直线平行,同位角相等三、板书设计三角形的内角和三角形的内角和{三角形内角和的证明三角形内角和的应用◇教学反思◇本节课主要是通过小学的探究形式,引导学生寻找做辅助线,对三角形的内角和等于180°进行严谨的证明,慢慢培养学生对证明的理解,逐步认识几何证明的必要性.在解决问题的过程中,关注学生在推理中语言使用的准确性,引导学生用规范的格式进行书写.第2课时直角三角形的两个锐角互余◇教学目标◇【知识与技能】认识直角三角形,探索图形性质.【过程与方法】1.通过小组实践探索找到直角三角形的性质.2.用以学为主的教学模式中的启发式教学策略与方法,让学生养成自主探索、合作交流的学习方式.【情感、态度与价值观】经历猜想、归纳、证明等过程,学会研究问题的方法.让学生在已有知识的基础上通过观察来总结理论知识.◇教学重难点◇【教学重点】直角三角形的两个锐角互余.【教学难点】直角三角形的两个锐角互余的探索过程.◇教学过程◇一、情境导入如图,在△ABC中,∠C=90°,你能求出∠A,∠B的度数吗?为什么?你能求出∠A+∠B的度数吗?利用上面的结果,你能得出什么结论?∠A+∠B=90°,现在你能用我们学习的方法给出证明吗?二、合作探究探究点直角三角形的两锐角互余典例如图,BD平分∠ABC,CD⊥BD,D为垂足,∠C=55°,则∠ABC的度数是()A.35°B.55°C.60°D.70°[解析]根据直角三角形两锐角互余求出∠CBD,再根据角平分线的定义解答.∵CD⊥BD,∠C=55°,∴∠CBD=90°-55°=35°,∵BD平分∠ABC,∴∠ABC=2∠CBD=2×35°=70°.[答案]D三、板书设计直角三角形的两个锐角互余直角三角形的两锐角互余◇教学反思◇通过引导学生理解直角三角形的两个锐角互余,激发学生参与的主动性.11.2.2三角形的外角◇教学目标◇【知识与技能】了解三角形的外角的两条性质,能利用三角形的外角性质解决问题.【过程与方法】经历观察、探索、交流等过程,增强表达能力和推理能力.【情感、态度与价值观】通过观察和动手操作,体会探索过程,学会推理的数学思想方法,培养主动探索、勇于发现,敢于实践及合作交流的习惯.◇教学重难点◇【教学重点】三角形的外角的性质.【教学难点】探究三角形外角的性质,进行相关计算.◇教学过程◇一、情境导入两只野狼在如图的A处发现有一只野牛离群独自在O处觅食,野狼打算用迂回的方式,一只先从A前进到B处,然后再折回在C处截住野牛返回牛群的去路D处,另一只则直接从A处扑向野牛.已知∠BAC=40°,∠ABC=70°,问野狼从B处要转多少度才能直达C处?二、合作探究探究点1三角形的外角典例1如图,CE是△ABC的外角∠ACD的平分线,若∠B=25°,∠ACE=60°,则∠A=()A.105°B.95°C.85°D.25°[解析]先根据角平分线的性质求出∠ACD的度数,再由三角形外角的性质即可得出结论.∵CE 是△ABC的外角∠ACD的平分线,∠ACE=60°,∴∠ACD=2∠ACE=120°.∵∠B=25°,∴∠A=120°-25°=95°.[答案]B变式训练一副三角板有两个三角形,如图叠放在一起,则∠α的度数是()A.120°B.135°C.150°D.165°[答案]D探究点2三角形外角的性质的应用典例2如图,已知D为△ABC边BC延长线上一点,DF⊥AB于点F,交AC于点E,∠A=30°,∠D=40°,求∠ACD的度数.[解析]∵DF⊥AB,∠D=40°,∴∠DFB=90°,∴∠B=90°-∠D=90°-40°=50°.∵∠ACD是△ABC的外角,∠A=30°,∴∠ACD=∠B+∠A=50°+30°=80°.【技巧点拨】解决几何问题的关键是认准图形,找出图中三角形的外角,利用“三角形的一个外角等于和它不相邻的两个内角的和”的性质和三角形内角和定理解决.变式训练如图,若∠A=27°,∠B=45°,∠C=38°,则∠DFE等于()A.110°B.115°C.120°D.125°[答案]A三、板书设计三角形的外角三角形的外角{三角形的外角{定义图形与性质三角形外角的应用◇教学反思◇本节课的教学围绕三角形的外角识别、性质及应用展开教学,在讲解外角和内角关系时层层递进,使重点得到突出;及时根据学生学习的情况进行点评和分析;对于易错问题及时讲解,此外注意指导学生总结解题思路和方法,让学生对所学知识的掌握更到位.11.3多边形及其内角和11.3.1多边形◇教学目标◇【知识与技能】了解多边形的有关概念,理解正多边形和有关概念.【过程与方法】经历动手、作图等过程,进一步发展空间能力.【情感、态度与价值观】经历探索、归纳等过程,学会研究问题的方法.◇教学重难点◇【教学重点】了解多边形、内角、外角、对角线等数学概念以及凸多边形和正多边形的概念.【教学难点】多边形定义的准确理解.◇教学过程◇一、情境导入请同学们回忆一下三角形的概念,并尝试说明多边形的概念.二、合作探究探究点1多边形的概念典例1如图所示的图形中,属于多边形的有()A.3个B.4个C.5个D.6个[解析]根据多边形的定义:平面内不在同一条直线上的几条线段首尾顺次相接组成的图形叫做多边形.显然只有第一个、第二个、第五个是多边形.[答案]A变式训练如图,下列图形不是凸多边形的是()[答案]C探究点2正多边形的概念典例2我们知道各边都相等,各角都相等的多边形是正多边形,小明却说各边都相等的多边形就是正多边形,各角都相等的多边形也是正多边形,他的说法对吗?如果不对,你能举反例(画出相应图形)说明吗?[解析]他的说法错误.菱形各边相等,但不是正多边形.如图,菱形ABCD的四个角不相等,不是正多边形;矩形各个角相等,但四边不一定相等,不是正方形.探究点3多边形的剪切典例3若一个多边形截去一个角后,变成十五边形,则原来的多边形的边数可能为()A.14或15或16B.15或16C.14或16D.15或16或17[解析]因为一个多边形截去一个角后,根据剪的角度、方式不同,多边形的边数可能增加了一条,也可能不变或减少了一条,依此即可解决问题.一个多边形截去一个角后,多边形的边数可能增加了一条,也可能不变或减少了一条,则多边形的边数是14,15或16.[答案]A【技巧点拨】一个多边形截去一个角后,多边形的边数可能增加了一条,也可能不变或减少了一条.变式训练 把一个四边形锯掉一个角,剩下的多边形是( )A.三角形B.四边形C.五边形D.三角形或四边形或五边形[答案] D三、板书设计多边形多边形{ 多边形{ 定义多边形的内角多边形的外角多边形的对角线凸多边形正多边形◇教学反思◇通过类比的数学思想,引导学生理解多边形的相关概念,引导学生自主探索多边形的边数与对角线的数量关系.教师应注重课堂小结,激发学生参与的主动性.11.3.2多边形的内角和◇教学目标◇【知识与技能】了解多边形的内角、外角等概念,能通过不同方法探索多边形的内角和与外角和公式,并会应用它们进行有关计算.【过程与方法】经历合作、交流等过程,初步形成推理思维.【情感、态度与价值观】经历猜想、探索、归纳等过程,学会多角度、全方位研究问题的方法,体会转化、类比等数学思想.◇教学重难点◇【教学重点】多边形的内角和公式与外角和公式.【教学难点】多边形的内角和定理的推导以及对多边形外角和的理解.◇教学过程◇一、情境导入如图所示,小华从A点出发,沿直线前进10米后左转24°,再沿直线前进10米,又向左转24°,…,照这样走下去,他第一次回到出发地A点时,一共走的路程是多少米?你能计算吗?二、合作探究探究点1多边形的内角和典例1已知一个多边形的内角和是900°,则这个多边形是()A.五边形B.六边形C.七边形D.八边形[解析]设这个多边形是n边形,内角和是(n-2)·180°,这样就得到一个关于n的方程,从而求出边数n的值.[答案]C变式训练把n边形变为(n+x)边形,内角和增加了720°,则x的值为()A.4B.6C.5D.3[答案]A探究点2多边形的外角和典例2小鹏用家中多余的硬纸板做了一个如图所示的多边形飞镖游戏盘,则该游戏盘的内角和比外角和多()A.1080°B.720°C.540°D.360°[解析]根据多边形的内角和公式(n-2)·180°,外角和等于360°列出算式求解即可.(8-2)×180°-360°=1080°-360°=720°.故该游戏盘的内角和比外角和多720°.[答案]B多边形的外角和与边数无关,任何多边形的外角和都是360°.探究点3正多边形的内角与外角典例3如果一个多边形的每一个外角都是60°,则这个多边形的边数是()A.3B.4C.5D.6[答案]D探究点4多边形外角的理解典例4如图,小东在足球场的中间位置,从A点出发,每走6 m向左转60°,已知AB=BC =6 m.(1)小东是否能走回A点,若能回到A点,则需走多少米?走过的路径是一个什么图形?为什么?(路径A到B到C到…)(2)求出这个图形的内角和.[解析] (1)∵从A 点出发,每走6 m 向左转60°,∴360°÷60°=6,6×6=36(米),即能回到A 点,需走36米,走过的路径是一个边长为6的正六边形.(2)正六边形的内角和为(6-2)×180°=720°.三、板书设计多边形的内角和多边形的内角{ 多边形的内角和{多边形与三角形多边形的内角和公式多边形的外角和◇教学反思◇通过丰富有趣的探究活动,让学生积极参与其中,充分调动学生的学习热情,使学生灵活掌握多边形内角和与外角和的概念与运用.多数学生能达到预期目的,对课上吃力的同学,课下还要及时进行进一步的关注,以后在课堂上还应充分给学生探究的时间和空间,使每一个学生均有收获.。
初中人教版数学八年级上册第十一章三角形单元设计说明篇一在初中人教版数学八年级上册教材体系里,第十一章三角形有着举足轻重的地位。
它就像一座桥梁,承上启下。
之前学过的线段、角等知识,在三角形这一单元得到了综合运用。
比如说在探究三角形内角和的时候,角的知识就派上了大用场。
而这一单元又为后续的四边形等多边形知识做了很好的铺垫,因为多边形可以分割成多个三角形来研究。
教学目标方面,知识与技能目标上,学生得掌握三角形的概念,这可不仅仅是知道啥是三角形这么简单,要能准确判断三条线段能否组成三角形。
三角形的分类也是重点,得清楚按角分有锐角三角形、直角三角形和钝角三角形,按边分有等边三角形、等腰三角形和不等边三角形。
还有三角形的性质,像三角形的稳定性在生活中的应用,三边关系定理等。
过程与方法目标呢,通过探究三角形内角和是180度的活动,能很好地培养学生的逻辑思维。
在画三角形,研究不同类型三角形的时候,空间想象能力也能得到提升。
情感态度与价值观目标上,当学生发现三角形在建筑、生活中的各种巧妙应用时,就会对数学几何产生浓厚的兴趣。
教学重难点也很明确。
重点是三角形的内角和定理及其证明。
这个定理是三角形知识的核心部分,证明过程需要学生有很强的逻辑思维。
难点在于三角形的分类依据以及不同类型三角形性质的理解。
比如等腰三角形的三线合一性质,学生可能不太容易理解为什么会这样。
教学方法的选择很关键。
讲授法是必不可少的,像三角形的概念、分类这些基础知识,老师直接讲授能让学生快速获取准确信息。
探究法也很重要,在探究三角形内角和定理的时候,让学生自己动手剪一剪、拼一拼三角形的三个角,这样能加深他们的理解。
小组合作法也很有效,在讨论三角形的稳定性以及不同类型三角形性质的时候,小组合作可以让学生互相交流想法,拓宽思路。
因为三角形这一单元的知识既需要扎实的基础讲解,又需要学生自己去探索发现,多种教学方法结合能让学生更好地掌握知识。
篇二初中人教版数学八年级上册第十一章三角形这一单元内容丰富且逻辑紧密。
一、单元学习主题本单元是“图形与几何”领域“图形的性质”主题中的“三角形”.二、单元学习内容分析1.课标分析《义务教育数学课程标准(2022年版)》(以下简称《标准2022》)指出初中阶段图形与几何领域包括“图形的性质”“图形的变化”和“图形与坐标”三个主题,学生将进一步学习点、线、面、角、三角形、多边形和圆等几何图形,从演绎证明、运动变化、量化分析三个方面研究这些图形的基本性质和相互关系.“图形的性质”强调通过实验探究、直观发现、推理论证来研究图形,在用几何直观理解几何基本事实的基础上,从基本事实出发推导图形的几何性质和定理,理解和掌握尺规作图的基本原理和方法.三角形是图形与几何领域的主要内容,它在义务教育阶段的数学课程中占有重要地位.三角形是最简单的封闭图形,既顺承前面学过的线段、角、平行线及相交线,又为后续四边形等图形的学习提供思路、方法的支持.显而易见,三角形处于前衔后联的核心地位.三角形是仅次于线段和直线的基本几何图形,而空间的大部分基本性质都已经在三角形的几何性质中充分体现.三角形的知识是研究其他几何图形不可或缺的基础,三角形的应用几乎遍及初中几何的所有章节.2.本单元教学内容分析人教版教材八年级上册第十一章“三角形”,本章包括三个小节:11.1与三角形有关的线段;11.2与三角形有关的角;11.3多边形及其内角和.“图形的性质”主题中的“三角形”包括:与三角形有关的线段(边、高、中线、角平分线)——三角形的稳定性——三角形的内角和定理、外角的性质——多边形的内角和与外角和.本章从内容来看,包括很多重要的概念和性质定理:三角形的概念及三边关系、推理证明三角形内角和等于180°、认识多边形的对角线、推理证明多边形内角和公式、外角和等于360°等.本章是前面所学知识的延伸,又是学习全等三角形、四边形、相似三角形、三角函数等章节的基础,起到承上启下的作用.通过学习,培养学生几何图形意识和初步的动手操作技能,拓展学生归纳、总结、切割、分析复杂图形的能力.通过三角形知识的研究进一步了解几何中研究问题的基本思路和方法,也为将来进一步研究全等三角形、等腰三角形、相似三角形和平行四边形等内容奠定了知识基础,提供了研究思路.这不仅对学生今后研究问题、解决问题以及终身的发展非常有益,而且是深入贯彻实施《标准2022》的素养理念的渠道,有利于促进学生思考、激发学生思维探究、教会学生学习方法、挖掘学生的学习潜力、有效提高初中数学教学质量和学生学业质量.三、单元学情分析本单元内容是人教版教材数学八年级上册第十一章的三角形,学生在小学已经学过三角形的一些知识,对三角形的许多重要性质有所了解,在七年级又学过线段、角以及相交线、平行线等知识,初步了解了一些简单几何体和平面图形及其基本特征,会进行简单的推理,已具备一定的逻辑思维能力,掌握了一定的探究方法.三角形和多边形也是学生生活中最常见的图形,有了相应的表象知识,学生更乐于深入学习,积极探索.本章从学生熟悉的生活与社会情境入手,以三角形结构化数学知识主题为载体,在符合学生认知发展规律的数学与科学情境中,让学生经历“用数学的眼光发现和提出问题,用数学的思维与数学的语言分析和解决问题”的过程,并从中获得数学学习的活动经验和积累,初步养成独立思考、探究质疑、合作交流等学习习惯,初步形成自我反思的意识,同时在形成与发展“四基”的过程中形成抽象能力、推理能力、运算能力、几何直观和空间观念等.四、单元学习目标1.理解三角形及其内角、外角、中线、高、角平分线等概念,了解三角形重心的概念,了解三角形的稳定性.2.探索并证明三角形两边的和大于第三边,并会运用这一性质解决问题.3.探索并证明三角形的内角和定理,掌握它的推论:三角形的外角等于与它不相邻的两个内角的和.4.探索并掌握直角三角形的两个锐角互余,掌握有两个角互余的三角形是直角三角形.5.理解并掌握三角形外角的概念,掌握三角形外角的性质和三角形外角和,解决与三角形外角有关的简单计算和证明问题,发展学生的抽象思维,培养模型观念和应用意识.6.了解多边形的概念及多边形的边、内角、外角、凸多边形、正多边形等有关特征,探索并证明多边形的内角和与外角和公式并能应用解决简单问题,体会化归思想和从具体到抽象的研究问题的方法,培养学生的模型观念、应用意识和创新意识.五、单元学习内容及学习方法概览六、单元评价与课后作业建议本单元课后作业整体设计体现以下原则:针对性原则:每课时课后作业严格按照《标准2022》设定针对性的课后作业,及时反馈学生的学业质量情况.层次性原则:教师注意将课后作业分层进行,注重知识的层次性和学生的层次性.知识由易到难,由浅入深,循序渐进,突出基础知识,基本技能,渗透人人学习数学,人人有所获.重视过程与方法,发展数学的应用意识和创新意识.根据以上建议,本单元课后作业设置为两部分,基础性课后作业和拓展性课后作业.。
人教版八年级数学上册《第十一章三角形》大单元整体教学设计一、内容分析与整合(一)教学内容分析人教版初中数学八年级上册的《第十一章三角形》是几何学习中的一个重要章节,它不仅承载着对三角形基础概念和性质的全面介绍,还扮演着连接学生先前所学与后续几何知识深入探索的桥梁角色。
本章内容丰富多彩,深入浅出地引导学生走进三角形的奇妙世界,为他们构建一个系统而坚实的几何知识体系。
在这一章节中,学生们将首先接触到三角形的各种线段,包括边、高、中线以及角平分线等。
这些看似简单的概念,实则是解锁三角形众多性质的关键。
通过学习,学生们将理解每条线段在三角形中的独特位置和作用,以及它们如何相互关联,共同塑造三角形的形态与特性。
例如,中线不仅将对应的底边平分,还将三角形分为面积相等的两部分,这一性质的学习对于学生后续理解更复杂的几何问题大有裨益。
除了线段,章节还深入探讨了三角形的角,包括内角和外角。
学生将学习如何计算三角形的内角和,这一基础知识是证明许多三角形性质的基础。
外角的概念及其与相邻内角的关系,也将被详尽阐述,帮助学生从多角度审视三角形的角特征,培养他们的空间想象力和逻辑推理能力。
本章还拓展到了多边形及其内角和的内容,进一步丰富了学生的几何视野。
多边形作为三角形的延伸,其内角和的计算方法不仅加深了学生对几何图形内在规律的认识,也为后续学习更复杂几何图形打下了坚实的基础。
更为重要的是,本单元的教学不仅仅局限于理论知识的传授,更注重培养学生的实践操作能力和逻辑推理能力。
通过实际测量、作图、证明等一系列活动,学生被鼓励亲自动手,体验知识的生成过程,从而在实践中深化对三角形性质的理解。
这种“做中学”的方式,极大地提升了学生的学习兴趣和参与度,使他们在探索中发现几何之美,培养解决问题的能力和创新思维。
《第十一章三角形》不仅是初中数学课程中的一个核心章节,更是学生几何思维形成的关键时期。
通过本章的学习,学生不仅能够掌握三角形的基础概念和性质,更能在实践中锻炼几何直觉,学会用数学的眼光观察世界,为后续更深层次的几何学习乃至整个数学学习旅程奠定坚实的基础。
第十一章三角形
一、学习目标
1.理解三角形及与三角形有关的线段(边、高、中线、角平分线)的概念,证明三角形两边的和大于第三边,了解三角形的重心的概念,了解三角形的稳定性.
2.理解三角形的内角、外角的概念,探索并证明三角形内角和定理,探索并掌握直角三角相的两个锐角互余,掌握有两个角互余的三角形是直角三角形,掌握三角形的一个外角等于与它不邻的两个内角的和.
3.了解多边形的有关概念(边、内角、外角、对角线、正多边形),探索并掌握多边形的和与外角和公式.
二、教学重难点
三角形三边关系、内角和,多边形的外角和与内角和公式,镶嵌是重点;
三角形内角和等于180°的证明,根据三条线段的长度判断它们能否构成三角形及简单的平面镶嵌设计是难点。
三、学情分析:
学生在前已学过三角形的一些知识,对三角形的许多重要性质有所了解,又学过线段、角以及相交线、平行线等知识,了解了一些简单几何体和平面图形及其基本特征,会进行简单的推理.还在七年级已经通过推理证明了一些图形的性质,如同角(等角)的补角相等,对顶角相等、两直线平
行,内错角相等.本章中的许多结论也要通过推理来证明.在本章中加强推理能力的培养,可以提高学生已有的思维水平.也为学习全等三角形、等腰三角形、平行四边形等内容打下基础.学生在本章仍处于进一步熟悉证明的阶段,学习通过推理的方法证明本章中的有关结论有一定难度.因此,在教学中分析证明结论的思路,通过多提问题,留给学生足够的思考时间,让学生经历发现和提出问题、分析和解决问题的过程.例如,对于三角形内角和定理,设计实验操作的探究栏目,并对操作过程进行分析,从而获得证明的思路.注重证明思路的分析有助于学生学好推理证明.
四、本章教学时间约需8课时,具体分配如下(仅供参考):
11.1 与三角形有关的线段 2课时
11.2 与三角形有关的角 3课时
11.3 多边形及其内角和2课时
数学活动小结1课时。